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Abstract

The planetary boundary layer (PBL) governs the vertical transport of mass, momentum
and moisture between the surface and the free atmosphere, and thus the determination
of PBL height (BLH) is recognized as crucial for air quality, weather and climate
analysis. Although reanalysis products can provide important insight into the global
view of BLH in a seamless way, the in situ observed BLH on a global scale remains
poorly understood due to the lack of high-resolution (1-s or 2-s) radiosonde
measurements. The present study attempts to establish a near-global BLH climatology
at synoptic times (0000 and 1200 UTC) and in the daytime using high-resolution
radiosonde measurements over 300 radiosonde sites worldwide for the period 2012 to
2019, which is then compared against the BLHs obtained from four reanalysis datasets,
including ERA5, MERRA-2, JRA-55, and NCEP-2. The variations of daytime BLH
exhibit large spatial and temporal dependence, and as a result the BLH maxima are
generally discerned over the regions such as Western United States and Western China,
in which the balloon launch times mostly correspond to the afternoon. The diurnal
variations of BLH are revealed with a peak at 1700 local solar time (LST). The most
promising reanalysis product is ERA5, which underestimates BLH by around 130 m as
compared to radiosondes released during daytime. In addition, MERRA-2 is a well-
established product and has an underestimation of around 160 m. JRA-55 and NCEP-2
might produce considerable additional uncertainties, with a much larger
underestimation of up to 400 m. The largest bias in the reanalysis data appears over the
Western United States and Western China and it might be attributed to the maximal
BLH in the afternoon when the PBL has grown up. Statistical analyses further indicate
that the biases of reanalysis BLH products are positively associated with orographic
complexity, as well as the occurrence of static instability. To our best knowledge, this
study presents the first near-global view of high-resolution radiosonde derived
boundary layer height and provides a quantitative assessment of the four frequently
used reanalysis products.

Keywords. Radiosonde; boundary layer height; reanalysis; sensible heat flux
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1. Introduction

The planetary boundary layer (PBL) is where most of exchanges of heat, moisture,
momentum and mass take place between the free atmosphere and ground surface (Stull,
1988; Liang and Liu, 2010). The spatial and temporal variability of PBL, through a
variety of physical processes, has a profound influence on research fields such as air
quality (Stull, 1988; Li et al., 2017), convective storm (Oliveira et al., 2020) and global
warming (Davy and Esau, 2016), among others. It is well known to be influenced by
radiative cooling at night and by downward solar radiation reaching the ground surface
at daytime, respectively, forming a stable boundary layer (SBL) and convective
boundary layer (CBL), with a typical PBL depth (BLH) of less than 500 m and 1-3 km
(Zhang et al., 2020a), respectively. For climate models, most of the PBL processes
occur at sub-grid scales and thus are either underrepresented or not fully represented
(von Engeln and Teixeira, 2013). Meanwhile, there are many problems in elucidating
the PBL processes using numerical model simulations (Martins et al., 2010), even over
the relatively homogeneous ocean (Belmonte and Stoffelen, 2019), which is likely due

to the scarcity of fine-scale vertical observations of the atmosphere.

Over the oceans Belmonte and Stoffelen (2019) performed a climatological
comparison between state-of-the-art reanalysis and scatterometer surface winds in the
PBL, revealing mean and transient PBL model errors. Houchi et al. (2010), based on
high-resolution radiosondes, verified the climatological wind profiles and found in
particular a factor of 2-3 lower wind shear simulated by the European Centre for
Medium-Range Weather Forecasts (ECMWF) model. Wind shear is recognized to be
able to significantly modulate turbulent mixing of atmospheric pollutants (Zhang et al.,
2020Db), and thus the inabilities of the model in this regard may have repercussions for

air quality prediction.

The critical interaction between PBL turbulence and vertical structures of
thermodynamic variables, as the heart of PBL physics, makes the determination of BLH

a big challenge, due largely to the difficulty for those instruments with coarse vertical
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resolution in resolving the sharp gradients of temperature and water vapor at the top of
the PBL, and estimating PBL-top entrainment and lateral entrainment (Teixeira et al.,
2021). Thus, this highlights the importance of high-resolution vertical measurements of
thermodynamic variables. The temporal and spatial variations in BLH have been
extensively assessed in previous studies at a regional or national scale, such as the
contiguous United States (Seidel et al., 2012; Zhang et al., 2020a), Europe (Palarz et
al., 2018), Arctic and Antarctic (Zhang et al., 2011), which are mainly implemented by
low-resolution radiosonde measurements, reanalysis or both. Fortunately, a few
pioneering studies in characterizing BLH have adopted high-resolution measurements
at a national scale over China (Guo et al. 2016; Zhang et al., 2018, Su et al., 2018) and
United States (Seidel et al., 2010). Notable diurnal and seasonal cycles have been
revealed (e.g., Guo et al., 2016; Short et al., 2019). Besides the regional results, several
attempts have been made to provide global-scale retrievals of BLH using the Global
Positioning System radio occultation (GPS RO) and Integrated Global Radiosonde
Archive (IGRA) version 2 (Seidel et al., 2010; Gu et al., 2020; Ratnam and Basha,
2010), in which seasonal variations and maritime-continental contrasts of BLHs have
been achieved. The measurements of GPS RO, at a vertical resolution of 200 m around
the PBL top, are typically used to determine BLH by searching for the altitude with a
sharp gradient in the refractivity profile (Basha et al., 2018). However, such sharp
gradient of refractivity might overestimate BLH compared to other methods that the
community usually used, such as the parcel method (Seidel et al., 2010). Compared
with high-resolution soundings, IGRA is sparsely sampled in the vertical (about 10-30
layers below 500 hPa), which could result in large uncertainties in estimating BLH.
Likewise, additional errors could be introduced in reanalysis products for their sparse
vertical resolutions (about 6-42 layers below 500 hPa), which are equivalent to or
bigger than IGRA. A large spread emerges in the explicit determination of BLH from
a variety of instruments, in spite of that the BLH detection based on radiosonde is the
most accepted methodology for deriving CBL and SBL (Seidel et al., 2012; de Arruda
Moreira et al., 2018).
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A wide range of reanalysis products, such as those from the fifth generation
ECMWEF atmospheric reanalysis of the global climate (ERAS5), the National
Aeronautics and Space Administration (NASA) Modern-Era Retrospective-analysis for
Research and Applications version 2 (MERRA-2), Japanese 55-year Reanalysis (JRA-
55), and the NCEP climate forecast system version 2 (NCEP-2), provide a rich
ensemble of climate data products (Saha et al., 2014; Hersbach et al., 2020; Kobayashi
et al., 2015; Gelaro et al., 2017), but are sensitive to both empirical parameterizations
and the diagnostic method chosen, while verification by direct observations of BLH are
sparse (Seibert et al., 2000). Some inter-comparisons between instruments or model
data, such as radiosonde, CALIOP, and ERA-interim reanalysis have been previously
conducted, and a good consistency has been yielded in seasonal and spatial variation
(e.g., Guo et al., 2016; Zhang et al., 2016). However, Basha et al. (2018) demonstrate
that ERA-interim can underestimate BLH by around 900 m compared to GPS RO. This
underestimation may be caused by different kinetic or thermodynamic assumptions use.
For instance, ERA-interim is implemented with a bulk Richardson number method
(Palm et al., 2005), which is believed to be suitable for all atmospheric conditions
(Anderson, 2009). It is worth highlighting that the state-of-art reanalysis could be one
of the most promising data sources for obtaining the synoptic or climatological features

of BLH.

Despite much progress made in developing the BLH products, there are still some
unresolved issues in quantifying the variability of BLH from a global perspective.
These issues include: the worldwide variation of BLH by high-resolution vertical
soundings, the inter-comparisons among reanalysis datasets, and further evaluations
with radiosonde observations, especially in the daytime based on the same retrieval
algorithm. To this end, this study seeks to address the following scientific questions: (1)
a climatological distribution of near-global BLH by using high-resolution radiosonde
measurements; (2) inter-comparisons of ERA5, MERRA-2, JRA-55, and NCEP-2 with
additional evaluation with radiosondes; and (3) investigate potential sources for the

biases of BLH between observation and reanalysis. The rest of the paper is organized
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as follows. The descriptions of high-resolution radiosonde data, reanalysis products,
and the bulk Richardson number method are given in Section 2. Section 3 presents the
spatial distributions of BLH by radiosonde and reanalyses and their inter-comparisons.

A brief conclusion and remarks are finally outlined in Section 4.

2. Data descriptions and BLH retrieval method

2.1 High-resolution radiosonde measurements

In 2018, IGRA provided atmospheric soundings at around 445 radiosonde sites
across the globe, including pressure, temperature, humidity and wind vector. The
number of pressure levels below 500 hPa is around 10-30. By comparison, for high-
resolution radiosondes, the sampling rate is 1-s or 2-s, corresponding to a vertical
resolution of approximately 5-10 meters throughout the atmosphere. The high-
resolution radiosonde measurements used in the present study are obtained from 342
sites around the world, which are provided by several organizations, including the
China Meteorological Administration (CMA), the National Oceanic and Atmospheric
Administration (NOAA) of United States, the German Deutscher Wetterdienst (Climate
Data Center), the Centre for Environmental Data Analysis (CEDA) of United Kingdom,
the Global Climate Observing System (GCOS) Reference Upper Air Network
(GRUAN), and University of Wyoming.

The CMA maintains the China Radiosonde Network (CRN), which contains 120
operational stations homogeneously distributed across mainland China with a vertical
sampling rate of 1 second (5-8 m resolution), since 2011 (Guo et al., 2016; 2019; Zhang
et al., 2016; 2018; Su et al., 2020). The NOAA started the Radiosonde Replacement
System (RRS) program in 2005, which involved 89 sites with a vertical resolution of 5
m (Zhang et al., 2019). The German Deutscher Wetterdienst (Climate Data Center) has
been sharing the radiosonde measurements at 14 sites with a sampling rate of 2 seconds
since 2010. Moreover, the 10 m resolution soundings at 12 sites was provided by the

CEDA, which began to share soundings since 1990, and 8 radiosonde sites were shared
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by GRUAN with a vertical resolution smaller than 10 m. An additional 93 sites came
from the University of Wyoming, which started in 2017, with a sampling rate of 2-s or
1-s. In total, over 678,000 soundings at 342 stations are used here for the period of
January 2012 to December 2019 in total of eight years, including 633,000 soundings at
the regular release times of 0000 and 1200 UTC and 43,000 more irregular observations

during intensive observation period (IOP).

Radiosonde measurements are taken twice per day following the World
Meteorological Organisation (WMOQO) protocol for synoptic times at 0000 and 1200
UTC (Seibert et al., 2000), except for special field campaign observations at specified
stations or time ranges during IOPs. The protocol implies that stations at different
longitudes sample the diurnal cycle differently. For instance, stations near 0<E (London)
and 180<E (Samoa) sample at midnight and midday, while stations near 90<E
(Bangladesh) and 90W (Chicago) sample at dawn and dusk, with intermediate
longitudes at linearly varying intermediate local solar times (LSTs) of day. For
wintertime regions near 90 W and 90 E, the release times are insufficient for evaluating
the BLH during daytime. Hence, the BLH estimates from regular radiosondes will vary
with longitude and season (McGrath-Spangler and Denning, 2012). Generally, the
principal PBL mechanism at night is associated with an SBL, which gradually
transitions into CBL in the morning (Stull, 1988; Zhang et al., 2018). The transition
from SBL to CBL is generally quick and occurs swiftly after sunrise, but the reverse
process can be slow in the late evening (Taylor et al., 2014). Despite the dominance of
CBL during the daytime, an SBL still occurs, especially in the event of overcast sky
(Zhang et al., 2018; 2020) and near strong divergence in moist convective downbursts
(King et al., 2017). To illustrate the daytime variation of BLH, we only selected the
soundings that are launched 2 hours after sunrise and 2 hours before sunset. The sunrise
and sunset times are gauged in a longitude bin size of 15 degrees and based on the
latitude of station and the calendar day of the release. Using this definition, a total of
190,013 profiles including soundings launched at both synoptic times and during 10P,

spanning January 2012 to December 2019, are used to obtain the BLHSs in the daytime.
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The spatial distribution of file number for each site is displayed in Figure S1, in which

the sites with less than 10 matches are excluded.
2.2 ERA5, MERRA-2, JRA-55 and NCEP-2 reanalysis datasets

ERAS is the successor of ERA-interim and has undergo a variety of improvements,
including more recent parameterization schemes and data assimilation system, better
spatial resolution, both horizontally and vertically (137 levels), and improved
representation of evaporation balance, cyclones, soil moisture, and global precipitation
(Hersbach et al., 2020). The BLH is composited in the ERA5 product on a 1440x721
grids with 0.25<longitude and 0.25<latitude resolution. It is computed by the bulk

Richardson number method, with a temporal resolution of 1 hour.

MERRA-2 is the latest atmospheric reanalysis of the modern satellite era
produced by NASA’s Global Modeling and Assimilation Office (GMAO). It includes
aerosol data assimilation, improvements on ozone, and cryospheric processes (Gelaro
etal., 2017). In this product, the BLH is packaged and defined by identifying the lowest
level at which the heat diffusivity drops below a threshold value (McGrath-Spangler

and Denning, 2012). The formula for calculating BLH is as follows:

)0.1903

BLH(MERRAZ2_packaged) = 44308 X (1 — (Ppartop/Psurface (1)

where BLH(MERRAZ2_packaged)is in unit of meter, Ppg;,, the BLH (packaged
parameter in MERRA-2, in unit Pa), and Pg,;,r4ce the surface pressure (in unit Pa).
However, to preclude the uncertainty raised by different methods adopted, the BLH by
MERRA-2 is extracted by bulk Richardson number method, by utilizing the parameters
of horizontal wind, temperature, geopotential height, relative humidity (RH), and
surface pressure as inputs. These input data are provided on a grid of 576x361 points
with 0.625<longitude and 0.5 “latitude resolution and has 42 pressure levels (about 16

layers below 500 hPa), with a temporal resolution of 3 h.

JRA-55 is the second Japanese global atmospheric reanalysis commissioned by

the Japan Meteorological Agency (JMA) (Kobayashi et al., 2015). Data contains 37
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pressure levels between 1 hPa and 1000 hPa (16 layers below 500 hPa), provided on a
grid of 288 x 145 points, with a horizontal spacing of 1.25°x1.25°and a temporal
resolution of 6 hours. The parameters, including geopotential height, temperature,

horizontal wind, surface pressure, and RH, are used to assess BLH as before.

NCEP-2 has the coarsest model resolution than ERAS5 (Rinke et al., 2019), with a
spatial resolution of 2.5°longitude and 2.5<latitude. The total level is 17 (6 layers
below 500 hPa), which is substantially less than MERRA-2, JRA-55 or ERA5, and the
temporal resolution is 6 hours. Similar parameters to JRA-55 are preserved to compute
BLH. It is noteworthy that all model times include 0000 and 1200 UTC and hence

collocate well with the synoptic radiosonde times.

2.3 Bulk Richardson number method

In the spirit of a like-for-like comparison, the BLHs derived from radiosonde and
reanalysis data (MERRA-2, JRA-55, and NCEP-2) are calculated using the bulk
Richardson number (BRN), which also serves as the built-in algorithm in ERAS for
BLH products. The BRN, an algorithm used to reflect how strongly buoyancy is
coupled to the vertical momentum (Scotti, 2015), has been widely used for the
climatological study of BLH from radiosonde measurements thanks to its applicability
and reliability for all PBL regimes (Anderson 2009; Seidel et al., 2012; Guo et al.,
2019). It determines the BLH by identifying the level at which the bulk Richardson
number, represented by Ri(z), reaches its critical value (Palm et al., 2005) and is

formulated as:

(eivs) (Byz—0vs)zac
(uz—us)?+(v,-vs)? +(bu3)

Ri(z) = (2)

where g is the gravitational acceleration, z,, the height above ground level (AGL),
0, the virtual potential temperature, u, the surface friction velocity, and u and v the
horizontal wind components and b a constant, which is usually set to zero due to the

fact that friction velocity is much weaker compared with the horizontal wind (Seidel et
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al., 2012). The subscripts of z and s denote the parameters at z height above ground

and ground level, respectively.

It is known that Ri(z) increases with increasing free flow stability (Zilitinkevich
and Baklanov, 2002). Below a critical value of 0.25, the flow is dynamically unstable
and likely cause turbulent motion. Nevertheless, since turbulence can also occur away
from this critical value (Haack et al., 2014), care must be taken in that the critical value
might not be well defined, leading to uncertainty in estimating BLH. Meanwhile, the
BLH estimates were found not to change very much by differing the input of critical
values (Ri = 0.2;0.25;0.3) (Guo et al., 2016). Therefore, for a given discrete Ri
profile, here we identify the BLH as the interpolated height at which the Ri(z) firstly
crosses the critical value of 0.25 starting upward from the ground surface. Besides, it is
well recognized that the vertical resolution of radiosonde measurement has large impact
on the BLH estimated. For instance, BLHs are usually lower for a sparser vertical
resolution (Seidel et al., 2012). Therefore, factors that cause uncertainty in estimating
BLH by using the bulk Richardson method include, but not limited to, meteorological

parameters, the surface friction, vertical resolution of data and the critical value of Ri.
2.4 Collocation procedure and a case study

In contrast to the reanalysis data, the longitude, and latitude distributions of high-
resolution radiosonde are irregular. A precise comparison between reanalysis data and
sounding is required for consistency in time, latitude, and longitude. The matching
procedures implemented in this present study go as follows. (1) A latitudinal and
longitudinal matching procedure is carried out by finding the geographical grid cell of
the reanalysis product that contains the radiosonde station. (2) Time matching for ERA5
is to find the exact UTC time (hour) of the weather balloon launch. (3) For MERRA-2,
NCEP-2, and JRA-55 datasets, the requirement is to limit the time difference with the

weather balloon launch time to 1 hour.

A case at 0600 UTC 06 Jun 2016, Chongging (29.6 N, 106.4<E, 541 m) is shown
in Figure 1. In this case, BLH obtained by sounding is 1,337 m and is closest to that by

10
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ERADS, which underestimates the height by 72 m. Compared with the radiosonde profile,
MERRA-2 can capture the main vertical structures and the magnitude of wind speed
(WS), RH, and temperature, but not the fine-scale vertical variations (Figure 1b). It also
slightly undervalues the BLH by 125 m. The basic parameters outlined by NCEP-2, for
instance, RH (5% larger than sounding), temperature (3<C less than sounding), and
wind speed (4.5 m/s larger than sounding), all have notable differences with the
sounding (Figure 1c). Eventually, The NCEP-2 derived BLH is considerably
underestimated by 729 m. By and large, the profiles from JRA-55 are not as accurate
as those from MERRA-2. More specifically, the wind speed at some heights,
prominently above 2 km, is underestimated (Figure 1d); the mean RH is 4% less than
that from the sounding. As a result, JRA-55 substantially underestimates BLH by 399
m. Based on this case, we can note that the performances of ERA5 and MERRA-2 are
obviously better than those from JRA-55 and NCEP-2 in terms of the BLH. The
remarkable underestimation by NCEP-2 can be attributed to the underestimations in
near-surface virtual potential temperature (roughly 2.46 K less than sounding) and
temperature. By comparison, the smaller BLH in JRA-55 could be attributed to the

underestimated RH.

2.5 Normalized sensible/latent heat flux in the daytime

The sensible heat flux represents the level of energy that induces CBL growth (Wei
et al., 2017), whereas the latent heat fluxes characterize the evaporation of moisture
from the soil to the CBL, which feedbacks on the development of CBL and the
formation of PBL cloud (Pal and Haeffelin, 2015). For a given amount of heat flux,
small latent heat fluxes usually mean more energy being available for PBL growth
(Chen et al., 2016). When less energy is constrained by the moist ground, more energy
is available to heat the air. Moreover, the surface heat flux is closely associated with
near-surface meteorological variables. For instance, a lower RH usually indicates a
larger sensible heat flux and lower latent heat flux (Guo et al., 2019; Zhang et al., 2013).

Suppose that the heat supplied to the air at the radiosonde balloon launch time is the

11



311
312

313

314
315
316
317

318

319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

area shaded under the heat flux curve (Fig.11.12 in Stull 1988), the normalized sensible
heat flux in the daytime is defined by

- Tiaunch
Qpn < f Qup~'cytdt (3)

Tsunrise

where Tgunrise aNd Tiauncn are the sunrise time and radiosonde balloon launch
time, Qy the sensible heat flux, p the near-surface density and c, equals 1004
J°C~1kg~1. The similar principle is applied to the calculation of normalized latent heat

flux as well.

3. Results and discussion

3.1 Overview of BLHs at two synoptic times and over the day

The near-global mean BLHs at 0000 UTC from 2012 to 2019 by four reanalysis
products are shown in Figure 2, in which the results obtained from radiosonde are
overlaid by colored circles. The stations with sounding covering at least 2 continuous
years are kept. The four reanalysis products yield an analogous result with respect to
the spatial variation of BLHSs, which are positively correlated with the sounding-derived
BLH, with correlation coefficients of 0.90, 0.81, 0.47, 0.46 for ERA5, MERRA-2,
NCEP-2, and JRA-55, respectively. It is evident that the BLHs from NCEP-2 over the
continents of Africa, Asia, and South America are 300 m thicker than those of the other
three products (Figure 2b). Furthermore, the BLH in Antarctic by ERA5 is notably 500
m lower than that by NCEP-2 and MERRA-2 (Figure 2a). Most of the mean BLHSs by
radiosonde are consistent with the reanalysis products, except that the values from all
four reanalysis products over the Pacific Ocean and the contiguous U.S. are
underestimated by about 300 m. Moreover, it is worth to note here that the BLHs by
JRA-55 are considerably underestimated by around 1 km over these regimes. For 0000
UTC, the regions nearly from the east coast to the west coast of Pacific Ocean (UTC+8
to UTC+12, and UTC-12 to UTC-8) are covered by sunshine, and thus are filled with
deeper PBL.

12
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Comparable results at 1200 UTC are presented in Figure S2. Africa, the Middle
East, and the west of India and China, corresponding to local noon and afternoon, have
maximal BLHs of around 1.8 km. Moreover, it is noteworthy that the values from
NCEP-2 and JRA-55 over these areas are visibly lower than those from ERAS and
MERRA-2, particularly over Africa and the Middle East, whereas these low values can
barely be validated with soundings due to their sparse distribution. Over these areas,
the BLHSs are underestimated by reanalysis by about 200 m relative to the sounding
results. Notably, BLHs from NCEP-2 over the continents of Africa are 1 km lower than
those from ERAS and MERRA-2. According to the results at 0000 and 1200 UTC, the
comparisons between reanalysis products and soundings demonstrate that the BLHSs are

well resolved in the nighttime but are underestimated at daytime by reanalysis datasets.

For the near-global variation of BLH at a certain synoptic time, daytime and
nighttime appear on the map simultaneously, but as a function of longitude, which is
displayed in Figure 2. Thus, the variations at a fixed synoptic time on the map create a
picture of the diurnal BLH variation. Given the dominance of CBL in the daytime,
investigating the BLHSs in the daytime is thus favorable for unravelling the underlying
causes for the discrepancies existed in the BLHs from both radiosonde and reanalysis.
Therefore, the following results show the variations of daytime BLH only, unless

otherwise noted.

The climatological mean variations in the daytime BLH from the soundings and
four reanalysis products are drawn in Figure 3. The period spans from January 2012 to
December 2019 for most of the stations provided by China, the U.S., Germany, and the
U.K. As implied by the results from soundings (Figure 3e), the deepest PBL is observed
over the Tibetan Plateau (TP) and the northwest of China, the south of Africa, and the
west of U.S, with values as high as 1.7 km. The possible reason for this phenomenon is
that the weather balloons over these regions are basically launched in the early
afternoon of boreal summer (June—July—August) when the maximal BLH is usually
observed (Collaud Coen et al., 2014; Guo et al., 2016). The BLHs over the Pacific

Ocean are noticeably large, with values of 1.3 km. The longitudinal variation of BLH

13
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is evident, likely due to LST variations of the soundings. Additionally, BLHs in the
middle and low latitudes are larger than high latitudes, which is consistent with the

findings in Gu et al. (2020).

By and large, the climatological results of BLH by radiosonde and four model
products are comparable, indicating that both capture the spatial variations implied by
the sounding LST times sampled. Among the model products, ERA5 shows the best
prediction of BLH contrasted with radiosonde, with a correlation coefficient of 0.88
(Figure 3a). Furthermore, the results from MERRA-2 are positively correlated with
those from the soundings, with a correlation coefficient of 0.66 (Figure 3b). The
performances of JRA-55 and NCEP-2 are significantly poorer than those of ERA5 and
MERRA-2, with correlation coefficients of 0.4 and 0.41, respectively (Figure 3c, d).
The values of BLH over the west of U.S and the west of China are seriously
underestimated by NCEP-2 and JRA-55 by around 800 m. Thus, we note that ERA5
and MERRA-2 are more robust in deriving the BLH, purely based on the climatological
distribution of BLHSs.

Figure 4 illustrates the diurnal variations in BLH at 0000 and 1200 UTC and
during daytime. A notable diurnal variation can be noticed, with a minimum of 343 m
at 0400 LST and a maximum of 1224 m at 17 LST (Figure 4a). The magnitude in BLH
during daytime are essentially larger than that at 0000 and 1200 UTC and has a maximal
value of 1926 m at 1700 LST (Figure 4b). It follows that most of soundings (about 78%)
that are released at 0000 and 1200 UTC are excluded by the collocation procedure
designed for collecting samples in the daytime. Note that the result during daytime will

not significant change with/without IOP data.
3.2 Correlations with near-surface meteorological variables and surface heat flux

The PBL is the lowest part of the troposphere and evolves diurnally due to near-
surface thermodynamic variables through turbulent exchanges of momentum, heat, and
moisture (Pithan et al., 2015). Thus, the surface meteorological variables depend on the

underlying land surface and its coupling with the PBL, and they could act as a good
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proxy for BLH under some specific circumstances (Zhang et al., 2013; Zhang et al.,
2018). An analysis of the correlation between the BLHs by radiosondes and near-
surface meteorological variables is presented in Figure 5. The variables include near-
surface air temperature at 2 m AGL (T2m), pressure (Ps), RH, and WS, which are
extracted from the first level in sounding. The first level is assumed to be associated
with the near-surface variables (Serreze et al., 1992; Wang and Wang 2016). We note
that BLH, Tom, RH and WS all have substantial diurnal and seasonal variability as partly
expressed in Eq. (2).

Moderate positive (negative) correlation coefficients can be noticed between BLH
and Tom (RH), with mean values of 0.39/-0.51 (Figure 5a, c¢), implying that both Tom
and RH could be an adequate indicator for the temporal variation of BLH. Moreover,
the correlations between BLH and WS are also positively notable, with a mean value
of 0.24 (Figure 5d). By contrast, the correlation between Ps and BLH is negatively

significant above most of the regions (Figure 5b).

The correlation analyses between BLH and normalized heat fluxes, which are
assessed by ERAS reanalysis products, are displayed in Figure 6. It is notable that
positive/negative correlation coefficients usually exist in normalized sensible/latent
heat flux, with a global mean of 0.29 and -0.31. This correlation is not high because
BLH also depends on the radiative heating/cooling and the temperature profile in

different stations (Yang et al., 2004).

For the climatological variation of BLH, the near surface variables such as Tam,
RH and WS, and the normalized sensible/latent heat flux could be a good indicator.
Conversely, the development of BLH could also limit the magnitude of RH (McGrath-
Spanglerm, 2016).

3.3 Comparisons with reanalysis products

The radiosonde stations are mainly dispersed over the U.S, China, Australia,

Europe, the Pacifica Ocean, and the polar region, and only a few stations contribute
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over the rest of the world. The polar region contains a station with a latitude larger/lower
than 67.7 N/<S. Therefore, six regions are specifically examined in terms of the bias

between radiosonde and model product.

The BLH differences between ERAS5 and radiosonde are shown in Figure 7, in
which we specify the differences over the six above-mentioned regions. As observed in
Figure 7e, the BLH over most of the stations is underestimated to a slight extent, with
a near-global mean of 131.96 m. As expected, the most underestimated regions cover
the west of U.S, and southern China (Figure 7e), with a difference of around 200 m. In
addition, it is worth mentioning that the BLHs over the Pacific Ocean are overestimated
in four seasons, with a bias of around 400 m (Figure 7h). Among the six classified
regions, BLHSs in Europe, East Asia, and polar are reliably determined by ERA5, with
an average bias of around 50 m (Figure 7b, c, i). The bias seems to exhibit a seasonal
dependence, and it is around 62 m larger in the warm seasons compared to cool seasons
in both hemispheres. Regardless of the small bias, the newest model product, ERA5,
properly estimates the BLH, especially above the regions of Europe, the eastern U.S,

East Asia, and polar.

Similarly, the BLHs by MERRA-2 are underestimated, with a near-global mean
bias of 166.35 m (Figure 8), which is slightly larger than that of ERA5 (131.96 m). This
could indicate that the MERRA-2-derived BLH is more dispersed than ERA5. The
spatial distribution of bias value is broadly identical to that of ERA5, except that the
BLHSs over Europe, Australia, and polar region are well estimated by MERRA-2, due
to much smaller mean biases at 42.78 m, 52.98 m, and 66.20 m, respectively (Figure

8b, g, i).

In addition, the packaged BLH in MERRA-2 is also evaluated with radiosonde.
BLH is as high as 3 km over the TP region at 0600 UTC (Figure S3), corresponding to
an overestimation of 0.8 km over this region (Figure S4). Over the rest regions, BLH is
slightly or moderately overestimated by around 50 m. However, The BLH difference

among various methods could reach up to a kilometer or even more (Seidel et al., 2010),
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which is probably owing to the variety of kinetic or thermodynamic theories applied in

different algorithms.

By comparison, the mean bias produced by JRA-55 is larger than those from
ERA5 and MERRA-2, with a mean value of 351.49 m, as shown in Figure 9. The BLHs
above most stations are underestimated by JRA-55, particularly for the sites over
western China and western U.S, and the Pacific Ocean, with an underestimation of
about 800 m. The most underestimated stations cluster at the latitude range of 40—45N,
with a mean difference of around 1 km (Figure 9f). Although the near-global mean of
bias is significantly larger than ERAS5 and MERRA-2, the estimations over Europe and
the polar regions seem to be more in line with the observations , with mean values of

174.99 m and 93.84 m, respectively (Figure 9b, i).

The mean bias by NCEP-2 is larger than that by JRA-55, with a mean value of
420.86 m, as illustrated by Figure 10. The distribution results are similar to JRA-55,

except for Europe and Australia, where the bias is about twice that of JRA-55.

In general, the comparison analysis of the daytime BLH results between soundings
and four reanalysis datasets indicates that ERA5 reanalysis produces the BLH that is
closest to the high-resolution soundings. Interestingly, MERRA-2 can provide a good
spatial distribution of BLH. JRA-55 and NCEP-2 can only give a good prediction over
some regions, most of which tends to produce a much larger BLH estimates compared

to those from ERA5 and MERRA-2.
3.4 Potential sources for the bias between reanalysis products and radiosonde

The possible sources for the difference between radiosonde and reanalysis could
be rather complicated. From the spatial pattern of BLH discrepancy results between
radiosonde and reanalysis (Figures 7-10), we can notice that the regions with large
differences tend to be observed over regions with high elevation, such as the TP in
China and Rocky mountain in the U.S. These regions generally have much more
complex orography. Coincidently, the soundings over the above-mentioned two regions

are all obtained from afternoon, in which the PBL develops to the maximum (Figure 4).
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As expected, highest biases generally are accompanied with peak BLHs, which has also
been confirmed in our previous studies (cf. Figure 2c in Li et al., 2017). Therefore, the
biases depend on the LST when the weather balloon is launched, which at least could

not be ruled out.

In addition, the large differences primarily appear in the low and middle latitudes,
where thermal convection frequently occurs. Therefore, it is reasonable to infer that
static stability could exert an influence on the comparison results. Then, we will analyze

the probable influences from terrain and static stability on BLH differences.

We evaluate the influence from the orographic complexity around the sounding
station and calculate the standard derivation (STD) of elevation within 11 °grid, with
the help of 30 arc second digital elevation model (DEM) dataset. Terrain is complex
over the western China and western US where most of soundings are released in
afternoon and large BLH biases are usually found. Therefore, for all soundings that are
launched during the time period spanning from 1300 LST to 1800 LST we analyze the
relationship between BLH biases and the standard derivation of the DEM (Figure 11).
It follows that the influence from the orography appears instrumental, given the
correlation coefficient varying from -0.84 to -0.95. Furthermore, the errors or
uncertainties in ERAS are less easily impacted by the orographic complexity given a

much flatter fitted line (Figure 11a).

Based on the correlation between orographic complexity (manifested by the STD
of the DEM) and the bias of a reanalysis relative to radiosonde measurements, it is
likely that the performances of MERRA-2, JRA-55, and NCEP-2 might be restricted
by the complex underlying terrains. One of the reasons could be because global
reanalysis with coarse resolution that cannot resolve the sub-grid processes due to
topography. However, ERAS appears to be less dependent on terrain. In other words,
the models used in ERAS5 show sufficient capability and excellent performance in

reproducing the atmospheres, particularly in the PBL over complex terrains.
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Lower tropospheric stability (LTS) is an indicator to describe the thermodynamic
state of the lower atmosphere and is defined by the differences in potential temperature
at 700 hPa and 1000 hPa (Guo et al., 2016). Typically, the smaller the LTS, the more
unstable the low troposphere. The mean LTS over each station is defined by the
ensemble mean by four reanalysis datasets, and its spatial distribution is depicted in
Figure 12. The lower troposphere over the western United States and western China is
more unstable compared to the rest of the world, with LTS of around 6K (Figure 11a),
which is likely associated with afternoon launch time of weather balloons. According
to the correlation between the bias of BLH and the mean LTS, it is clear that the
underestimation in BLH by JRA-55 and NCEP-2 products are negatively correlated
with LTS, with correlation coefficients of 0.32 and 0.36 (Figure 12b).

Besides the LTS, the role of lifted index could be another influential factor. The
lifted index is a predictor of latent instability (Galway, 1956), and it is defined as the
temperature difference between the environment temperature and an air parcel lifted
adiabatically at 500 hPa. The index is computed by the air temperature, RH, and
pressure profiles from radiosondes. We calculate the percentage of negative lifted index
above each station, which represents the occurrence rate of latent instability that exists
in the daytime (Figure 12c). The stations with high probability of strong instability,
denoted by P(lifted index < 0), are predominantly dispersed over the west U.S, the
west and south of China, and the Pacific Ocean, reaching a percentage as high as around
70%. These stations are regularly overlapped with great biases in the reanalysis
products as shown in Figures 7-10. According to the analysis, it is clear that all four
reanalysis products are positively associated with P (lifted index < 0) , with
correlation coefficients ranging from -0.34 to -0.47 (Figure 12d). The positive (negative)
correlation coefficients in lifted index suggests that the underestimation by reanalysis
might be associated with the instability activity in the lower troposphere that has not
been adequately represented or simulated by the models used in reanalyses. In light of

the surface heating during the day and the growth of the PBL due to air ascent, it is also
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inferred that afternoon BLHSs suffer the greatest errors if this is caused by inadequate

air mixing within the free troposphere in models.

4. Conclusions and summary

A climatology of near-global BLH from high-resolution radiosonde measurements
has been yielded for the daytime BLH. The high-resolution radiosonde data has a much
finer spatial resolution of 5 m or 10 m, compared to that by IGRA, and can establish a
finer and more precise structure of the PBL. In addition, direct comparisons among four
well-established reanalysis model products have been conducted. The present study
adopts over 300 sounding stations with high-resolution, spanning from 2012 to 2019,
to investigate the climatological variation of near-global BLH in the daytime and

evaluates four model products at the radiosonde sampling.

Notable spatial variation can be observed in the climatological mean of BLH at
0000 and 1200 UTC. In the afternoon, the regions over the Western United States and
Western China have the largest BLHs with values as high as 1.7 km, whereas 0000 and
1200 UTC compare generally to earlier times of day (LST) in the rest of the world with
hence lower BLH. In addition, BLHSs in the middle and low latitudes are larger than
those in high latitudes. The T.m and RH, and the normalized sensible/latent heat flux
are a good predictor for the spatio-temporal evolution of BLH. The most important
result is we found that all the four reanalysis products generally underestimate the
daytime BLH, with a near-global mean varying from around 132 m to 420 m. The
largest bias in reanalysis appears over the Western United States and Western China,
where the boundary layers grow vigorously in the afternoon. ERA5 and MERRA-2
definitely have better performance than JRA-55 and NCEP-2 in terms of the magnitude
of BLH and a higher correlation coefficient with the soundings. The newest version of
reanalysis, ERAS, has the smallest bias and the highest positive correlation relative to
radiosondes. The underestimation by NCEP-2 and JRA-55 is robust over some regions,

for instance, western China and western U.S, with differences even exceeding 800 m.
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However, all products can obtain a precise estimate over some regions, for instance,
Europe, the eastern U.S, and polar, probably due to morning LST soundings and smaller
daytime PBL development. The BLH over the Pacific Ocean is underestimated in all
seasons and by all products. The underestimation tends to have a seasonal dependence,
i.e., the warm season has a larger underestimation. However, BLH is moderately
overestimated by the packaged BLH parameter in MERRA-2, possibly due to different
BLH-deriving methods used.

We investigated two possible sources contributing to the biases, including
topography and static stability. The analysis shows that the DEM spread does have a
negative correlation with the bias, suggesting that the reanalysis data cannot provide a
reliable simulation result under complex terrain conditions. In addition, reanalysis BLH
errors tends to be negatively correlated with the occurrence rate of unstable air,
suggesting that the reanalyses do not accurately determine BLH when the lower

troposphere is unstable.

Although this study suffers from the inhomogeneous distribution of the radiosonde
sites, the climatological BLHs at the near-global scale can help us understand the
variation characteristics of BLH in different regions and for different LST. For the first
time, we present near-global BLH estimates from high-resolution radiosondes, and
further conduct a comprehensive comparison of BLH products for four widely used
reanalysis datasets using the BLHSs derived from the soundings. The findings provide
insights into the limitations of reanalysis data and, more importantly, are expected to
greatly benefit future research works related to applications of different kinds of

reanalysis data in the future.
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803  Figure 1. Profiles of basic atmomospheric parameters from the ground up to 2.5 km
804  AGL, including wind speed (orange), bulk Ri (black), temperature (blue), and RH
805  (green) at 0600 UTC (1400 LST) 06 Jun 2016 at Chongging (29.6 N, 106.4E, 541 m)
806  from radiosonde (a), MERRA-2 (b), NCEP-2 (c), and JRA-55 (d) reanalysis datasets.
807  The boundary layer height (BLH) in each subplot is marked as red dash lines and red
808 texts, and the BLH for ERAS5 is 1265 m in this case (black dash lines).
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814  Figure 2. The mean BLH estimated from ERA5 (a), NCEP-2 (b), JRA-55 (c), and

815 MERRA-2 (d) reanalysis data at 0000 UTC during years 2012 — 2019. The dots with

816  gray marginal lines in each map denote the mean BLH derived by sondes at 0000 UTC,

817  and the red dotted lines present the mean BLH derived by radiosonde on a grid with 5°
818 longitude. Stations with less than 10 profiles are not included in the analysis. The 2D

819  scatter plot in the left bottom corner of each panel illustrates the correlations between

820  reanalysis-derived and sonde-derived BLHs at 0000 UTC, where the asterisk (*)

821  superscripts indicate that the correlation coefficients are statistically significant (p<0.05)
822  and the red lines denote the least-squares regression line.
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Figure 3. Spatial distributions of the mean BLHs determined at the near-global high-

resolution radiosonde observational network locations during the daytime for the period

2012 to 2019, which is extracted from ERAS (a), MERRA-2 (b), JRA-55 (c), NCEP-2

(d), and radiosonde measurements (e), respectively. Similar to Figure 2, the scatter plot

illustrates the correlations between reanalysis-derived and sonde-determined BLHSs in

the daytime.
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Figure 5. Correlations between the radiosonde-derived BLHs and near-surface air
temperature at 2m AGL (T2m; a), near-surface pressure (Ps; b), near-surface RH (c),
and near-surface wind speed (WS; d). Dots outlined in black denote that the correlation
coefficient values are statistically significant (p<0.05), and the mean correlations are

texted in the upper right corner of each panel.
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The box and whisker plot of BLH differences over the six regions of interest (i.e., North
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displayed in (a-c), (g-i). The seasons are defined as follows: MAM, March-April-May;
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Figure 10. Similar as Figure 7, but for the differences between NCEP-2-derived BLHs
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Figure 11. Density plots of the differences of BLHs between radiosonde and ERAS (a),
MERRA-2 (b), JRA-55 (c), and NCEP-2 (d) as a function of the standard derivation of
the DEM, where the black lines denote the least-squares regression line. The box-and-
whisker plots of the anomalies of BLH in five evenly intervals are overlaid in each
panel, and the correlation coefficients are marked in the upper right corner of each panel.
Note that all samples are collected from soundings that are launched in the afternoon,

spanning from 1300 LST to 1800 LST.
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Figure 12. Spatial distribution of the ensemble means of lower tropospheric stability in

the daytime (a). The scatter plots showing the difference of model- minus sounding-

derived BLHs from four reanalysis datasets versus the anomalies of LTS as derived

from four reanalysis relative to those from soundings (b). The variations in the

percentage of negative lifted index (c), and the anomalies of BLH as a function of

negative lifted index (d).
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