

1 Gas-particle partitioning of polyol tracers in the western Yangtze
2 River Delta, China: Absorptive or Henry's law partitioning?

3

4 Chao Qin^a, Yafeng Gou^b, Yuhang Wang^c, Yuhao Mao^b, Hong Liao^b, Qin'geng Wang^d,
5 Mingjie Xie^{b,*}

6

7

8 ^a Colleges of Resources and Environmental Sciences, Nanjing Agricultural University,
9 Nanjing 210095, China

10 ^b Collaborative Innovation Center of Atmospheric Environment and Equipment
11 Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
12 Pollution Control, School of Environmental Science and Engineering, Nanjing
13 University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044,
14 China

15 ^c School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta,
16 GA 30332

17 ^d State Key Laboratory of Pollution Control and Resources Reuse, School of the
18 Environment, Nanjing University, Nanjing 210023, China

19

20

21

22 *Corresponding to:

23 Mingjie Xie (mingjie.xie@nuist.edu.cn; mingjie.xie@colorado.edu);

24 Tel: +86-18851903788; Fax: +86-25-58731051;

25 Mailing address: 219 Ningliu Road, Nanjing, Jiangsu, 210044, China

26

27

28

29

30 **Abstract**

31 Gas-particle partitioning of water-soluble organic compounds plays a significant
32 role in the formation and source apportionment of organic aerosols, but is poorly
33 characterized. In this work, gas- and particle-phase concentrations of isoprene oxidation
34 products (C5-alkene triols and 2-methylterols), levoglucosan, and sugar polyols were
35 measured simultaneously at a suburban site of the western Yangtze River Delta in east
36 China. All target polyols were primarily distributed into the particle phase (85.9 –
37 99.8%), and their average particle-phase fractions were not strictly dependent on vapor
38 pressures. Moreover, the measurement-based partitioning coefficients ($K_{p,OM}$) of
39 isoprene oxidation products and levoglucosan were 10^2 to 10^4 times larger than their
40 predicted $K_{p,OM}$ based on the equilibrium absorptive partitioning model. These are
41 likely attributed to the hygroscopic properties of polyol tracers and high aerosol liquid
42 water (ALW) concentrations ($\sim 20 \mu\text{g m}^{-3}$) of the study location. Due to the large gaps
43 (up to 10^7) between measurement-based effective Henry's law coefficients ($K_{H,e}$) and
44 predicted values in pure water ($K_{H,w}$), the gas-particle partitioning of polyol tracers
45 could not be depicted using Henry's law alone either. The regressions of $\log (K_{H,w}/K_{H,e})$
46 versus molality of major water-soluble components in ALW indicated that sulfate ions
47 ("salting-in effect") and water-soluble organic carbon can promote the partitioning of
48 polyol tracers into the aqueous phase. These results suggest a partitioning mechanism
49 of enhanced aqueous-phase uptake for polyol tracers, which partly reveals the
50 discrepancy between observation and modeling of secondary organic aerosols.

51

52

53

54 **1 Introduction**

55 The water-soluble organic carbon (WSOC) documented for ambient aerosols can
56 account for 20-80% of particulate organic matter based on carbon mass (Saxena and
57 Hildemann, 1996; Kondo et al., 2007). Filed studies on the hygroscopic growth and
58 cloud condensation nucleus (CCN) activity of aerosol extracts indicated that WSOC
59 contributed significantly to aerosol hygroscopicity, and modified the hydration
60 behavior of inorganic species (e.g., sulfate, nitrate, and ammonium; Hallar et al., 2013;
61 Taylor et al., 2017). Thus, WSOC plays an important role in changing radiative and
62 cloud nucleating properties of atmospheric particles. Particulate WSOC is a complex
63 mixture of polar organic compounds containing oxygenated functional groups (e.g.,
64 hydroxyl, carboxyl, and carbonyl groups), among which a list of organic compounds
65 with multiple hydroxyl (polyols) groups have been identified using gas chromatography
66 (GC)-mass spectrometry (MS) and linked with specific emission sources. For example,
67 C5-alkene triols and 2-methyltetrols are isoprene oxidation products (Claeys et al., 2004;
68 Wang et al., 2005; Surratt et al., 2006); levoglucosan is a typical pyrolysis product of
69 cellulose (Simoneit et al., 1999); primary saccharides (e.g., fructose and glucose) and
70 saccharide polyols (e.g., arabitol and mannitol) are commonly associated with soil
71 microbiota and fungal spores, respectively (Simoneit et al., 2004; Bauer et al., 2008).

72 To quantify the sources contributing to WSOC, concentrations of individual
73 organic tracers are often used as inputs for receptor-based modeling (Zhang et al., 2009;
74 Hu et al., 2010). Due to the influences of gas-particle partitioning on source
75 apportionment, Xie et al. (2013, 2014c) suggested the involvement of gas-phase
76 concentrations of organic makers through theoretical prediction or field measurements.
77 The equilibrium absorptive partitioning theory outlined by Pankow (1994a, b) and

78 laboratory measurements of secondary organic aerosol (SOA) yields (Odum et al., 1996)
79 have been widely applied to predict SOA formation in traditional modeling studies
80 (Heald et al., 2005; Volkamer et al., 2006; Hodzic et al., 2010). The large discrepancy
81 between modeled and observed SOA loadings might be partly explained by the fact that
82 the newly generated SOA did not undergo gas-phase oxidation followed by absorptive
83 partitioning (Jang et al., 2002; Kroll et al., 2005; Perraud et al., 2012). Unlike non-polar
84 species such as *n*-alkanes and polycyclic aromatic hydrocarbons (PAHs) that are well
85 simulated (Simcik et al., 1998; Xie et al., 2014a), the absorptive partitioning model
86 underestimated particle-phase concentrations of carbonyls by several orders of
87 magnitude (Healy et al., 2008; Kampf et al., 2013; Shen et al., 2018;). Zhao et al. (2013)
88 observed a positive dependence of particle-phase pinonaldehyde on relative humidity
89 (RH, %), and inferred that aerosol water favored the formation of pinonaldehyde in the
90 atmosphere. However, every few studies have been performed on the measurement of
91 gaseous polyols (Xie et al., 2014b; Isaacman-VanWertz et al., 2016), and their gas-
92 particle partitioning were poorly understood.

93 Henry's law can depict the uptake of a compound into a liquid, highly dilute
94 solution in (e.g., cloud droplets) the atmosphere (Ip et al., 2009; Compernolle and
95 Müller, 2014a). Aerosol water is also a major component of atmospheric particles, and
96 accounts for 40% by volume at 50% RH in Europe (Tsyro, 2005). But the bulk aerosol
97 solution is highly concentrated with inorganic ions and WSOC. Both laboratory and
98 field studies observed enhanced effective Henry's law coefficients (K^e_H , mol m⁻³ atm⁻¹)
99 of carbonyl compounds with inorganic salt concentrations (in mol kg⁻¹ aerosol liquid
100 water content, ALWC; Kampf et al., 2013; Waxman et al., 2015; Shen et al., 2018).
101 This termed "salting-in" effect (Setschenow, 1889) is not mechanistically understood,

102 and might be linked with the hydrophilic interactions (e.g., hydrogen bonding) between
103 polar organic compounds and inorganic ions leading to an increase of entropy or
104 decrease of Gibbs free energy (Almeida et al., 1983; Waxman et al., 2015). Polyol
105 tracers are highly water-soluble and their gas-particle partitioning is very likely driven
106 by the aqueous phase containing substantial ionic species in ambient aerosols. In the
107 Southeastern US, the particle-phase fraction of WSOC is highly dependent on RH and
108 ALWC (Hennigan et al., 2009).

109 In the present study, polyols related to specific emission sources in gaseous and
110 particle phases were measured concurrently in northern Nanjing, China. The sampling
111 and chemical analysis were performed in a similar manner as Xie et al. (2014b), while
112 an additional step was added prior to GC-MS analysis to clean the extracts of gaseous
113 samples. The absorptive and Henry's law partitioning coefficients of polyol tracers
114 were calculated based on measurements and predicted theoretically for comparison.
115 Finally, the effects of water-soluble inorganic ions and WSOC on the partitioning of
116 atmospheric polyols were evaluated. This work unveils the gas-particle partitioning of
117 polyols at a suburban site in eastern China, where the estimated average mass
118 concentration of aerosol liquid water is close to $20 \mu\text{g m}^{-3}$ (Yang et al., 2021). The
119 results will benefit future studies on modeling and source apportionment of organic
120 aerosols.

121 **2 Methods**

122 **2.1 Field Sampling**

123 Details of the sampling information were provided in Yang et al. (2021). Briefly,
124 ambient air was sampled on the rooftop of a seven-story library building located in
125 Nanjing University of Information Science and Technology (NUIST 32.21 °N, 118.71

126 °E), a suburban site in the western Yangtze River Delta of east China. A medium
127 volume sampler (PM-PUF-300, Mingye Environmental, Gugangzhou, China) equipped
128 with a 2.5 μm cut impactor was configured to collect particulate matter with
129 aerodynamic diameter less than 2.5 μm (PM_{2.5}) and gaseous organic compounds at a
130 flow rate of 300 L min⁻¹. After the impactor, the sampled air flowed through a filter
131 pack containing two stacked pre-baked (550 °C, 4 h) quartz filters (20.3 cm \times 12.6 cm,
132 Munktell Filter AB, Sweden) and a polyurethane foam (PUF, 65 mm diameter \times 37.5
133 mm length) cartridge in series. The top quartz filter (Q_f) in the filter pack was loaded
134 with PM_{2.5}; gaseous organic compounds adsorbed on the backup quartz filter (Q_b) was
135 determined to evaluate sampling artifacts (“blow on” and “blow off” effects); and the
136 PUF cartridge was used for the sampling of gaseous polyols. Xie et al. (2014b)
137 demonstrated that using bare PUF material could capture gaseous 2-methyltetrols and
138 levoglucosan with no-excessive breakthrough (< 33%). Filter and PUF samples were
139 collected every sixth day during daytime (8:00 AM – 7:00 PM) and night time (7:00
140 PM – 7:00 AM next day), respectively, from 09/28/2018 to 09/28/2019. Collection
141 efficiency of gaseous polyols were examined by performing breakthrough experiments
142 using two PUF plugs during nine sampling intervals. Prior to sampling, PUF adsorbents
143 were cleaned and dried in the same way as Xie et al. (2014b). Field blank filter and PUF
144 materials were collected every 10th sample for contamination adjustment. Filter and
145 PUF samples were sealed in prebaked aluminum foil and glass jars, respectively, at –
146 20 °C until analysis.

147 **2.2 Chemical Analysis**

148 **Bulk speciation.** The accumulated PM_{2.5} mass and bulk components including water
149 soluble ions (NH₄⁺, SO₄²⁻, NO₃⁻, Ca²⁺, Mg²⁺, and K⁺), organic (OC) and elemental

150 carbon (EC), and WSOC were measured for each filter sample. Their final
151 concentrations were determined by subtracting measurement results of Q_b from those
152 of Q_f . Concentrations of aerosol liquid water were predicted by ISORROPIA II model
153 involving ambient temperature, RH, and concentration data of NH_4^+ , SO_4^{2-} , and NO_3^-
154 under the metastable state. Table S1 lists averages and ranges of ambient temperature,
155 RH, measured $\text{PM}_{2.5}$ components, and predicted aerosol liquid water from Yang et al.
156 (2021)

157 **Polyols analysis.** Details of the analysis method for gaseous and particulate polyols
158 were provided in supplementary information (Text S1). Briefly, 1/8 of each filter
159 sample was pre-spiked with deuterated internal standard and extracted ultrasonically
160 twice for 15 min in 10–15 mL of methanol and methylene chloride mixture (1:1, v/v).
161 After filtration, rotary evaporation, N_2 blown down to dryness, and reaction with 50 μL
162 of N, O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1%
163 trimethylchlorosilane (TMCS) and 10 μL of pyridine, the derivatives of polyols were
164 diluted to 400 μL using pure hexane for GC-MS analysis. Pre-spiked PUF samples were
165 Soxhlet extracted using a mixture of 225 mL of methylene chloride and 25 mL of
166 methanol, followed by the same procedures of filter sample pretreatment. Prior to GC-
167 MS analysis, 50 μL of pure water was added to precipitate PUF impurities from the
168 final extract. As shown in Figure S1e, all PUF residues are kept in aqueous phase at the
169 bottom of the vial, while the derivatives of polyol tracers are supposed to be retained in
170 the top clear hexane solution. An aliquot of 2 μL of the supernatant was injected for
171 GC-MS analysis under splitless mode, and an internal standard method with a six-point
172 calibration curve (0.05–5 ng μL^{-1}) was performed to quantify polyols concentrations.
173 In this work, isoprene SOA products, including three C5-alkene triols (cis-2-methyl-

174 1,3,4-trihydroxy-1-butene, 3-methyl-2,3,4-trihydroxy-1-butene, and trans-2-methyl-
175 1,3,4-trihydroxy-1-butene; abbreviated as C5-alkene 1, 2, and 3) and two 2-
176 methyltetros (2-methylthreitol and 2-methylerythritol), were quantified using meso-
177 erythritol; other polyols were determined using authentic standards.

178 Analytical recoveries of target polyols were obtained by adding known amounts of
179 standards to blank sampling materials (quartz filter and PUF), followed by extraction
180 and instrumental analysis identically as ambient samples. Method detection limits
181 (MDL) of individual species were estimated as three times the standard deviation of
182 their concentrations determined from six injections of the lowest calibration standard.
183 Table S2 lists recovery and MDL values of authentic standard compounds.
184 Concentrations of polyols in field blank samples were measured and subtracted from
185 air samples if necessary. To obtain appropriate gas-particle distribution of polyol tracers,
186 their field-blank corrected concentrations in filter and PUF samples were adjusted by
187 recoveries.

188 **Gas-particle separation and breakthrough calculation.** Polyol tracers detected in Q_b
189 samples are contributed by both gaseous adsorption and particle-phase evaporation
190 from Q_f samples, while their relative contributions are unknown. Previous studies rarely
191 considered the sampling artifacts of particulate polyols. Xie et al. (2014b) adjusted
192 particle- and gas-phase concentrations of levoglucosan and 2-methyltetrool based on Q_b
193 measurements in two different ways. One assumed that Q_b values were completely
194 attributed to gaseous adsorption; the other presumed equal contributions from gaseous
195 adsorption and Q_f evaporation. However, negligible difference in gas-particle
196 distribution was observed. Thus particle-phase concentrations of polyols in this study
197 were represented by Q_f values, and the gas phase was calculated as the sum of Q_b and

198 PUF measurements.

199 The sampling efficiency of target polyols were evaluated by collecting and
200 analyzing tandemly installed PUF plugs during nine sampling intervals. The
201 breakthrough of each polyol was calculated as

$$202 B = \frac{[PUF]_{\text{back}}}{[PUF]_{\text{front}} + [PUF]_{\text{backup}}} \times 100\% \quad (1)$$

203 where B is the breakthrough of gaseous sampling, and $[PUF]$ represents the
204 concentration of specific compound in front or backup PUF sample. A value of 33%
205 was typically used to indicate excessive breakthrough (Peters et al., 2000).

206 **Calculations of partitioning coefficients.** Here, the calculations of measurement- and
207 theory-based absorptive partitioning coefficients ($K_{p,OM}^m$ and $K_{p,OM}^t$, $\text{m}^3 \text{ ug}^{-1}$) were
208 conducted identically as those in Xie et al. (2013, 2014a, b). The equations and
209 parameters were detailed in supplementary information (Text S2).

210 As aerosol liquid water plays a significant role in the gas-particle partitioning of
211 water-soluble organic compounds, we proposed an equilibrium mechanism in Figure
212 S2. First, aerosol liquid water and water insoluble OM (WIOM) exist in two separate
213 phases (liquid-liquid phase separation), and WSOC and inorganic ions are totally
214 dissolved in the aqueous phase. The distribution of polyol tracers between aqueous and
215 WIOM phases is simply depicted by their octanol-water partition coefficients (K_{ow})

$$216 K_{\text{ow}} = \frac{c_{\text{OM}}}{c_w} \quad (2)$$

217 where c_{OM} and c_w are polyols concentrations (ng m^{-3} in solution) in WIOM and aqueous
218 phases; log K_{ow} values of target polyols were given by the Estimation Programs
219 Interface (EPI) Suite developed by the US Environmental Protection Agency and
220 Syracuse Research Corporation in Table S3 (US EPA, 2012). Due to the high water-
221 solubility of target polyols ($K_{\text{ow}} < 0.15$), more than 95% of their particle-phase

222 concentrations were distributed into the aqueous phase. Second, gas-phase polyol
223 tracers are in equilibrium with hydrophobic OM and the aqueous phase, respectively,
224 following absorptive partitioning theory (eqs 1 and 2 in Text S2) and Henry's law (eq
225 3)

$$226 \quad K_{H,e} = \frac{\frac{F}{M_i}}{\frac{A \times R \times T \times c_{ALW}}{\rho_w}} = \frac{\rho_w \times F}{A \times R \times T \times c_{ALW}} \quad (3)$$

227 where $K_{H,e}$ (mol m⁻³ atm⁻¹) is the measurement-based effective Henry's law coefficient;
228 F and A (ng m⁻³) represent particle- and gas-phase concentrations of polyol tracers in
229 ambient air; M_i (g mol⁻¹) is the molecular weight of specific compound; R (m³ atm K⁻¹
230 mol⁻¹) and T (K) are ideal gas constant and ambient temperature, respectively; c_{ALW} (μg
231 m⁻³) is the mass concentration of aerosol liquid water predicted using ISORROPIA II
232 model; ρ_w (1 g cm⁻³) is water density. For comparison purposes, the Henry's law
233 coefficient in pure water at 25 °C ($K^*_{H,w}$) was predicted from EPI suite (Table S3), and
234 was adjusted for each sampling interval due to the changes in ambient temperature
235 using van 't Hoff equation (Text S3).

236 **3 Results and discussion**

237 **3.1 Method evaluation**

238 In our previous study, PUF/XAD-4 resin/PUF and PUF/XAD-7 resin/PUF
239 adsorbent sandwiches were tested for sampling gaseous 2-methyltetrols and
240 levoglucosan (Xie et al., 2014b). The results of breakthrough experiments suggested
241 that both the two sandwiched composites had high sampling efficiency (close to 100%).
242 Moreover, individual parts of the two types of composites (top PUF, middle XAD-
243 4/XAD-7 resin, and backup PUF) were analyzed for 7 samples, and target compounds
244 were only detected in top PUF. Thus, bare PUF material is suitable for sampling

245 gaseous 2-methyltetros and levoglucosan.

246 Although PUF materials were pre-cleaned prior to sampling, a few short-chain
247 polyurethanes or impurities could be dissolved during Soxhlet extraction of target
248 compounds using the mixture of methanol and methylene chloride. These substances
249 precipitated when sample extracts were concentrated (Figure S1a, b), and re-dissolved
250 in BSTFA:TMCS/pyridine and hexane after the derivatization step (Figure S1c, d). In
251 Xie et al. (2014b), an aliquot of 2 μ L of the sample extract as shown in Figure S1d was
252 injected for GC-MS analysis. Due to the fact that the dissolved PUF materials did not
253 vaporize at \sim 300 °C, the GC inlet liner had to be changed for cleaning every few
254 samples. In this work, 50 μ L of pure water was added to separate PUF materials from
255 polyol derivatives in hexane solution. As shown in Figure S1e, all PUF residues were
256 retained in the aqueous solution after liquid-liquid phase separation. This pretreatment
257 step was added for the analysis of gaseous samples to save time for changing and
258 cleaning GC inlet liners. However, the revised method did not improve the recoveries
259 of meso-erythritol and levoglucosan in PUF samples (Table S2) compared to those in
260 Xie et al. (2014b). This is because the dissolved PUF materials should have an impact
261 on the derivatization efficiency of polyol species, and future work is warranted to
262 remove dissolved PUF materials in sample extracts before the derivatization step.

263 Measurement results of breakthrough samples and the resulting B values were
264 shown in Figure S3. C5-alkene triols and 2-methyltetros were mainly observed in
265 summertime, and levoglucosan was only detected in three pairs of breakthrough
266 samples. Their average B values (< 33%) indicated no excessive breakthrough (Figure
267 S3a-c), but were higher than those reported by Xie et al. (2014b). This might be ascribed
268 to the greater face velocity (1.5 cm s^{-1}) for sampling gaseous polyols than that (0.61 cm

269 s^{-1}) in our previous study. Unlike fructose which had low breakthrough (Figure S3d),
270 glucose and mannitol had comparable concentrations between front and backup PUF
271 samples for several breakthrough experiments (Figure S3e, f), indicating that PUF
272 materials are not suitable for sampling gaseous glucose and mannitol. Mannose and
273 arabitol were not detected or had BDL values for breakthrough samples, and their
274 breakthrough was not provided. In the current work, concentrations of polyol tracers in
275 filter and PUF samples were all reported, but the data of mannose, glucose, arabitol,
276 and mannitol in PUF samples should be treated with caution due to the lack of valid
277 breakthrough results.

278 **3.2 General description of measurement results**

279 Concentrations of individual polyols in Q_f , Q_b , and PUF samples are summarized
280 in Table S4, and their total ambient concentrations ($Q_f + Q_b + \text{PUF}$) are depicted using
281 boxplots in Figure 1. Figure S4 presents temporal variations of total and Q_f
282 concentrations of individual polyols with daytime and night-time measurements
283 distinguished. In general, polyol tracers were predominantly observed on Q_f with
284 averages 1-3 orders of magnitude higher than those on Q_b and PUF. Levoglucosan had
285 the highest average total concentration ($66.1 \pm 71.1 \text{ ng m}^{-3}$), followed by fructose (15.0
286 $\pm 62.9 \text{ ng m}^{-3}$) and mannose ($14.3 \pm 31.3 \text{ ng m}^{-3}$). C5-alkene triols and 2-methyltetrols
287 are formed from isoprene epoxydiols (IEPOX) under low NO_x conditions (Surratt et
288 al., 2010). All the five species on Q_b were more frequently detected and had average
289 concentrations 2-20 times higher than those in PUF samples. While in Xie et al. (2014b),
290 the sum of 2-methyltetrols in Q_b and adsorbent samples were up to 2.7 times higher
291 than those on Q_f in summer Denver, so isoprene products are not similarly distributed
292 between gas and aerosol phases across different regions. Moreover, isoprene-derived

293 polyols exhibited prominent elevations in summer (Figure S4a-e), and their daytime
294 concentrations ($2.02 \pm 3.73 - 10.5 \pm 29.3 \text{ ng m}^{-3}$) were only slightly higher than those
295 during night-time ($1.63 \pm 4.40 - 9.65 \pm 32.7 \text{ ng m}^{-3}$). Fu and Kawamura (2011)
296 investigated diurnal variations of polar organic tracers at a forest site in summer by
297 sampling aerosol particles every 4 h. They found that isoprene-derived SOA tracers
298 maximized from later afternoon to early evening. Although no IEPOX will be generated
299 from the oxidation of isoprene by $\cdot\text{OH}$ and $\text{HO}_2\cdot$ after sunset, the formations of C5-
300 alkene triols and 2-methyltetrols might continue until pre-existing IEPOX is exhausted.
301 This explains the insignificant ($p > 0.05$) day-night differences of C5-alkene triols and
302 2-methyltetrols in this work.

303 Levoglucosan was more frequently detected but far less concentrated in PUF than
304 in Q_b samples. Its total concentrations were comparable to those in urban Denver
305 (average $65.3 \pm 96.8 \text{ ng m}^{-3}$, range $2.48 - 478 \text{ ng m}^{-3}$), where an average of ~20%
306 partitioned into the gas phase (Xie et al., 2014b). Due to the enhanced biomass burning
307 activities in cold periods for domestic heating at night, levoglucosan showed a clear
308 seasonal pattern (winter maxima and summer minima) and significant ($p = 0.03$) higher
309 concentrations during night-time (Figure S4f). Sugars and sugar alcohols are commonly
310 linked with soil/dust resuspension and associated microbial activities (Simoneit et al.,
311 2004). They were frequently detected in Q_b samples with comparable averages and
312 ranges as those in PUF samples (Table S4). Total concentrations of fructose and glucose
313 were strongly ($r = 0.98$) correlated peaking in middle spring (April 2019, Figure S4h,
314 j), when Ca^{2+} on Q_f also reached its maxima of the year (Yang et al., 2021), indicating
315 an influence from soil/dust resuspension. Arabitol and mannitol had identical seasonal
316 pattern ($r = 0.89$) with elevated total concentrations from May to October (Figure S4i,

317 m), which might be attributed to the high levels of vegetation and autumn decomposing
318 (Burshtein et al., 2011). Multiple peaks of mannose concentrations were observed from
319 spring to autumn, suggesting a variety of contributing sources (e.g., microbial activity,
320 vegetation). Xylitol is likely derived from biomass burning in northern Nanjing due to
321 its strong correlation ($r = 0.89$) with levoglucosan.

322 **3.3 Gas-particle distribution and absorptive partitioning coefficient**

323 Q_b measurements were often used to assess positive sampling artifacts of
324 particulate OC (Chow et al., 2010; Subramanian et al., 2004), but rarely for particle-
325 phase organic markers. In this study, concentrations of particulate polyols were
326 obtained directly from Q_f measurements, and the gas phase was calculated as the sum
327 of Q_b and PUF values. Figure S5 shows the time series of gas-phase concentrations and
328 particle-phase fractions ($F\%$) of individual polyol tracers. The average $F\%$ values of
329 measured species are linearly regressed against the logarithms of their subcooled liquid
330 vapor pressures at 25 °C ($p^{o,*}_L$) in Figure 2. Unlike non-polar organic tracers (e.g., *n*-
331 alkanes and PAHs), some polyols (e.g., 2-methyltetrols and levoglucosan) data did not
332 follow the linear regression line of $F\%$ versus $\log p^{o,*}_L$. Although gas-phase C5-alkene
333 triols and 2-methyltetrols were majorly observed in summer with significant ($p < 0.05$)
334 day-night variations, their $F\%$ values did not show seasonality or day-night difference
335 ($p = 0.18$ -0.73). Other polyols had extremely low concentrations in the gas phase with
336 average $F\%$ ranging from 94.2 ± 8.02 – $99.8 \pm 1.21\%$. The average $F\%$ values of 2-
337 methyltetrols ($87.5 \pm 10.6\%$) and levoglucosan ($99.8 \pm 1.21\%$) were greater than those
338 in urban Denver (50–80%; Xie et al., 2014b), where the average sampling temperature
339 (12.5 ± 10.1 °C) was much lower. Thus, the changes in vapor pressures with the ambient
340 temperature might not be the main factor driving gas-particle partitioning of polyol

341 tracers in northern Nanjing.

342 To understand if traditional absorptive partitioning theory could be applied to
343 predict the gas-particle partitioning of polyol tracers in northern Nanjing, Table 1
344 compares $\log K_{p,OM}^m$ and $\log K_{p,OM}^t$ of individual compounds. The average $K_{p,OM}^m$
345 values of isoprene SOA tracers, levoglucosan, and meso-erythritol were 10^2 to 10^3 times
346 larger than their corresponding $K_{p,OM}^t$. Comparable or even greater (up to 10^5) gap
347 between $K_{p,OM}^m$ and $K_{p,OM}^t$ has been observed for carbonyls in a number of laboratory
348 and field studies (Healy et al., 2008; Zhao et al., 2013; Shen et al., 2018), which could
349 be ascribed to reactive uptake (e.g., hydration, oligomerization, and esterification) of
350 organic gases onto condensed phase (Galloway et al., 2009). Oligomers, sulfate and
351 nitrate esters of 2-methyltetrosols can be formed in the aerosol phase (Surratt et al., 2010),
352 but these products were not expected to dominate particle-phase concentrations of 2-
353 methyltetrosols (Lin et al., 2013; Xie et al., 2014b). Although levoglucosan can be readily
354 oxidized by $\bullet\text{OH}$ in the aqueous phase of atmospheric particles (Hennigan et al., 2010;
355 Hoffmann et al., 2010), the occurrence of its oligomers, sulfate or nitrate esters was not
356 reported in ambient aerosols. Xie et al. (2014b) found that the gas-particle partitioning
357 of 2-methyltetrosols and levoglucosan in urban Denver were highly dependent on the
358 variations in ambient temperature and absorbing organic matter (M_{OM}). While in
359 southeastern US, the particle-phase fractions of isoprene SOA tracers were generally
360 higher than prediction based on absorptive partitioning model (Isaacman-VanWertz et
361 al., 2016). This discrepancy might be related to the spatial heterogeneity of ALWC,
362 which is expected to control the gas-particle partitioning of water-soluble organic
363 matter in the Eastern US (Carlton and Turpin, 2013). In this study, the large difference
364 between $K_{p,OM}^m$ and $K_{p,OM}^t$ indicated that some mechanisms other than absorptive

365 partitioning (e.g., Henry's law partitioning) should be involved to predict the gas-
366 particle partitioning of polyol tracers in northern Nanjing, where the ambient particles
367 contained substantial liquid water ($21.3 \pm 24.2 \mu\text{g m}^{-3}$; Table S1).

368 Unlike isoprene SOA tracers and levoglucosan, the average $K_{\text{p,OM}}^t$ values of
369 monosaccharides (fructose, mannose, and glucose) and sugar alcohols (xylitol, arabitol,
370 and mannitol) were up to 10^3 times larger than their $K_{\text{p,OM}}^m$ (Table 1). This is probably
371 caused by the overestimation of gas-phase concentrations of sugar polyols. The organic
372 matter on Q_b is mainly composed of volatile and semi-volatile organic compounds. If
373 the concentrations of organic compounds on Q_b were comparable or higher than those
374 on Q_f , their Q_f values should be dominated by positive artifact. As the vapor pressure
375 decreases, the evaporation loss from Q_f samples becomes non-negligible. Note that the
376 magnitude of negative artifacts is unknown and very difficult to assess, and the vapor
377 pressures of monosaccharides and sugar alcohols are mostly $< 10^{-10}$ atm, their
378 concentrations in Q_b and even PUF samples might contain more contributions from
379 negative artifacts than isoprene SOA tracers and levoglucosan. Considering that low-
380 volatile sugar polyols had less stable recoveries (Table S2) and greater breakthrough
381 (Figure S3e, f), caution is warranted in analyzing their $K_{\text{p,OM}}^m$ values obtained in this
382 study.

383 Figure S2 presumes that gas-phase polyols are in equilibrium with WIOM and the
384 aqueous phase, respectively. Then concentrations of WIOM [$1.4 \times (\text{OC-WSOC})$] was
385 used to adjust the calculation of absorptive partitioning coefficients ($K_{\text{p,WIOM}}^m$) based
386 on eq 1 in supplementary information. In comparison to $\log K_{\text{p,OM}}^m$, the average \log
387 $K_{\text{p,WIOM}}^m$ values of isoprene SOA tracers and levoglucosan were much closer to average
388 $\log K_{\text{p,OM}}^t$ (Tables 1 and S5), supporting that the aerosol liquid water should have

389 significant impacts on gas-particle partitioning of polyol tracers.

390 **3.4 Effective Henry's law coefficient**

391 Table 2 lists the statistics of measurement-based $\log K_{\text{H,e}}$ and predicted $\log K_{\text{H,w}}$.
392 The average $K_{\text{H,w}}$ values of isoprene SOA tracers, levoglucosan, and meso-erythritols
393 were 2-6 orders of magnitude lower than their corresponding average $K_{\text{H,e}}$, indicating
394 that the ambient atmosphere in northern Nanjing favored the condensation of these
395 polyols. Other polyol compounds exhibited less difference between $\log K_{\text{H,e}}$ and \log
396 $K_{\text{H,w}}$, which was very likely caused by the overestimation of their gas-phase
397 concentrations. A number of previous studies observed enhanced $K_{\text{H,e}}$ of carbonyls with
398 salt concentrations in aqueous solution (Ip et al., 2009; Kampf et al., 2013; Waxman et
399 al., 2015; Shen et al., 2018), and described this "salting-in" effect using

400
$$\text{Log}\left(\frac{K_{\text{H,w}}}{K_{\text{H,e}}}\right) = K_s c_{\text{salt}} \quad (4)$$

401 where K_s is the salting constant, and c_{salt} is the aqueous-phase concentration of salt in
402 mol kg^{-1} ALWC. This equation is originally defined in Setschenow (1889) by plotting
403 $\log (K_{\text{H,w}}/K_{\text{H,e}})$ versus the total salt concentration (mol L^{-1}).

404 As sulfate has been identified as the major factor influencing the salting effect of
405 carbonyl species (Kroll et al., 2005; Ip et al., 2009), Figure 3 shows modified
406 Setschenow plots for C5-alkene triols, 2-methyltetrosols, and levoglucosan, where \log
407 $(K_{\text{H,w}}/K_{\text{H,e}})$ values were regressed to the molality of sulfate ion in aerosol liquid water
408 (c_{sulfate} , mol kg^{-1} ALWC). However, $\log (K_{\text{H,w}}/K_{\text{H,e}})$ data deviated from their expected
409 behavior in the modified Setschenow plot at $c_{\text{sulfate}} > 12 \text{ mol kg}^{-1}$ ALWC, which was
410 also observed for glyoxal (Kampf et al., 2013). This might be because the ambient
411 particles did not undergo liquid-liquid phase separation at $c_{\text{sulfate}} > 12 \text{ mol kg}^{-1}$ ALWC,
412 when the average RH ($51.5 \pm 15.4\%$) was lower than the lowest deliquescence RH

413 (61.8%) of major inorganic salts (e.g., NH_4NO_3 , $(\text{NH}_4)_2\text{SO}_4$) in ambient aerosols
414 (Seinfeld and Pandis, 2016), and the corresponding average concentration of aerosol
415 liquid water was only $5.31 \pm 4.05 \mu\text{g m}^{-3}$. In Figure 3, negative correlations ($p < 0.01$)
416 are observed at $c_{\text{sulfate}} < 12 \text{ mol kg}^{-1}$ ALWC, and the K_s values range from -0.17 to -0.15
417 kg mol^{-1} . Figure S6 shows the regressions between $\log(K_{\text{H,w}}/K_{\text{H,e}})$ of individual polyols
418 and c_{sulfate} without considering the deviations at high c_{sulfate} , and nearly all species
419 exhibit significant negative correlations ($p < 0.01$). These results indicated the “salting-
420 in” effects for polyol tracers in northern Nanjing, and to our knowledge the present
421 study is the first to calculate their $K_{\text{H,e}}$ and K_s . Although several studies have estimated
422 Henry’s law constants for a variety of polar organic compounds in pure water (e.g.,
423 polyols and polyacids; Compernolle and Müller, 2014a, b), salting effects should be
424 considered in describing their gas-particle partitioning in the ambient atmosphere.

425 The average $K_{\text{H,e}}$ values of polyol tracers (10^{13} – $10^{15} \text{ mol m}^{-3} \text{ atm}^{-1}$) in this study
426 were several orders of magnitude larger than those of carbonyls derived from ambient
427 measurements (10^{10} – $10^{12} \text{ mol m}^{-3} \text{ atm}^{-1}$; Shen et al., 2018) and chamber simulations
428 ($\sim 10^{11} \text{ mol m}^{-3} \text{ atm}^{-1}$; Kroll et al., 2005; Volkamer et al., 2006; Galloway et al., 2009). This
429 is because low molecular weight carbonyls (e.g., glyoxal) are much more volatile ($p^{\text{o},*}_{\text{L}} >$
430 10^{-2} atm) than our target polyols (Table S3). According to existing studies, the
431 minimum concentrations of gas-phase glyoxal and methylglyoxal in Chinese cities
432 ($\sim 0.1 \mu\text{g m}^{-3}$; Liu et al., 2020) are magnitudes higher than the averages of polyol tracers
433 in this work, while their particle-phase concentrations are of the same magnitude. The
434 K_s values of polyol tracers from Figures 3 and S5 (-0.17 – -0.037 kg mol^{-1}) are in a
435 similar range as that of glyoxal (-0.24 – -0.04 kg mol^{-1} ; Kampf et al., 2013; Shen et al.,
436 2018; Waxman et al., 2015), indicating that the uptake of different water-soluble

437 organic compounds might be enhanced by sulfate in a similar manner. However, the
438 mechanisms of “salting-in” effects are not fully understood. Kampf et al. (2013)
439 inferred that the enhanced uptake of glyoxal was accompanied by chemical reactions in
440 the aqueous phase (e.g., hydration and oligomerization), and the interactions between
441 SO_4^{2-} and glyoxal monohydrate had negative Gibbs free energy of water displacement
442 (Waxman et al., 2015). The net “salting-in” effect of 1-nitro-2-naphthol in NaF solution
443 was interpreted by postulating hydrogen bonding (Almeida et al., 1983). A direct
444 binding of cations to ether oxygens was proposed to be responsible for the increased
445 solubility of water-soluble polymers (Sadeghi and Jahani, 2012). Due to the complexity
446 of PM composition, the large gap between $K_{\text{H,e}}$ and $K_{\text{H,w}}$ cannot be closed by the
447 “salting-in” effect alone, which is supported by the negative intercepts of linear
448 regressions in Figure 3. As shown in Figures S7, $\log(K_{\text{H,w}}/K_{\text{H,e}})$ values of polyol tracers
449 also negatively correlate with the aqueous-phase concentrations of WSOC (cwsoc),
450 given that the plots are more scattered at high cwsoc. This dependence might be partly
451 explained using the “like-dissolves-like” rule, and indicate the importance of
452 heterogeneous chemistry in the particle phase (Hennigan et al., 2009). No significant
453 correlation was observed between $\log(K_{\text{H,w}}/K_{\text{H,e}})$ and NH_4^+ or NO_3^- concentrations.
454 Therefore, the bulk WSOC and sulfate ion should play important roles during the
455 condensation of gas-phase polyols, and further research is warranted to explicitly
456 explain these effects.

457 **4 Conclusions and implications**

458 In this work, concentrations of gas- and particle-phase polyol tracers were
459 measured simultaneously in northern Nanjing. The temporal variations of individual
460 compounds were dominated by their particle-phase concentrations. Because receptor-

461 based models identify and quantify aerosol sources based on inter-sample variability,
462 gas-particle partitioning of polyol tracers should have little influence on source
463 apportionment barely using particle-phase data in northern Nanjing. When it comes to
464 other places (e.g., western US) where the concentration of aerosol liquid water is
465 extremely low, the influence of gas-particle partitioning will still be a concern.

466 Similar to southeastern US, the ambient atmosphere in northern Nanjing also
467 favored the condensation of polyol tracers, which was ascribed to the significant ALWC
468 in these locations. The large gaps of measured versus predicted $K_{p,OM}$ and K_H implied
469 that the gas-particle partitioning of polyol tracers could not be depicted using
470 equilibrium absorptive partitioning model or Henry's law alone. In addition to the
471 "salting-in" effect primarily due to the sulfate ions, other aerosol components like bulk
472 WSOC might also be responsible for increasing the partitioning of polyol tracers into
473 the condensed phase. So, the results of this study have important implications on the
474 prediction of gas-particle partitioning of water-soluble organics, and further studies are
475 required to explain their enhanced aqueous-phase uptake mechanistically. Due to the
476 hygroscopic properties of highly oxidized organic aerosols, the proposed scheme for
477 gas-particle partitioning of polyol tracers also partly reveals the discrepancy between
478 modeled and observed SOA in previous studies. However, several pre-assumptions
479 (e.g., liquid-liquid phase separation) were made for the proposed gas-particle
480 partitioning scheme in this work, more research is needed to understand the mixing
481 state of inorganic salts, organic components, and aerosol liquid water in atmospheric
482 particles.

483

484 ***Data availability***

485 Data used in the writing of this paper is available at the Harvard Dataverse
486 (<https://doi.org/10.7910/DVN/U3IGQR>, Qin et al., 2021)

487

488 ***Author contributions***

489 MX designed the research. CQ and YG performed the sampling and chemical analysis.
490 CQ, YM, and MX analyzed the data. CQ and MX wrote the paper with significant
491 contributions from YW, HL, and QW.

492

493 ***Competing interests***

494 The authors declare that they have no conflict of interest.

495

496 ***Acknowledgements***

497 This research was supported by the National Natural Science Foundation of China
498 (NSFC, 41701551). Y. W. was supported by the National Science Foundation
499 Atmospheric Chemistry Program.

500

501 ***References***

- 502 Almeida, M. B., Alvarez, A. M., Miguel, E. M. D., and Hoyo, E. S. D.: Setchenow coefficients for
503 naphthols by distribution method, *Can. J. Chem.*, 61, 244-248, 10.1139/v83-043, 1983.
504 Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., and Puxbaum, H.: Arabitol
505 and mannitol as tracers for the quantification of airborne fungal spores, *Atmos. Environ.*, 42, 588-
506 593, <https://doi.org/10.1016/j.atmosenv.2007.10.013>, 2008.
507 Burshtein, N., Lang-Yona, N., and Rudich, Y.: Ergosterol, arabitol and mannitol as tracers for biogenic
508 aerosols in the eastern Mediterranean, *Atmos. Chem. Phys.*, 11, 829-839, 10.5194/acp-11-829-2011,
509 2011.
510 Carlton, A. G., and Turpin, B. J.: Particle partitioning potential of organic compounds is highest in the
511 Eastern US and driven by anthropogenic water, *Atmos. Chem. Phys.*, 13, 10203-10214,
512 10.5194/acp-13-10203-2013, 2013.
513 Chow, J. C., Watson, J. G., Chen, L. W. A., Rice, J., and Frank, N. H.: Quantification of PM2.5 organic
514 carbon sampling artifacts in US networks, *Atmos. Chem. Phys.*, 10, 5223-5239, 10.5194/acp-10-
515 5223-2010, 2010.
516 Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P.,
517 Andreae, M. O., Artaxo, P., and Maenhaut, W.: Formation of secondary organic aerosols through
518 photooxidation of isoprene, *Science*, 303, 1173-1176, 10.1126/science.1092805, 2004.

- 519 Compernolle, S., and Müller, J. F.: Henry's law constants of polyols, *Atmos. Chem. Phys.*, 14, 12815-
520 12837, 10.5194/acp-14-12815-2014, 2014a.
- 521 Compernolle, S., and Müller, J. F.: Henry's law constants of diacids and hydroxy polyacids:
522 recommended values, *Atmos. Chem. Phys.*, 14, 2699-2712, 10.5194/acp-14-2699-2014, 2014b.
- 523 Fu, P., and Kawamura, K.: Diurnal variations of polar organic tracers in summer forest aerosols: A case
524 study of a *Quercus* and *Picea* mixed forest in Hokkaido, Japan, *Geochem. J.*, 45, 297-308,
525 10.2343/geochemj.1.0123, 2011.
- 526 Galloway, M. M., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Flagan, R. C., Seinfeld, J. H., and
527 Keutsch, F. N.: Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and
528 reversibility of uptake under dark and irradiated conditions, *Atmos. Chem. Phys.*, 9, 3331-3345,
529 10.5194/acp-9-3331-2009, 2009.
- 530 Hallar, A. G., Lowenthal, D. H., Clegg, S. L., Samburova, V., Taylor, N., Mazzoleni, L. R., Zielinska, B.
531 K., Kristensen, T. B., Chirokova, G., McCubbin, I. B., Dodson, C., and Collins, D.: Chemical and
532 hygroscopic properties of aerosol organics at Storm Peak Laboratory, *J. Geophys. Res. Atmos.*, 118,
533 4767-4779, <https://doi.org/10.1002/jgrd.50373>, 2013.
- 534 Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J., Seinfeld, J. H., Liao, H., and Weber,
535 R. J.: A large organic aerosol source in the free troposphere missing from current models, *Geophys.
536 Res. Lett.*, 32, L18809, <https://doi.org/10.1029/2005GL023831>, 2005.
- 537 Healy, R. M., Wenger, J. C., Metzger, A., Duplissy, J., Kalberer, M., and Dommen, J.: Gas/particle
538 partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene, *Atmos.
539 Chem. Phys.*, 8, 3215-3230, 10.5194/acp-8-3215-2008, 2008.
- 540 Hennigan, C. J., Bergin, M. H., Russell, A. G., Nenes, A., and Weber, R. J.: Gas/particle partitioning of
541 water-soluble organic aerosol in Atlanta, *Atmos. Chem. Phys.*, 9, 3613-3628, 10.5194/acp-9-3613-
542 2009, 2009.
- 543 Hennigan, C. J., Sullivan, A. P., Collett Jr, J. L., and Robinson, A. L.: Levoglucosan stability in biomass
544 burning particles exposed to hydroxyl radicals, *Geophys. Res. Lett.*, 37, L09806,
545 <https://doi.org/10.1029/2010GL043088>, 2010.
- 546 Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L., and Fast,
547 J.: Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate
548 volatility primary organic compounds to secondary organic aerosol formation, *Atmos. Chem. Phys.*,
549 10, 5491-5514, 10.5194/acp-10-5491-2010, 2010.
- 550 Hoffmann, D., Tilgner, A., Iinuma, Y., and Herrmann, H.: Atmospheric stability of levoglucosan: A
551 detailed laboratory and modeling study, *Environ. Sci. Technol.*, 44, 694-699, 10.1021/es902476f,
552 2010.
- 553 Hu, D., Bian, Q., Lau, A. K. H., and Yu, J. Z.: Source apportioning of primary and secondary organic
554 carbon in summer PM2.5 in Hong Kong using positive matrix factorization of secondary and
555 primary organic tracer data, *J. Geophys. Res. Atmos.*, 115, D16204,
556 <https://doi.org/10.1029/2009JD012498>, 2010.
- 557 Ip, H. S. S., Huang, X. H. H., and Yu, J. Z.: Effective Henry's law constants of glyoxal, glyoxylic acid,
558 and glycolic acid, *Geophys. Res. Lett.*, 36, L01802, <https://doi.org/10.1029/2008GL036212>, 2009.
- 559 Isaacman-VanWert, G., Yee, L. D., Kreisberg, N. M., Wernis, R., Moss, J. A., Hering, S. V., de Sá, S.
560 S., Martin, S. T., Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A., Jimenez,
561 J. L., Riva, M., Surratt, J. D., Viegas, J., Manzi, A., Edgerton, E., Baumann, K., Souza, R., Artaxo,
562 P., and Goldstein, A. H.: Ambient gas-particle partitioning of tracers for biogenic oxidation,
563 *Environ. Sci. Technol.*, 50, 9952-9962, 10.1021/acs.est.6b01674, 2016.
- 564 Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous atmospheric aerosol production
565 by acid-catalyzed particle-phase reactions, *Science*, 298, 814, 10.1126/science.1075798, 2002.
- 566 Kampf, C. J., Waxman, E. M., Slowik, J. G., Dommen, J., Pfaffenberger, L., Praplan, A. P., Prévôt, A.
567 S. H., Baltensperger, U., Hoffmann, T., and Volkamer, R.: Effective Henry's law partitioning and
568 the salting constant of glyoxal in aerosols containing sulfate, *Environ. Sci. Technol.*, 47, 4236-4244,
569 10.1021/es400083d, 2013.
- 570 Kondo, Y., Miyazaki, Y., Takegawa, N., Miyakawa, T., Weber, R. J., Jimenez, J. L., Zhang, Q., and
571 Worsnop, D. R.: Oxygenated and water-soluble organic aerosols in Tokyo, *J. Geophys. Res. Atmos.*,
572 112, D01203, 10.1029/2006jd007056, 2007.
- 573 Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.: Chamber
574 studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, *J.
575 Geophys. Res. Atmos.*, 110, D23207, <https://doi.org/10.1029/2005JD006004>, 2005.
- 576 Lin, Y. H., Knipping, E. M., Edgerton, E. S., Shaw, S. L., and Surratt, J. D.: Investigating the influences

- 577 of SO₂ and NH₃ levels on isoprene-derived secondary organic aerosol formation using conditional
578 sampling approaches, *Atmos. Chem. Phys.*, 13, 8457-8470, 10.5194/acp-13-8457-2013, 2013.
- 579 Liu, J., Li, X., Li, D., Xu, R., Gao, Y., Chen, S., Liu, Y., Zhao, G., Wang, H., Wang, H., Lou, S., Chen,
580 M., Hu, J., Lu, K., Wu, Z., Hu, M., Zeng, L., and Zhang, Y.: Observations of glyoxal and
581 methylglyoxal in a suburban area of the Yangtze River Delta, China, *Atmos. Environ.*, 238, 117727,
582 <https://doi.org/10.1016/j.atmosenv.2020.117727>, 2020.
- 583 Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/particle
584 partitioning and secondary organic aerosol yields, *Environ. Sci. Technol.*, 30, 2580-2585,
585 10.1021/es950943+, 1996.
- 586 Pankow, J. F.: An absorption model of the gas/aerosol partitioning involved in the formation of secondary
587 organic aerosol, *Atmos. Environ.*, 28, 189-193, 10.1016/1352-2310(94)90094-9, 1994a.
- 588 Pankow, J. F.: An absorption model of gas/particle partitioning of organic compounds in the atmosphere,
589 *Atmos. Environ.*, 28, 185-188, 10.1016/1352-2310(94)90093-0, 1994b.
- 590 Perraud, V., Bruns, E. A., Ezell, M. J., Johnson, S. N., Yu, Y., Alexander, M. L., Zelenyuk, A., Imre, D.,
591 Chang, W. L., Dabdub, D., Pankow, J. F., and Finlayson-Pitts, B. J.: Nonequilibrium atmospheric
592 secondary organic aerosol formation and growth, *Proc. Natl. Acad. Sci. U.S.A.*, 109, 2836-2841,
593 10.1073/pnas.1119909109, 2012.
- 594 Peters, A. J., Lane, D. A., Gundel, L. A., Northcott, G. L., and Jones, K. C.: A comparison of high volume
595 and diffusion denuder samplers for measuring semivolatile organic compounds in the atmosphere,
596 *Environ. Sci. Technol.*, 34, 5001-5006, 10.1021/es000056t, 2000.
- 597 Qin, C., Gou, Y., Wang, Y., Mao, Y., Liao, H., Wang, Q. g., and Xie, M.: Replication Data for: Gas-
598 particle partitioning of polyol tracers in the western Yangtze River Delta, China, in, V1 ed., Harvard
599 Dataverse, <https://doi.org/10.7910/DVN/U3IGQR>, 2021.
- 600 Sadeghi, R., and Jahani, F.: Salting-in and salting-out of water-soluble polymers in aqueous salt solutions,
601 *J. Phys. Chem. B*, 116, 5234-5241, 10.1021/jp300665b, 2012.
- 602 Saxena, P., and Hildemann, L.: Water-soluble organics in atmospheric particles: A critical review of the
603 literature and application of thermodynamics to identify candidate compounds, *J. Atmos. Chem.*,
604 24, 57-109, 10.1007/bf00053823, 1996.
- 605 Seinfeld, J. H., and Pandis, S. N.: *Atmospheric chemistry and physics: from air pollution to climate
606 change*, John Wiley & Sons, 2016.
- 607 Setschenow, J.: Über die Konstitution der Salzlösungen auf Grund ihres Verhaltens zu Kohlensäure, *Z.
608 Phys. Chem.*, 4U, 117-125, <https://doi.org/10.1515/zpch-1889-0409>, 1889.
- 609 Shen, H., Chen, Z., Li, H., Qian, X., Qin, X., and Shi, W.: Gas-particle partitioning of carbonyl
610 compounds in the ambient atmosphere, *Environ. Sci. Technol.*, 52, 10997-11006,
611 10.1021/acs.est.8b01882, 2018.
- 612 Simcik, M. F., Franz, T. P., Zhang, H., and Eisenreich, S. J.: Gas-particle partitioning of PCBs and PAHs
613 in the Chicago urban and adjacent coastal atmosphere: States of equilibrium, *Environ. Sci. Technol.*,
614 32, 251-257, 10.1021/es970557n, 1998.
- 615 Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F.,
616 and Cass, G. R.: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles,
617 *Atmos. Environ.*, 33, 173-182, [http://dx.doi.org/10.1016/S1352-2310\(98\)00145-9](http://dx.doi.org/10.1016/S1352-2310(98)00145-9), 1999.
- 618 Simoneit, B. R. T., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I., Medeiros, P. M., Rogge,
619 W. F., and Didyk, B. M.: Sugars dominant water-soluble organic compounds in soils and
620 characterization as tracers in atmospheric particulate matter, *Environ. Sci. Technol.*, 38, 5939-5949,
621 10.1021/es0403099, 2004.
- 622 Subramanian, R., Khlystov, A. Y., Cabada, J. C., and Robinson, A. L.: Positive and negative artifacts in
623 particulate organic carbon measurements with denuded and undenuded sampler configurations
624 special issue of aerosol science and technology on findings from the fine particulate matter
625 supersites program, *Aerosol Sci. Tech.*, 38, 27-48, 10.1080/02786820390229354, 2004.
- 626 Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigelski, R.,
627 Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Chemical composition
628 of secondary organic aerosol formed from the photooxidation of isoprene, *J. Phys. Chem. A*, 110,
629 9665-9690, 10.1021/jp061734m, 2006.
- 630 Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P.,
631 Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive intermediates revealed in secondary
632 organic aerosol formation from isoprene, *Proc. Natl. Acad. Sci. U.S.A.*, 107, 6640-6645,
633 10.1073/pnas.0911114107, 2010.
- 634 Taylor, N. F., Collins, D. R., Lowenthal, D. H., McCubbin, I. B., Hallar, A. G., Samburova, V., Zielinska,

- 635 B., Kumar, N., and Mazzoleni, L. R.: Hygroscopic growth of water soluble organic carbon isolated
636 from atmospheric aerosol collected at US national parks and Storm Peak Laboratory, *Atmos. Chem.*
637 *Phys.*, 17, 2555-2571, 10.5194/acp-17-2555-2017, 2017.
- 638 Tsyro, S. G.: To what extent can aerosol water explain the discrepancy between model calculated and
639 gravimetric PM10 and PM2.5?, *Atmos. Chem. Phys.*, 5, 515-532, 10.5194/acp-5-515-2005, 2005.
- 640 US EPA: Estimation Program Interface (EPI) Suite. Version v4.11, 2012. United States Environmental
641 Protection Agency, Washington, DC, USA. <https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411>
- 642 Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L. T.,
643 Worsnop, D. R., and Molina, M. J.: Secondary organic aerosol formation from anthropogenic air
644 pollution: Rapid and higher than expected, *Geophys. Res. Lett.*, 33, L17811,
645 <https://doi.org/10.1029/2006GL026899>, 2006.
- 646 Wang, W., Kourtchev, I., Graham, B., Cafmeyer, J., Maenhaut, W., and Claeys, M.: Characterization of
647 oxygenated derivatives of isoprene related to 2-methyltetros in Amazonian aerosols using
648 trimethylsilylation and gas chromatography/ion trap mass spectrometry, *Rapid Commun. Mass*
649 *Spectrom.*, 19, 1343-1351, <https://doi.org/10.1002/rcm.1940>, 2005.
- 650 Waxman, E. M., Elm, J., Kurtén, T., Mikkelsen, K. V., Ziemann, P. J., and Volkamer, R.: Glyoxal and
651 methylglyoxal Setschenow salting constants in sulfate, nitrate, and chloride solutions:
652 Measurements and Gibbs energies, *Environ. Sci. Technol.*, 49, 11500-11508,
653 10.1021/acs.est.5b02782, 2015.
- 654 Xie, M., Barsanti, K. C., Hannigan, M. P., Dutton, S. J., and Vedral, S.: Positive matrix factorization of
655 PM2.5 - eliminating the effects of gas/particle partitioning of semivolatile organic compounds,
656 *Atmos. Chem. Phys.*, 13, 7381-7393, 10.5194/acp-13-7381-2013, 2013.
- 657 Xie, M., Hannigan, M. P., and Barsanti, K. C.: Gas/particle partitioning of n-alkanes, PAHs and
658 oxygenated PAHs in urban Denver, *Atmos. Environ.*, 95, 355-362,
659 <http://dx.doi.org/10.1016/j.atmosenv.2014.06.056>, 2014a.
- 660 Xie, M., Hannigan, M. P., and Barsanti, K. C.: Gas/particle partitioning of 2-methyltetros and
661 levoglucosan at an urban site in Denver, *Environ. Sci. Technol.*, 48, 2835-2842, 10.1021/es405356n,
662 2014b.
- 663 Xie, M., Hannigan, M. P., and Barsanti, K. C.: Impact of gas/particle partitioning of semivolatile organic
664 compounds on source apportionment with positive matrix factorization, *Environ. Sci. Technol.*, 48,
665 9053-9060, 10.1021/es5022262, 2014c.
- 666 Yang, L., Shang, Y., Hannigan, M. P., Zhu, R., Wang, Q. g., Qin, C., and Xie, M.: Collocated speciation
667 of PM2.5 using tandem quartz filters in northern Nanjing, China: Sampling artifacts and
668 measurement uncertainty, *Atmos. Environ.*, 246, 118066,
669 <https://doi.org/10.1016/j.atmosenv.2020.118066>, 2021.
- 670 Zhang, Y., Sheesley, R. J., Schauer, J. J., Lewandowski, M., Jaoui, M., Offenberg, J. H., Kleindienst, T.
671 E., and Edney, E. O.: Source apportionment of primary and secondary organic aerosols using
672 positive matrix factorization (PMF) of molecular markers, *Atmos. Environ.*, 43, 5567-5574,
673 <https://doi.org/10.1016/j.atmosenv.2009.02.047>, 2009.
- 674 Zhao, Y., Kreisberg, N. M., Worton, D. R., Isaacman, G., Weber, R. J., Liu, S., Day, D. A., Russell, L.
675 M., Markovic, M. Z., VandenBoer, T. C., Murphy, J. G., Hering, S. V., and Goldstein, A. H.:
676 Insights into secondary organic aerosol formation mechanisms from measured gas/particle
677 partitioning of specific organic tracer compounds, *Environ. Sci. Technol.*, 47, 3781-3787,
678 10.1021/es304587x, 2013.
- 679
- 680

Table 1. Statistics for measured and predicted $\log K_{p,OM}$ of individual polyol tracers.

Species	No. of obs.	$\log K_{p,OM}^m$			$\log K_{p,OM}$		
		Median	Average	Range	Median	Average	Range
<i>Isoprene SOA tracers</i>							
C5-alkene triol 1	53	0.47	0.33 ± 0.71	-1.30 – 2.61	-3.23	-3.09 ± 0.44	-3.70 – -1.63
C5-alkene triol 2	63	0.19	0.15 ± 0.55	-1.02 – 2.26	-3.70	-3.62 ± 0.37	-4.24 – -2.67
C5-alkene triol 3	83	0.38	0.35 ± 0.68	-1.86 – 2.25	-3.01	-2.90 ± 0.48	-3.70 – -1.63
2-Methylthreitol	101	-0.13	-0.12 ± 0.48	-1.15 – 0.92	-1.90	-1.87 ± 0.52	-2.81 – -0.62
2-Methylerythritol	95	-0.089	-0.011 ± 0.58	-1.09 – 2.06	-1.91	-1.90 ± 0.51	-2.81 – -0.62
<i>Biomass burning tracer</i>							
Levoglucosan	65	2.34	2.23 ± 0.72	-0.11 – 3.36	-0.12	-0.038 ± 0.59	-1.00 – 1.29
<i>Sugars and sugar alcohols</i>							
Meso-erythritol	31	0.84	0.87 ± 0.53	-0.47 – 1.81	-0.80	-0.65 ± 0.48	-1.35 – 0.69
Fructose	85	0.55	0.65 ± 0.73	-0.96 – 3.01	1.14	1.17 ± 0.62	0.015 – 2.72
Mannose	74	0.57	0.62 ± 0.71	-0.94 – 2.81	1.23	1.28 ± 0.66	0.18 – 2.81
Glucose	88	0.41	0.42 ± 0.67	-1.08 – 1.92	0.31	0.34 ± 0.65	-0.75 – 1.92
Xylitol	22	0.35	0.24 ± 0.54	-1.23 – 0.97	3.43	3.37 ± 0.57	2.11 – 4.39
Arabitol	30	1.40	1.46 ± 0.89	-0.19 – 4.20	3.15	3.25 ± 0.77	2.05 – 4.81
Manitol	65	1.06	1.08 ± 0.63	-0.35 – 2.53	2.31	2.33 ± 0.70	1.15 – 3.98

Table 2. Statistics for $\log K_{\text{H,e}}$ and $\log K_{\text{H,w}}$ of individual polyol tracers.

species	No. of obs.	Log $K_{\text{H,e}}$			Log $K_{\text{H,w}}$		
		Median	Average	Range	Median	Average	Range
<i>Isoprene SOA tracers</i>							
C5-alkene triol 1	53	14.0	13.9 ± 0.86	11.5 – 16.4	7.06	7.22 ± 0.50	6.53 – 8.87
C5-alkene triol 2	63	13.7	13.6 ± 0.73	11.2 – 16.1	7.24	7.34 ± 0.45	6.60 – 8.49
C5-alkene triol 3	83	13.9	13.8 ± 0.85	10.6 – 16.1	7.31	7.43 ± 0.55	6.53 – 8.87
2-Methylthreitol	101	13.4	13.3 ± 0.70	10.9 – 14.8	9.96	10.0 ± 0.80	8.55 – 11.9
2-Methylerythritol	95	13.5	13.5 ± 0.71	11.6 – 15.6	9.93	9.95 ± 0.79	8.55 – 11.9
<i>Biomass burning tracer</i>							
Levoglucosan	65	15.7	15.7 ± 0.90	13.2 – 17.3	13.3	13.4 ± 0.56	12.4 – 14.6
<i>Sugars and sugar alcohols</i>							
Meso-erythritol	31	14.5	14.4 ± 0.60	12.8 – 15.6	9.44	9.65 ± 0.66	8.68 – 11.5
Fructose	85	14.2	14.1 ± 0.89	11.9 – 16.5	14.6	14.7 ± 0.84	13.1 – 16.8
Mannose	74	14.0	14.1 ± 0.94	12.1 – 16.8	10.9	10.9 ± 0.88	9.46 – 13.0
Glucose	88	13.9	13.9 ± 0.93	11.3 – 16.3	14.6	14.7 ± 0.85	13.2 – 16.8
Xylitol	22	13.8	13.7 ± 0.72	12.6 – 15.0	12.1	12.1 ± 0.62	10.7 – 13.2
Arabitol	30	15.1	15.0 ± 1.23	13.0 – 18.2	11.2	11.4 ± 0.83	10.0 – 13.0
Mannitol	65	14.6	14.5 ± 0.94	12.1 – 16.4	12.9	12.9 ± 1.15	11.0 – 15.6

Figure 1

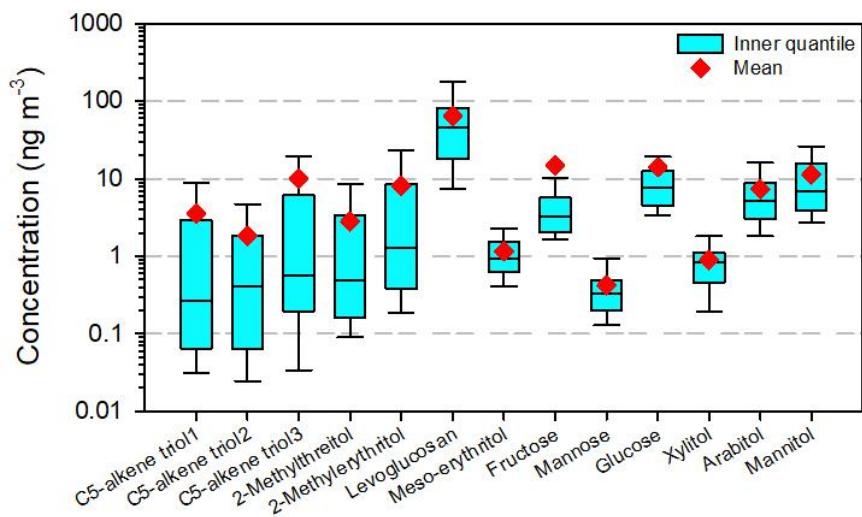


Figure 1. Total concentrations of individual polyols ($Q_f + Q_b + PUF$) in the ambient atmosphere of northern Nanjing. The boxes depict the median (dark line), inner quantile range (box), 10th and 90th percentiles (whiskers), and the mean (red diamond).

Figure 2

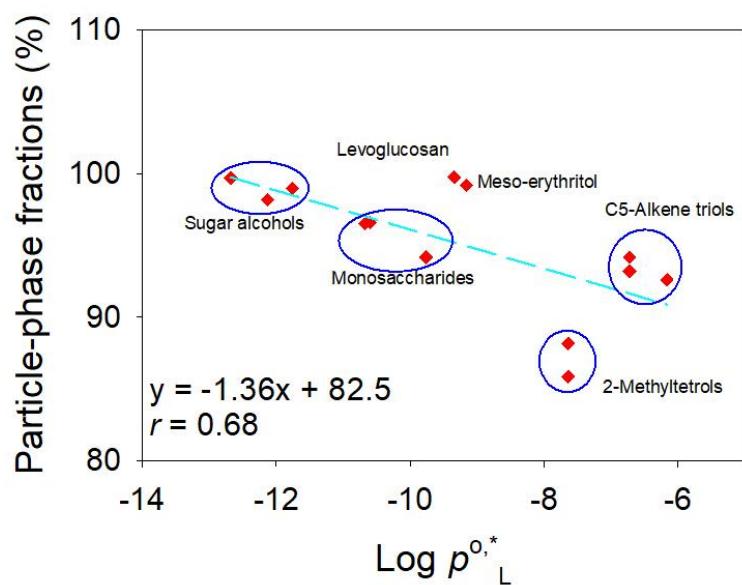


Figure 2. Linear relationship between average aerosol-phase fractions and $\log p_L^{0,*}$ of polyol tracers.

Figure 3

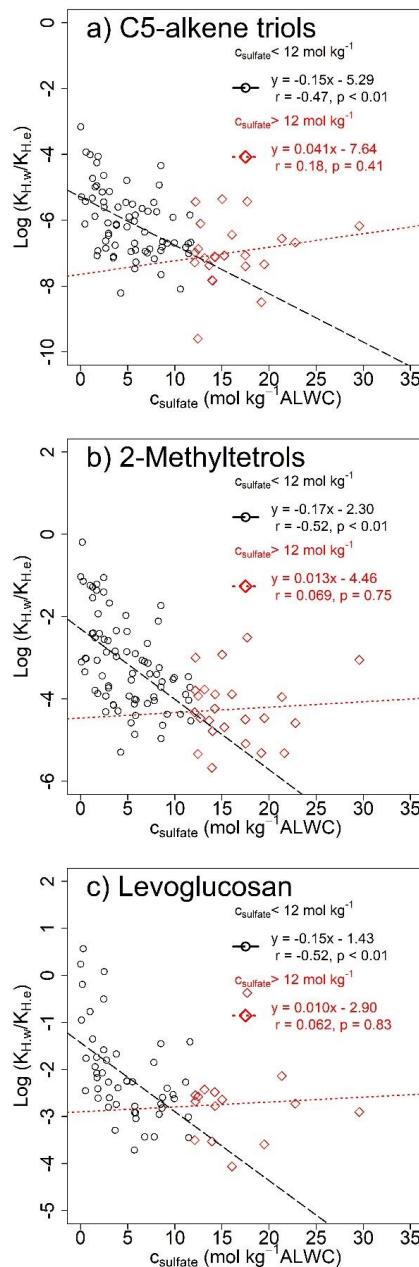


Figure 3. Modified Setschenow plots of $\log (K_{H,w}/K_{H,e})$ vs. c_{sulfate} for (a) C5-alkene triols, (b) 2-methyltetrosols, and (c) levoglucosan.