

1 **Investigation of near-global daytime boundary layer height**
2 **using high-resolution radiosondes: First results and**
3 **comparison with ERA5, MERRA-2, JRA-55, and NCEP-2**
4 **reanalyses**

5 Jianping Guo^a, Jian Zhang^{b*}, Kun Yang^c, Hong Liao^d, Shaodong Zhang^e, Kaiming
6 Huang^e, Yanmin Lv^a, Jia Shao^f, Tao Yu^b, Bing Tong^a, Jian Li^a, Tianning Su^g, Steve
7 H.L. Yim^{h,i}, Ad Stoffelen^j, Panmao Zhai^a, and Xiaofeng Xu^k

8
9 ^a State Key Laboratory of Severe Weather, Chinese Academy of Meteorological
10 Sciences, Beijing 100081, China

11 ^b Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and
12 Geomatics, China University of Geosciences, Wuhan 430074, China

13 ^c Department of Earth System Science, Tsinghua University, Beijing 100084, China

14 ^d Nanjing University of Information Science and Technology, Nanjing 210044, China

15 ^e School of Electronic Information, Wuhan University, Wuhan 430072, China

16 ^f College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

17 ^g Department of Atmospheric and Oceanic Sciences, University of Maryland, College
18 Park, Maryland 20740, USA

19 ^h Department of Geography and Resource Management, The Chinese University of
20 Hong Kong, Shatin, Hong Kong, China

21 ⁱ Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of
22 Hong Kong, Shatin, Hong Kong, China

23 ^j The Royal Netherlands Meteorological Institute (KNMI), 3730 AE De Bilt, The
24 Netherlands

25 ^k China Meteorological Administration, Beijing 100081, China

26
27 *Correspondence to:

28 Dr. Jian Zhang (Email: zhangjian@cug.edu.cn)

29

30

Abstract

31 The planetary boundary layer (PBL) governs the vertical transport of mass, momentum
32 and moisture between the surface and the free atmosphere, and thus the determination
33 of PBL height (BLH) is recognized as crucial for air quality, weather and climate
34 analysis. Although reanalysis products can provide important insight into the global
35 view of BLH in a seamless way, the *in situ* observed BLH on a global scale remains
36 poorly understood due to the lack of high-resolution (1-s or 2-s) radiosonde
37 measurements. The present study attempts to establish a near-global BLH climatology
38 at synoptic times (0000 and 1200 UTC) and in the daytime using high-resolution
39 radiosonde measurements over 300 radiosonde sites worldwide for the period 2012 to
40 2019, which is then compared against the BLHs obtained from four reanalysis datasets,
41 including ERA5, MERRA-2, JRA-55, and NCEP-2. The variations of daytime BLH
42 exhibit large spatial and temporal dependence, and as a result the BLH maxima are
43 generally discerned over the regions such as Western United States and Western China,
44 in which the balloon launch times mostly correspond to the afternoon. The diurnal
45 variations of BLH are revealed with a peak at 1700 local solar time (LST). The most
46 promising reanalysis product is ERA5, which underestimates BLH by around 130 m as
47 compared to radiosondes released during daytime. In addition, MERRA-2 is a well-
48 established product and has an underestimation of around 160 m. JRA-55 and NCEP-2
49 might produce considerable additional uncertainties, with a much larger
50 underestimation of up to 400 m. The largest bias in the reanalysis data appears over the
51 Western United States and Western China and it might be attributed to the maximal
52 BLH in the afternoon when the PBL has grown up. Statistical analyses further indicate
53 that the biases of reanalysis BLH products are positively associated with orographic
54 complexity, as well as the occurrence of static instability. To our best knowledge, this
55 study presents the first near-global view of high-resolution radiosonde derived
56 boundary layer height and provides a quantitative assessment of the four frequently
57 used reanalysis products.

58 **Keywords.** Radiosonde; boundary layer height; reanalysis; sensible heat flux

59 **1. Introduction**

60 The planetary boundary layer (PBL) is where most of exchanges of heat, moisture,
61 momentum and mass take place between the free atmosphere and ground surface (Stull,
62 1988; Liang and Liu, 2010). The spatial and temporal variability of PBL, through a
63 variety of physical processes, has a profound influence on research fields such as air
64 quality (Stull, 1988; Li *et al.*, 2017), convective storm (Oliveira *et al.*, 2020) and global
65 warming (Davy and Esau, 2016), among others. It is well known to be influenced by
66 radiative cooling at night and by downward solar radiation reaching the ground surface
67 at daytime, respectively, forming a stable boundary layer (SBL) and convective
68 boundary layer (CBL), with a typical PBL depth (BLH) of less than 500 m and 1–3 km
69 (Zhang *et al.*, 2020a), respectively. For climate models, most of the PBL processes
70 occur at sub-grid scales and thus are either underrepresented or not fully represented
71 (von Engeln and Teixeira, 2013). Meanwhile, there are many problems in elucidating
72 the PBL processes using numerical model simulations (Martins *et al.*, 2010), even over
73 the relatively homogeneous ocean (Belmonte and Stoffelen, 2019), which is likely due
74 to the scarcity of fine-scale vertical observations of the atmosphere.

75 Over the oceans Belmonte and Stoffelen (2019) performed a climatological
76 comparison between state-of-the-art reanalysis and scatterometer surface winds in the
77 PBL, revealing mean and transient PBL model errors. Houchi *et al.* (2010), based on
78 high-resolution radiosondes, verified the climatological wind profiles and found in
79 particular a factor of 2–3 lower wind shear simulated by the European Centre for
80 Medium-Range Weather Forecasts (ECMWF) model. Wind shear is recognized to be
81 able to significantly modulate turbulent mixing of atmospheric pollutants (Zhang *et al.*,
82 2020b), and thus the inabilities of the model in this regard may have repercussions for
83 air quality prediction.

84 The critical interaction between PBL turbulence and vertical structures of
85 thermodynamic variables, as the heart of PBL physics, makes the determination of BLH
86 a big challenge, due largely to the difficulty for those instruments with coarse vertical

resolution in resolving the sharp gradients of temperature and water vapor at the top of the PBL, and estimating PBL-top entrainment and lateral entrainment (Teixeira *et al.*, 2021). Thus, this highlights the importance of high-resolution vertical measurements of thermodynamic variables. The temporal and spatial variations in BLH have been extensively assessed in previous studies at a regional or national scale, such as the contiguous United States (Seidel *et al.*, 2012; Zhang *et al.*, 2020a), Europe (Palarz *et al.*, 2018), Arctic and Antarctic (Zhang *et al.*, 2011), which are mainly implemented by low-resolution radiosonde measurements, reanalysis or both. Fortunately, a few pioneering studies in characterizing BLH have adopted high-resolution measurements at a national scale over China (Guo *et al.* 2016; Zhang *et al.*, 2018, Su *et al.*, 2018) and United States (Seidel *et al.*, 2010). Notable diurnal and seasonal cycles have been revealed (e.g., Guo *et al.*, 2016; Short *et al.*, 2019). Besides the regional results, several attempts have been made to provide global-scale retrievals of BLH using the Global Positioning System radio occultation (GPS RO) and Integrated Global Radiosonde Archive (IGRA) version 2 (Seidel *et al.*, 2010; Gu *et al.*, 2020; Ratnam and Basha, 2010), in which seasonal variations and maritime-continental contrasts of BLHs have been achieved. The measurements of GPS RO, at a vertical resolution of 100 m around the PBL top, are typically used to determine BLH by searching for the altitude with a sharp gradient in the refractivity profile (Basha *et al.*, 2018). However, such sharp gradient of refractivity might overestimate BLH compared to other methods that the community usually used, such as the parcel method (Seidel *et al.*, 2010). Compared with high-resolution soundings, IGRA is sparsely sampled in the vertical (about 10-30 layers below 500 hPa), which could result in large uncertainties in estimating BLH. Likewise, additional errors could be introduced in reanalysis products for their sparse vertical resolutions (about 6-42 layers below 500 hPa), which are equivalent to or bigger than IGRA. A large spread emerges in the explicit determination of BLH from a variety of instruments, in spite of that the BLH detection based on radiosonde is the most accepted methodology for deriving CBL and SBL (Seidel *et al.*, 2012; de Arruda Moreira *et al.*, 2018).

116 A wide range of reanalysis products, such as those from the fifth generation
117 ECMWF atmospheric reanalysis of the global climate (ERA5), the National
118 Aeronautics and Space Administration (NASA) Modern-Era Retrospective-analysis for
119 Research and Applications version 2 (MERRA-2), Japanese 55-year Reanalysis (JRA-
120 55), and the NCEP climate forecast system version 2 (NCEP-2), provide a rich
121 ensemble of climate data products (Saha *et al.*, 2014; Hersbach *et al.*, 2020; Kobayashi
122 *et al.*, 2015; Gelaro *et al.*, 2017), but are sensitive to both empirical parameterizations
123 and the diagnostic method chosen, while verification by direct observations of BLH are
124 sparse (Seibert *et al.*, 2000). Some inter-comparisons between instruments or model
125 data, such as radiosonde, CALIOP, and ERA-interim reanalysis have been previously
126 conducted, and a good consistency has been yielded in seasonal and spatial variation
127 (e.g., Guo *et al.*, 2016; Zhang *et al.*, 2016). However, Basha *et al.* (2018) demonstrate
128 that ERA-interim can underestimate BLH by around 900 m compared to GPS RO. This
129 underestimation may be caused by different kinetic or thermodynamic assumptions use.
130 For instance, ERA-interim is implemented with a bulk Richardson number method
131 (Palm *et al.*, 2005), which is believed to be suitable for all atmospheric conditions
132 (Anderson, 2009). It is worth highlighting that the state-of-art reanalysis could be one
133 of the most promising data sources for obtaining the synoptic or climatological features
134 of BLH.

135 Despite much progress made in developing the BLH products, there are still some
136 unresolved issues in quantifying the variability of BLH from a global perspective.
137 These issues include: the worldwide variation of BLH by high-resolution vertical
138 soundings, the inter-comparisons among reanalysis datasets, and further evaluations
139 with radiosonde observations, especially in the daytime based on the same retrieval
140 algorithm. To this end, this study seeks to address the following scientific questions: (1)
141 a climatological distribution of near-global BLH by using high-resolution radiosonde
142 measurements; (2) inter-comparisons of ERA5, MERRA-2, JRA-55, and NCEP-2 with
143 additional evaluation with radiosondes; and (3) investigate potential sources for the
144 biases of BLH between observation and reanalysis. The rest of the paper is organized

145 as follows. The descriptions of high-resolution radiosonde data, reanalysis products,
146 and the bulk Richardson number method are given in Section 2. Section 3 presents the
147 spatial distributions of BLH by radiosonde and reanalyses and their inter-comparisons.
148 A brief conclusion and remarks are finally outlined in Section 4.

149 **2. Data descriptions and BLH retrieval method**

150 *2.1 High-resolution radiosonde measurements*

151 In 2018, IGRA provided atmospheric soundings at around 445 radiosonde sites
152 across the globe, including pressure, temperature, humidity and wind vector. The
153 number of pressure levels below 500 hPa is around 10-30. By comparison, for high-
154 resolution radiosondes, the sampling rate is 1-s or 2-s, corresponding to a vertical
155 resolution of approximately 5–10 meters throughout the atmosphere. The high-
156 resolution radiosonde measurements used in the present study are obtained from 342
157 sites around the world, which are provided by several organizations, including the
158 China Meteorological Administration (CMA), the National Oceanic and Atmospheric
159 Administration (NOAA) of United States, the German Deutscher Wetterdienst (Climate
160 Data Center), the Centre for Environmental Data Analysis (CEDA) of United Kingdom,
161 the Global Climate Observing System (GCOS) Reference Upper Air Network
162 (GRUAN), and University of Wyoming.

163 The CMA maintains the China Radiosonde Network (CRN), which contains 120
164 operational stations homogeneously distributed across mainland China with a vertical
165 sampling rate of 1 second (5–8 m resolution), since 2011 (Guo *et al.*, 2016; 2019; Zhang
166 *et al.*, 2016; 2018; Su *et al.*, 2020). The NOAA started the Radiosonde Replacement
167 System (RRS) program in 2005, which involved 89 sites with a vertical resolution of 5
168 m (Zhang *et al.*, 2019). The German Deutscher Wetterdienst (Climate Data Center) has
169 been sharing the radiosonde measurements at 14 sites with a sampling rate of 2 seconds
170 since 2010. Moreover, the 10 m resolution soundings at 12 sites was provided by the
171 CEDA, which began to share soundings since 1990, and 8 radiosonde sites were shared

172 by GRUAN with a vertical resolution smaller than 10 m. An additional 93 sites came
173 from the University of Wyoming, which started in 2017, with a sampling rate of 2-s or
174 1-s. In total, over 678,000 soundings at 342 stations are used here for the period of
175 January 2012 to December 2019 in total of eight years, including 633,000 soundings at
176 the regular release times of 0000 and 1200 UTC and 43,000 more irregular observations
177 during intensive observation period (IOP).

178 Radiosonde measurements are taken twice per day following the World
179 Meteorological Organisation (WMO) protocol for synoptic times at 0000 and 1200
180 UTC (Seibert *et al.*, 2000), except for special field campaign observations at specified
181 stations or time ranges during IOPs. The protocol implies that stations at different
182 longitudes sample the diurnal cycle differently. For instance, stations near 0°E (London)
183 and 180°E (Samoa) sample at midnight and midday, while stations near 90°E
184 (Bangladesh) and 90°W (Chicago) sample at dawn and dusk, with intermediate
185 longitudes at linearly varying intermediate local solar times (LSTs) of day. For
186 wintertime regions near 90°W and 90°E, the release times are insufficient for evaluating
187 the BLH during daytime. Hence, the BLH estimates from regular radiosondes will vary
188 with longitude and season (McGrath-Spangler and Denning, 2012). Generally, the
189 principal PBL mechanism at night is associated with an SBL, which gradually
190 transitions into CBL in the morning (Stull, 1988; Zhang *et al.*, 2018). The transition
191 from SBL to CBL is generally quick and occurs swiftly after sunrise, but the reverse
192 process can be slow in the late evening (Taylor *et al.*, 2014). Despite the dominance of
193 CBL during the daytime, an SBL still occurs, especially in the event of overcast sky
194 (Zhang *et al.*, 2018; 2020) and near strong divergence in moist convective downbursts
195 (King *et al.*, 2017). To illustrate the daytime variation of BLH, we only selected the
196 soundings that are launched 2 hours after sunrise and 2 hours before sunset. The sunrise
197 and sunset times are gauged in a longitude bin size of 15 degrees and based on the
198 latitude of station and the calendar day of the release. Using this definition, a total of
199 190,013 profiles including soundings launched at both synoptic times and during IOP,
200 spanning January 2012 to December 2019, are used to obtain the BLHs in the daytime.

201 The spatial distribution of file number for each site is displayed in Figure S1, in which
202 the sites with less than 10 matches are excluded.

203 *2.2 ERA5, MERRA-2, JRA-55 and NCEP-2 reanalysis datasets*

204 ERA5 is the successor of ERA-interim and has undergone a variety of improvements,
205 including more recent parameterization schemes and data assimilation system, better
206 spatial resolution, both horizontally and vertically (137 levels), and improved
207 representation of evaporation balance, cyclones, soil moisture, and global precipitation
208 (Hersbach *et al.*, 2020). The BLH is composited in the ERA5 product on a 1440×721
209 grids with 0.25° longitude and 0.25° latitude resolution. It is computed by the bulk
210 Richardson number method, with a temporal resolution of 1 hour.

211 MERRA-2 is the latest atmospheric reanalysis of the modern satellite era
212 produced by NASA's Global Modeling and Assimilation Office (GMAO). It includes
213 aerosol data assimilation, improvements on ozone, and cryospheric processes (Gelaro
214 *et al.*, 2017). In this product, the BLH is packaged and defined by identifying the lowest
215 level at which the heat diffusivity drops below a threshold value (McGrath-Spangler
216 and Denning, 2012). The formula for calculating BLH is as follows:

217
$$\text{BLH}(\text{MERRA2_packaged}) = 44308 \times (1 - (P_{PBLtop}/P_{Surface}))^{0.1903} \quad (1)$$

218 where $\text{BLH}(\text{MERRA2_packaged})$ is in unit of meter, P_{PBLtop} the BLH (packaged
219 parameter in MERRA-2, in unit Pa), and $P_{Surface}$ the surface pressure (in unit Pa).
220 However, to preclude the uncertainty raised by different methods adopted, the BLH by
221 MERRA-2 is extracted by bulk Richardson number method, by utilizing the parameters
222 of horizontal wind, temperature, geopotential height, relative humidity (RH), and
223 surface pressure as inputs. These input data are provided on a grid of 576×361 points
224 with 0.625° longitude and 0.5° latitude resolution and has 42 pressure levels (about 16
225 layers below 500 hPa), with a temporal resolution of 3 h.

226 JRA-55 is the second Japanese global atmospheric reanalysis commissioned by
227 the Japan Meteorological Agency (JMA) (Kobayashi *et al.*, 2015). Data contains 37

228 pressure levels between 1 hPa and 1000 hPa (16 layers below 500 hPa), provided on a
229 grid of 288×145 points, with a horizontal spacing of $1.25^\circ \times 1.25^\circ$ and a temporal
230 resolution of 6 hours. The parameters, including geopotential height, temperature,
231 horizontal wind, surface pressure, and RH, are used to assess BLH as before.

232 NCEP-2 has the coarsest model resolution than ERA5 (Rinke *et al.*, 2019), with a
233 spatial resolution of 2.5° longitude and 2.5° latitude. The total level is 17 (6 layers
234 below 500 hPa), which is substantially less than MERRA-2, JRA-55 or ERA5, and the
235 temporal resolution is 6 hours. Similar parameters to JRA-55 are preserved to compute
236 BLH. It is noteworthy that all model times include 0000 and 1200 UTC and hence
237 collocate well with the synoptic radiosonde times.

238 *2.3 Bulk Richardson number method*

239 In the spirit of a like-for-like comparison, the BLHs derived from radiosonde and
240 reanalysis data (MERRA-2, JRA-55, and NCEP-2) are calculated using the bulk
241 Richardson number (BRN), which also serves as the built-in algorithm in ERA5 for
242 BLH products. The BRN, an algorithm used to reflect how strongly buoyancy is
243 coupled to the vertical momentum (Scotti, 2015), has been widely used for the
244 climatological study of BLH from radiosonde measurements thanks to its applicability
245 and reliability for all PBL regimes (Anderson 2009; Seidel *et al.*, 2012; Guo *et al.*,
246 2019). It determines the BLH by identifying the level at which the bulk Richardson
247 number, represented by $Ri(z)$, reaches its critical value (Palm *et al.*, 2005) and is
248 formulated as:

$$249 \quad 250 \quad Ri(z) = \frac{\left(\frac{g}{\theta_{vs}}\right)(\theta_{vz} - \theta_{vs})z_{AG}}{(u_z - u_s)^2 + (v_z - v_s)^2 + (bu_*^2)} \quad (2)$$

251 where g is the gravitational acceleration, z_{AG} the height above ground level (AGL),
252 θ_v the virtual potential temperature, u_* the surface friction velocity, and u and v the
253 horizontal wind components and b a constant, which is usually set to zero due to the
254 fact that friction velocity is much weaker compared with the horizontal wind (Seidel *et*

255 $al.$, 2012). The subscripts of z and s denote the parameters at z height above ground
256 and ground level, respectively.

257 It is known that $Ri(z)$ increases with increasing free flow stability (Zilitinkevich
258 and Baklanov, 2002). Below a critical value of 0.25, the flow is dynamically unstable
259 and likely cause turbulent motion. Nevertheless, since turbulence can also occur away
260 from this critical value (Haack *et al.*, 2014), care must be taken in that the critical value
261 might not be well defined, leading to uncertainty in estimating BLH. Meanwhile, the
262 BLH estimates were found not to change very much by differing the input of critical
263 values ($Ri = 0.2; 0.25; 0.3$) (Guo *et al.*, 2016). Therefore, for a given discrete Ri
264 profile, here we identify the BLH as the interpolated height at which the $Ri(z)$ firstly
265 crosses the critical value of 0.25 starting upward from the ground surface. Besides, it is
266 well recognized that the vertical resolution of radiosonde measurement has large impact
267 on the BLH estimated. For instance, BLHs are usually lower for a sparser vertical
268 resolution (Seidel *et al.*, 2012). Therefore, factors that cause uncertainty in estimating
269 BLH by using the bulk Richardson method include, but not limited to, meteorological
270 parameters, the surface friction, vertical resolution of data and the critical value of Ri .

271 2.4 *Collocation procedure and a case study*

272 In contrast to the reanalysis data, the longitude, and latitude distributions of high-
273 resolution radiosonde are irregular. A precise comparison between reanalysis data and
274 sounding is required for consistency in time, latitude, and longitude. The matching
275 procedures implemented in this present study go as follows. (1) A latitudinal and
276 longitudinal matching procedure is carried out by finding the geographical grid cell of
277 the reanalysis product that contains the radiosonde station. (2) Time matching for ERA5
278 is to find the exact UTC time (hour) of the weather balloon launch. (3) For MERRA-2,
279 NCEP-2, and JRA-55 datasets, the requirement is to limit the time difference with the
280 weather balloon launch time to 1 hour.

281 A case at 0600 UTC 06 Jun 2016, Chongqing (29.6°N, 106.4°E, 541 m) is shown
282 in Figure 1. In this case, BLH obtained by sounding is 1,337 m and is closest to that by

283 ERA5, which underestimates the height by 72 m. Compared with the radiosonde profile,
284 MERRA-2 can capture the main vertical structures and the magnitude of wind speed
285 (WS), RH, and temperature, but not the fine-scale vertical variations (Figure 1b). It also
286 slightly undervalues the BLH by 125 m. The basic parameters outlined by NCEP-2, for
287 instance, RH (5% larger than sounding), temperature (3°C less than sounding), and
288 wind speed (4.5 m/s larger than sounding), all have notable differences with the
289 sounding (Figure 1c). Eventually, The NCEP-2 derived BLH is considerably
290 underestimated by 729 m. By and large, the profiles from JRA-55 are not as accurate
291 as those from MERRA-2. More specifically, the wind speed at some heights,
292 prominently above 2 km, is underestimated (Figure 1d); the mean RH is 4% less than
293 that from the sounding. As a result, JRA-55 substantially underestimates BLH by 399
294 m. Based on this case, we can note that the performances of ERA5 and MERRA-2 are
295 obviously better than those from JRA-55 and NCEP-2 in terms of the BLH. The
296 remarkable underestimation by NCEP-2 can be attributed to the underestimations in
297 near-surface virtual potential temperature (roughly 2.46 K less than sounding) and
298 temperature. By comparison, the smaller BLH in JRA-55 could be attributed to the
299 underestimated RH.

300 *2.5 Normalized sensible/latent heat flux in the daytime*

301 The sensible heat flux represents the level of energy that induces CBL growth (Wei
302 *et al.*, 2017), whereas the latent heat fluxes characterize the evaporation of moisture
303 from the soil to the CBL, which feedbacks on the development of CBL and the
304 formation of PBL cloud (Pal and Haeffelin, 2015). For a given amount of heat flux,
305 small latent heat fluxes usually mean more energy being available for PBL growth
306 (Chen *et al.*, 2016). When less energy is constrained by the moist ground, more energy
307 is available to heat the air. Moreover, the surface heat flux is closely associated with
308 near-surface meteorological variables. For instance, a lower RH usually indicates a
309 larger sensible heat flux and lower latent heat flux (Guo *et al.*, 2019; Zhang *et al.*, 2013).
310 Suppose that the heat supplied to the air at the radiosonde balloon launch time is the

311 area shaded under the heat flux curve (Fig.11.12 in Stull 1988), the normalized sensible
312 heat flux in the daytime is defined by

313
$$\overline{Q_H} \propto \int_{T_{sunrise}}^{T_{launch}} Q_H \rho^{-1} c_p^{-1} dt \quad (3)$$

314 where $T_{sunrise}$ and T_{launch} are the sunrise time and radiosonde balloon launch
315 time, Q_H the sensible heat flux, ρ the near-surface density and c_p equals 1004
316 $\text{J}^{\circ}\text{C}^{-1}\text{kg}^{-1}$. The similar principle is applied to the calculation of normalized latent heat
317 flux as well.

318 **3. Results and discussion**

319 *3.1 Overview of BLHs at two synoptic times and over the day*

320 The near-global mean BLHs at 0000 UTC from 2012 to 2019 by four reanalysis
321 products are shown in Figure 2, in which the results obtained from radiosonde are
322 overlaid by colored circles. The stations with sounding covering at least 2 continuous
323 years are kept. The four reanalysis products yield an analogous result with respect to
324 the spatial variation of BLHs, which are positively correlated with the sounding-derived
325 BLH, with correlation coefficients of 0.90, 0.81, 0.47, 0.46 for ERA5, MERRA-2,
326 NCEP-2, and JRA-55, respectively. It is evident that the BLHs from NCEP-2 over the
327 continents of Africa, Asia, and South America are 300 m thicker than those of the other
328 three products (Figure 2b). Furthermore, the BLH in Antarctic by ERA5 is notably 500
329 m lower than that by NCEP-2 and MERRA-2 (Figure 2a). Most of the mean BLHs by
330 radiosonde are consistent with the reanalysis products, except that the values from all
331 four reanalysis products over the Pacific Ocean and the contiguous U.S. are
332 underestimated by about 300 m. Moreover, it is worth to note here that the BLHs by
333 JRA-55 are considerably underestimated by around 1 km over these regimes. For 0000
334 UTC, the regions nearly from the east coast to the west coast of Pacific Ocean (UTC+8
335 to UTC+12, and UTC−12 to UTC−8) are covered by sunshine, and thus are filled with
336 deeper PBL.

337 Comparable results at 1200 UTC are presented in Figure S2. Africa, the Middle
338 East, and the west of India and China, corresponding to local noon and afternoon, have
339 maximal BLHs of around 1.8 km. Moreover, it is noteworthy that the values from
340 NCEP-2 and JRA-55 over these areas are visibly lower than those from ERA5 and
341 MERRA-2, particularly over Africa and the Middle East, whereas these low values can
342 barely be validated with soundings due to their sparse distribution. Over these areas,
343 the BLHs are underestimated by reanalysis by about 200 m relative to the sounding
344 results. Notably, BLHs from NCEP-2 over the continents of Africa are 1 km lower than
345 those from ERA5 and MERRA-2. According to the results at 0000 and 1200 UTC, the
346 comparisons between reanalysis products and soundings demonstrate that the BLHs are
347 well resolved in the nighttime but are underestimated at daytime by reanalysis datasets.

348 For the near-global variation of BLH at a certain synoptic time, daytime and
349 nighttime appear on the map simultaneously, but as a function of longitude, which is
350 displayed in Figure 2. Thus, the variations at a fixed synoptic time on the map create a
351 picture of the diurnal BLH variation. Given the dominance of CBL in the daytime,
352 investigating the BLHs in the daytime is thus favorable for unravelling the underlying
353 causes for the discrepancies existed in the BLHs from both radiosonde and reanalysis.
354 Therefore, the following results show the variations of daytime BLH only, unless
355 otherwise noted.

356 The climatological mean variations in the daytime BLH from the soundings and
357 four reanalysis products are drawn in Figure 3. The period spans from January 2012 to
358 December 2019 for most of the stations provided by China, the U.S., Germany, and the
359 U.K. As implied by the results from soundings (Figure 3e), the deepest PBL is observed
360 over the Tibetan Plateau (TP) and the northwest of China, the south of Africa, and the
361 west of U.S, with values as high as 1.7 km. The possible reason for this phenomenon is
362 that the weather balloons over these regions are basically launched in the early
363 afternoon of boreal summer (June–July–August) when the maximal BLH is usually
364 observed (Collaud Coen *et al.*, 2014; Guo *et al.*, 2016). The BLHs over the Pacific
365 Ocean are noticeably large, with values of 1.3 km. The longitudinal variation of BLH

366 is evident, likely due to LST variations of the soundings. Additionally, BLHs in the
367 middle and low latitudes are larger than high latitudes, which is consistent with the
368 findings in Gu *et al.* (2020).

369 By and large, the climatological results of BLH by radiosonde and four model
370 products are comparable, indicating that both capture the spatial variations implied by
371 the sounding LST times sampled. Among the model products, ERA5 shows the best
372 prediction of BLH contrasted with radiosonde, with a correlation coefficient of 0.88
373 (Figure 3a). Furthermore, the results from MERRA-2 are positively correlated with
374 those from the soundings, with a correlation coefficient of 0.66 (Figure 3b). The
375 performances of JRA-55 and NCEP-2 are significantly poorer than those of ERA5 and
376 MERRA-2, with correlation coefficients of 0.4 and 0.41, respectively (Figure 3c, d).
377 The values of BLH over the west of U.S and the west of China are seriously
378 underestimated by NCEP-2 and JRA-55 by around 800 m. Thus, we note that ERA5
379 and MERRA-2 are more robust in deriving the BLH, purely based on the climatological
380 distribution of BLHs.

381 Figure 4 illustrates the diurnal variations in BLH at 0000 and 1200 UTC and
382 during daytime. A notable diurnal variation can be noticed, with a minimum of 343 m
383 at 0400 LST and a maximum of 1224 m at 17 LST (Figure 4a). The magnitude in BLH
384 during daytime are essentially larger than that at 0000 and 1200 UTC and has a maximal
385 value of 1926 m at 1700 LST (Figure 4b). It follows that most of soundings (about 78%)
386 that are released at 0000 and 1200 UTC are excluded by the collocation procedure
387 designed for collecting samples in the daytime. Note that the result during daytime will
388 not significant change with/without IOP data.

389 *3.2 Correlations with near-surface meteorological variables and surface heat flux*

390 The PBL is the lowest part of the troposphere and evolves diurnally due to near-
391 surface thermodynamic variables through turbulent exchanges of momentum, heat, and
392 moisture (Pithan *et al.*, 2015). Thus, the surface meteorological variables depend on the
393 underlying land surface and its coupling with the PBL, and they could act as a good

394 proxy for BLH under some specific circumstances (Zhang *et al.*, 2013; Zhang *et al.*,
395 2018). An analysis of the correlation between the BLHs by radiosondes and near-
396 surface meteorological variables is presented in Figure 5. The variables include near-
397 surface air temperature at 2 m AGL (T_{2m}), pressure (Ps), RH, and WS, which are
398 extracted from the first level in sounding. The first level is assumed to be associated
399 with the near-surface variables (Serreze *et al.*, 1992; Wang and Wang 2016). We note
400 that BLH, T_{2m} , RH and WS all have substantial diurnal and seasonal variability as partly
401 expressed in Eq. (2).

402 Moderate positive (negative) correlation coefficients can be noticed between BLH
403 and T_{2m} (RH), with mean values of 0.39/-0.51 (Figure 5a, c), implying that both T_{2m}
404 and RH could be an adequate indicator for the temporal variation of BLH. Moreover,
405 the correlations between BLH and WS are also positively notable, with a mean value
406 of 0.24 (Figure 5d). By contrast, the correlation between Ps and BLH is negatively
407 significant above most of the regions (Figure 5b).

408 The correlation analyses between BLH and normalized heat fluxes, which are
409 assessed by ERA5 reanalysis products, are displayed in Figure 6. It is notable that
410 positive/negative correlation coefficients usually exist in normalized sensible/latent
411 heat flux, with a global mean of 0.29 and -0.31. This correlation is not high because
412 BLH also depends on the radiative heating/cooling and the temperature profile in
413 different stations (Yang *et al.*, 2004).

414 For the climatological variation of BLH, the near surface variables such as T_{2m} ,
415 RH and WS, and the normalized sensible/latent heat flux could be a good indicator.
416 Conversely, the development of BLH could also limit the magnitude of RH (McGrath-
417 Spangler, 2016).

418 *3.3 Comparisons with reanalysis products*

419 The radiosonde stations are mainly dispersed over the U.S, China, Australia,
420 Europe, the Pacifica Ocean, and the polar region, and only a few stations contribute

421 over the rest of the world. The polar region contains a station with a latitude larger/lower
422 than $67.7^{\circ}\text{N}/^{\circ}\text{S}$. Therefore, six regions are specifically examined in terms of the bias
423 between radiosonde and model product.

424 The BLH differences between ERA5 and radiosonde are shown in Figure 7, in
425 which we specify the differences over the six above-mentioned regions. As observed in
426 Figure 7e, the BLH over most of the stations is underestimated to a slight extent, with
427 a near-global mean of 131.96 m. As expected, the most underestimated regions cover
428 the west of U.S, and southern China (Figure 7e), with a difference of around 200 m. In
429 addition, it is worth mentioning that the BLHs over the Pacific Ocean are overestimated
430 in four seasons, with a bias of around 400 m (Figure 7h). Among the six classified
431 regions, BLHs in Europe, East Asia, and polar are reliably determined by ERA5, with
432 an average bias of around 50 m (Figure 7b, c, i). The bias seems to exhibit a seasonal
433 dependence, and it is around 62 m larger in the warm seasons compared to cool seasons
434 in both hemispheres. Regardless of the small bias, the newest model product, ERA5,
435 properly estimates the BLH, especially above the regions of Europe, the eastern U.S,
436 East Asia, and polar.

437 Similarly, the BLHs by MERRA-2 are underestimated, with a near-global mean
438 bias of 166.35 m (Figure 8), which is slightly larger than that of ERA5 (131.96 m). This
439 could indicate that the MERRA-2-derived BLH is more dispersed than ERA5. The
440 spatial distribution of bias value is broadly identical to that of ERA5, except that the
441 BLHs over Europe, Australia, and polar region are well estimated by MERRA-2, due
442 to much smaller mean biases at 42.78 m, 52.98 m, and 66.20 m, respectively (Figure
443 8b, g, i).

444 In addition, the packaged BLH in MERRA-2 is also evaluated with radiosonde.
445 BLH is as high as 3 km over the TP region at 0600 UTC (Figure S3), corresponding to
446 an overestimation of 0.8 km over this region (Figure S4). Over the rest regions, BLH is
447 slightly or moderately overestimated by around 50 m. However, The BLH difference
448 among various methods could reach up to a kilometer or even more (Seidel *et al.*, 2010),

449 which is probably owing to the variety of kinetic or thermodynamic theories applied in
450 different algorithms.

451 By comparison, the mean bias produced by JRA-55 is larger than those from
452 ERA5 and MERRA-2, with a mean value of 351.49 m, as shown in Figure 9. The BLHs
453 above most stations are underestimated by JRA-55, particularly for the sites over
454 western China and western U.S, and the Pacific Ocean, with an underestimation of
455 about 800 m. The most underestimated stations cluster at the latitude range of 40–45°N,
456 with a mean difference of around 1 km (Figure 9f). Although the near-global mean of
457 bias is significantly larger than ERA5 and MERRA-2, the estimations over Europe and
458 the polar regions seem to be more in line with the observations , with mean values of
459 174.99 m and 93.84 m, respectively (Figure 9b, i).

460 The mean bias by NCEP-2 is larger than that by JRA-55, with a mean value of
461 420.86 m, as illustrated by Figure 10. The distribution results are similar to JRA-55,
462 except for Europe and Australia, where the bias is about twice that of JRA-55.

463 In general, the comparison analysis of the daytime BLH results between soundings
464 and four reanalysis datasets indicates that ERA5 reanalysis produces the BLH that is
465 closest to the high-resolution soundings. Interestingly, MERRA-2 can provide a good
466 spatial distribution of BLH. JRA-55 and NCEP-2 can only give a good prediction over
467 some regions, most of which tends to produce a much larger BLH estimates compared
468 to those from ERA5 and MERRA-2.

469 *3.4 Potential sources for the bias between reanalysis products and radiosonde*

470 The possible sources for the difference between radiosonde and reanalysis could
471 be rather complicated. From the spatial pattern of BLH discrepancy results between
472 radiosonde and reanalysis (Figures 7–10), we can notice that the regions with large
473 differences tend to be observed over regions with high elevation, such as the TP in
474 China and Rocky mountain in the U.S. These regions generally have much more
475 complex orography. Coincidentally, the soundings over the above-mentioned two regions
476 are all obtained from afternoon, in which the PBL develops to the maximum (Figure 4).

477 As expected, highest biases generally are accompanied with peak BLHs, which has also
478 been confirmed in our previous studies (cf. Figure 2c in Li *et al.*, 2017). Therefore, the
479 biases depend on the LST when the weather balloon is launched, which at least could
480 not be ruled out.

481 In addition, the large differences primarily appear in the low and middle latitudes,
482 where thermal convection frequently occurs. Therefore, it is reasonable to infer that
483 static stability could exert an influence on the comparison results. Then, we will analyze
484 the probable influences from terrain and static stability on BLH differences.

485 We evaluate the influence from the orographic complexity around the sounding
486 station and calculate the standard derivation (STD) of elevation within $1^\circ \times 1^\circ$ grid, with
487 the help of 30 arc second digital elevation model (DEM) dataset. Terrain is complex
488 over the western China and western US where most of soundings are released in
489 afternoon and large BLH biases are usually found. Therefore, for all soundings that are
490 launched during the time period spanning from 1300 LST to 1800 LST we analyze the
491 relationship between BLH biases and the standard derivation of the DEM (Figure 11).
492 It follows that the influence from the orography appears instrumental, given the
493 correlation coefficient varying from -0.84 to -0.95. Furthermore, the errors or
494 uncertainties in ERA5 are less easily impacted by the orographic complexity given a
495 much flatter fitted line (Figure 11a).

496 Based on the correlation between orographic complexity (manifested by the STD
497 of the DEM) and the bias of a reanalysis relative to radiosonde measurements, it is
498 likely that the performances of MERRA-2, JRA-55, and NCEP-2 might be restricted
499 by the complex underlying terrains. One of the reasons could be because global
500 reanalysis with coarse resolution that cannot resolve the sub-grid processes due to
501 topography. However, ERA5 appears to be less dependent on terrain. In other words,
502 the models used in ERA5 show sufficient capability and excellent performance in
503 reproducing the atmospheres, particularly in the PBL over complex terrains.

504 Lower tropospheric stability (LTS) is an indicator to describe the thermodynamic
505 state of the lower atmosphere and is defined by the differences in potential temperature
506 at 700 hPa and 1000 hPa (Guo *et al.*, 2016). Typically, the smaller the LTS, the more
507 unstable the low troposphere. The mean LTS over each station is defined by the
508 ensemble mean by four reanalysis datasets, and its spatial distribution is depicted in
509 Figure 12. The lower troposphere over the western United States and western China is
510 more unstable compared to the rest of the world, with LTS of around 6K (Figure 11a),
511 which is likely associated with afternoon launch time of weather balloons. According
512 to the correlation between the bias of BLH and the mean LTS, it is clear that the
513 underestimation in BLH by JRA-55 and NCEP-2 products are negatively correlated
514 with LTS, with correlation coefficients of 0.32 and 0.36 (Figure 12b).

515 Besides the LTS, the role of lifted index could be another influential factor. The
516 lifted index is a predictor of latent instability (Galway, 1956), and it is defined as the
517 temperature difference between the environment temperature and an air parcel lifted
518 adiabatically at 500 hPa. The index is computed by the air temperature, RH, and
519 pressure profiles from radiosondes. We calculate the percentage of negative lifted index
520 above each station, which represents the occurrence rate of latent instability that exists
521 in the daytime (Figure 12c). The stations with high probability of strong instability,
522 denoted by $P(\text{lifted index} < 0)$, are predominantly dispersed over the west U.S, the
523 west and south of China, and the Pacific Ocean, reaching a percentage as high as around
524 70%. These stations are regularly overlapped with great biases in the reanalysis
525 products as shown in Figures 7–10. According to the analysis, it is clear that all four
526 reanalysis products are positively associated with $P(\text{lifted index} < 0)$, with
527 correlation coefficients ranging from -0.34 to -0.47 (Figure 12d). The positive (negative)
528 correlation coefficients in lifted index suggests that the underestimation by reanalysis
529 might be associated with the instability activity in the lower troposphere that has not
530 been adequately represented or simulated by the models used in reanalyses. In light of
531 the surface heating during the day and the growth of the PBL due to air ascent, it is also

532 inferred that afternoon BLHs suffer the greatest errors if this is caused by inadequate
533 air mixing within the free troposphere in models.

534 **4. Conclusions and summary**

535 A climatology of near-global BLH from high-resolution radiosonde measurements
536 has been yielded for the daytime BLH. The high-resolution radiosonde data has a much
537 finer spatial resolution of 5 m or 10 m, compared to that by IGRA, and can establish a
538 finer and more precise structure of the PBL. In addition, direct comparisons among four
539 well-established reanalysis model products have been conducted. The present study
540 adopts over 300 sounding stations with high-resolution, spanning from 2012 to 2019,
541 to investigate the climatological variation of near-global BLH in the daytime and
542 evaluates four model products at the radiosonde sampling.

543 Notable spatial variation can be observed in the climatological mean of BLH at
544 0000 and 1200 UTC. In the afternoon, the regions over the Western United States and
545 Western China have the largest BLHs with values as high as 1.7 km, whereas 0000 and
546 1200 UTC compare generally to earlier times of day (LST) in the rest of the world with
547 hence lower BLH. In addition, BLHs in the middle and low latitudes are larger than
548 those in high latitudes. The T_{2m} and RH, and the normalized sensible/latent heat flux
549 are a good predictor for the spatio-temporal evolution of BLH. The most important
550 result is we found that all the four reanalysis products generally underestimate the
551 daytime BLH, with a near-global mean varying from around 132 m to 420 m. The
552 largest bias in reanalysis appears over the Western United States and Western China,
553 where the boundary layers grow vigorously in the afternoon. ERA5 and MERRA-2
554 definitely have better performance than JRA-55 and NCEP-2 in terms of the magnitude
555 of BLH and a higher correlation coefficient with the soundings. The newest version of
556 reanalysis, ERA5, has the smallest bias and the highest positive correlation relative to
557 radiosondes. The underestimation by NCEP-2 and JRA-55 is robust over some regions,
558 for instance, western China and western U.S, with differences even exceeding 800 m.

559 However, all products can obtain a precise estimate over some regions, for instance,
560 Europe, the eastern U.S, and polar, probably due to morning LST soundings and smaller
561 daytime PBL development. The BLH over the Pacific Ocean is underestimated in all
562 seasons and by all products. The underestimation tends to have a seasonal dependence,
563 i.e., the warm season has a larger underestimation. However, BLH is moderately
564 overestimated by the packaged BLH parameter in MERRA-2, possibly due to different
565 BLH-deriving methods used.

566 We investigated two possible sources contributing to the biases, including
567 topography and static stability. The analysis shows that the DEM spread does have a
568 negative correlation with the bias, suggesting that the reanalysis data cannot provide a
569 reliable simulation result under complex terrain conditions. In addition, reanalysis BLH
570 errors tends to be negatively correlated with the occurrence rate of unstable air,
571 suggesting that the reanalyses do not accurately determine BLH when the lower
572 troposphere is unstable.

573 Although this study suffers from the inhomogeneous distribution of the radiosonde
574 sites, the climatological BLHs at the near-global scale can help us understand the
575 variation characteristics of BLH in different regions and for different LST. For the first
576 time, we present near-global BLH estimates from high-resolution radiosondes, and
577 further conduct a comprehensive comparison of BLH products for four widely used
578 reanalysis datasets using the BLHs derived from the soundings. The findings provide
579 insights into the limitations of reanalysis data and, more importantly, are expected to
580 greatly benefit future research works related to applications of different kinds of
581 reanalysis data in the future.

582

583 **Acknowledgements**

584 This study is jointly supported by the National Key Research and Development
585 Program of the Ministry of Science and Technology of China under grant

586 2017YFC1501401, the National Natural Science Foundation of China under grant
587 41771399, 41531070, 41874177 and 62101203, the S&T Development Fund of CAMS
588 (2021KJ008), and the Fundamental Research Funds for the Central Universities, China
589 University of Geosciences (Wuhan) (No. 162301192698). The authors would like to
590 acknowledge the National Meteorological Information Centre (NMIC) of CMA,
591 NOAA, German Deutscher Wetterdienst (Climate Data Center), U.K Centre for
592 Environmental Data Analysis (CEDA), GRUAN, and the University of Wyoming
593 (<http://data.cma.cn/en>, <ftp://ftp.ncdc.noaa.gov/pub/data/ua/data/1-sec/>,
594 <https://cdc.dwd.de/portal/>,
595 <https://catalogue.ceda.ac.uk/>,<ftp://ftp.ncdc.noaa.gov/pub/data/gruan/processing/level2/>
596 <RS92-GDP/version-002/>, <http://weather.uwyo.edu>) for providing the high-resolution
597 sounding data. We would like to thank the ECWMF for ERA5 data
598 (<https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form>), GMAO for MERRA-2
599 (<https://disc.gsfc.nasa.gov/datasets?keywords=MERRA-2&page=1>), NCAR and Japan
600 Meteorological Agency for JRA-55 (<https://climatedataguide.ucar.edu/climate-data/jra-55>), NOAA for NCEP-2
601 (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html>). NASA for 30 arc
602 second digital evaluation height (DEM) data (<https://search.earthdata.nasa.gov/>).
603
604
605

606 References

607 Anderson, P. S.: Measurement of Prandtl number as a function of Richardson number
608 avoiding self-correlation, *Bound-Layer Meteorol.*, 131, 345–362,
609 <https://doi.org/10.1007/s10546-009-9376-4>, 2009.

610 Ao, C. O., Waliser, D. E., Chan, S. K., Li, J.-L., Tian, B., Xie, F., and Mannucci, A. J.:
611 Planetary boundary layer heights from GPS radio occultation refractivity and
612 humidity profiles, *J. Geophys. Res. Atmos.*, 117(D16),
613 <https://doi.org/10.1029/2012JD017598>, 2012

614 Basha, G., and Ratnam, M. V.: Identification of atmospheric boundary layer height over
615 a tropical station using high resolution radiosonde refractivity profiles:
616 Comparison with GPS radio occultation measurements, *J. Geophys. Res.-Atmos.*,
617 114, D16101, <https://doi.org/10.1029/2008JD011692>, 2009.

618 Basha, G., Kishore, P., Ratnam, M. V., Ravindra Babu, S., Velicogna, I., Jiang, J. H.,
619 and Ao, C. O.: Global climatology of planetary boundary layer top obtained from
620 multi-satellite GPS RO observations, *Clim. Dynam.*, 52, 2385–2398.
621 <https://doi.org/10.1007/s00382-018-4269-1>, 2018

622 Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface
623 wind biases using ASCAT, *Ocean Sci.*, 15, 831–852, <https://doi.org/10.5194/os-15-831-2019>, 2019.

625 Chen, X., Škerlak, B., Rotach, M. W., Añel, J. A., Su, Z., Ma, Y., and Li, M.: Reasons
626 for the extremely high-ranging planetary boundary layer over the western Tibetan
627 Plateau in winter, *J. Atmos. Sci.*, 2021–2038, <https://doi.org/10.1175/JAS-D-15-0148.1>, 2016.

629 Collaud Coen, M., C. Praz, A. Haefele, D. Ruffieux, P. Kaufmann, and Calpini., B.:
630 Determination and climatology of the planetary boundary layer height by in-situ
631 and remote sensing methods as well as the COSMO model above the Swiss plateau,
632 *Atmos. Chem. Phys.*, 14, 15,419–15,462, <https://doi.org/10.5194/acp-14-13205-2014>, 2014.

634 Davy, R., and I. Esau: Differences in the efficacy of climate forcings explained by
635 variations in atmospheric boundary layer depth, *Nat. Commun.*, 7, 11690,
636 <https://doi.org/10.1038/ncomms11690>, 2016.

637 de Arruda Moreira, G., J. L. Guerrero-Rascado, J. A. BravoAranda, et al.: Study of the
638 planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar
639 estimations in Southern Iberian Peninsula, *Atmos. Res.*, 213, 185–195,
640 <https://doi.org/10.1016/j.atmosres.2018.06.007>, 2018.

641 Galway, J. G.: The lifted index as a predictor of latent instability, *Bull. Am. Meteorol.
642 Soc.*, 37, 528–529, 1956

643 Gelaro R, et al.: The modern-era retrospective analysis for research and applications,
644 version 2 (MERRA-2), *J. Climate*, 30, 5419–5454, <https://doi.org/10.1175/JCLI-D-16-0758.1>, 2017.

645

646 Gu, J., Zhang, Y. H., Yang, N., and Wang, R.: Diurnal variability of the planetary
647 boundary layer height estimated from radiosonde data, *Earth Planet. Phys.*, 4(5),
648 479–492, <http://doi.org/10.26464/epp2020042>, 2020.

649 Guo, J., et al.: The climatology of planetary boundary layer height in China derived
650 from radiosonde and reanalysis data, *Atmos. Chem. Phys.*, 16(20), 13309–13319.
651 <https://doi.org/10.5194/acp-16-13309-2016>, 2016.

652 Guo, J., et al.: Shift in the temporal trend of boundary layer height trend in China using
653 long-term (1979–2016) radiosonde data, *Geophys. Res. Lett.*, 46 (11): 6080-6089,
654 doi: 10.1029/2019GL082666, 2019.

655 Guo, J., et al.: The climatology of lower tropospheric temperature inversions in China
656 from radiosonde measurements: roles of black carbon, local meteorology, and
657 large-scale subsidence, *J. Climate*, 9327–9350, <https://doi.org/10.1175/JCLI-D-19-0278.1>, 2020.

658

659 Haack, A., Gerdung, M., and Lübken, F.-J.: Characteristics of stratospheric turbulent
660 layers measured by LITOS and their relation to the Richardson number, *J. Geophys.
661 Res.-Atmos.*, 119, 10,605–10,618. <https://doi.org/10.1002/2013JD021008>, 2014.

662 Hersbach, Hans, et al.: The ERA5 global reanalysis, *Q. J. Roy. Meteor. Soc.*, 146(730),
663 1999–2049, <https://doi.org/10.1002/qj.3803>, 2020.

664 Houchi, K., Stoffelen, A., Marseille, G. J., and De Kloe, J.: Comparison of wind and
665 wind shear climatologies derived from high-resolution radiosondes and the
666 ECMWF model, *J. Geophys. Res.-Atmos.*, 115, D22123,
667 <https://doi.org/10.1029/2009JD013196>, 2010.

668 King, G. P., Portabella, M., Lin, W., Stoffelen, A.: Correlating extremes in wind and
669 stress divergence with extremes in rain over the Tropical Atlantic, EUMETSAT
670 Ocean and Sea Ice SAF Scientific Report OSI_AVIS_15_02, Version 1.0, 2017.

671 Kobayashi, et al.: The JRA-55 reanalysis: General specifications and basic
672 characteristics, *J. Meteor. Soc. Japan*, 93, 5–48, <https://doi.org/10.2151/jmsj.2015-001>, 2015.

674 Li, H., Y. Yang, X.-M. Hu, Z. Huang, G. Wang, B. Zhang, and Zhang, T.: Evaluation
675 of retrieval methods of daytime convective boundary layer height based on lidar
676 data, *J. Geophys. Res.-Atmos.*, 122, 4578–4593,
677 <https://doi.org/10.1002/2016JD025620>, 2017.

678 Liu, S., and Liang, X.-Z.: Observed diurnal cycle climatology of planetary boundary
679 layer height, *J. Climate*, 23(21), 5790–5809.
680 <https://doi.org/10.1175/2010JCLI3552.1>, 2010

681 Martins, J. P. A., J. Teixeira, P. M. M. Soares, P. M. A. Miranda, B. H. Kahn, V. T.
682 Dang, F. W. Irion, E. J. Fetzer, and Fishbein, E.: Infrared sounding of the trade-
683 wind boundary layer: AIRS and the RICO experiment, *Geophys. Res. Lett.*, 37,
684 L24806, <https://doi.org/10.1029/2010GL045902>, 2010.

685 McGrath-Spangler, E. L.: The impact of a boundary layer height formulation on the
686 GEOS-5 model climate, *J. Geophys. Res.-Atmos.*, 121, 3263–3275,
687 <https://doi.org/10.1002/2015JD024607>, 2016.

688 McGrath-Spangler, E. L., and Denning, A. S.: Estimates of North American
689 summertime planetary boundary layer depths derived from space-borne lidar, *J.*
690 *Geophys. Res.-Atmos.*, 117, D15101, <https://doi.org/10.1029/2012JD017615>, 2012.

691 Oliveira, M. I. et al.: Planetary boundary layer evolution over the Amazon rainforest in
692 episodes of deep moist convection at the Amazon Tall Tower Observatory, *Atmos.*
693 *Chem. Phys.*, 20, 15–27, <https://doi.org/10.5194/acp-20-15-2020>, 2020.

694 Palarz, A., Celiński-Mysław, D., and Ustrnul, Z.: Temporal and spatial variability of
695 surface-based inversions over Europe based on ERA-Interim reanalysis, *Int. J.*
696 *Climatol.*, 38(1), 158–168, <https://doi.org/10.1002/joc.5167>, 2018.

697 Pal, S., and M. Haeffelin, M.: Forcing mechanisms governing diurnal, seasonal, and
698 interannual variability in the boundary layer depths: Five years of continuous lidar
699 observations over a suburban site near Paris, *J. Geophys. Res.-Atmos.*, 120, 11,936–
700 11,956, <https://doi.org/10.1002/2015JD023268>, 2015.

701 Palm, S. P., A. Benedetti, and Spinhirne, J.: Validation of ECMWF global forecast
702 model parameters using GLAS atmospheric channel measurements, *Geophys. Res.*
703 *Lett.*, 32, L22S09, <https://doi.org/10.1029/2005GL023535>, 2005.

704 Pithan, F., Angevine, W., and Mauritsen, T.: Improving a global model from the
705 boundary layer: total turbulent energy and the neutral limit Prandtl number, *J. Adv.*
706 *Model. Earth. Syst.*, 7, 791–805, <https://doi.org/10.1002/2014MS000382>, 2015.

707 Ratnam, M. V., Basha, G.: A robust method to determine global distribution of
708 atmospheric boundary layer top from COSMIC GPS RO measurements, *Atmos.*
709 *Sci. Lett.*, 11, 216–222, <https://doi.org/10.1002/asl.277>, 2010.

710 Rinke, A., Segger, B., Crewell, S., Maturilli, M., Naakka, T., Nygård, T., Vihma, T.,
711 Alshawaf, F., et al.: Trends of vertically integrated water vapor over the arctic
712 during 1979-2016: Consistent moistening all over?, *J. Climate*, 32(18), 6097–6116,
713 <https://doi.org/10.1175/JCLI-D-19-0092.1>, 2019.

714 Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.
715 T., Chuang, H.Y., Iredell, M. and Ek, M.: The NCEP climate forecast system
716 version 2, *J. Climate*, 27(6), 2185–2208, <https://doi.org/10.1175/JCLI-D-12-00823.1>, 2014.

717 Scotti, A.: Biases in Thorpe-scale estimates of turbulence dissipation. Part II: energetics
718 arguments and turbulence simulations, *J. Phy. Oceanogr.*, 45(10), 2522–2543,
719 <https://doi.org/10.1175/JPO-D-14-0092.1>, 2015.

720 Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., and Tercier, P.:
721 Review and inter-comparison of operational methods for the determination of the
722 mixing height, *Atmos. Environ.*, 34, 1001–1027, [https://doi.org/10.1016/S1352-2310\(99\)00349-0](https://doi.org/10.1016/S1352-2310(99)00349-0), 2000.

723 Seidel, D. J., Ao, C. O., and Li, K.: Estimating climatological planetary boundary layer
724 heights from radiosonde observations: Comparison of methods and uncertainty
725 analysis, *J. Geophys. Res.-Atmos.*, 115(D16),
726 <https://doi.org/10.1029/2009JD013680>, 2010.

727 Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J.-C., Jacobson, A. R., and Medeiros, B.:
728 Climatology of the planetary boundary layer over the continental United States and
729 <https://doi.org/10.1029/2009JD013680>, 2010.

730

731 Europe, *J. Geophys. Res.-Atmos.*, 117(D17),
732 <https://doi.org/10.1029/2012JD018143>, 2012.

733 Serreze, M. C., J. A. Maslanik, M. C. Rehder, R. C. Schnell, J. D. Kahl, and E. L.
734 Andreas, E. L.: Theoretical heights of buoyant convection above open leads in the
735 winter Arctic pack ice cover, *J. Geophys. Res.-Atmos.*, 97, 9411–9422, 1992.

736 Short, E., Vincent, C. L., & Lane, T. P: Diurnal cycle of surface winds in the Maritime
737 Continent observed through satellite scatterometry, *Mon. Weather. Rev.*, 147(6),
738 2023–2044, <https://doi.org/10.1175/MWR-D-18-0433.1>, 2019.

739 Stull, R. B.: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666
740 pp, Dordrecht, the Netherlands, 1988.

741 Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height
742 and surface pollutants derived from lidar observations over China: regional pattern
743 and influencing factors, *Atmos. Chem. Phys.*, 18, 15921–15935,
744 <https://doi.org/10.5194/acp-18-15921-2018>, 2018.

745 Su, T., Li, Z., Zheng, Y., Luan, Q., and Guo, J.: Abnormally shallow boundary layer
746 associated with severe air pollution during the COVID-19 lockdown in China,
747 *Geophys. Res. Lett.*, 47(20), <https://doi.org/10.1029/2020GL090041>, 2020.

748 Taylor, A. C., Beare, R. J., and Thomson, D. J.: Simulating dispersion in the evening-
749 transition boundary layer, *Bound-Layer Meteorol.*, 153, 389–407,
750 <https://doi.org/10.1007/s10546-014-9960-0>, 2014.

751 Teixeira, J., J. R. Piepmeier, A. R. Nehrir, C. O. Ao, S. S. Chen, C. A. Clayson, A. M.
752 Fridlind, M. Lebsack, W. McCarty, H. Salmun, J. A. Santanello, D. D. Turner, Z.
753 Wang, and X. Zeng: Toward a global planetary boundary layer observing system:
754 the NASA PBL incubation study team report. NASA PBL Incubation Study Team.
755 134 pp, 2021.

756 von Engeln, A., and Teixeira, J.: A planetary boundary layer height climatology derived
757 from ECMWF reanalysis data, *J. Climate*, 26(17), 6575–6590,
758 <https://doi.org/10.1175/JCLI-D-12-00385.1>, 2013.

759 Wang, X., and Wang, K.: Homogenized variability of radiosonde-derived atmospheric
760 boundary layer height over the global land surface from 1973 to 2014. *J. Climate*,
761 29, 6893–6908, <https://doi.org/10.1175/JCLI-D-15-0766.1>, 2016.

762 Wei, N., Zhou, L., and Dai, Y.: Evaluation of simulated climatological diurnal
763 temperature range in CMIP5 models from the perspective of planetary boundary
764 layer turbulent mixing, *Clim. Dynam.*, 49, 1–22, <https://doi.org/10.1007/s00382-016-3323-0>, 2017.

766 Yang, K., T. Koike, H. Fujii, T. Tamura, X. Xu, L. Bian, and Zhou, M.: The Daytime
767 Evolution of the Atmospheric Boundary Layer and Convection over the Tibetan
768 Plateau: Observations and Simulations, *J. Meteorol.Soc.Jpn.*, 82 (6), 1777-1792,
769 2004.

770 Zhang, Y., Sun, K., Gao, Z., Pan, Z., Shook, M. A., and Li, D.: Diurnal climatology of
771 planetary boundary layer height over the contiguous United States derived from
772 AMDAR and reanalysis data, *J. Geophys. Res.-Atmos.*, 125,
773 <https://doi.org/10.1029/2020JD032803>, 2020a.

774 Zhang, Y., J. Guo, Y. Yang, Y. Wang, and S.H.L. Yim: Vertical wind shear modulates
775 particulate matter pollutions: A perspective from Radar wind profiler observations
776 in Beijing, China, *Remote Sens.*, 12(3), 546. <https://doi.org/10.3390/rs12030546>,
777 2020b.

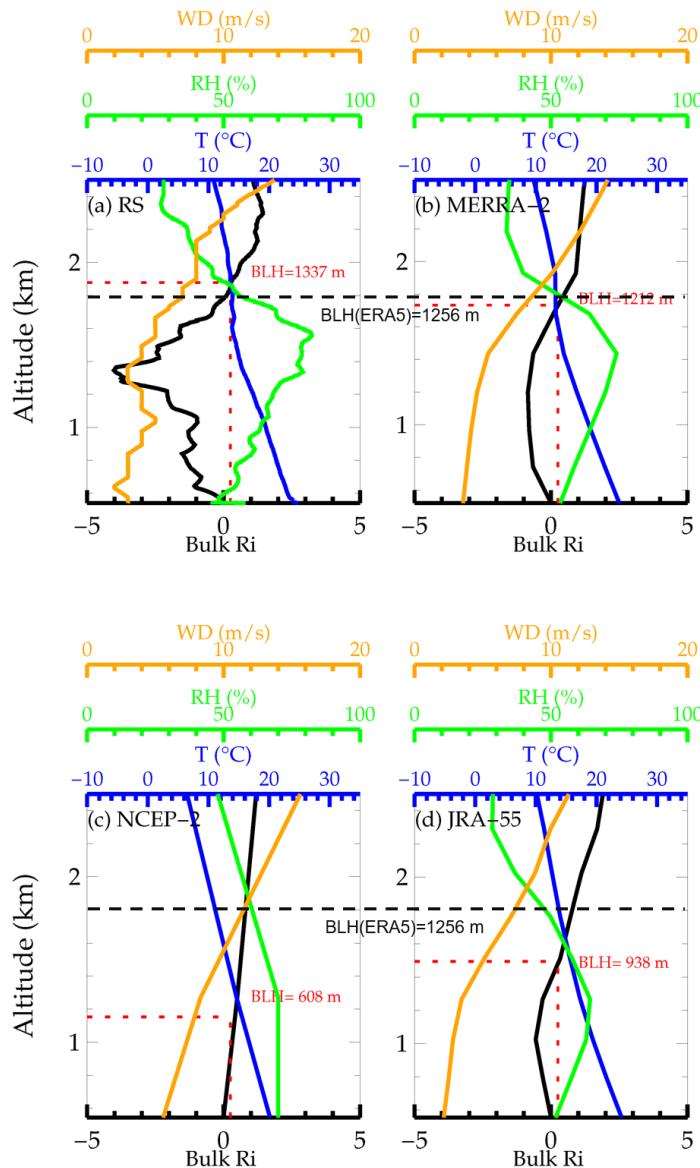
778 Zhang, W., Guo, J., Miao, Y., Liu, H., Li, Z., and Zhai, P.: Planetary boundary layer
779 height from CALIOP compared to radiosonde over China, *Atmos. Chem. Phys.*, 16,
780 9951–9963, <https://doi.org/10.5194/acp-16-9951-2016>, 2016.

781 Zhang, W., Guo, J., Miao, Y., Liu, H., Song, Y., Fang, Z., He, J., Lou, M., Yan, Y., Li,
782 Y., and Zhai, P.: On the summertime planetary boundary layer with different
783 thermodynamic stability in China: A radiosonde perspective, *J. Climate*, 31(4),
784 1451–1465, <https://doi.org/10.1175/JCLI-D-17-0231.1>, 2018.

785 Zhang, J., Zhang, S. D., Huang, C. M., Huang, K. M., Gong, Y., Gan, Q., and Zhang,
786 Y. H.: Latitudinal and topographical variabilities of free atmospheric turbulence
787 from high-resolution radiosonde data sets, *J. Geophys. Res.-Atmos.*, 124, 4283–
788 4298, <https://doi.org/10.1029/2018JD029982>, 2019.

789 Zhang, Y., D. J. Seidel, J.-C. Golaz, C. Deser, and Tomas, R. A.: Climatological
790 characteristics of Arctic and Antarctic surface-based inversions, *J. Climate*, 24,
791 5167–5186, <https://doi.org/10.1175/2011JCLI4004.1>, 2011.

792 Zhang, Y. H., Seidel, D. J., and Zhang, S. D.: Trends in planetary boundary layer height
793 over Europe, *J. Climate*, 26(24), 10,071–10,076, <https://doi.org/10.1175/JCLI-D-13-00108.1>, 2013.

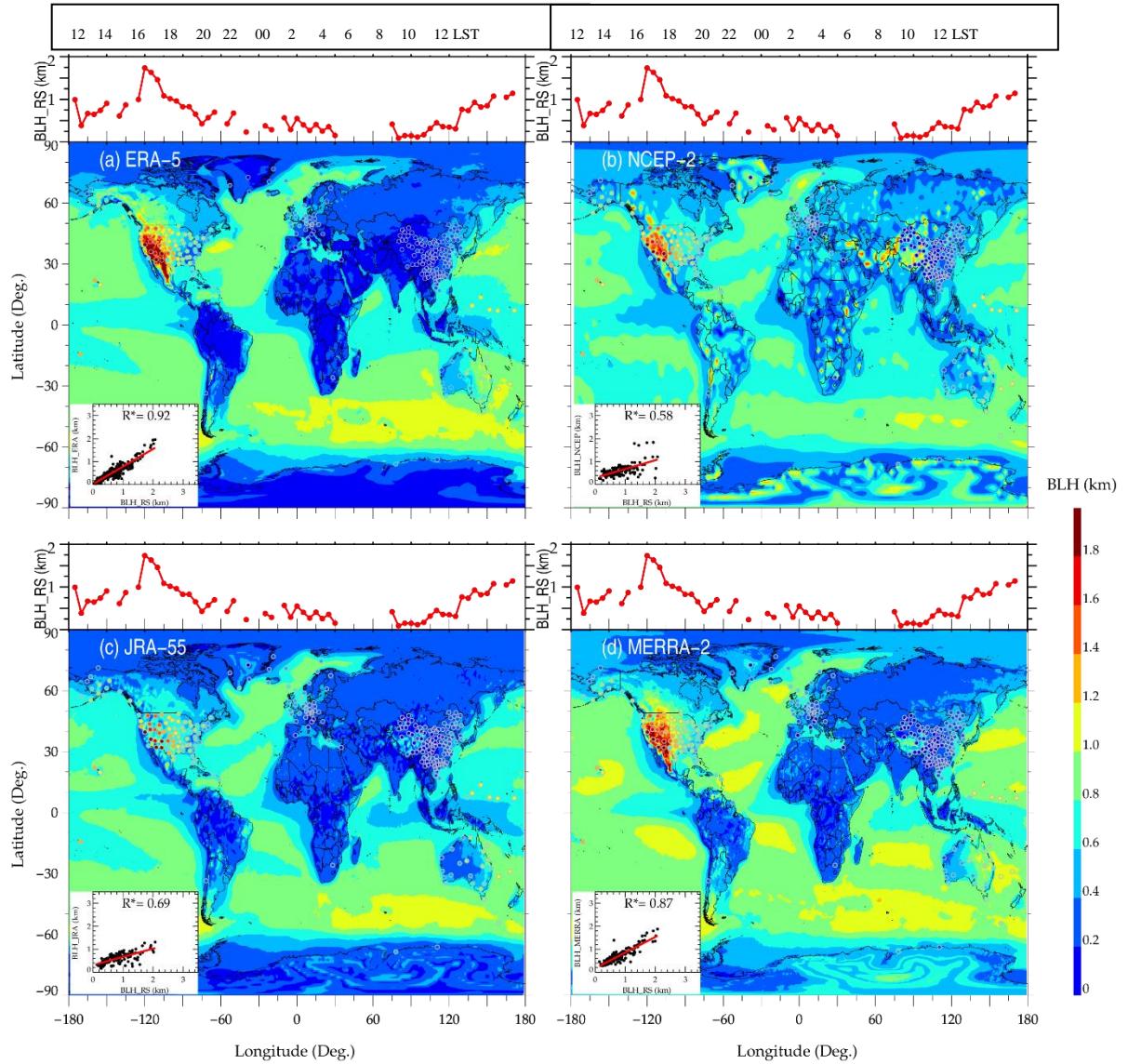

795 Zilitinkevich, S., and Baklanov, A.: Calculation of the height of the stable boundary
796 layer in practical applications, *Bound-Layer Meteorol.*, 105(3), 389–409.
797 <https://doi.org/10.1023/A:1020376832738>, 2002.

798

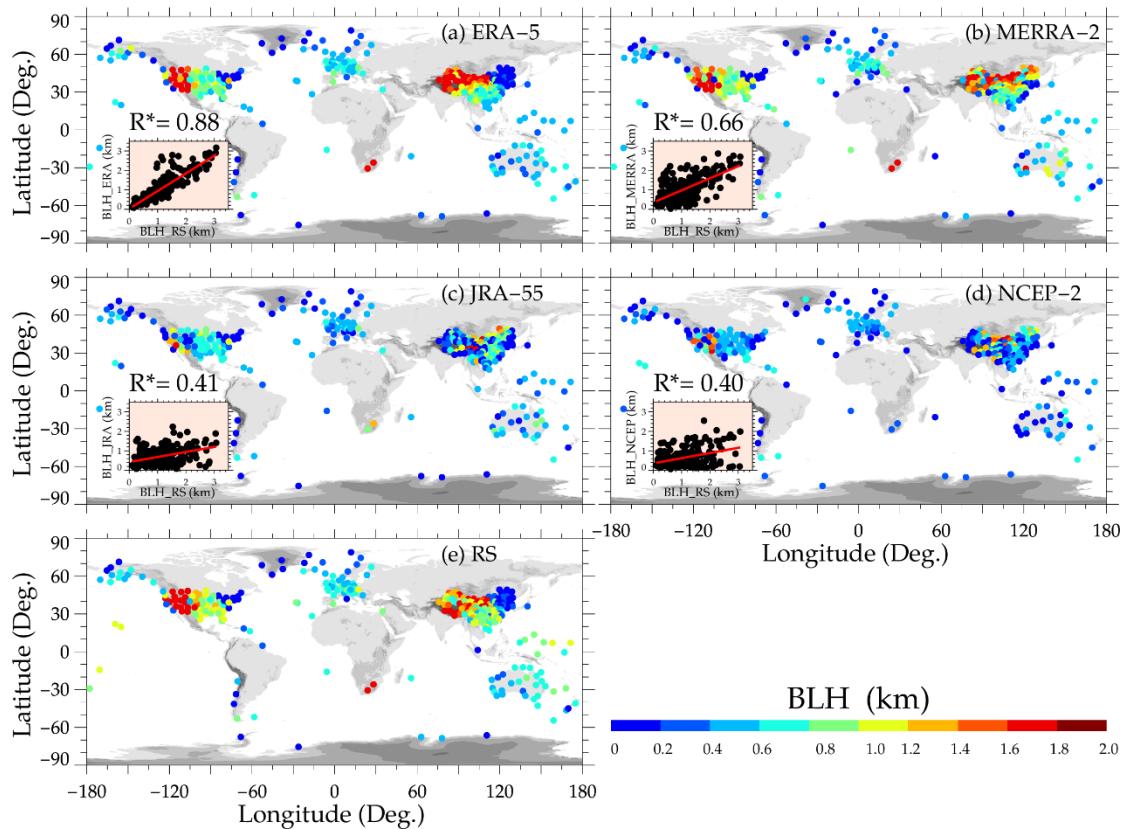
799

800 **Figures:**

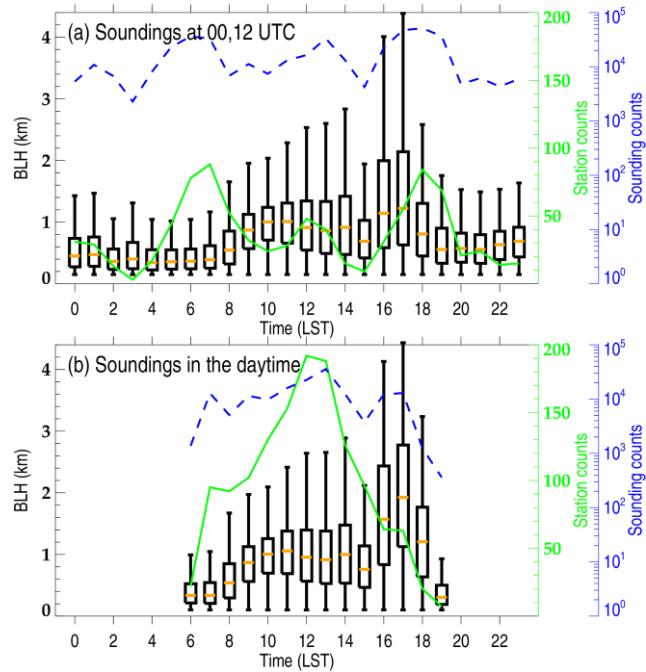
801


802

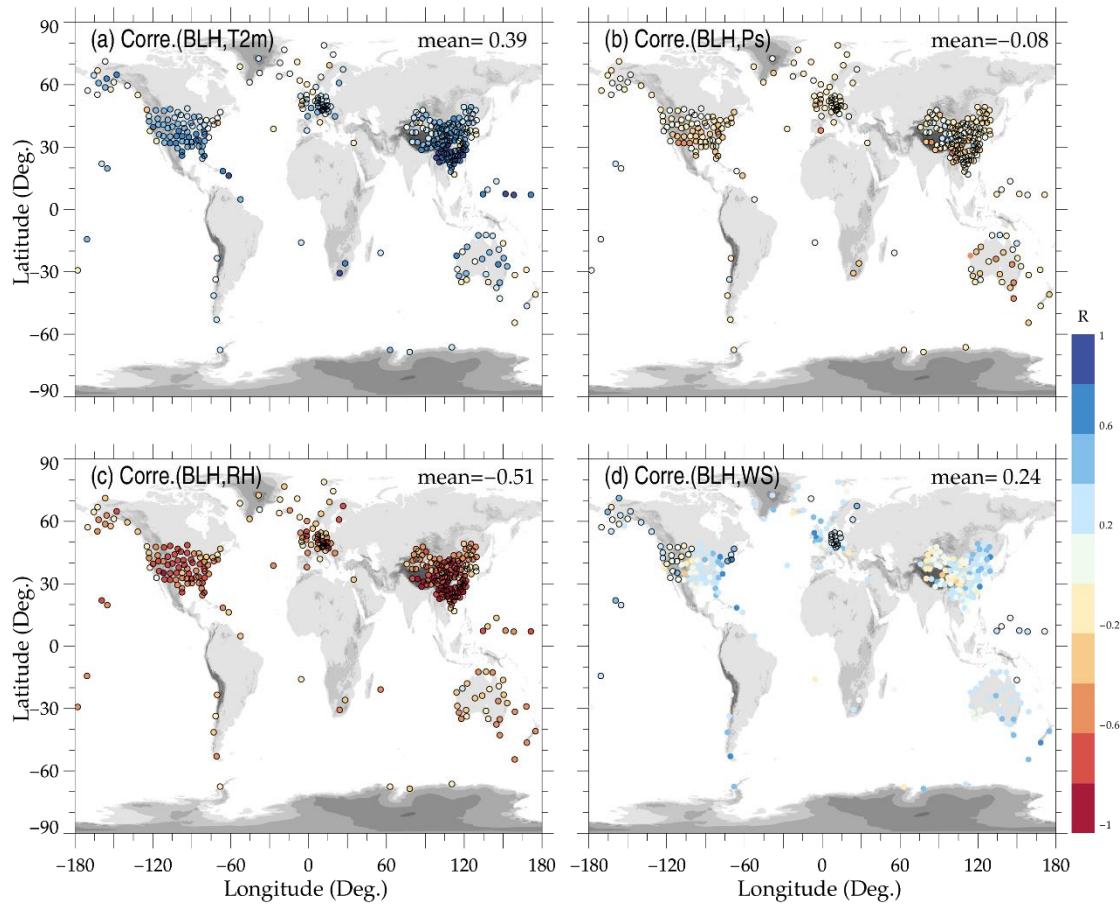
803 **Figure 1.** Profiles of basic atmospheric parameters from the ground up to 2.5 km
 804 AGL, including wind speed (orange), bulk Ri (black), temperature (blue), and RH
 805 (green) at 0600 UTC (1400 LST) 06 Jun 2016 at Chongqing (29.6°N, 106.4°E, 541 m)
 806 from radiosonde (a), MERRA-2 (b), NCEP-2 (c), and JRA-55 (d) reanalysis datasets.
 807 The boundary layer height (BLH) in each subplot is marked as red dash lines and red
 808 texts, and the BLH for ERA5 is 1265 m in this case (black dash lines).


809

810


811

814 **Figure 2.** The mean BLH estimated from ERA5 (a), NCEP-2 (b), JRA-55 (c), and
 815 MERRA-2 (d) reanalysis data at 0000 UTC during years 2012 – 2019. The dots with
 816 gray marginal lines in each map denote the mean BLH derived by sondes at 0000 UTC,
 817 and the red dotted lines present the mean BLH derived by radiosonde on a grid with 5°
 818 longitude. Stations with less than 10 profiles are not included in the analysis. The 2D
 819 scatter plot in the left bottom corner of each panel illustrates the correlations between
 820 reanalysis-derived and sonde-derived BLHs at 0000 UTC, where the asterisk (*)
 821 superscripts indicate that the correlation coefficients are statistically significant ($p < 0.05$)
 822 and the red lines denote the least-squares regression line.


Figure 3. Spatial distributions of the mean BLHs determined at the near-global high-resolution radiosonde observational network locations during the daytime for the period 2012 to 2019, which is extracted from ERA5 (a), MERRA-2 (b), JRA-55 (c), NCEP-2 (d), and radiosonde measurements (e), respectively. Similar to Figure 2, the scatter plot illustrates the correlations between reanalysis-derived and sonde-determined BLHs in the daytime.

835

836 **Figure 4.** Box and whisker plots of diurnal variation (in LST, 24 hours) of BLH
 837 determined by all soundings operationally launched at 0000 and 1200 UTC (a) and by
 838 the soundings launched at both synoptic times and intensive observation times that are
 839 limited to the daytime alone (b). Solid green line and dotted blue line highlight the
 840 number of sonde station and total sounding for each hour of day, respectively.

841

842

843 **Figure 5.** Correlations between the radiosonde-derived BLHs and near-surface air
 844 temperature at 2m AGL (T_{2m} ; a), near-surface pressure (Ps; b), near-surface RH (c),
 845 and near-surface wind speed (WS; d). Dots outlined in black denote that the correlation
 846 coefficient values are statistically significant ($p < 0.05$), and the mean correlations are
 847 texted in the upper right corner of each panel.

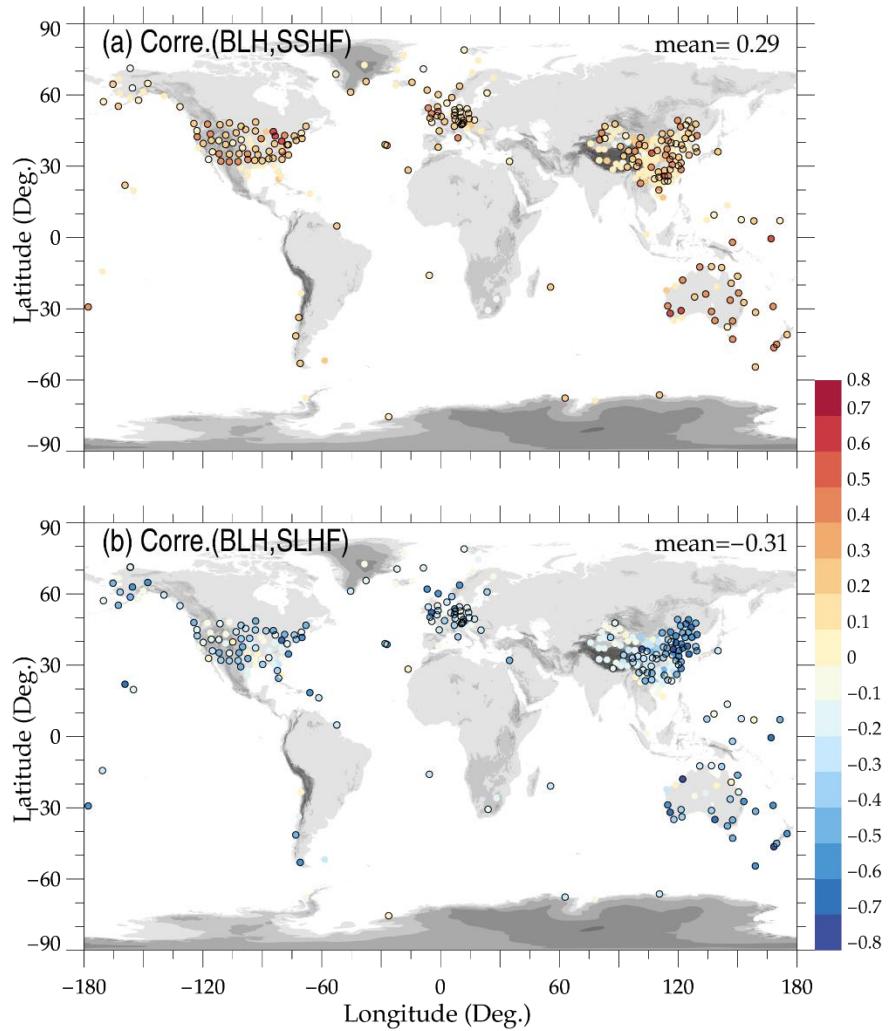
848

849

850

851

852

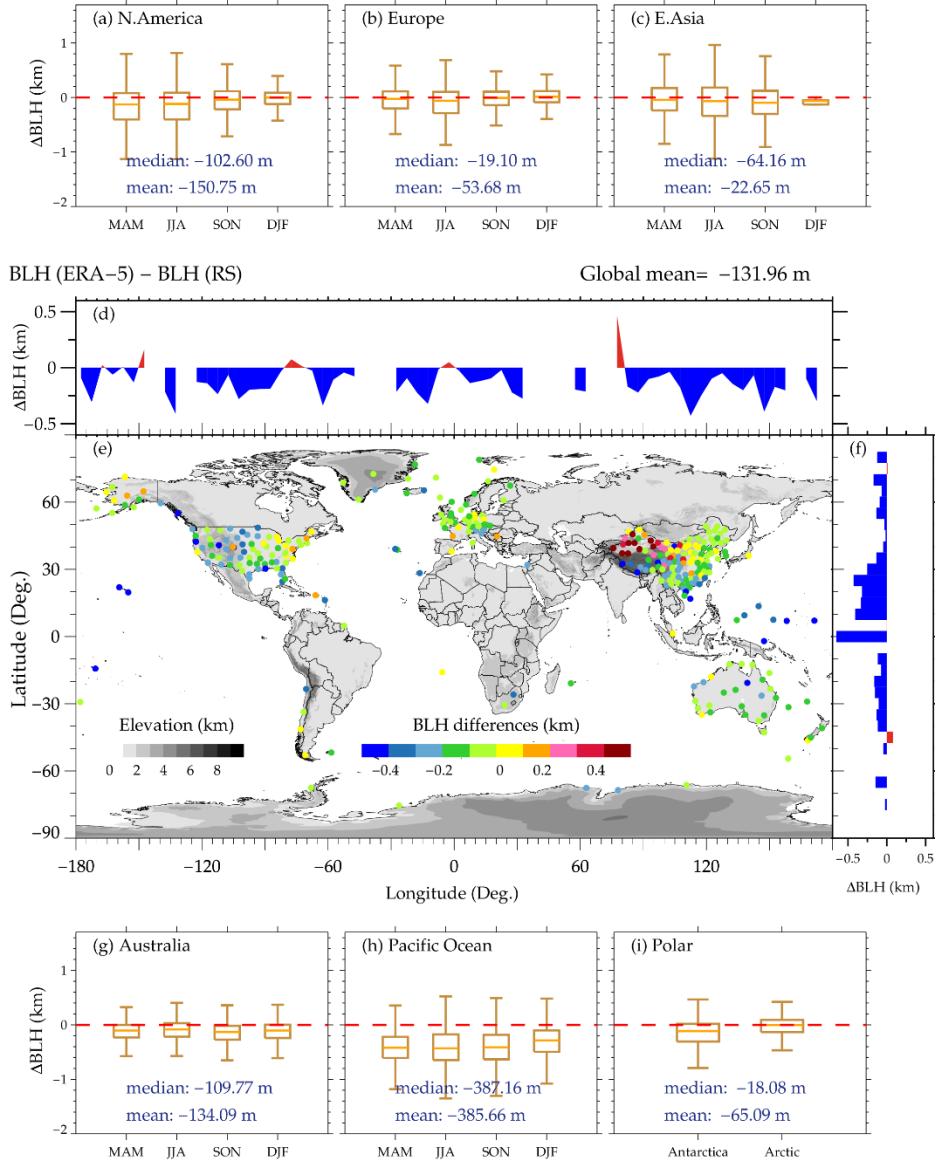

853

854

855

856

857

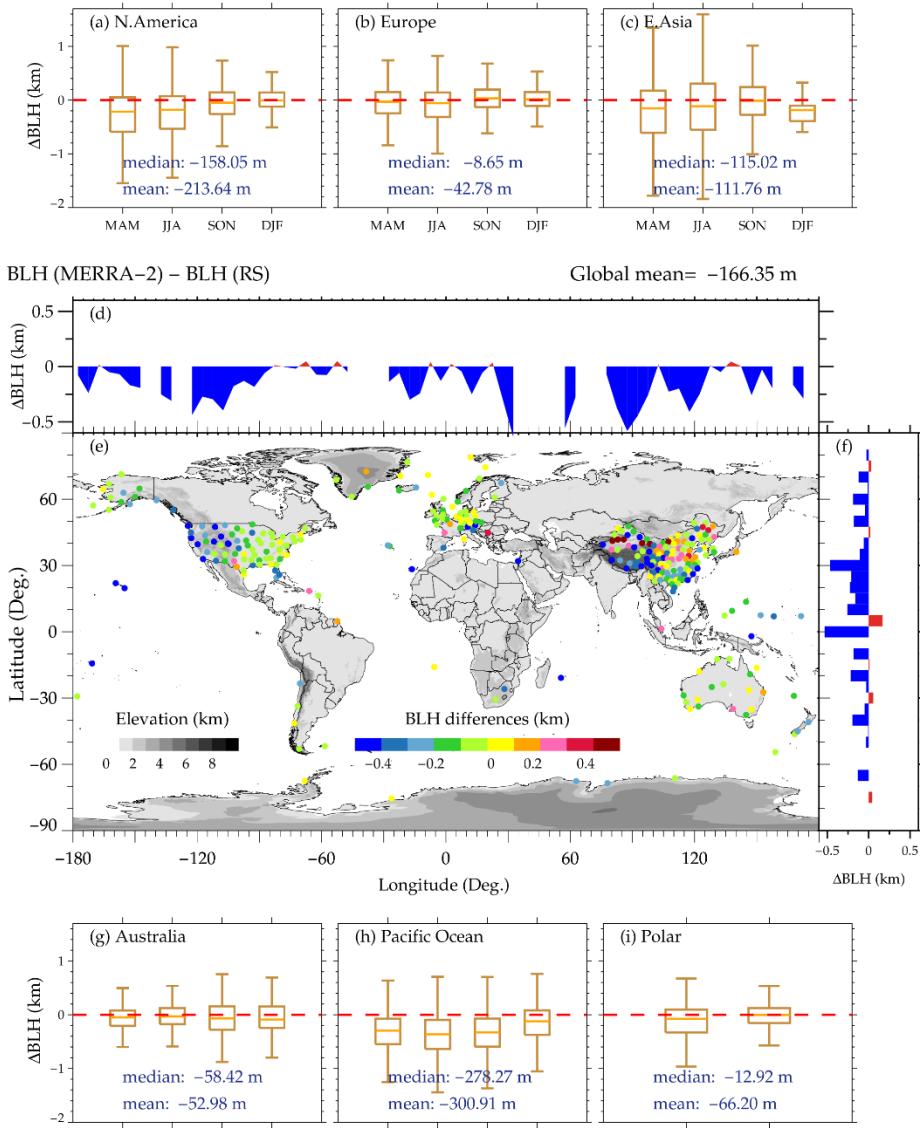


858

859 **Figure 6.** Similar as Figure 5, but for the correlations between BLHs versus normalized

860 surface sensible (a) and latent heat fluxes (b).

861


862

863 **Figure 7.** Statistical results of BLH differences between ERA5 and radiosonde. The
 864 spatial distribution of mean differences is highlighted in (e). Also shown are the
 865 distributions of mean BLH differences as a function of longitude (d) and latitude (f).
 866 The box and whisker plot of BLH differences over the six regions of interest (i.e., North
 867 America, Europe, East Asia, Australia, Pacific Ocean, Polar) over four seasons are
 868 displayed in (a-c), (g-i). The seasons are defined as follows: MAM, March–April–May;
 869 JJA, June–July–August; SON, September–October–November; DJF, December–
 870 January–February.

871

872

873

874

875 **Figure 8.** Similar as Figure 7, but for the differences between MERRA-2-derived BLHs
 876 and radiosonde-determined BLHs.

877

878

879

880


881

882

883

884

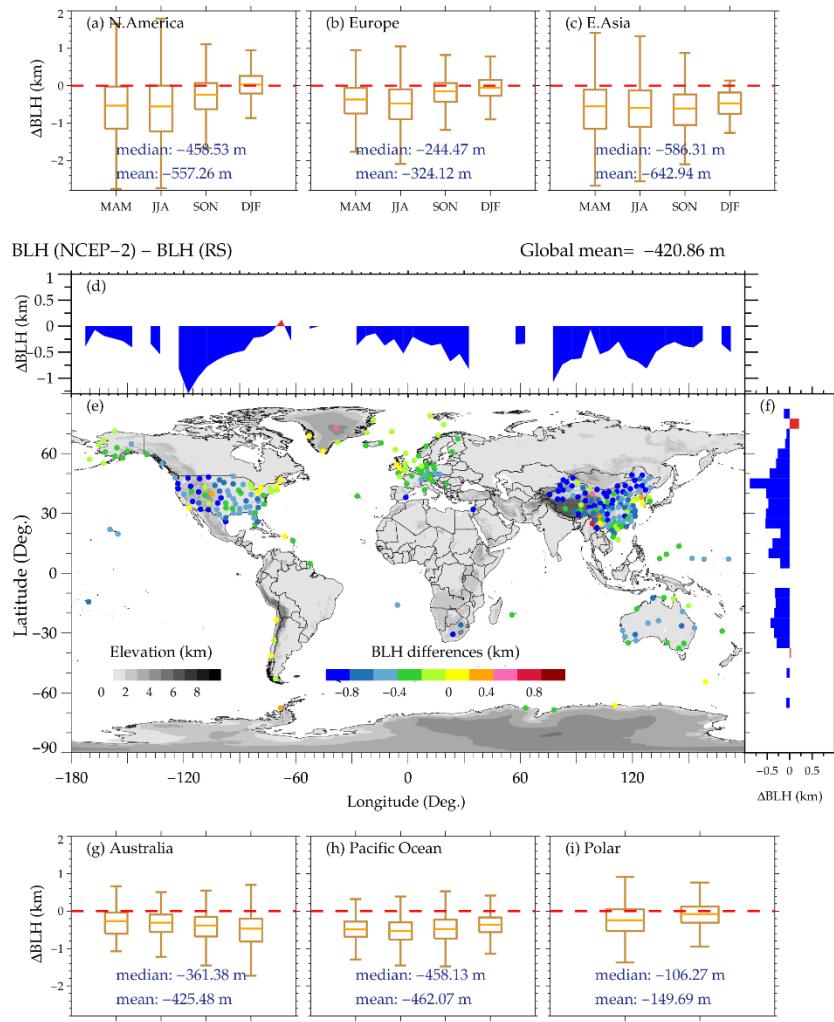
885

886

887 **Figure 9.** Similar as Figure 7, but for the differences between JRA-55-derived BLHs
 888 and radiosonde-determined BLHs.

889

890


891

892

893

894

895

896

897 **Figure 10.** Similar as Figure 7, but for the differences between NCEP-2-derived BLHs

898 and radiosonde-determined BLHs.

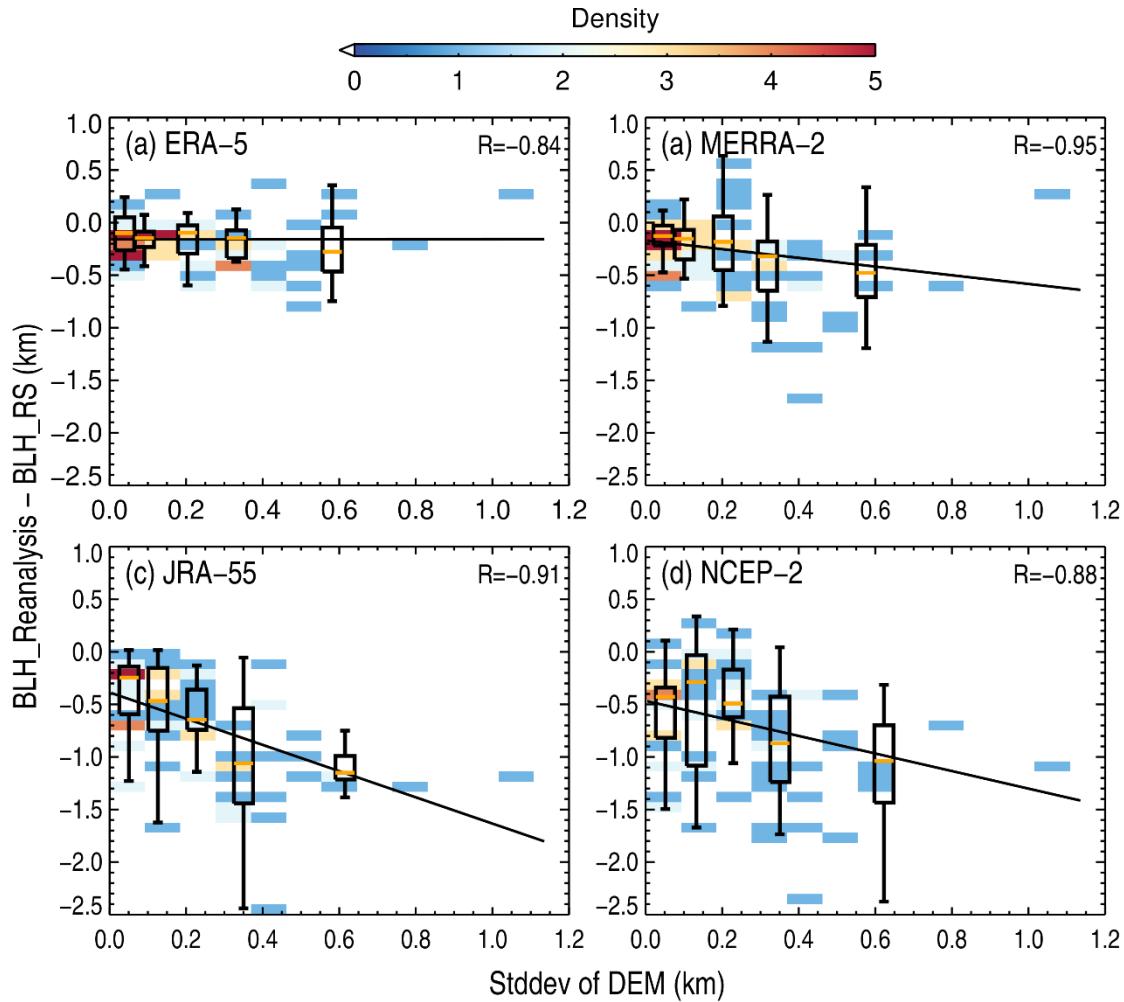
899

900

901

902

903


904

905

906

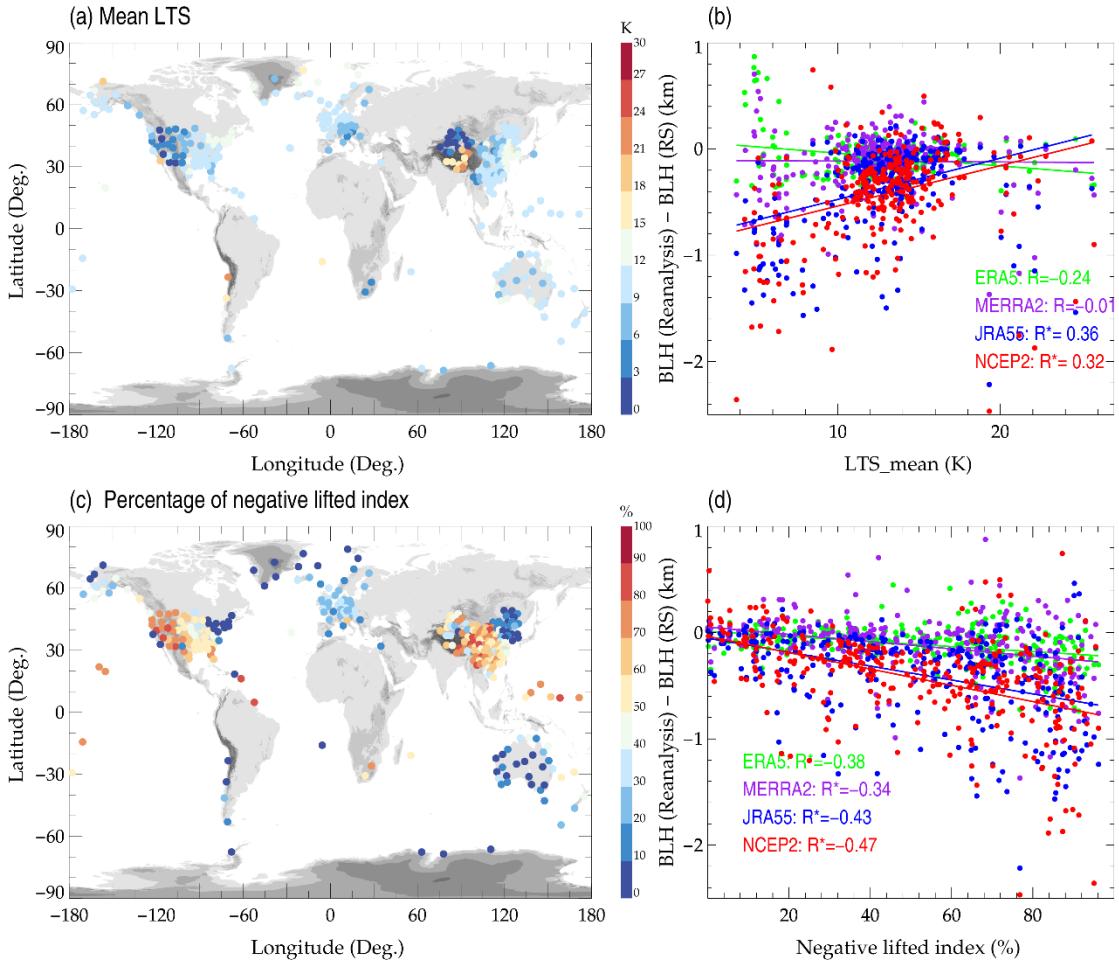
907

908

909

910 **Figure 11.** Density plots of the differences of BLHs between radiosonde and ERA5 (a),
 911 MERRA-2 (b), JRA-55 (c), and NCEP-2 (d) as a function of the standard derivation of
 912 the DEM, where the black lines denote the least-squares regression line. The box-and-
 913 whisker plots of the anomalies of BLH in five evenly intervals are overlaid in each
 914 panel, and the correlation coefficients are marked in the upper right corner of each panel.
 915 Note that all samples are collected from soundings that are launched in the afternoon,
 916 spanning from 1300 LST to 1800 LST.

917


918

919

920

921

922

923

924 **Figure 12.** Spatial distribution of the ensemble means of lower tropospheric stability in
 925 the daytime (a). The scatter plots showing the difference of model- minus sounding-
 926 derived BLHs from four reanalysis datasets versus the anomalies of LTS as derived
 927 from four reanalysis relative to those from soundings (b). The variations in the
 928 percentage of negative lifted index (c), and the anomalies of BLH as a function of
 929 negative lifted index (d).