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Abstract. The contribution of meteorology and emissions to long-term PM2.5 trends is critical for air quality management but 

has not yet been fully analyzed. Here, we used a combination of machine learning model, statistical model and chemical 

transport model to quantify the meteorological impacts on PM2.5 pollution during 2000–2018. Specifically, we first developed 

a two-stage machine learning PM2.5 prediction model with a synthetic minority oversampling technique to improve the 20 

satellite-based PM2.5 estimates over highly polluted days, thus allowing us to better characterize the meteorological effects on 

haze events. Then we used two methods, a generalized additive model (GAM) driven by the satellite-based full-coverage daily 

PM2.5 retrievals as well as the Weather Research and Forecasting/Community Multiscale Air Quality (WRF/CMAQ) modelling 

system, to examine the meteorological contribution to PM2.5. We found good agreements between the GAM model estimations 

and the CMAQ model estimations of meteorological contribution to PM2.5 on monthly scale (correlation coefficient between 25 

0.53–0.72). Both methods revealed the dominant role of emission changes in the long-term trend of PM2.5 concentration in 

China during 2000–2018, with notable influence from the meteorological condition. The interannual trends variabilities in 

meteorology-associate PM2.5 were dominated by the fall and winter meteorological conditions, when regional stagnant and 

stable conditions were more likely to happen and haze events frequently occurred. From 2000 to 2018, the meteorological 

contribution became more unfavorable to PM2.5 pollution across the North China Plain and central China, but were more 30 

beneficial to pollution control across the southern part, e.g., the Yangtze River Delta. The meteorology-adjusted PM2.5 over 

East China peaked at 2006 and 2011, mainly driven by the emission peaks in primary PM2.5 and gas precursors in these years. 

Although emissions dominated the long-term PM2.5 trends, the meteorology-driven anomalies also contributed –3.9% to 2.8% 

of the annual mean PM2.5 concentrations in East China estimated from the GAM model. The meteorological contributions 
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were even higher regionally, e.g., –6.3% to 4.9% of the annual mean PM2.5 concentrations in the Beijing-Tianjin-Hebei region, 35 

–5.1% to 4.3% in the Fen-wei Plain, –4.8% to 4.3% in the Yangtze River Delta and –25.6% to 12.3% in the Pearl River Delta. 

Considering the remarkable meteorological effects on PM2.5 and the possible worsening trend of meteorological conditions in 

the northern part of China where air pollution was is severe and population was is clustered, stricter clean air actions are needed 

to avoid haze events in the future. 

1 Introduction 40 

The air pollution, especially PM2.5 pollution, has become a serious problem in China in the past decades. Variations in air 

pollution are primarily driven by two factors: emissions and meteorology. Anthropogenic emissions dominate the long-term 

trend of air pollution (Zhang et al., 2019a;Cheng et al., 2019a), and meteorological conditions also notably influence the daily, 

seasonal, interannual and interdecadal air pollution variations (Zhang et al., 2018;Chen et al., 2020b;Wang et al., 2019a;Zhai 

et al., 2019). In China, the PM2.5 pollution dropped remarkably since the implementation of strict clean air policies, e.g. “the 45 

Air Pollution Prevention and Control Action Plan” (The Action Plan, 2013-2017) and the Blue Sky Protection Campaign 

(2018–2020). Previous studies reported that the changes in major air pollutant emissions attributable to the economic 

development and clean air policies have been widely studied (Guan et al., 2014;Shen et al., 2017). For example, during the 

11th Five-Year Plan (2006–2010) and the 12th Five-Year Plan (2011–2015), gas pollutant emissions, i.e., SO2 and NOx, have 

been remarkably reduced (Ma et al., 2019;Geng et al., 2019). During “the Air Pollution Prevention and Control Action Plan” 50 

(The Action Plan, 2013-2017) and the Blue Sky Protection Campaign (2018–2020), PM2.5 and other air pollutants emissions 

dropped significantly during this period and the PM2.5 concentrations substantially decreased (Bian et al., 2019;Liu et al., 2015). 

Meanwhile,Previous studies also estimated the contribution of meteorology to the air quality improvement. Zhang et al. (2019b) 

reported that about 13% and 20% of total PM2.5 decline during 2013-2017 are due to meteorological effects in Beijing-Tianjin-

Hebei (BTH) and Yangtze River Delta (YRD), respectively, estimated from the pollution-linked meteorological index (PLAM). 55 

Zhang et al. (2019a) reported that meteorological changes led to a 16% decrease and a 4% increase in PM2.5 changes during 

2013-2017 in BTH and YRD, respectively, estimated from a chemical transport model (CTM) simulations. Zhai et al. (2019) 

reported that after adjustment of meteorological effects, the PM2.5 decline during 2013-2018 was 14% weaker in BTH and 3% 

stronger in YRD, respectively, estimated from a statistical model. Previous studies further analyzed the long-term trend of air 

pollution was also affected by the effects of long-term trend of meteorological systems and climate change on PM2.5 pollution, 60 

especially in the context of global warming (Ruijin et al., 2017;Wang and Chen, 2016;Yi et al., 2019). For example, Feng et 

al. (2020) reported a trend of negative meteorological effects on air quality improvements in North China during 1980-2018, 

but the effects dropped during 2013-2018. Xu et al. (2020) also reported a trend of negative meteorological effects during 

2000-2017 in Beijing, but an overall trend of beneficial meteorological effects in some provinces in North China. (Zhang et 

al., 2019a). (Cai et al., 2017;Xu et al., 2020;Feng et al., 2020)(Shen et al., 2018)Distinguishing the contributions of emission 65 
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and meteorology is critical for the evaluation of clean air policies, projection of the future air quality and understanding 

pollution process. 

Various methods have been reported to separate the contributions of emissions and meteorology (Chen et al., 2020b;Chen et 

al., 2020a). For example, chemical transport models (CTMs) simulate the atmospheric process with emission inventory and 

meteorology fields as inputs, thus allowing researchers to assess the changes in air pollution attributable to one factor when 70 

controlling another factor (Wang et al., 2019a;Xu et al., 2020;Zheng et al., 2017). CTM simulations have been widely used 

to separate the contributions of meteorology and anthropogenic emissions to air pollution variations. With appropriate study 

design, the CTM modelling system can reasonably assess the influence of a specific emission reduction measure or a specific 

meteorological condition on air pollution. However, these model simulations require considerable computation resources, 

and the quality of inputs (e.g., emission inventory and meteorology) affects the quality of simulations. Uncertainties in the 75 

historical emission inventory as well as in the simulated meteorological fields affected the modelling results. Researchers’ 

selection of chemical reaction mechanisms as well as parameter optimization could also lead to varying results (Chen et al., 

2020b). Moreover, due to the interactions between emissions and meteorology, the simulations in the fixed emission 

scenarios and the fixed meteorology scenarios may not fully reflect real-world conditions. 

Other studies have applied statistical methods to assess the meteorology-associated changes in air pollution and to quantify 80 

the contribution of emissions. Multiple linear regression (MLR) has been adopted to describe the relationships between 

meteorology and air pollutant concentrations (Cheng et al., 2019a;Sá et al., 2015). For example, Zhai et al. (2019) 

constructed deseasonalized and deseasonalized-detrended time-series data and assessed the meteorological effects by MLR. 

Since the linear model may not fully characterize the non-linear associations and interactions between air pollution and 

meteorology, Ssome studies also employed machine learning algorithms to that better describe the complex non-linear 85 

relationships between meteorology and air pollution (Grange et al., 2018;Vu et al., 2019;Zhang et al., 2020;Qu et al., 2020).  

However, aAs such methods requires continuous PM2.5 data as inputs, previous studies relied on PM2.5 ground measurements 

that were limited to certain locations (e.g., ground monitoring stations) and times (e.g., after 2013 in China). The limited 

sample size not only affected the model quality and introducing sampling bias, but also hampered the analyses on spatial 

heterogeneity and long-term trend of meteorology contributions across China. The relatively short study period failed to 90 

show the long-term trend of meteorology-associate PM2.5. The analysis on the complete-coverage long-term trends of 

meteorology and emission contributions to air pollution is urgently needed to support further evaluation of clean air policies 

and region-specific air quality management within the context of climate change. 

In this study, we aimed to analyze the spatiotemporal trends in meteorology- and emission- associated PM2.5 variations across 

China during 2000–2018. The meteorological impacts on PM2.5 trends were assessed with data-fusion PM2.5 predictions and 95 

chemical transport model simulations, taking advantage of the complete spatiotemporal coverage and long data records of 

these two datasets. The data-fusion PM2.5 predictions were derived by combining satellite data, chemical transport model 

simulations, ground measurements and ancillary data with an optimized two-stage machine learning model that improved the 
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PM2.5 estimates during highly polluted days. Then we assessed the long-term variations in meteorology-associated PM2.5 using 

a generalized additive model (GAM) that better described the non-linear associations between PM2.5 and meteorology. We 100 

also estimated the meteorological impacts on PM2.5 trends with chemical transport model simulations under different scenarios 

coupled with a most recent emission inventory. We showed that the temporal trends of meteorology-associated PM2.5 estimated 

from the GAM method and from the chemical transport model were highly consistent. The trend analysis of the meteorology 

and emission contributions to PM2.5 could support making of air quality management plans in the future. 

2. Data and methods 105 

This study employed simulations from the Weather Research and Forecasting/Community Multiscale Air Quality 

(WRF/CMAQ) modelling system as well as gridded PM2.5 predictions fused from multiple data sources to assess the 

meteorological effects on PM2.5 (Fig. 1). The study domain covers East China (east of longitude 105°) and the PM2.5 

concentrations during 2000–2018 were analyzed. 

2.1 Satellite-based PM2.5 retrievals 110 

Previously reported satellite-based PM2.5 data tended to underestimate high pollution events (Xiao et al., 2018;Xue et al., 2019) 

because these events rarely occurred in the model training dataset and were less characterized by the model. Since high 

pollution events were largely affected by meteorological conditions (Zhang et al., 2015;Liu et al., 2017b), correctly capturing 

these events was critical for the assessment of meteorological contributions. Thus, we developed a two-stage model to improve 

the prediction accuracy of PM2.5 estimates, especially over highly polluted days, and obtained spatiotemporally continuous 115 

daily PM2.5 dataset during 2000–2018. 

2.1.1 Data for PM2.5 modeling 

We assimilated the daily PM2.5 measurements, WRF/CMAQ simulations, satellite aerosol optical depth (AOD) from Aqua 

and Terra MODIS Level 2 products (https://ladsweb.modaps.eosdis.nasa.gov/), meteorological parameters from the Modern-

Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) (Randles et al., 2017;Buchard et al., 2017), 120 

elevation data from the Global Digital Elevation Model (GDEM) (https://earthexplorer.usgs.gov/), gridded population 

distributions (Xiao et al., 2021b), and land cover classification data (http://data.ess.tsinghua.edu.cn)(Gong et al., 2019a;Gong 

et al., 2019b) to train the PM2.5 prediction model and predicted PM2.5 concentrations during 2000–2018. The detailed data 

collection and processing methods were summarized in Appendix A. 

2.1.2 The two-stage prediction model 125 

A two-stage prediction model was developed to estimate PM2.5 concentrations over China (Fig. 1). The first-stage model 

described high-pollution events that were underestimated in previous models and , in which a synthetic minority oversampling 

https://ladsweb.modaps.eosdis.nasa.gov/
http://data.ess.tsinghua.edu.cn/
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technique (SMOTE) was adopted (Torgo, 2010). Tthe second-stage model predicted residuals of CMAQ PM2.5 simulations 

concentrations with the estimated high-pollution indicator from the first-stage model. 

Since high-pollution events relatively rarely occur in the model training dataset, the models may not appropriately 130 

characterize the associations between high PM2.5 concentrations and the predictors, leading to underestimation of high-

pollution levels (Wei et al., 2020). In this study, wTo balance high-pollution samples and normal samples, we first defined a 

high-pollution indicator, describing whether the daily PM2.5 observation was higher than the monthly average PM2.5 

concentration plus two standard deviations at each location. We noticed that A total of only 3.9% of the daily data were 

assigned as high-pollution. Previous studies reported that balancing training data with aTo balance high-pollution samples 135 

and normal samples, the synthetic minority oversampling technique (SMOTE)SMOTE (Torgo, 2010) that improved the 

classifiers’ performance in previous studies (Ghorbani and Ghousi, 2020;Saputra and Suharjito, 2019) . Thus, wewas 

applied. the The SMOTE algorithm that oversampled the high-pollution data (the minority) by artificially generated new 

synthetic samples along the line between the high-pollution data and their selected nearest neighbors (Chawla et al., 

2002;Chawla et al., 2003). This method also under-sampled the normal data (the majority) to better balance the uneven 140 

proportion of the high-pollution and normal datamodel training dataset. With After SMOTE resampling, high-pollution data 

accounted for 23% in the new model training dataset. 

The balanced model training dataset was adopted to train the first-stage extreme gradient boosting (XGBoost) model that 

built the relationship between the high-pollution indicator with and all the predictors, excluding CMAQ simulations. The 

XGBoost model built the relationship between high-pollution indicatior and other parameters such as AOD, meteorological 145 

variables, xxx. The predicted high-pollution indicator from the first-stage model was passed to the second-stage model as a 

predictor. We adopted the residual between the PM2.5 measurement and the CMAQ PM2.5 simulation as the dependent 

variable to train the second-stage model, thus . Training the model with residual enhances the response of predictors to PM2.5 

variations , thusand improved the prediction accuracy. 

To fill any missing satellite data, in both the first- and second-stage model, we assigned the availability of satellite retrievals 150 

as a dichotomous predictor and constructed it as the cutoff point of the first layer of the decision tree to separate the training 

data, thus mining the association between the availability of satellite retrievals and the PM2.5 concentration. This method that 

fills missing PM2.5 predictions with a decision tree outperformed other gap-filling methods in our previous evaluation study 

(Xiao et al., 2021a). The inclusion of CMAQ simulations also improved the accuracy of the gap-filled results.  

The model’s hyper parameter optimization and performance evaluation were conducted through five-fold CV, by-year CV 155 

and by-location CV (Appendix A2B). 
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2.2 Assessment of the meteorological effects on PM2.5 using GAM 

Following the method described by Zhai et al. (2019), we constructed time-series data to distinguish the long-term, seasonal, 

and short-term trends of PM2.5 concentrations and meteorological conditions. Then the associations between PM2.5 and 

meteorology were fitted with a GAM model, using daily satellite-based PM2.5 predictions as dependent variable. GAM has 160 

been previously used to predict PM2.5 concentrations with meteorology and other predictors (Yanosky et al., 2014;Liu et al., 

2009;Xiao et al., 2018). The meteorological predictors in the GAM included 10-meter wind speed, 2-meter specific 

humidity, 2-meter air temperature, total precipitation, 10-meter eastward wind (U wind), 10-meter northward wind (V wind), 

U wind at 500 hpa, V wind at 500 hpa, and planetary boundary layer height. These meteorological parameters , which have 

been reported to be strongly associated with PM2.5 concentrations in various regions in China (Chen et al., 2020b;Feng et al., 165 

2020) and contributed significantly in previous PM2.5 prediction models (She et al., 2020).  

Both the PM2.5 data and the meteorology data followed the same processing protocol. First, we calculated 10-day average 

data, 50-day average data, and 19-year (2000–2018) average data based on the 50-day average data. We constructed 

deseasonalized-detrended data by removing the 50-day average data from the 10-day average data. We also constructed 

deseasonalized data by removing the 19-year average of the 50-day average data from the 10-day average data. Assuming 170 

that the associations between PM2.5 and meteorological parameters remained constant, we estimated these associations by a 

grid-specific seasonal and year-round GAM model (Pearce et al., 2011) with the deseasonalized-detrended data. The GAM 

allows a nonlinear response of PM2.5 levels to meteorological conditions, thus providing better fits to the training data (Table 

B1). We also fitted grid-specific seasonal stepwise MLR in a sensitivity analysis to examine whether the selection of model 

affects the assessment of meteorological effects. Additionally, normalized meteorological parameters were used to fit the 175 

linear regression. Hence, the estimated coefficients reflected the relative contribution of each meteorological parameter and 

supported the spatial analysis of the meteorological effects. Since the seasonal model attained a higher average model R2 

than did the year-round model (Tablee B A1), the results obtained with the seasonal model are presented in this study. Thus, 

the meteorological effects on PM2.5 long-term variations were assessed as the GAM-estimated responses of PM2.5 to 

variations in the deseasonalized meteorological parameters. 180 

2.3 Assessment of the meteorological effects on PM2.5 using WRF/CMAQ 

We also used the WRF/CMAQ model to separate the contribution of emissions and meteorology on PM2.5 trends. The CMAQ 

model version 5.1 driven by the WRF model version v3.5.1 were utilized in this study, and the model configurations were 

following previous studies (Zheng et al., 2015, Zheng et al., 2017a). The initial and boundary conditions for WRF were derived 

from the National Centers for Environmental Prediction Final Analysis (NCEP-FNL) reanalysis data (NCEP, 2000). The 185 

boundary conditions for CMAQ were taken from the global GEOS-Chem model simulations. We used CB05 as the gas-phase 

mechanism, AERO6 as the aerosol module, and Regional Acid Deposition Model (RADM) as the aqueous-phase chemistry 

model in CMAQ. The anthropogenic emissions for mainland China were taken from the Multi-resolution Emission Inventory 
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of China (MEICC(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 

2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 190 

2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 

2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 2019)(Maji et al., 

2019)(Maji et al., 2019)(Maji et al., 2019), http://meicmodel.org/)(Zheng et al., 2018;Li et al., 2017a), and emissions beyond 

mainland China were from the MIX Asian emission inventory (Li et al., 2017b).  

Two scenarios were conducted to estimate the meteorological impacts on PM2.5 trends, the BASE scenario and the FixEmis 195 

scenario. The BASE scenario was simulated with year-by-year emissions and meteorology during 2000–2018, while the 

FixEmis scenario was conducted using fixed emissions at the 2000 level and year-by-year meteorological inputs. The 

simulations of the FixEmis scenario were calibrated by multiplying the ratio between the satellitia-based PM2.5 estimates in 

Sect. 2.1 and the BASE scenario PM2.5 simulations. The meteorological effects on PM2.5 long-term trends were assessed as the 

10-day average of daily simulations in the FixEmis scenario minus the 19-year average of FixEmis simulations. The PM2.5 200 

simulations from the BASE scenario also  also supported the PM2.5 estimates in Sect. 2.1. 

The evaluation of meteorological simulations of surface temperature, surface relative humidity, surface wind speed, and 

surface wind direction from WRF against ground-level observations from the National Climate Data Center (NCDC, 

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/) were summarized in Figure A1B1. The WRF model well repoduced the near-surface 

temperature (r=0.98, normalized mean bias=-1.9%) and relative humidity (r=0.81, normalized mean bias=5.4%), but slightly 205 

overestimated surface wind speed (r=0.57, normalized mean bias=8.0%). The WRF simulation quality of temperature, 

relative humidity and wind direction was consistent across years, but the simulation quality of wind speed showed slightly 

larger inter-annual variations. The validation results showed that the WRF simulations was acceptable to support further 

simulation of PM2.5 concentrations. The evaluation of PM2.5 simulations from CMAQ during the time period when ground 

measurements are available has been reported in our previous study (Zhang et al., 2019a). Compared to the measurements 210 

from ground monitoring stations, our model simulations well reproduced the spatial and temporal distributions of PM2.5 

across China. Compared to the daily PM2.5 measurements in 74 cities, the CMAQ simulations obtained correlation 

coefficient r higher than 0.6 in 67 cities. The simulated PM2.5 decrease (30%) during 2013-2017 over China also well 

matched the observed PM2.5 decrease (33%).   

3. Results and Discussion 215 

3.1 Evaluation of the two-stage PM2.5 prediction model 

The SMOTE resampling approach improved the prediction accuracy in the five-fold CV that the area under the curve (AUC) 

increased from 90.7 to 98.7 (Fig. Fig. AB2). The two-stage model predictions in the five-fold CV matched the ground 

measurements well with an R2 of 0.80 and RMSE of 18.5 μg/m3 (Fig. B2A2). The prediction accuracy in the by-location CV 

http://meicmodel.org/
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
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(R2 of 0.71 and RMSE of 22.1 μg/m3) and by-year CV (R2 of 0.58 and RMSE of 27.5 μg/m3) was lower than that in the five-220 

fold CV, indicating unobserved temporal and spatial trends contributed to the PM2.5 prediction. The model performance was 

comparable to that reported in previous studies (Xiao et al., 2018;He and Huang, 2018;Dong et al., 2020).  

Specifically, compared to a benchmark model without SMOTE resampling and setting the PM2.5 concentration as the 

dependent variable, the two-stage model in this study better predicted high-pollution events (Fig. 2). The density distribution 

of the PM2.5 predictions from the two-stage model was very closer to the density distribution of the PM2.5 measurements. The 225 

density distribution of the PM2.5 predictions from the benchmark model showed a higher percentage of low PM2.5 

concentrations and a lower percentage of high PM2.5 concentrations than those revealed by the density distribution of the 

measurements. The greater ability of our two-stage model in capturing the daily variations in PM2.5 concentrations could better 

support our following analysis about meteorological impacts. 

3.2 Long-term trends of PM2.5 concentrations over East China 230 

Figure 3 shows the PM2.5 trends during 2000–2018 in East China, as well as the key regions including the Beijing-Tianjin-

Hebei (BTH) regionBTH, YRD, the Fen-wei Plain (FWP), the Yangtze River Delta (YRD) and the Pearl River Delta (PRD). 

The PM2.5 concentrations continuously increased from 35.4 μg/m3 in 2000 to 48.7 μg/m3 in 2006 over East China. It then 

remained relatively constant from 2007–2013 and decreased from 46.5 μg/m3 in 2013 to 32.5 μg/m3 in 2018. BTH and FWP 

showed consistent temporal trends of PM2.5, with higher pollution levels over BTH. However, the difference in PM2.5 level 235 

between BTH and FWP has greatly decreased since 2015 due to the higher rate of PM2.5 decrease in BTH resulting from the 

stricter emission control policies. The PM2.5 level in the PRD reached its peak in 2006 and decreased thereafter. The observed 

PM2.5 concentration in 2018 was 14.0, 30.9, 18.2, 22.9, and 13.2 μg/m3 lower than that in 2013 over East China, BTH, FWP, 

YRD, and PRD, respectively. 

3.3 2 Interannual and seasonal trends variabilities of meteorology-associated PM2.5 240 

Figure 4 shows the meteorological contribution in monthly average PM2.5 concentrations estimated from the GAM model and 

CMAQ simulations. The temporal trends of meteorology-associated PM2.5 estimated from these two methods were consistent 

across East China and in the key regions, with the correlation coefficients ranging between 0.53 (East China) and 0.72 (BTH). 

For example, the GAM model estimated typical favorable meteorological conditions in Oct 2013, Oct 2012 and Feb 2016 in 

BTH, which are also captured by the CMAQ model. However, the magnitude of the meteorological effects estimated by 245 

CMAQ were slight higher than GAM. 

Figure 5 shows the GAM estimated temporal trend in meteorology-associated PM2.5 across East China. Consistent with the 

CMAQ estimation (Fig. AC31), 2012 is a typical year during which the meteorological conditions were favorable to PM2.5 

pollution control over East China, with an annual meteorology-associated PM2.5 anomaly of -1.8 μg/m3, 4.07%) (Fig. 5). 

2004 is a typical year during which the meteorological conditions were unfavorable to PM2.5 pollution control, with an 250 
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annual meteorology-associated PM2.5 increase of 1.2 μg/m3 (2.60%). The meteorological effects changed drastically over a 

relatively short time period. For example, in 2005, the meteorological conditions were greatly favorable to pollution control, 

but in the previous and following years, i.e., 2004 and 2006, respectively, the meteorological conditions were greatly 

unfavorable to pollution control. The long-term trend of the annual meteorology-associated PM2.5 fluctuated about 0 across 

East China, with a decreasing trend (the meteorological conditions improving) from 2003–2010 and an increasing trend (the 255 

meteorological conditions worsening) from 2010–2017 (Fig. 5, Fig. B3A3). The CMAQ simulations estimated the largest 

unfavourable meteorological contribution in 2018 of 11.0%, and the greatest beneficalbeneficial meteorological contribution 

in 2012 of 7.2% over East China. 

The interannual variations in the meteorology-associated PM2.5 assessed in this study were consistent with those reported in 

previous studies (Zhang et al., 2018). For example, Feng et al. (2020) presented the long-term variations in air stagnation in 260 

north China that characterized the circulation and diffusion in the boundary layer with fixed emissions to describe the 

temporal trend of haze-related weather conditions. The temporal pattern of the air stagnation index from 2000–2018 was 

closely resembled the temporal trend of the estimated meteorological-associated PM2.5 in this study. Additionally, we 

observed unfavorable meteorological conditions in the winters of 2014 and 2016, consistent with the previously reported 

climate anomalies in these two years (Yin et al., 2017;Yin and Wang, 2017). We also showed that the meteorological 265 

conditions in 2014 and 2015 were more unfavorable to PM2.5 pollution control than those in 2013 over East China, as 

previously reported (Zhang et al., 2019b;Wang et al., 2019a).  

Since haze events that greatly affects public health mainly occur in fall and winter (Zhao et al., 2013), we further analyzed 

the meteorological effects during fall-winter (September, October, November, December, January, and February) and spring-

summer. The meteorological conditions in fall-winter dominated the annual meteorological effects on PM2.5. We observed 270 

typical unfavorable meteorological conditions in the fall-winter of year 2006 (2.8 μg/m3) and 2016 (2.5 μg/m3). In certain 

years, e.g., 2018, the spring-summer meteorological conditions were unfavorable to pollution control, but since the fall-

winter meteorological conditions were favorable, the annual meteorological effect was beneficial. The significant fall-winter 

meteorological effects indicated the critical contribution of meteorology to haze event formation. The fall-winter weather 

conditions in 2017 were substantially better than the fall-winter weather conditions in 2013, leading to a 3.3 μg/m3 decrease 275 

in the meteorology-associated PM2.5, thereby contributed to the achievement of pollution control targets of the Action Plan 

(Zhang et al., 2019b;Yi et al., 2019). Since the current evaluation of clean air policies focuses on changes in pollution levels 

over short periods, e.g., three or five years, policy performance can be largely affected by meteorological changes. 

3.4 3 Spatial heterogeneity in meteorology-associated PM2.5 trends 

We also analyzed the variations in the meteorological influence on PM2.5 in several populous urban agglomeration regions of 280 

China (Fig. 5, Fig. AB3). In the BTH region, 2014 was a typically unfavorable year (3.1 μg/m3), and 2010 was a typically 

favorable year (-4.9 μg/m3). The shape of the interannual long-term trend of the meteorology-associated PM2.5 during 
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wintertime in BTH was consistent with that in previous studies. For example, the 2014 and 2017 winter meteorological 

conditions were greatly favourable and the 2016 winter meteorological conditions were considerably unfavorable (Yi et al., 

2019;Wang and Zhang, 2020). The meteorological effects showed a regional consistency with varying magnitudes. For 285 

example, 2004 was a typical unfavorable year in both the PRD (6.3 μg/m3) and the YRD (2.7 μg/m3), and 2016 was a typical 

favorable year in both the PRD (-7.3 μg/m3) and the YRD (-2.1 μg/m3). Consistent with previous studies, the PRD revealed 

the largest meteorological influence on PM2.5 among these regions (Zhai et al., 2019). 

We observed notable regional heterogeneity in the long-term trends as well as seasonal trends of the meteorological effects 

on PM2.5 (Fig. 5, Fig. AB3). In the northern part of China, especially in the North China Plain and central East China, the 290 

meteorological conditions worsened and were adverse to pollution control during 2000-2018 (Yin and Wang, 2018;Zhang et 

al., 2018). Multiple climate systems could be associated with the long-term trend of meteorological effects. For example, 

greenhouse gas-induced warming may result in a decrease in light-precipitation days and surface wind speed, which are 

unfavorable to pollution control (Chen et al., 2019). In the context of global warming, the unfavorable meteorological 

conditions in the northern part of China could be worsen in the future, although previous studies on the projection of the 295 

future effects of climate change on air pollution showed inconsistent results. For example, Cai et al. (2017) projected 

increased frequency and persistence of haze events in Beijing in the future (2050-2099) and Shen et al. (2018) (Shen et al., 

2018)found statistically insignificant trend of haze index in the future in Beijing. In contrast, in the southern part of China, 

especially in the YRD and surrounding regions, the estimated meteorological conditions were improving and were beneficial 

to pollution control (Chen et al., 2019). Further studies are needed to better understand the long-term trend of meteorological 300 

and climate effects on air pollution across China. Stricter clean air actions are preferred to avoid haze events in the future, 

considering the considerable meteorological effects on air pollution. 

Regarding the seasonal trend of the meteorological effects, in spring-summer, we observed improving meteorological effects 

in the southern part of China and worsening meteorological effects in the northern part of China. This spatially 

heterogeneous trend may result from the strengthening of the East Asia summer monsoon, which enhances the transportation 305 

of aerosols from the south to the north of China (Zhu et al., 2012;Liu et al., 2017a). In fall-winter, the East Asia winter 

monsoon significantly affects air pollution levels that benefits the air quality in North China but is unfavourable to air quality 

in the South China due to the southward transport of pollutant from north to south (Jeong and Park, 2017;Yin et al., 2015). 

For example, in the year 2004, 2005, 2007, and 2010 with strong East Asia winter monsoon, the BTH and the FWP showed 

strong favourable meteorology contributions to PM2.5, but the YRD and the PRD showed unfavourable meteorological 310 

effects. On the contrary, in the year 2006 with weak East Asia winter monsoon, the BTH and the FWP showed unfavourable 

meteorological effects (Jeong and Park, 2017). 

The large-scale atmospheric circulations in some specific years also showed notably distinct effects on PM2.5 concentrations 

over the north and south of East China, due to the opposite effects on meteorology parameters. For example, in 2015 and 

2016 with strong El Niño, the fall-winter meteorology in the northern part of East China was significantly unfavorable for 315 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/el-nino
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pollution control but that in the southern part of East China was considerably favorable. One reason is that the El Niño leads 

to excessive precipitation over southern China that in favour of wet deposition, but weakened the East Asia winter monsoon 

and led to south wind anomaly, weaker surface wind, and high humidity that were favorable to pollution events in the 

northern region of East China (Yin et al., 2015;Yin and Wang, 2016;He et al., 2019;Chang et al., 2016). On the country, 

during the year with La Niña , e.g. 2007 and 2010, we estimated beneficial winter-fall meteorology in northern regions but 320 

unfavourable meteorology in the southern region (Cheng et al., 2019b).  

Consistent with previous studies, we also observed spatially and seasonally varying associations between PM2.5 and 

meteorological parameters that reflect the varying PM2.5 responses to meteorological changes (Fig. A4B4). Temperature was 

positively associated with PM2.5 in spring, summer and fall across East China; however, in winter, the temperature was 

negatively associated with PM2.5 in northern China (He and Wang, 2017;Qiu et al., 2015) due to the low-temperature-related 325 

stable atmosphere and decreased evaporation loss of PM2.5. Humidity yielded positive effects in northern China and negative 

effects in southern China in all seasons, especially in winter (He et al., 2017;Zhai et al., 2019). The spatial difference in the 

effects of humidity on PM2.5 may occur due to a threshold of the humidity altering the direction of the humidity influence, 

from hygroscopic increase to wet deposition. Zhai et al. (2019) also discussed the north-south contrast in the PM2.5-humidity 

associations and indicated that the positive effects of humidity on PM2.5 in the north were partly attributed to the favorable 330 

role of aqueous-phase aerosol chemistry in secondary PM2.5 formation and the negative PM2.5-humidity associations in the 

south were partly attributed to the precipitation related wet deposition. The boundary height and precipitation were 

negatively associated with PM2.5 across East China in all seasons, and the effect of precipitation was greater in northern 

China than that in southern China (Wang and Chen, 2016). Regarding the relative contribution of the different meteorology 

parameters, we found that over the south coast region, temperature and humidity showed greater effects than did the 335 

boundary layer height and precipitation. In winter, humidity, boundary layer height and precipitation were critical for the 

PM2.5 variations in the middle and north of China. In summer and fall, the temperature and humidity were critical for the 

PM2.5 variations across southern China. In spring, the temperature showed notable effects in the south coast region, and the 

precipitation exhibited large effects in the North China Plain. The seasonal variations in meteorological impacts could be due 

to the interactions between meteorological parameters that showed significant seasonal patterns. Further studies are needed 340 

to understand the mechanism of seasonal differences in the meteorology-pollution relationships.  

3.5 4 PM2.5 trends after adjusting the meteorological effects 

In East China, after adjusting for the meteorological influence, PM2.5 started increasing in 2000 and peaked in 2006 with an 

increase of 9.6 μg/m3 compared to the 2000 level (Fig. 6). Then, the PM2.5 varied, with the second highest PM2.5 level 

occurring in 2011 (9.4 μg/m3 higher than the 2000 level). After 2013, with the implementation of aggressive emission control 345 

policies, PM2.5 notably decreased, with a 13.1 μg/m3 lower PM2.5 level in 2018 compared to the level in 2013. After adjusting 

for the meteorological effects, the temporal variations in PM2.5 were consistent with the temporal variations in pollutant 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/el-nino
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emissions retrieved from the MEIC emissions. The emissions of SO2 and PM2.5 peaked in 2006, and the emissions of NOx 

peaked in 2012. 

In the BTH region, PM2.5 peaked in 2006 and decreased by 10.8 μg/m3 in 2008 due to the emission control policies targeting 350 

the air quality during 2008 Beijing Olympic Games. After 2008, PM2.5 continuously increased and peaked in 2013, at an 

increase rate of 1.0 μg/m3 per year. Considering the variations in pollutant emissions, the first PM2.5 peak in BTH was 

primarily driven by SO2 emissions, and the second PM2.5 peak was driven by NO2 and PM2.5 emissions. The PM2.5 

decreasing trend after 2013 in BTH was higher than that in the other regions (5.8 μg/m3 per year), mainly driven by the 

emission reduction in SO2 and PM2.5. The annual average meteorology-adjusted PM2.5 concentration in BTH from 2014-355 

2018 was consistent with that in a previous study (Qu et al., 2020). We found that the observed high-pollution events in the 

fall-winter of year 2006, 2013, and 2016 were partly attributable to unfavorable meteorological conditions that led to a 5.9, 

3.4, and 11.1 μg/m3 PM2.5 increase, respectively. Since the meteorology contributed up to 25% of the observed PM2.5 level in 

fall-winter, further emission control measures are needed to improve the winter air quality and avoid violations of the air 

quality standards under unfavorable meteorological conditions. In FWP, the highest PM2.5 level occurred in 2005, and the 360 

average decrease rate after 2013 was 2.8 μg/m3 per year. The high pollution in the 2016 fall-winter period attributable to 

unfavorable meteorological conditions was also observed in FWP, although the meteorological effects in FWP were smaller 

than those in the BTH region, with up to 10% of the meteorology contribution in PM2.5 in fall-winter. In the YRD, PM2.5 

peaked in 2011 and 2015. The unfavorable meteorological conditions observed in the fall-winter of 2016 did not occur in 

either the YRD or the PRD, showing a spatial difference in the meteorological system. In the PRD, PM2.5 peaked in 2006 365 

and continuously decreased from 2006-2018, at an average decrease rate of 2.8 μg/m3 per year. This decreasing trend was 

consistent with the trend of the PM2.5 emissions. The temporal variations in NOx and SO2 emissions contributed to the trends 

in the meteorology-adjusted PM2.5 from 2010–2011. 

It is observed that although emissions dominated the interannual long-term variations in PM2.5, meteorological conditions 

significantly affected the observed PM2.5 concentration in all key regions, especially in fall and winter. We observed as much 370 

as 25.6%, 6.3%, 5.1% and 4.8% annual average meteorological effects, estimated from GAM, in the PRD, BTH, FWP, and 

YRD, respectively, during the study period. The meteorological contributions in fall-winter were even higher. The CMAQ 

simulations estimated as much as 17.5%, 8.8%, 26.6%, and 6.6% annual average meteorological effects in the PRD, BTH, 

FWP, and YRD, respectively. From 2015 to 2016, the winter-fall meteorological conditions considerably changed to 

unfavorable for pollution control in North China, leading to a 2.8 μg/m3 increase in the winter-fall average PM2.5 concentration 375 

across East China. BTH and FWP showed a 9.8 and 8.1 μg/m3 increase, respectively. Such an increase may weaken the effects 

of emission control policies during this period. In 2018, the PM2.5 concentration in Beijing was reported to be 51 μg/m3. 

However, if 2018 had been a typical year with unfavorable meteorological conditions, the annual PM2.5 concentration could 

have reached 54 μg/m3. 
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The meteorology-adjusted PM2.5 trend from 2013-2018 showed varying spatial patterns. The highest decrease occurred in 380 

Beijing, Tianjin, south of Hebei and the capital cities, including Xi'an, Wuhan, Zhengzhou, and Changsha (Fig. 7), indicating 

the more efficient implementation of clean air policies in these regions. As described above, the effects of meteorology also 

showed spatial differences. Over the Northeast China Plain, North China Plain, and Sichuan Basin, the adjusted PM2.5 

decreasing trend was weaker than the observed trend. Over the Shanxi, the intersection of Hubei-Henan-Anhui and south of 

Jiangsu, the adjusted PM2.5 decreasing trend was stronger than the observed trend. The interquartile range of the 385 

meteorological effects on the PM2.5 trend varied between -17.2% and 1.8% across East China. From 2013-2018, the 

decreasing trend of the meteorology-adjusted PM2.5 level was lower weaker than the decreasing trendthat of the observed 

PM2.5 level by 8.4% in East China, 7.9% in the BTH region, 3.3% in the YRD, and 7.5% in the PRD while the adjusted trend 

was greater than the observed trend by 2.01% in the FWP. 

3.6 5 Sensitivity analysis  390 

To evaluate whether the selection of statistical models affects the assessed associations between meteorology and PM2.5, we 

compared the meteorology-associated PM2.5 estimated by GAM and MLR. The estimated meteorology-associated PM2.5 

levels from the MLR and GAM matched well, with correlation coefficients larger than 0.98 across East China (Fig. AB5). 

Hence, the results of this study are robust and not affected by the selection of PM2.5-meteorology model. 

To examine the effects of length of the time window when constructing the deseasonalized PM2.5, we conducted a sensitivity 395 

analysis with a 90-day averaging window in the BTH region, and the estimated PM2.5 concentrations after adjusting for 

meteorological effects were almost identical to the results using a 50-day time window (Fig. AB5). Thus, this statistical 

method was not sensitive to the averaging time window. 

Compared to previous studies, we employed the GAM to better describe the nonlinear associations between PM2.5 and 

meteorology in this study. We observed consistent temporal trends of the meteorological effects and the meteorologically 400 

adjusted PM2.5 concentrations compared to previous studies, but the magnitude of the assessed meteorological effects and 

adjusted PM2.5 concentrations varied. Thus, when comparing the meteorological effects of a specific year, the conclusion 

may be inconsistent (Xu et al., 2020;Zhai et al., 2019;Zhang et al., 2019a;Zhang et al., 2019b). Assessing the meteorology-

associated PM2.5 with different methods may also lead to varying long-term trends (Xu et al., 2020). Several factors may 

affect the uncertainty of the assessed meteorological contributions in this study. First, as reported by previous studies (Xiao 405 

et al., 2018;Xue et al., 2019), the satellite-based PM2.5 prediction model retrievals exhibitedsuffered from an increasing 

prediction error when hindcasting historical pollution levels a long time before the model training time period. One reason 

could be that some unobserved parameters, e.g. PM2.5 composition, modify the associations between PM2.5 and predictors, 

leading to model overfitting. The satellite-driven PM2.5 prediction model used in this study is a state-of-the-art prediction 

model with improved prediction accuracy for high-pollution events, but the its hindcast prediction quality needs tocould be 410 

further improved to better describe the historical PM2.5 spatiotemporal distribution. Second, we obtained meteorological 
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information from the MERRA-2 reanalysis dataset with a spatial resolution lower than that of the PM2.5 predictions. This 

resolution mismatch with smooth spatial variations in the meteorological fields may not fully describe the meteorological 

effects at the local scale. 

4. Conclusions 415 

In this study, we analyzed the meteorology- and emission-driven variations in the PM2.5 concentration during 2000-2018 across 

East China by the GAM-based method and CMAQ simulations. To support the GAM-based analysis, we combined satellite 

data, CMAQ simulations and ground observations to predict complete-coverage PM2.5 concentrations with a two-stage 

machine learning model that attained improved prediction accuracy of high-pollution events. Both methods showed significant 

meteorological influences on PM2.5 dominated by the meteorological conditions in fall and winter. The greatly varying 420 

meteorological effects on PM2.5 concentration over a relatively short time period may remarkably affect the evaluation of clean 

air policies during a certain period. We also observed distinct regional differences in the long-term and seasonal trends of the 

meteorological effects. The meteorology-associated PM2.5 tended to increase in the North China Plain and Central China, but 

decrease across southern China, e.g. in the YRD. After adjusting for the meteorological effects, the average PM2.5 concentration 

decreased 13.1 μg/m3 from 2013–2018 over East China, and the BTH region showed the greatest decrease (28.5 μg/m3) among 425 

the studied urban agglomeration regions. The decreasing trend of PM2.5 after adjusting for the meteorological effects was 8.4% 

weaker than the observed PM2.5 decreasing trend in East China, 7.9% weaker in the BTH region, 3.3% weaker in the YRD, 

and 7.5% weaker in the PRD while the adjusted trend was 2.0% greater than the observed trend in the FWP. Considering the 

remarkable meteorological contributions to PM2.5, further emission reduction measures are required to prevent the occurrence 

of haze events under unfavourable meteorological conditions. 430 

Appendix A1. Data collection and processing 

We collected hourly PM2.5 measurements from 2013-2018 from both the national air quality monitoring network (~1,593 

stations) and local air quality monitoring stations (~ 1,700 stations) mainly located in East China. Continuous identical 

measurements over at least three hours were removed due to instrument malfunction. Daily average concentrations were 

calculated based on at least 12 hourly measurements. 435 

We obtained Aqua and Terra MODIS Collection 6 level 2 aerosol products at a 0.1-degree resolution from 

https://ladsweb.modaps.eosdis.nasa.gov/. Since the aerosol optical depth (AOD) retrieved with the Deep Blue (DB) 

algorithm and the Dart Target (DT) algorithm (Levy et al., 2013;Hsu et al., 2013) exhibit different coverage and retrieval 

accuracy (Wang et al., 2019b), we fitted daily linear regressions to fill the missing retrievals when only DT or DB AOD was 

presented. Then, we calculated the average of the DT AOD and DB AOD separately for each sensor. Similarly, since the 440 

Aqua AOD and Terra AOD are observed at different pass over times, to improve the data coverage, we fitted daily linear 

https://ladsweb.modaps.eosdis.nasa.gov/
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regressions to fill the missing retrievals when only Aqua AOD or Terra AOD was presented. We calculated the average of 

the Aqua and Terra AODs to characterize the daily aerosol loadings (Jinnagara Puttaswamy et al., 2014). 

We also used daily PM2.5 simulations at a spatial resolution of 36 km during 2000-2018 from the WRF/CMAQ model as an 

important predictor. The inverse distance weighting (IDW) method was applied to interpolate the CMAQ simulations to 445 

match the grid of 0.1°. Detailed description of the WRF/CMAQ simulations could be found in Sect. 2.3. 

Meteorological parameters were extracted from the Modern-Era Retrospective analysis for Research and Applications 

Version 2 (MERRA-2) dataset at a resolution of 0.5° latitude × 0.625° longitude (Randles et al., 2017). We extracted 

parameters including surface albedo, cloud area fraction for low clouds, total cloud area fraction, surface net downward 

longwave flux, surface incoming shortwave flux, surface net downward shortwave flux, total incoming shortwave flux, total 450 

net downward shortwave flux, surface pressure, 2-meter specific humidity, 2-meter air temperature, 2-m dew point 

temperature, total column ozone, total column odd oxygen, total precipitable ice water, total precipitable liquid water, total 

precipitable water vapor, 2-meter eastward wind (U wind), 2-meter northward wind (V wind), 10-meter U wind, 10-meter 

wind speed, 10-meter V wind, U wind at 500 hPa, U wind at 850 hPa, V wind at 500 hPa, V wind at 850 hPa, total latent 

energy flux, evaporation from turbulence, planetary boundary layer height, snowfall, and bias-corrected total precipitation. 455 

These parameters have been reported to be strongly associated with the PM2.5 concentration in various regions in China 

(Chen et al., 2020b). The inverse distance weighting method was applied to estimate the daily smooth surface of 

meteorological data and to match with the modelling grid at a 0.1° spatial resolution.  

Elevation data from the Global Digital Elevation Model (GDEM, https://earthexplorer.usgs.gov/) version 2 at a 30-m resolution 

were averaged to match the modelling grid. We calibrated the gridded population distribution data from the LandScan Global 460 

Population Database (https://landscan.ornl.gov/), the Gridded Population of the World (GPW, 

https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count) dataset and the WorldPop dataset 

(https://www.worldpop.org/) at the county level with the total population reported in China City Yearbooks. These calibrated 

gridded population data were fused to better characterize the population distribution across China (Xiao et al., 2020).The land 

cover classification data of urban and rural regions at a 30-m resolution for 2000-2017 were downloaded from 465 

http://data.ess.tsinghua.edu.cn (Gong et al., 2019a;Gong et al., 2019b). The fraction of urban/rural region at the 30-m resolution 

was averaged according to the modelling grid. 

  

http://data.ess.tsinghua.edu.cn/
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Appendix BA2. Model performance evaluation 

The hyperparameters of XGBoost, including the maximum number of boosting iterations, the learning rate, the maximum 470 

depth of a tree, the minimum sum of the instance weight needed in a child, the subsampling ratio of a training instance, and 

the subsampling ratio of columns when constructing each tree, were optimized by grid search with the five-fold cross-

validation (CV) root-mean-square error (RMSE) as a performance evaluation statistic. 

The model performance was evaluated through five-fold CV, by-year CV and by-location CV. The five-fold CV approach 

randomly selects 20% of the data for model testing and train the model with the remaining data. This process is repeated five 475 

times, and each record is selected once as testing data. The by-year CV approach validates the model hindcast ability by 

sequentially selecting one year of data for testing and using the remaining yearly data for model training such that each year 

is selected once for testing. The by-location CV approach validates the model ability for spatial prediction by using the data at 

20% randomly selected locations for testing and uses the remaining data for model training. This process is repeated five times 

until each location has been selected once for model testing. 480 
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Table B1A1. Model fitting average R2 value of the seasonal generalized additive model (GAM), year-round GAM, 

seasonal stepwise multiple linear regression (MLR), and year-round MLR. 

 Spring Summer Fall Winter Year-round 

Seasonal GAM 0.39 0.45 0.42 0.48  

Year-round GAM     0.32 

Seasonal MLR 0.34 0.40 0.37 0.42  

Year-round MLR     0.26 

 485 
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 490 

Figure B1A1: Evaluation of the WRF model simulations. The correlation coefficient and normalized mean bias was 

calculated by comparing WRF simulations with ground observations from the National Climate Data Center.  
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Figure B2A2: Model evaluation of the first-stage model trained with the original dataset and the SMOTE-resampled 495 

dataset in five-fold cross-validation (CV) and scatter plots comparing the ground measurements and model 

predictions in five-fold CV, by-location CV and by-year CV. 
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Appendix C. Meteorological contributions to PM2.5. 500 

 

Figure C1A3: The CMAQ estimated relative impact of meteorology on annual average PM2.5 (top row), relative 

impact of meteorology on average PM2.5 in fall-winter (September, October, November, December, January in next 

year, and February in next year) (middle), and relative impact of meteorology on average PM2.5 in spring-summer 
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(bottom row) with the long-term trends estimated by polynomial and linear regression over East China, BTH, FWP, 505 

YRD, and PRD. 
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Figure C2A4: Distribution of the estimated seasonal coefficients of the normalized meteorological parameters in East 

China. 

 510 

Figure C3A5: Meteorology-associated PM2.5 variations estimated with the MLR and GAM (left), and 

meteorologically adjusted PM2.5 with 50-day seasonal averaging window and 90-day seasonal averaging window 

(right). 
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Figure 1: Methodology framework of this study. The green process shows the two methods that separating emission and meteorology 

contributions to PM2.5 in this study. The first method assesses the meteorology-associated PM2.5 from WRF/CMAQ simulations with 

the fixed emissions at the 2000 level and varying meteorological inputs. The second method assesses the meteorology-associated 695 
PM2.5 with satellite-based PM2.5 estimations and a generalized additive model (GAM). The processing of satellite-based PM2.5 

estimation includes two stages. In stage 1 (blue), we constructed a measurement-based high-pollution indicator and trained an 

extreme gradient boosting (XGB) model to predict the high-pollution indicator. In stage 2 (yellow), we trained a XGB model to 

predict the residuals of WRF/CMAQ simulations with high-pollution indicator as well as satellite AOD, meteorology and land use 

data as predictors.   700 
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Figure 2: Comparisons between the two-stage model and the benchmark model. (a) The scatter plot of the two-stage model 

predictions and the benchmark model predictions against ground observations in the five-fold cross-validation (CV). (b) Density 

distributions of the two-stage model predictions, the benchmark model predictions and the PM2.5 observations in the five-fold CV.  
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 705 

Figure 3: Temporal trends of the annual average satellite-based PM2.5 concentrations over East China and the key regions during 

2000–2018. BTH: Beijing-Tianjin-Hebei; FWP: Fen-wei Plain; YRD: Yangtze River Delta; PRD: Pearl River Delta. 
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Figure 4: Fractional contribution of meteorology to PM2.5 concentrations on the monthly scale during 2000–2018, estimated from 710 

CMAQ (the orange line) and GAM (the blue line). 
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Figure 5: The GAM estimated relative impact of meteorology on annual average PM2.5 (top row), relative impact of meteorology on 

average PM2.5 in fall-winter (September, October, November, December, January in next year, and February in next year) (middle), 715 

and relative impact of meteorology on average PM2.5 in spring-summer (bottom row) with the long-term trends estimated by 

polynomial and linear regression over East China, BTH, FWP, YRD, and PRD. 
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Figure 6: Time series of the annual average (left column) and fall-winter average (middle column) PM2.5 concentrations before (the 720 

orange line) and after (the gray line) the adjustment of the meteorological effects from 2000–2018 using GAM. The gray shadow 

shows the potential range of the observed PM2.5 due to meteorological effects. The right column shows the MEIC emissions of 

PM2.5, NOx, and SO2, respectively.  
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 725 

Figure 7: Left: Spatial distribution of the PM2.5 decrease rate during 2013–2018 after adjusting for the meteorological effects using 

GAM. Middle: Spatial distribution of the PM2.5 decrease rate during 2013–2018 after adjusting for the meteorological effects using 

CMAQ. Right: The difference in the PM2.5 decrease rate before and after the adjustment for the meteorological effects using 

GAM. 


