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Abstract. Despite several studies on decadal-scale solar influence on climate, a systematic detection of solar-induced signals 

at the surface and the Sun's contribution to decadal climate predictability is still missing. Here, we disentangle the solar-

cycle-induced climate response from internal variability and from other external forcings such as greenhouse gases. We 

utilize two 10-member ensemble simulations with a state-of-the-art chemistry climate model, to date a unique data set in 

chemistry climate modelling. We quantify the potential predictability related to the solar cycle and demonstrate that the 15 

detectability of the solar influence on surface climate depends on the magnitude of the solar cycle. Further, we show that a 

strong solar cycle forcing organizes and synchronizes the decadal-scale component of the North Atlantic Oscillation, the 

dominant mode of climate variability in the North Atlantic region. 

 

1 Introduction 20 

Since the middle of the last century long-term changes in global climate have been dominated by anthropogenic greenhouse 

gas emissions. Nevertheless, natural forcings play an important, but poorly quantified role in past and present climate, 

especially on regional scales. Solar forcing variability has been suggested to affect regional climate variability (Gray et al., 

2010) and to synchronize internal variability modes such as the North Atlantic Oscillation (NAO) (Thiéblemont et al., 2015). 

Consequently, solar variability may offer a source of decadal predictability for regional climate due to its periodicity 25 

(Dunstone et al., 2016; Kushnir et al., 2019). 

In recent years, comprehensive (decadal or near-term) climate prediction efforts have been made to provide a skilful and 

reliable forecast of the actual evolution of both externally forced and internally generated components of the climate system. 

These prediction systems show forecast skill for several years (Bellucci et al., 2015; Yeager and Robson, 2017) beyond the 

externally forced climate response (Smith et al., 2019). Yet, a comprehensive understanding of predictability of the coupled 30 

climate system as well as the interaction of different predictability drivers is missing. 

It is challenging to separate the 11-year solar cycle surface signal from internal climate variability in observations because 

the solar signal is small compared to internal variability and the number of solar cycles is limited. Investigating its 

https://doi.org/10.5194/acp-2021-241
Preprint. Discussion started: 12 May 2021
c© Author(s) 2021. CC BY 4.0 License.



2 
 

detectability, a recent study (Chiodo et al., 2019) questioned the statistical reliability of the previously widely accepted solar 

cycle influence on North Atlantic climate projecting onto the NAO (Gray et al., 2013, 2016; Kodera, 2003; Kodera et al., 35 

2016; Kodera and Kuroda, 2002; Matthes et al., 2006; Thiéblemont et al., 2015). The present manuscript intends to partly 

rebut the conclusions of this study and to provide new robust evidence of solar influence on North Atlantic climate. We 

utilize a unique set of two 10-member ensemble simulations of a state-of-the-art coupled chemistry climate model to isolate 

and decipher the 11-year solar cycle's footprint in North Atlantic surface climate variability and to quantify the contribution 

of the solar cycle to regional decadal potential predictability relative to other external forcings and internal variability during 40 

Northern Hemisphere winter. These simulations include a realistic solar forcing dataset recommended for CMIP6 (including 

solar radiative and particle forcing), a well-resolved shortwave radiation scheme, a comprehensive module for middle 

atmosphere chemistry modelling as well as an interactive ocean to capture internal climate variability adequately. 

2 Potential predictability associated with the solar cycle 

The chemistry-climate model in use is CESM1(WACCM) (Marsh et al., 2013). One ensemble includes the full CMIP6 solar 45 

forcing (FULL), while the other only considers the low-frequency (time scales longer than ~30 years) changes of solar 

irradiance (LOWFREQ) (Fig. S1). All simulations have been integrated over the historical period 1850-2014. We estimate 

the potential predictability variance fraction (ppvf) related to the 11-year solar cycle as well as to all other external forcings 

(including the low-frequency component of solar variability) for decadal (8-year running mean) variations of winter (DJF) 

surface air temperatures (see "Methods"). 8-year running means are chosen as these are a typical target of actual decadal 50 

prediction efforts (Goddard et al., 2013). The ppvf describes how much of the total decadal variance in our FULL ensemble 

is explained by the respective forcing(s). The ratio of variance that cannot be associated with any external forcing is 

considered as internal variability. The extratropical North Atlantic is a hotspot of solar cycle influence on climate 

predictability (Fig. 1a) where up to 25% of the decadal variability of winter surface air temperatures are explained by the 

solar cycle. At the same time, this region shows low potential predictability due to other (low-frequency) external forcings 55 

(Fig. 1b) and large internal variability (Fig. 1c).  
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Figure 1: Decadal potential predictability due to the solar cycle, other external forcings and internal climate variability. Potential 
predictability variance fraction (ppvf; explained variance) with respect to the DJF 8-year averaged surface air temperature associated with 
(a) the 11-year solar cycle, (b) all other external forcings (anthropogenic forcings, volcanic aerosols, and solar-induced low-frequency 60 
variability), and (c) remaining variance fraction due to internal climate variability. Statistically insignificant regions (p>0.05) in Figs. 1a 
and b are hatched. Fig. 1c exhibits masked areas solely over a few grid points in the North Atlantic because the “ppvf low-frequency 
external” for 2m-temperature is significant almost globally. See “Methods” section for more details on the ppvf calculation and statistical 
significance estimates. 

 65 
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The range of externally and internally generated variance fraction of our large CESM ensemble is well within the range of 

other high-top CMIP5 models (Fig. S2), which do not distinguish between solar cycle and other external forcings however. 

Also, our results agree qualitatively well with previous studies showing (i) low potential predictability due to external 

forcings and large internal variability over the extratropical North Atlantic (Boer et al., 2013), and (ii) statistically significant 

surface signals associated with the solar cycle (Gray et al., 2010, 2013; Kodera, 2003; Thiéblemont et al., 2015). This is 70 

further supported by Figure S3 when comparing the "skill" (correlation with observations) of FULL and LOWFREQ for the 

North Atlantic region. Consequently, solar variability and an adequate representation of its impact on climate is key to 

exploit the solar-induced potential predictability for decadal climate predictions. 

3 The top-down mechanism depends on solar cycle amplitude 

The presence of large internal variability during winter complicates the detection of the small solar-cycle-forced signal in the 75 

short observational record or even in long climate model simulations. We successfully isolate the 11-year solar cycle 

response based on two 10-member ensemble simulations - to date a unique data set in chemistry climate modelling. We 

separate it from other external forcings by subtracting the LOWFREQ ensemble mean from the FULL ensemble, and from 

internal variability by averaging over the individual ensemble members (see “Methods”). 

 80 
 
 
Figure 2: Top-down mechanism. Enhanced solar UV radiation during solar maxima enhances heating of the middle atmosphere and 
ozone production, which in turn enhances heating in the tropical stratopause (Gray et al., 2010; Haigh, 1994). As a result of this anomalous 
heating in the tropical upper stratosphere, an increased meridional temperature gradient (Fig. S4) initiates a westerly wind anomaly in the 85 
upper mid-latitude stratopause region (Fig. S5), which through wave-mean flow interaction changes the propagation properties for 
planetary waves and transports the early winter signal to the lower stratosphere, troposphere and to the surface in late winter (Fig. S5). 
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The top-down mechanism of solar influence on surface climate is depicted in Figure 2 and we refer to the plethora of 

literature (e.g., Gray et al., 2010; Haigh, 1994; Kodera and Kuroda, 2002; Matthes et al., 2006). Our ensemble supports this 90 

general and widely accepted concept. The tropical stratopause temperature anomaly varies in phase with the 11-year solar 

cycle (Fig. 3a). As the solar cycle amplitude shifts from a “weak epoch” into a “strong epoch” (see “Methods” for distinction 

between weak and strong epoch), the variance of the solar-induced temperature changes compared to the magnitude of 

internal variability increases from 31% to 69%, and the correlation with the F10.7 index from rT_weak=0.55 to rT_strong=0.72. 

The ensemble mean zonal wind gets more organized and in phase with the solar forcing during the strong epoch (Fig. 3b): 95 

The correlation between the solar index and the solar-induced ensemble mean wind changes is close to zero (rU_weak=-0.12) 

during the weak epoch but rises to rU_strong=0.36 in the strong epoch. However, its amplitude does not differ much between 

the weak and the strong epoch (its variance is 22% (weak epoch) and 23% (strong epoch) compared to internal variability). 

During the weak epoch, the weak direct solar signal in tropical stratopause temperatures (Fig. S4) is not strong enough to 

maintain the stratopause circulation longer in a radiatively controlled state, the anomalous westerly winds shift poleward 100 

already in the middle of November and are then controlled by “non-forced” polar dynamical processes (Fig. S5, S6) (Kodera 

et al., 2016; Kodera and Kuroda, 2002). This fast transition from a radiatively controlled to a dynamically controlled state 

warms up the entire polar stratosphere through a modulation of the Brewer-Dobson circulation (Fig. S6). In contrast, in the 

strong epoch, the radiatively controlled state switches to a dynamically controlled state as late as in February: We find the 

“typical” downward propagation of zonal wind anomalies in later winter and a synchronization of the ensemble members 105 

(Fig. S5). This shows that the response to the solar cycle is highly non-linear and not necessarily proportional to the forcing. 

Therefore, the following analyses concentrate on the strong epoch only where a synchronization takes place. 

 

5
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 110 
Fig. 3. Direct solar cycle signal in the upper stratosphere. a) Time series of the tropical stratopause temperature (1hPa, 15°S-15°N) 
averaged over the winter season (DJF) for the individual ensemble members (grey thin lines), ensemble mean (black thick line) and the 
solar cycle index F10.7 (red line). b) Same as a), but for December zonal mean zonal wind averaged over 55-65°N, 1hPa, smoothed with a 
3-year running mean. To isolate 11-year solar cycle effects, differences between the FULL and the LOWFREQ ensemble simulations have 
been calculated. The grey lines include internal variability and the 11-year solar signal, their spread represents the internal variability, and 115 
the ensemble mean (thick black line) represents the 11-year solar cycle signal. The 11-year solar cycle has been isolated in a similar way 
from the original solar forcing time series by subtracting the low-frequency part of the solar forcing (Fig. S1). 
 

4 Solar-induced surface signals and synchronization of the NAO with the solar cycle 

Consistent with the zonal mean zonal wind anomalies (Fig. S5) a clear and statistically significant surface response appears 120 

in sea level pressure (SLP) in February featuring higher pressure anomalies in the mid-latitudes and lower pressure 

anomalies over the North Pole with a minimum over Scandinavia and the Norwegian Sea representing a negative Annular 

Mode pattern during the strong epoch (Fig. 4a). Consistent with the annular SLP and wind signals a statistically significant 

response in sea surface temperatures (SSTs) in the North Atlantic appears (Fig. 4b). The model response is strongest at the 

time where the strongest zonal mean zonal wind signal extends down to the surface, propagating poleward-downward from 125 

the stratosphere (Fig. S5). 

The solar signal in SLP resembles the tri-polar NAO pattern (Visbeck et al., 2003), but it is shifted towards Europe with 

centers over Scandinavia and the Mediterranean Sea (and a secondary maximum towards North America) as compared to the 

NAO, which has action centers close to Iceland and the Azores (Fig. 4a). To further investigate the role of the solar cycle for 

decadal climate variability in the North Atlantic region, we focus on the NAO-like solar signal in the following. 130 
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Figure 4: Solar surface signal in NH winter at lag 0 during the strong epoch. Composite differences between the solar maximum and 
minimum for a) SLP (contours) and wind at 850hPa (vectors) in February. Only those vectors where the zonal mean wind component is 135 
significant at the 90% level are shown. The two green circles indicate the stations used for the NAO index calculation (see Method section 
for more details). b) same as a) but for SST (contours) averaged over the winter season (DJF). White dots indicate 90% statistically 
significant regions based on a 1000-fold bootstrapping test. 
 
The NAO-like mode (green markers in Fig. 4a; see “Methods”) exhibits typical quasi-decadal internally generated 140 

oscillations during NH winter (cf. blue line in Fig. S7). The solar cycle synchronizes the phase of the NAO-like index in 

February during the strong epoch (Fig. 5a), while the internally generated decadal-scale NAO has no clear phase relationship 

with the solar cycle (Fig. 5b). The relationship between the solar cycle and the model ensemble mean NAO index is stable 

only during the strong epoch when the solar cycle forcing is strong. Their running correlation for all overlapping 45-year 

windows is fluctuating in the earlier years but begins to rise in the 1920’s both for the model and observations (Fig. 5c). In 145 

the second half of the 20th century, the correlations reach statistical significances of 90% in the model and in observations 

with a lag of two years (Gray et al., 2013; Thiéblemont et al., 2015) (see “Discussion”). A comparison of the solar signal 

with internal variability reveals that the solar signal in SLP over Europe is approximately 18% the magnitude of internal 

variability during the strong epoch. The solar cycle signal is small in magnitude but manifests itself as an organization and 

synchronization of internal variability as shown by the cross-correlations (Fig. 5a) and the increasing running correlations 150 

(Fig. 5c), which is in agreement with earlier studies (Otterå et al., 2010; Scaife et al., 2013; Thiéblemont et al., 2015). We 

here show that this “organization” depends on the solar cycle amplitude and it is large enough for a potential predictability 

variance fraction (ppvf) of up to 25% in the North Atlantic region (Fig. 1a). 
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Figure 5: Synchronization of internal variability modes in the Atlantic with the solar cycle. Cross correlation between the wintertime 
(DJF) solar index (F10.7cm solar flux) and the February NAO-like station-based indices for a) 11-year + internal components (FULL 
minus ensemble mean of LOWFREQ) and b) internal component (FULL minus ensemble mean of FULL) during the strong epoch (gray 160 
thin lines: individual members; blue line: ensemble mean). The 90% significance level is shown as shaded envelope (light blue). c) 45-year 
running correlation of NAO indices in February from the model (black lines) and observation (red solid (lag 2 years) and red dashed (lag 0 
years) lines) with the F10.7 index. The year on the x-axis denotes the central year of the window (in case of the lagged time series it is 
w.r.t. the NAO index). All indices are station-based and smoothed with a 3-year running mean prior to calculating the correlation. The 
90% significance level is shown as shaded envelopes, for model (grey) and observations (light red) separately. d) Scatter plot of February 165 
NAO-sun running correlations (FULL-LOWFREQ, smoothed with 3-year running mean, 45-year windows (similar to Fig. 4c) against 
solar cycle amplitude (standard deviation of smoothed F10.7cm time series, same 45-year windows). Red crosses are the ensemble mean 
of correlations of single ensemble members with the solar index. Dots are the correlation of the ensemble mean NAO with the solar index, 
purple dots are correlations that exceed the 90% significance level calculated with a random-phase test.  
 170 

Note that the observations only provide one realization, which includes all external forcings as well as internal variability.  

We show that a significant solar signal in the North Atlantic region is generated by the 11-year solar cycle in our 10 

ensemble simulations during the strong epoch. The alignment of the surface pressure pattern with the solar cycle after the 

1920’s can also nicely be seen in the NAO-like time series (Fig. S7), which agrees with a number of earlier studies (Dima et 

al., 2005; Gray et al., 2016; Ma et al., 2018). A weak imprint can even be seen in the EOF-based NAO index (Fig. S7).  175 

The dependence of the correlation strength on the solar cycle amplitude can be depicted from Fig. 5d: while for low solar 

cycle amplitudes correlations are scattered around zero, they are larger and positive for enhanced solar cycle amplitudes. 

Note that we do not expect larger correlations since the NAO index represents near-surface signals and as discussed above 

the solar surface signal is small.  Hence, even though correlations as in Fig. 5c are similar to what has been shown in a recent 

study (Chiodo et al., 2019), our conclusions are very different. 180 

5 Discussion 

Recent analyses of the solar influence on the North Atlantic revealed insignificant responses (Chiodo et al., 2019) whereas 

numerous previous studies have found statistically significant solar cycle signals in surface climate in observations and 

climate models (Gray et al., 2010, 2013, 2016; Kodera, 2003; Kodera et al., 2016; Matthes et al., 2006) and even proposed a 

synchronization of the NAO by the 11-year solar cycle through the “top-down” stratospheric mechanism (Thiéblemont et al., 185 

2015).  

Here, we systematically detected solar-induced atmospheric and surface signals and separated them from internal variability 

as well as other external forcings based on two 10-member ensembles. For the first time, it was possible to overcome the 

problems in observations where a separation of solar-forced variability and a comparison to other external forcings and 

internal variability is impossible.  190 

We demonstrate that the strength of the solar surface signal depends on the amplitude of the solar cycle. A stronger signal is 

detected during the “strong solar cycle epoch” and explains the limited detectability of observed surface signals before the 

1930’s as well as discrepancies in earlier studies. We show that a stronger solar cycle signal induces a surface response that 

resembles the NAO. The NAO in turn is organized and synchronized by the solar cycle. This is because the solar cycle 
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enforces the NAO phase if the solar forcing is strong enough. Our study confirms previous studies (Misios and Schmidt, 195 

2012; Thiéblemont et al., 2015) which used the strong epoch for their solar forcing.  

While we find statistically significant ensemble mean solar-cycle-induced surface signals in February during the strong 

epoch which are consistent with the top-down propagation from stratospheric signals, a controversial recent study (Chiodo et 

al., 2019) making use of combined DJF surface pressure pattern could not detect significant surface signals in their SOL 

simulation. Our results suggest that it might be necessary to analyze monthly fields to capture a highly monthly varying 200 

signal. Also, although the base model is quite similar, there are a couple of important differences. Whereas we use two 10-

member ensemble simulations of the historical period (2x10x165years=2x1650years; for the strong epoch this means: 

2x10x83=2x830years) with the CMIP6 solar forcing (radiative and particle forcing) and the anthropogenic signal included, 

the other study uses two 500-year integrations with perpetual anthropogenic conditions representative for the year 2000 and 

an idealized solar forcing which repeats the last four solar cycles (cycle 20-23) and does not include the low-frequency 205 

component over the historical period. For the analysis of sea level pressure or zonal mean winds relatively short 100 or 30-

year periods are considered, whereas we have 10 members of 83 years each for the strong period. We isolate the 11-year 

solar cycle signal by subtracting the LOWFREQ ensemble mean from the FULL ensemble, whereas the other study 

compares the simulation which includes the idealized 11-year solar cycle (SOL) with a simulation that does not include any 

solar forcing (NOSOL).  210 

We would like to note that there are still some discrepancies between our simulations and observations, such as the different 

timing and location of maximum responses. We do not find a lagged NAO response in our simulations and the 

synchronization can only be found in February when the solar-induced zonal mean wind reaches the surface, while the 

largest response in observations appears at a lag of two years (Fig. S9). Possible reasons for these discrepancies are (i) that 

the observational record is only one ensemble member that includes all internal variability and responses to all external 215 

forcings, (ii) that the model feedback from the ocean is insufficient and (iii) the influence of the solar cycle is highly non-

linear which is very difficult to grasp.   

The importance of the periodic solar cycle is particularly interesting for decadal climate predictions. Our results indicate that 

the solar cycle has a significant contribution to the potential predictability of up to 20-25% in the North Atlantic during 

winter, where the climate response to external forcings such as greenhouse gases is comparably low. This offers the 220 

opportunity to increase decadal prediction skills in particular over Europe. This is in line with a very recent study which 

found exactly this region to be particularly sensitive to natural external forcings such as volcanic aerosols and solar activity 

when comparing decadal prediction systems from CMIP5 and CMIP6 (Borchert et al., 2021). The key for climate models to 

exploit this potential originating in solar forcing is - besides a sufficiently large ensemble (see Fig. S8) - the incorporation of 

necessary pre-requisites to simulate the effects of the solar cycle: a realistic, spectrally resolved solar forcing dataset, either 225 

interactive chemistry or at least an ozone forcing including an estimate of the solar cycle impact and a well resolved 

shortwave radiation scheme to account for the solar UV changes.  
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Methods 

Model description. We use the fourth version of the Whole Atmosphere Community Climate Model (WACCM4) (Marsh et 

al., 2013) which is part of the Community Earth System Model suite (CESM) version 1.0.6 (Hurrell et al., 2013). 230 

CESM1(WACCM) is an extension of the Community Atmospheric Model (CAM4) (Kinnison et al., 2007; Neale et al., 

2013). It covers the atmosphere from the surface to the lower thermosphere (4.5x10-6 hPa; approx.145~km) and is considered 

a “high-top” model. CESM1(WACCM) has a horizontal resolution of 1.9°x2.5° and 66 vertical levels. It includes a middle 

atmosphere chemistry module which is based on the Model for Ozone and Related Chemical Tracers (MOZART3) (Garcia 

et al., 2014), comprising a total number of 59 species and 217 gas-phase chemical reactions (including all members of the 235 

OX, NOX, HOX chemical groups). For the presented simulations, we implemented a set of model improvements (Garcia et al., 

2014, 2017; Smith et al., 2014). These include an increased turbulent Prandtl number yielding an increased diffusion 

coefficient as well as modifications related to gravity waves: (i) the orographic gravity wave drag does not depend on the 

land fraction of the gridbox anymore and (ii) the ratio of energy from dissipating gravity waves that is transformed into heat 

has been reduced to 30%. Since this model version is not able to internally generate a Quasi-Biennial Oscillation (QBO), we 240 

relax stratospheric equatorial winds towards an idealized QBO with a fixed 28-months period (Matthes et al., 2010). The 

POP ocean module has a tripolar horizontal grid of 1°x1° and 60 depth levels. 

Experimental design. The two 10-member ensemble simulations, FULL and LOWFREQ, cover 165 years each from 1850 

through 2014, follow the CMIP5-historical recommendations for all external forcings from 1850-2004 and continue with the 

RCP4.5-scenario afterwards. Only for the solar forcing the improved CMIP6 dataset has been used (Matthes et al., 2017). 245 

The FULL ensemble experiences the complete solar variability from the CMIP6 dataset with total and spectrally resolved 

solar irradiances as well as energetic particle effects. The LOWFREQ ensemble only includes the low frequency part of solar 

variability by low-pass filtering the solar forcing with a 33-year running mean (Fig. S1). The individual ensemble members 

of FULL and LOWFREQ have been each initialized from different climate states of a multi-centennial pre-industrial control 

simulation. 250 

Observations. The NOAA Global Surface Temperature (NOAAGlobalTemp V4.0.1) including The Extended Reconstructed 

Sea Surface Temperature (ERSST) dataset (version 5) (Huang et al., 2017) and land surface air temperature data from the 

Global Historical Climatology Network-Monthly dataset (Menne et al., 2018) is used to calculate correlations with the model 

simulations. HadSLP2r data (Allan and Ansell, 2006) is used to calculate the observed NAO index as well as composites. All 

these data is provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web sites at 255 

https://psl.noaa.gov/data/gridded/data.noaaglobaltemp.html and https://psl.noaa.gov/gcos_wgsp/Gridded/data.hadslp2.html . 

Disentangling internal and external variability. The single members in one ensemble (FULL or LOWFREQ) share the 

same externally forced signals but have different internal variability. To isolate the internal variability from external 

forcings, the ensemble average of the respective ensemble (FULL or LOWFREQ) has to be subtracted from the individual 

members. The ensemble mean (average over all individual members) represents the combined effects of all external forcings. 260 
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External forcings in the LOWFREQ ensemble comprise low-frequency solar variability as well as changes in greenhouse 

gases, while in the FULL ensemble additionally the effect of the 11-year solar cycle is included. In order to isolate the solar 

cycle from other external forcings, the ensemble mean of the LOWFREQ ensemble has to be subtracted from the ensemble 

mean of the FULL ensemble. 

Definition of weak epoch and strong epoch. Two periods (weak and strong epoch) with different solar cycle amplitudes 265 

were analyzed separately. Considering the continuous integration to capture the climate evolution with changing solar and 

anthropogenic forcing similar to observations, we defined the weak epoch from 1850 to 1931 and the strong epoch from 

1932 to 2014. Important to note is, that each epoch includes 7 entire solar cycles but with different solar cycle amplitudes. 

The solar cycle amplitudes in the weak and strong epochs defined by the difference between the smoothed F10.7cm 

maximum and minimum (red and blue dots in Fig. S1) of each cycle are shown in Table. S1, as well as the standard 270 

deviation of the smoothed F10.7cm in each cycle. A different sorting of the weak and strong solar cycle amplitudes was 

tested since cycle 15 is stronger than others in the weak epoch and cycle 20 is weaker than others in the strong epoch, but it 

was rejected since only one solar cycle (cycle 15) in the weak epoch showed slightly enhanced amplitude and it was checked 

that this does not affect our results.  

Decadal potential predictability. The potential predictability variance fraction (ppvf) (Boer, 2004) is used to quantify the 275 

fraction of the decadal variability (8-year running mean) (i) forced by the 11-year solar cycle, (ii) forced by all other external 

forcings (including the low-frequency component of solar variability), and (iii) due to internal variability. First, we calculate 

the variance of each of these components (disentangling solar cycle, external and internal components as described above), 

then divide it by the total variance to obtain the ppvf of each component. An 8-year running mean was applied to surface 

temperatures before calculating the variance in order to isolate decadal variability. Statistically insignificant regions (p>0.05) 280 

in Figs. 1a and b are estimated by analyzing the ppvf attributed to the solar cycle and the low-frequency external components 

in comparison to the internal variance fractions by means of a Fisher’s f-test in line with earlier studies (Boer, 2004). 

Calculations in Fig. 1a take into account the reduction of effective sample size due to the application of a low-pass filter.  

Composites, correlations, and statistical significances. Solar cycle-based composites are used to identify solar signals. The 

monthly time series of the F10.7 cm radio flux in solar flux units (1 sfu = 10−22Wm−2Hz−1) is smoothed with a 3-year running 285 

mean (orange line) to determine local solar maxima and minima in January as representative for boreal winter (Fig. S1). 

Three years around each maximum and minimum are selected (dots in Fig. S1). Solar composites are then calculated as 

differences between averages of all solar maximum years and all solar minimum years. A 1000-fold bootstrapping test with 

replacement (Diaconis and Efron, 1983) is used to estimate the 90% statistical significances of the ensemble mean 

composites compared to the individual ensemble members. Cross correlations and running correlations are calculated with a 290 

45-year window to investigate the relationship between the 11-year solar cycle forced signal and natural internal decadal 

variability. The significance test for correlations was calculated based on 10,000 random time series with random phases 

(Ebisuzaki, 1997).  
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NAO index definition. The model NAO-like index was created by selecting locations close to the centers of the minimum 

and maximum of the solar-induced SLP composites in February (Fig. 4a, green markers, 65.37N/22.5E, and 38.84N/17.5E). 295 

Note that this NAO definition is comparable to a landmark study (Exner, 1913) which described the spatial structure of the 

NAO first (Hurrell and Deser, 2015). For observations, the HadSLP2r dataset was used with stations in Reykjavik/Iceland, 

and Lisbon/Portugal. First the February SLP at each location was normalized (all-time mean subtracted and then divided by 

the standard deviation over the time series), then the difference between the Northern and the Southern station was 

calculated. For the model data, this was done for every member in the FULL and LOWFREQ ensemble, before calculating 300 

the two ensemble means. Finally, the LOWFREQ ensemble mean was subtracted from the FULL ensemble mean, to 

investigate the effects of the solar cycle only. The running correlations in Fig. 5c were calculated by (i) applying a 3-year 

running mean to the NAO-like time series and the F10.7cm time series of DJF averages, (ii) choosing the same 45-year 

windows for both time series (or shifted by 2 years for the lagged correlations) and correlating them, moving forward one 

year at a time. The year at the x-axis denotes the central year of the 45-year NAO-like time series window.  305 
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