Supplementary information

Characterization of aerosol number size distributions and their effect on cloud properties at Syowa Station, Antarctica

Keiichiro Hara¹, Chiharu Nishita-Hara², Kazuo Osada³, Masanori Yabuki⁴, and Takashi Yamanouchi⁵

¹ Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, 814-0180, Japan
² Fukuoka Institute for Atmospheric Environment and Health, Fukuoka University, Fukuoka, 814-0180, Japan
³ Graduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
⁴ Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, 611-0011, Japan
⁵ National Institute of Polar Research, Tokyo, 190-0014, Japan

Correspondence to: Keiichiro Hara (harakei@fukuoka-u.ac.jp)
Figure S1: Five-day backward trajectory under conditions with appearance of a quad modal structure including fresh nucleation mode at Syowa Station during 2004–2006. Altitude represents height above ground level. Trajectory was calculated from altitude at 500 m above ground level over Syowa Station (69°S).
Figure S2: Seasonal variations of coagulation sink and e-folding time by coagulation loss at Syowa Station, Antarctica during 2004–2006.
Figure S3: Cloud amounts for (a) 1969–1979 and 1980–2012, and (b) 1969–1979 and 1990–2012. t and p respectively denote t-values and p-values of t-tests. Degrees of freedom for the t-tests were (a) 86 and (b) 66. The period of 1980–1989 corresponded to ozone hole expansion.