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Abstract. The tropical and subtropical Indian Ocean (IO) is expected to be a significant source of water-soluble organic
aerosols (WSOAs), which are important factors relevant to cloud condensation nuclei and ice nuclei of aerosol particles.
Current atmospheric numerical models significantly underestimate the budget of organic aerosols and their precursors,
especially over tropical oceans. This is primarily due to poor knowledge of sources and the paucity of observations of these
parameters considering spatial and temporal variation over the tropical open ocean. To evaluate the contribution of sources to
WSOA as well as their formation processes, submicrometer aerosol sampling was conducted at the high-altitude Maido
observatory (21.1° S, 55.4° E, 2,160 m a.s.l), located on the remote island of La Réunion in the southwest 10. The aerosol
samples were continuously collected during local daytime and nighttime, which corresponded to the ambient conditions of the
marine boundary layer (MBL) and free troposphere (FT), respectively, from March 15 to May 24, 2018. Chemical analysis
showed that organic matter was the dominant component of submicrometer water-soluble aerosol (~45 = 17%) during the wet
season (March 15—April 23), whereas sulfate dominated (~77 + 17%) during the dry season (April 24—May 24). Measurements
of the stable carbon isotope ratio of water-soluble organic carbon (WSOC) suggested that marine sources contributed
significantly to the observed WSOC mass in both the MBL and the FT in the wet season, whereas a mixture of marine and
terrestrial sources contributed to WSOC in the dry season. The distinct seasonal changes in the dominant source of WSOC
were also supported by Lagrangian trajectory analysis. Positive matrix factorization analysis suggested that marine secondary
OA dominantly contributed to the observed WSOC mass (~70%) during the wet season, whereas mixtures of marine and
terrestrial sources contributed during the dry season in both MBL and FT. Overall, this study demonstrates that the effect of
marine secondary sources is likely important up to the FT in the wet season, which may be responsible for cloud formation as

well as direct radiative forcing over oceanic regions.
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1 Introduction

The ocean surface is a major source of submicrometer aerosols, which play an important role in the atmospheric radiative
budget because they determine the number of cloud condensation nuclei (CCN) and ice nuclei (IN). Marine-derived
submicrometer organic aerosols (OAs) can affect the marine aerosol optical depth (AOD) as well as CCN and IN
concentrations. These are particularly important over remote oceans, as these areas experience minimal influence from
anthropogenic emissions originating from terrestrial sources. In general, organic matter (OM) is concentrated in the sea surface
microlayers relative to bulk seawater. OM is further concentrated in acrosols during the bubble bursting process, which
produces primary submicrometer sea spray aerosols (SSAs) that are enriched in OM (O’Dowd and De Leeuw, 2007). Moreover,
sea-to-air emissions of volatile organic compounds (VOCs) produced by marine microbial activity have the potential to form
secondary OAs. Nevertheless, there is still a large uncertainty in the potential sources and formation processes of OA in the
marine atmosphere, leading to uncertainty in determining their climate impact.

The tropical Indian Ocean (IO) is an oceanic region with high primary productivity (Jayaraman et al., 1998; Langley DeWitt
etal., 2013; Hopner et al., 2016) (Figure 1), where significant emissions of VOCs, including oxygenated VOCs (OVOCs), and
OAs are expected. A number of previous studies have focused on aerosols over the northern IO, particularly around India
(Chylek et al., 2006; Madhavan et al., 2008; Srinivas and Sarin, 2013). These studies have addressed the impact of
anthropogenic and land influences from Asia on the marine background. Conversely, the southwest IO is one of the few pristine
regions in the global ocean. It is generally not affected by anthropogenic emissions originating from continental sources.
Moreover, the western IO has been recognized as a region in which phytoplankton blooms occur frequently (Kyewalyanga,
2016; Roxy et al., 2016). Consequently, it is suitable to investigate remote marine aerosol composition and its relationship to
oceanic emissions (Mallet et al., 2018). The source apportionment of organic aerosols has not yet been investigated, particularly
for both marine and high-altitude sites that cover both the marine boundary layer (MBL) and lower free tropospheric (FT)
conditions over tropical oceans in the Southern Hemisphere.

This paper presents a 2-month study of chemical composition and stable carbon isotope ratios in marine aerosols obtained at
a high-altitude observatory in La Réunion in the southwest IO over two seasons. The purpose of this study was to evaluate the
contribution of marine/terrestrial sources to water-soluble organic aerosols and their formation processes in MBL and FT over

the tropical Indian Ocean.

2 Experimental

2.1 The Maido high-altitude observatory

The high-altitude Maido observatory (21.1°S, 55.4°E, 2,160 m a.s.l) is located on the remote island of La Réunion in the
southwest 10 (Baray et al., 2013). The observatory is affected by prevailing southeasterly trade winds in the MBL. The
meteorological field in that region is characterized by wet (typically from November to April) and dry seasons (from May to
October). Cyclones can occur typically between November and May (Baray et al., 2013). Previous studies reported that the
observatory is located in the MBL during daytime, and in the FT during nighttime (Baray et al., 2013; Guilpart et al.,
2017).Thus, we aimed to obtain aerosol samples in daytime and nighttime conditions by using two identical aerosol samplers,

as described in the following subsection.

2.2 Aerosol sampling

Submicrometer aerosol samples were collected at the Maido observatory during the period of March 15-May 24, 2018, in the
framework of the OCTAVE (Oxygenated Compounds in the Tropical Atmosphere: Variability and Exchanges) project (e.g.,

Verreyken et al., 2020). The aerosol samplings were conducted continuously using two high-volume air samplers (HVAS;
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Model 120SL, Kimoto Electric, Osaka, Japan) in parallel, with cascade impactors (Model-TE 234, Tisch Environmental, Inc.,
Cleves, OH, USA) attached to each. The samples were collected onto quartz-fiber filters at a flow rate of 1130 L min™' with
one sampler during daytime (0700—1800 in local time; LT) and the other sampler during nighttime (2200-0500 LT) by auto
power supply.

In this study, we used analytical results obtained from the bottom stage of the impactor, which collected particles with
aerodynamic diameter (Dp) lower than 0.95 pm. Here, ambient aerosol particles collected at the bottom are referred to as
submicrometer aerosol particles. The sample filters were typically exchanged every two to three days. The average volumes

of the sampled air were 2098 m? and 1454 m® during daytime and nighttime, respectively.
2.3 Measurements of chemical parameters of water-soluble aerosols

The term water-soluble aerosols are defined as particles sampled on the filter and extracted with ultrapure water followed by
filtration through a syringe filter (Miyazaki et al., 2018). To determine the WSOC concentration of the submicrometer filter
samples, a filter cut of 39.25 cm? was extracted with 15 mL ultrapure water using an ultrasonic bath for 15 min. The extracts
were filtered through a 0.22 pm pore syringe filter and then injected into a total organic carbon (TOC) analyzer (Model TOC-
Lcnp, Shimadzu) (Miyazaki et al., 2018, 2020).

To measure the stable carbon isotope ratio of WSOC (§'3Cwsoc), another filter cut (27.24 cm?) for each sample was acidified
to pH 2 with hydrochloric acid (HCI) to remove inorganic carbon prior to extraction (Miyazaki et al., 2018, 2020). The
decarbonated filter samples were then dried under a nitrogen stream for approximately 2 h. WSOC was extracted from the
filters in 20 mL of ultrapure water using the method described above to measure the WSOC concentration. The extracted
samples were concentrated by rotary evaporation, and 40 pL of each sample was transferred to be absorbed onto 10 mg of pre-
combusted Chromosorb in a pre-cleaned tin cup. The §'*Cwsoc was then measured using a Flash EA 1112/continuous flow
carrier gas system (ConFlo)- isotope ratio mass spectrometer (Delta V, Thermo Finnigan).

To determine the concentrations of inorganic ions, another filter cut was extracted with ultrapure water. The total extract was
filtered through a membrane disc filter, and major inorganic ions (SO4>", NOs;~, NO, ", CI", Br,NH4*, Na", K*, Ca?", and Mg?"),
including methanesulfonic acid (MSA), were determined using an ion chromatograph (Model 761 compact IC; Metrohm,

Herisau, Switzerland) (Miyazaki et al., 2016).
2.4 Measurements of molecular tracer compounds

Another portion of the filter (58.9 cm?) was extracted with dichloromethane/methanol to measure biogenic molecular tracers.
The molecular compounds include 2-methyltetrol, pinic acid, pinonic acid, and 3-methyl-1,2,3-butanetricarboxylic acid (3-
MBTCA), as oxidation products of biogenic VOCs (Yu et al., 1999; Claeys et al., 2004; 2007; Szmigielski et al., 2007). In
addition, tracers of primary biogenic emissions, such as glucose (Simoneit et al., 2004) and n-nonacosan-10-ol (Miyazaki et
al., 2019), were also measured. The —-COOH and —OH functional groups in the extracts were reacted with N,O-bis-
(trimethylsilyl) trifluoroacetamide to form trimethylsilyl (TMS) esters and TMS ethers, respectively (Fu et al., 2011). The
TMS derivatives were then analyzed for the compounds listed above using a capillary gas chromatograph (GC8890, Agilent)
coupled to a mass spectrometer (MSD5977B, Agilent).

2.5 Meteorological parameters and FLEXPART backward trajectory

Water vapor mixing ratio values at the sampling site were derived from the automatic measurements of ambient temperature
and relative humidity monitored by meteorological sensors (Vaisala, Helsinki, Finland) at the Maido observatory. To
investigate air mass histories from the sampling site, ten-day backward trajectories were computed using the Lagrangian

FLEXible PARTicle dispersion model, FLEXPART (Stohl et al., 1998; Pisso et al., 2019). These FLEXPART simulations
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were driven with hourly ECMWF operational data at half a degree horizontal resolution and 137 vertical levels. The calculation

was initialized at 00, 06, 12, and 18 UTC every day during the sampling period.

3 Results and discussion
3.1 Water vapor mixing ratios as an indicator of diurnal and seasonal changes in ambient atmospheric conditions

Figure 2 compares the average profiles of the water vapor mixing ratios observed during daytime and nighttime at the
observatory during the first half (March 15—April 23, 2018) and the second half (April 24-May 24, 2018) of the sampling
period. In this study, the wet season was defined as the first half of the sampling period, whereas the latter half was defined as
the dry season reflecting the significant difference in the water vapor mixing ratios between wet (8.7 + 2.6 g kg'!) and dry
seasons (6.4 + 1.4 g kg "). Moreover, water vapor mixing ratio values during daytime (9.3 2.7 gkg ' and 8.1 £2.5 g kg™
for wet and dry seasons, respectively) were significantly higher than those observed during nighttime (7.4 + 0.9 gkg™' and 5.4
+ 1.4 g kg ! for wet and dry seasons, respectively). Guilpart et al. (2017) presented a one-year record of the mixing ratio of
water vapor at the Maido observatory, demonstrating a clear seasonal decrease in the mixing ratio from March to May.
Moreover, they reported distinct diurnal variations in the water vapor mixing ratio with averages of 9.7 = 2.4 g kg™! during the
day (1100-1700 LT) and 6.4 + 2.9 g kg'! at night (2300-0500 LT) during the one-year period, showing that the Maido
observatory indeed located both in the MBL and FT during the day and at night, respectively. The observed levels of the water
vapor mixing ratio and their seasonal changes in this study are in good agreement to those reported by Guilpart et al. (2017).
Therefore, the results presented in this study confirm that the observatory was located in the MBL during daytime, whereas it

was in the FT at night.
3.2 Seasonal variations of mass fractions and concentrations of submicrometer water-soluble aerosol

Figure 3 shows seasonal changes in chemical mass fraction of the submicrometer water-soluble aerosols under the MBL and
FT conditions during the entire sampling period. WSOM dominated the aerosol mass in the MBL (46 £ 10%) and in the FT
(43 +23%) during the wet season. In contrast, during the dry season, sulfate was the dominant component of the submicrometer
water-soluble aerosol mass in both the MBL (77 + 19%) and in the FT (76 + 15%). The variation of the mass fractions was
similar in MBL and FT in both seasons.

Figure 4 shows temporal variations in the mass concentrations of WSOC in comparison with those of sulfate, bromide, MSA,
and 2-methyltetrol under the MBL and FT conditions during the entire period. Clearly, the average concentrations of WSOC
(300 = 137 ngC m3 and 269 + 126 ngC m > in the wet and dry seasons, respectively) in the MBL were substantially larger
than those in the FT (88.0 +50.0 ngC m > and 31.0 = 3.0 ngC m* in the wet and dry seasons, respectively) (Table 1). Moreover,
the average concentrations in the wet season were larger than those in the dry season (Figure 4a). These average concentrations
of WSOC in the MBL are substantially larger than those previously observed (~60 ngC m3) at Amsterdam Island located in
the southern 10 sector of the Austral Ocean (Sciare et al., 2009).

The extremely high sulfate concentrations observed both in the MBL (up to ~33 pg m ™) and in the FT (up to ~1.7 ug m™) in
the dry season (Figures 4b), are attributable to the eruption of Piton de la Fournaise volcano in the southeast of La Réunion,
which started on April 27 and continued until the beginning of June, 2018. The air masses affected by the volcanic eruption in
the southeast of the island were frequently transported to the observatory, where this transport pathway was explained by the
strong trade wind which is commonly observed in the dry season. In contrast, no significant corresponding increase in the
WSOC concentrations during this period (Figure 4a) was observed, suggesting that the contribution of the volcanic eruption

to the WSOC mass was insignificant.
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Bromide is used here as a tracer of marine primary emissions, whereas MSA is formed by the oxidation of dimethyl sulfide
(DMS) emitted from the marine surface and is used as a tracer of marine secondary production. Substantially larger
concentrations of bromide and MSA were also observed in the MBL (Figure 4c and 4d). The average bromide concentration
in the wet season was twice as large as that in the dry season (Table 1), reflecting higher biological productivity in the wet
season. The temporal variation of the concentration of MSA is similar to that of WSOC, suggesting that the dominant source
of WSOC is similar to MSA. The concentrations of 2-methyltetrol, an oxidation product of isoprene, were typically larger in
the MBL than in the FT in the wet season (Figure 4e), although their temporal variations are generally different from those of

WSOC with exceptions of a few samples. The contributions of terretrial sources are further discussed in the following sections.
3.3 Isotopic characterization of WSOC and FLEXPART backward trajectories

The isotopic composition of aerosol carbon has been used successfully to determine the contributions of marine and terrestrial
sources to aerosol carbon mass found in the remote marine atmosphere (e.g., Cachier et al., 1986). In particular, the WSOC-
specific stable carbon isotope (8'*Cwsoc) provides robust tools for the source apportionment of aerosol WSOC in the marine
atmosphere (e.g., Miyazaki et al., 2016). Figure 5 shows the temporal variations of §!*Cwsoc in the submicrometer aerosols
during the entire period. Based on previous studies (e.g., Cachier et al., 1986; Turekian et al., 2003), here we assume that
313 Cwsoc > —24%o indicates WSOC was mostly originated from sea water, whereas 8'*Cwsoc < —24%o indicates WSOC mainly
affected by terrestrial sources. In the wet season, 87% of the data in the MBL and 83% of the data in the FT, respectively,
showed the 8'*Cwsoc larger than —24%o, with averages of —23.2 + 1.0%0 (MBL) and —23.5 + 2.5%o (FT). In particular, the
larger concentrations of WSOC (e.g., > 300 ngC m~ in MBL; Figure 4a) corresponded to a higher §'*Cwsoc (> —24%o). The
results suggest that marine sources contributed significantly to the WSOC mass under both the MBL and FT conditions during
the wet season. In contrast, the average 8'*Cwsoc in the dry season were —24.4 £ 2.5%o and —25.0 & 1.4%o in the MBL and FT,
respectively, where 33% (MBL) and 33% (FT) of the data showed 8'*Cwsoc > —24%o.

To estimate the relative contributions of marine and terrestrial OC sources to the observed WSOC, a mass balance equation
(e.g., Turekian et al., 2003) was applied assuming a §'3C value of —21.5%o for marine OC (Turekian et al., 2003; Miyazaki et
al., 2010), and —28%. for terrestrial OC (e.g., Cachier et al., 1986). Our calculations indicate that marine sources contributed
~74% and ~69% in MBL and FT, respectively, during the wet season. The estimated contributions of marine sources are
reduced to ~55% and ~46% in the MBL and in the FT, respectively, during the dry season, suggesting that the WSOC mass
was attributed to both marine and terrestrial sources with similar fractional contributions in the MBL and FT during the dry
season.

Figure 6 presents typical ten-day back trajectory calculated by FLEXPART, which shows the surface contribution to the
measured air mass at the Maido observatory. The calculated air parcels were initialized at the Maido observatory under the
MBL and FT conditions in each seasonal category throughout the sampling periods. Overall, the air-mass flow pattern shown
in the figure is controlled by the Mascarene High located over the Southern 10, whose location shifts westward during the dry
season (e.g., Mallet et al., 2018). The Lagrangian trajectory analysis showed that the majority of air parcels in the wet season
was transported over the southern Indian Ocean. This is consistent with the results of the isotopic analysis and suggested that
the majority of submicrometer WSOC originated from the sea surface during the wet season. During the dry season, some
portion of the trajectories passed over Southern Africa in addition to the southern Indian Ocean, indicating some influence
from the land surface in addition to the marine source. This is also consistent with the results from the isotopic analysis of

WSOC, which suggest the influence of both land and ocean surface.
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3.4 Source apportionment of WSOC by positive matrix factorization

To further investigate the possible sources of the submicrometer WSOC under different conditions, a positive matrix
factorization (PMF) analysis (Paatero and Tapper, 1994) was performed. Figure 7 illustrates each factor profile calculated by
the PMF. The PMF resolved six interpretable factors, which were characterized by the enrichment of each tracer compound
and reproduced more than 86% of the measured WSOC. Factor 1 (F1) was characterized by the large contribution of MSA
(~50%). Consequently, it is referred to here as “marine SOA.” In fact, previous cruise measurements showed that in the
southern IO, the sea-to-air emission of DMS is more active than that of other oceanic regions (Sciare et al., 1999) and that
DMS was the most abundant VOC measured in the atmosphere (Colomb et al., 2009). The oceanic regions mentioned in these
previous studies overlap with the possible oceanic source region shown in Figure 6a and 6b.

Factor 2 (F2) is characterized by sea salt components, such as sodium (66%) and magnesium (78%). Moreover, bromide also
contributed significantly to F2, which is thus referred to here as “marine primary aerosol.” Because Factor 3 (F3) is dominated
by sulfate (68%), it is defined as “the sulfate-dominated” source. Factor 4 (F4) is characterized by the dominant contributions
of 2-methyltetrol and n-nonacosan-10-ol. Miyazaki et al. (2019) identified n-nonacosan-10-ol in forest aerosols, suggesting
that they originated mostly from plant waxes and could be a tracer of primary biological aerosol particles. Consequently, F4
is referred to here as “terrestrial biogenic sources.” Although Factor 5 (F5) was difficult to attribute to a specific source, given
the possibility that nitrate is associated with terrestrial sources with smaller contributions of marine tracers, F5 was labeled
here as “terrestrial sources.” Similarly, Factor 6 (F6) is dominated by ammonium (50%) with a mixture of tracers of marine
and terrestrial sources. F6 is referred to here as “mixture of marine and terrestrial sources” as a possible source category of
WSOC.

Figure 8 shows the time series of the mass contributions of the individual identified factors to the WSOC mass concentrations
in the MBL and FT. The average contributions of each PMF-derived factor to the WSOC mass are also summarized in Figure
9. A distinct temporal shift of the dominant source of WSOC was apparent from the wet season to the dry season in both the
MBL (Figure 8a) and FT (Figure 8b). On average, marine SOA dominantly contributed to the WSOC mass (~66% — 70%)
in both the MBL and FT during the wet season (Figure 9a and 9b). On average, terrestrial biogenic sources, which are mainly
based on the contribution of 2-methyltetrol, accounted for 16% of the WSOC mass in the MBL during the wet season.
Specifically, the contribution of terrestrial biogenic sources was more than 40% of the WSOC mass around April 1 and April
19 in the MBL. Previous cruise measurements of VOCs suggested oceanic emissions of isoprene in the southern 10 during
austral summer (December) (e.g., Colomb et al., 2009). However, the data exhibiting large contributions of terrestrial biogenic
sources mentioned above showed a lower §*Cwsoc < —24%o (Figure 5b), supporting the validity of the definition of the PMF
factor as terrestrial biogenic sources rather than marine biogenic origin. These biogenic sources are attributable to local
terrestrial biogenic emissions of VOCs on La Réunion Island, followed by the upward transport along the slope of the island
particularly in daytime (Verreyken et al., 2020). It is noted that F1 had also large contributions of oxidation products of a-
pinene (i.e., pinic acid, pinonic acid, and 3-MBTCA; Figure 7), which is also attributable to local terrestrial biogenic emissions
of VOCs during the transport from the ocean to the observatory. However, the dominance of marine SOA as a source of WSOC
in the wet season (Figure 8) is consistent with the §'*Cwsoc measurements, supporting the validity of the definition of F1 and
that the contribution of a-pinene SOA from local biogenic sources to the WSOC mass was small in this case.

Mixtures of marine and terrestrial sources significantly contributed to the WSOC mass during the dry season, where they
accounted for 61% and 47% of the WSOC mass in the MBL and FT, respectively (Figure 9¢ and 9d). These results point to
the importance of marine SOA up the FT during the wet season, which is attributed to the high oceanic productivity in this

region (Zhou et al., 2018), as well as to significant vertical transport of air during this season.
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3.5 Secondary formation of marine-derived WSOC and implications

It is possible that the aging of marine POA and subsequent formation of more oxidized OA significantly contributed to the
observed WSOC mass. Mallet et al. (2018) presented an 8-year satellite dataset of the distribution and variability of marine
aerosols over the Southern 10, which included the current aerosol sampling site. They suggested that aerosols are mainly
confined below 2 km above sea level and are dominated by sea salt over the Southern I0. However, the mass fraction of sea
salt in the submicrometer particles observed at the Maido observatory (2,160 m a.s.l) was insignificant, which resulted in a
significantly lower contribution from marine PA (Figures 8 and 9). Therefore, the current results indicate that the aging of
marine POA is insignificant, and the contribution of oxidation of VOCs from the sea surface to the WSOC mass up to the
lower FT is likely more important.

Model results by Briiggemann et al. (2018) indicated that, especially in tropical regions with low POA concentrations,
additional SOA from oxidation of photochemically produced VOCs contributes up to 60% of additional OA mass, such as
over the [O. In summary, the results of the current study highlight the importance of marine biogenic SOA up to the lower FT,
a process missing in climate models. Current models typically consider only marine POA (i.e., SSA) from the sea surface to
represent the OA burden in tropical “pristine” oceanic regions. The impacts of marine SOA up to FT aerosols lead to changes
in the microphysical and optical properties of aerosol particles. Model calculations (Zhu et al., 2017) suggested that the
contribution of SOA to radiative forcing will increase substantially in the future even if the increase of SOA burden is slight
and without considering the combined effects of changes in marine SOA. The current results may have important implications

for understanding the climate effects of aerosols in these oceanic regions.

4 Conclusions

In this study, the origins of WSOC in submicrometer aerosols were investigated based on continuous ambient aerosol sampling
at the Maido observatory in La Réunion in the southwest Indian Ocean. OM was the dominant component of the submicrometer
water-soluble aerosol (~46 £ 10%) in the MBL during the wet season, whereas sulfate dominated (~77 £ 19%) during the dry
season. Our estimate using the stable carbon isotope ratio of WSOC showed that, on average, for the wet season, marine
sources accounted for ~74% and ~69% of the WSOC mass in MBL and FT, respectively. Conversely, marine sources
contributed ~55% and ~46% in MBL and FT, respectively, of the WSOC mass during the dry season, suggesting that the
WSOC mass was attributed to both marine and terrestrial sources in the MBL and FT during that season. The significant
seasonal difference in the dominant source of WSOC between the two seasons was also supported by Lagrangian trajectory
analysis.

The PMF analysis suggested that marine secondary OA was a dominant contributor to the observed WSOC mass (~70%)
during the wet season, whereas mixtures of marine and terrestrial sources accounted for 61% and 47% of the WSOC mass in
the MBL and FT, respectively. Overall, this study demonstrates that emissions of biogenic VOCs from the ocean surface
followed by the formation of secondary OA are likely important up into the FT during the wet season, when marine biological
activity and vertical transport are more significant. These characteristics are responsible for subsequent cloud formation as

well as the direct radiative forcing over this oceanic region.
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Table 1. Average concentrations and ratios of the major parameters under the marine boundary layer (MBL; daytime)
and free tropospheric (FT; nighttime) conditions at the Maido observatory during wet and dry seasons. LOD indicates

below the lower detection limit.

Wet season

(Mar 15-Apr 23,2018)

Dry season

(Apr 24-May 24, 2018)

MBL (day) FT (night) MBL (day) FT (night)
WSOC (ngC m) 300 + 137 88+ 50 269 + 126 31+3.0
8" Cwsoc (%o) -32+1.0 —235+£25 —244+£25 -25.0+1.4
Sulfate (ng m ) 530+333 149 + 169 9278 + 11304 717 £ 530
Na' (ng m™) 6.17+£4.0 4.73+5.7 29.9+314 23.6 =20.7
Br (ng m7) 0.66 £ 0.44 LOD 0.31+£0.29 LOD
MSA (ng m™) 8.78 +4.30 3.68 £2.64 10.8 £3.78 4.65+3.31
2-Methyltetrol (ng m™) 3.09 £3.21 0.29 +£0.22 1.15+1.02 0.56 +£0.57
3-MBTCA (ng m™) 0.38+£0.39 0.02 +£0.04 0.21+£0.12 0.07 £0.12
Pinic acid (ng m™3) 0.15+0.18 0.03 +£0.03 0.03 +£0.03 0.05+0.07
Pinonic acid (ng m>) 0.20+0.15 0.05 £ 0.06 0.14+0.14 0.04 £0.02
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Figure 1: Annual average of marine primary productivity for the year 2018.The colors in the map explain the productivity condition
of the ocean. Blue (0-1200 ngC m2day!), green (1200-1800 ngC m2day ') and from yellow to red (1800-2400 ngC m2day ') colors
indicate oligotrophic, mesotrophic, and eutrophic states of the oceanic regions, respectively (Carr et al., 2006; Istvanovics, 2009).
Red dashed circle indicates a region of Indian Ocean with high primary productivity and black circle indicates the location of the
Maido high-altitude observatory. The figure was produced and adapted from the website of Ocean Productivity:
http://sites.science.oregonstate.edu/ocean.productivity/index.php
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Figure 2: Box-whisker plots of the water vapor mixing ratio during the first half (Mar 15-Apr 23, 2018) and second half (Apr 24—
May 24, 2018) of the sampling period. White and grey box plots indicate the data for daytime (0700-1800 LT) and nighttime (2200—
0500 LT), respectively; medians of the 25 percentile and upper/lower extreme data are shown. Cross marks indicate the average
values of each category.

13



(a) MBL

100% =
=z B g™
5 30% Mo
S 60% Sulfate .
g = hig*
o 40% Br
= 20% - - N
2 WSOM <o

WSOM

2 0% = = =

s 4 3 T F I T 3
5 5 = 5 5 ) ) )
= = & <L &4 = = =
Date 2018
(b) FT
w

=
ik}
=
=]
=
£ Sulfate
L

e .

= WSOM
(=}

&

2 ] 3 z ] 3 3 N

= i 5 5 5 & & &

z z < < < = = =
Date 2018

«—— Vet season ———s«—— Dry season —»

Figure 3: Time series of the chemical mass fraction of the submicrometer water-soluble aerosols under (a) MBL (in daytime) and
(b) FT (in nighttime) conditions throughout the sampling period.
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Figure 4: Time series of the mass concentrations of (a) WSOC, (b) sulfate, (c) bromide, (d) MSA, and (e) 2-methyltetrol under the
5 MBL (red) and FT (blue) conditions.
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Figure 5: Time series of stable carbon isotope ratio of WSOC (8'*Cwsoc) under (a) FT and (b) MBL conditions during the entire
sampling period. Dashed lines indicate the transition from wet to dry seasons. Dotted lines indicate the boundary of '*Cwsoc ranges
5 distinguishing assumed marine (> —24%o) and terrestrial sources (< —24%o).
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Figure 6: Representative source-receptor relationships for aerosols observed at the Maido observatory for a ten-day period starting
at time under the (a) MBL and (b) FT conditions during the wet season and (c) MBL and (d) FT during the dry season, which were
calculated by FLEXPART. The color code represents the surface contribution to the measured air mass at the Maido observatory.
Each color represents the degree of the surface contribution that varies by a factor of 10. For example, the orange color shows the
surface contribution ten times larger than yellow.
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5 is shown.
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Figure 8: Time series of contribution of each PMF-derived factor to the WSOC mass concentration under the (a) MBL and (b) FT
5 conditions.
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Figure 9: Average contribution of each PMF-derived factor to the WSOC mass concentration during the wet season ((a) and (b))
and dry season ((c) and (d)). The pie charts are further classified under (a, ¢) FT and (b, d) MBL conditions.
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