1	Evaluation of the contribution of new particle formation to cloud
2	droplet <u>number concentration</u> in urban atmosphere
3	Sihui Jiang ¹ , Fang Zhang ^{1*} , Jingye Ren ¹ , Lu Chen ¹ , Xing Yan ¹ , Jieyao Liu ¹ , Yele Sun ² ,
4	Zhanqing Li ³
5	¹ College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875,
6	China
7	² State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,
8	Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
9	³ Earth System Science Interdisciplinary Center and Department of Atmospheric and Oceanic Science,
10	University of Maryland, College Park, Maryland, USA
11	Correspondence to: F. Zhang, <u>fang.zhang@bnu.edu.cn;</u>
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	删除[SihuiJiang]: 删除[SihuiJiang]:
	1

23 Abstract

24	The new particle formation (NPF) effect on cloud condensation nuclei (CCN) varies widely in	删除[SihuiJiang]:	is a large source of
25	diverse environment. The CCN or cloud dreplet from NDE sources remains highly uncertain in urban	删除[SihuiJiang]:	and
25	diverse environment. The CCN or cloud droplet from NPF sources remains highly uncertain in urban	删除[SihuiJiang]:	: in
26	atmosphere which are greatly affected by the high background aerosols and frequent local emissions.	删除[SihuiJiang]:	troposphere.
27	In this study, we quantified the NPF <u>effect on</u> cloud droplet number concentration (CDNC, or N_d) at	删除[SihuiJiang]:	contribution of
28	typical updraft velocities (V) in clouds based on field observations on May 25-June 18, 2017 in urban	删除[SihuiJiang]:	to
29	Beijing. We show that the NPF increases the N_d by <u>32-40</u> % at $V= 0.3-3$ m s ⁻¹ during the studied	删除[SihuiJiang]:	using a
2)	Beijing. We show that the Will increases the N_a by $52-40$ /0 at $V = 0.5-5$ m/s that the studied		campaign data of aerosol number size
30	period. The N_d is reduced by 11.8±5.0% at $V=3$ m s ⁻¹ and 19.0±4.5% at $V=0.3$ m s ⁻¹ compared to that	1	hemical composition observed
31	calculated from constant supersaturations due to the water vapor competition effect, which suppress	删除[SihuiJiang]: droplet and	drives the variations of CCN and cloud
		删除[SihuiJiang]:	20.22
32	the cloud droplet formation by decreasing the environmental maximum supersaturation. (Smax). The		
33	effect of water vapor competition becomes smaller at larger V that can provide more sufficient water	删除[SihuiJiang]: in	in urban atmosphere. A markedly reduction
34	vapor. However, under extremely high aerosol particle number concentrations, the effect of water	删除[SihuiJiang]:	observed due to water vapor competition
			n of actual environmental updraft velocity,
35	vapor competition becomes more pronounced. As a result, although a larger increase of CCN-size	decreasing	
36	particles by NPF event is derived on clean NPF day when the number concentration of pre-existing	删除[SihuiJiang]:	from a prescribed
37	background aerosol particles is very low, no large discrepancy is presented in the enhancement of N_d	删除[SihuiJiang]:	· .
57	background acrosof particles is very low, no large discrepancy is presented in the emiancement of wa		Essentially, water vapor competition led to
38	by NPF between the clean and polluted NPF day. We finally <u>reveal</u> a considerable impact of the		M_d by decreasing the environmental maximum S_{max}) for the activation of aerosol particles. It
39	primary sources on the evaluation of the NPF contribution to N_{CCN} and N_d based on a case study. Our	is shown that S_{max}	was decreased by 14.5-11.7% for $V=0.3-3$ m the largest suppression of cloud droplet
40	study highlights the importance of fully consideration of both the environmental meteorological	删除[SihuiJiang]:	
41	conditions and multiple sources (i.e. secondary and primary) to evaluate the NPF effect on clouds	删除[SihuiJiang]:	show
42	and the associated climate effects in polluted regions.	删除[SihuiJiang]:	when evaluating
72	and the associated enhance effects in politica regions.	删除[SihuiJiang]:	cloud droplet

删除[SihuiJiang]: New

删除[SihuiJiang]:

删除[SihuiJiang]:

43

45 **1 Introduction**

46	In the global climate system, aerosols, cloud condensation nuclei (CCN) and cloud droplets are	
47	very important components. Clouds, serving as a bridge connecting aerosols and climate, are the	删除[SihuiJiang]: there has been a lot of
48	most uncertain factor of climate change (IPCC, 2013; Seinfeld et al., 2016; Cai et al., 2020). The	删除[SihuiJiang]: trying
49	microphysical link between aerosols and clouds as the most important part has received extensive	删除[SihuiJiang]: parametric model
ر ب 	interophysical link between acrosors and crouds as the most important part has received extensive	删除[SihuiJiang]: As a main source of aerosols, new
50	attention. Cloud droplet activation is a key process from aerosol to clouds, and researchers have tried	删除[SihuiJiang]: contribution of nucleation
51	to simulate the microphysical processes by using <u>numerical activation models</u> (e.g. Boucher and	删除[SihuiJiang]: to global aerosol
52	Lohmann., 1995; Abdul-Razzak et al., 1998; Kiehl,1999; Khvorostyanov and Curry., 1999;	删除[SihuiJiang]: (or condensation nuclei, CN) cannot be ignored, as NPF contributed 81% of the aerosols in the Marine
53	Abdul-Razzak and Ghan., 2000; Nenes et al., 2002, 2004; Petters et al., 2007; Ren et al., 2018; Genz	environment and 64%
54	et al., 2020).	设置格式[SihuiJiang]: 字体颜色: 背景 2
		删除[SihuiJiang]: the terrestrial environment (Merikanto
55	New particle formation events (NPF) have been observed and occurred frequently in different	设置格式[SihuiJiang]: 字体颜色: 背景 2
56	atmospheric environments in the world (Spracklen et al., 2010; Yue et al., 2011; Peng et al., 2017;	删除[SihuiJiang]: 2010). When these
57	Kerminen et al., 2018; Bousiotis et al., 2019; Zimmerman et al., 2020). The <u>NPF</u> events <u>was one of</u>	删除[SihuiJiang]: are mixed within the planetary boundary layer, they may
58	the most significant sources of fine particles in the atmosphere (Shi et al., 1999; Stanier et al., 2004;	删除[SihuiJiang]: from
59	Kulmala and Kerminen, 2008). For example, it has been found that the NPF contributed about 76%	删除[SihuiJiang]: ,
60	of the total fine particle number concentrations in urban Beijing (Wu et al., 2011). These nucleated	删除[SihuiJiang]: caused by
00	or the total line particle number concentrations in <u>partour Derjing (we et al., 2011). These</u> nucleated	删除[SihuiJiang]: CCN number concentration (
61	particles subsequently grow through coagulation or condensation processes to CCN-relevant sizes, or	删除[SihuiJiang]:)
62	act as CCN in convective clouds (Fan et al., 2013; Li et al., 2010). In reality, the field studies, have	删除[SihuiJiang]: But researchers have different considerations on the definition of NPF events, as well as the
63	shown that these fine particles produced from NPF can subsequently turn into an enhancement in	initiation and duration of NPF (Dal Maso et al., 2005; Leino et
64	N _{CCN} at cloud-relevant supersaturations (Kalkavouras et al., 2017; Peng et al., 2014; Wu et al., 2015;	al 2016). As a result, the calculation methods about <i>N_{CCN}</i> enhancement during the NPF differ among the studies (Asmi et al., 2011; Kerminen et al., 2012; Peng et al., 2014
65	Ma et al., 2016; Li et al., 2017; Zhang et al., 2019). <u>It was estimated that up to 80% of CCN number</u>	一 删除[SihuiJiang]:
66	concentration (<i>N_{CCN}</i>) is from the nucleation process in urban Beijing (Wiedensohler et al., 2008).	/ 删除[SihuiJiang]:

67	However, the N _{CCN} only reflects the cloud forming potential of aerosol particles at a given 删除[SihuiJiang]: Moreover, clouds are not characterized by a constant supersaturation. The cloud droplet number
68	supersaturation. The measurement of CCN is usually carried out at constant supersaturations. Concentration (CDNC,
69	Different from the prescribed supersaturation used in the evaluation of N _{CCN} , when calculating the
70	cloud droplet number concentration (CDNC, or N _d), researchers considered the dynamic situations in
71	clouds. In clouds, the supersaturation exhibits variable levels that instantaneously adjust to the
72	intensity of cloud updrafts and the particle number size distribution (PNSD) (Nenes et al., 2003;
73	<u>Hudson et al., 2015). So the CDNC, (or N_d) depends on the size distribution, chemical properties of</u>
74	aerosol and the cloud updraft velocity, all of which <u>regulate</u> the maximum supersaturation (Smax) that 删除[SihuiJiang]: also define
75	can be formed in a cloud parcel (Nenes and Seinfeld, 2003). Studies have shown that the CDNC in
76	clouds exhibits a sublinear <u>relationship</u> to aerosol <u>number concentration (N_{CN})</u> (Twomey, 1977; 删除[SihuiJiang]: response
77	Leaitch et al., 1986; Ghan et al., 1993; Boucher and Lohmann, 1995; Nenes et al., 2001; Ramanathan 删除[SihuiJiang]: particle increases
78	et al., 2001; Sullivan et al., 2016), this is different from CCN due to the limitation of the water vapor 删除[SihuiJiang]: as
79	in the actual environment. Using the prescribed supersaturation to calculate CDNC may therefore
80	provide a bias on evaluation the aerosol indirect effect. For example, Kalkavouras et al. (2017, 2019)
81	reported an average 12% enhancement of CDNC during two consecutive NPF episodes in the eastern 删除[SihuiJiang]: the
82	Mediterranean, which was significantly smaller than the enhancement of N _{CCN} (~87%) during the 删除[SihuiJiang]: (Santorini and Finokalia) during summer,
83	NPF <u>events</u> . Hence, it is critical to fully consider the background meteorological conditions (e.g.
84	using dynamic water vapor under different updraft velocities) to simulate the S_{max} when evaluating
85	the effect of NPF on clouds and the associated climate effects.
86	Relevant studies have been carried out in clean regions, but fewer in polluted urban areas. While
87	field studies have shown that NPF events can occur frequently in polluted urban sites although the
88	high concentration of background particles are not conducive to the generation of new particles (Wu 删除[SihuiJiang]:
	4.

89	et al., 2011; Peng et al., 2014; Zimmerman et al., 2020), and the formation and growth rate, of new 删除[SihuiJiang]: :
90	particles may be larger than that of relatively clean atmosphere. Wiedensohler et al. (2012) found that, 删除[SihuiJiang]: its characteristics like nucleation,
91	under the high concentration levels of gaseous pollutants and strong oxidation in polluted area, the
92	high concentration of nanoparticles generated by NPF events can rapidly grow to tens or even
93	hundreds of nanometers in a few hours. Zhang et al. (2019) observed the subsequent growth of newly
94	formed particles can last 2-3 days in urban Beijing, producing more CCN-sized particles. Previous
95	studies in polluted regions demonstrated the complex and non-linear relationship between aerosol
96	particles and CCN due to multiple emission sources (Zhang et al., 2014, 2016, 2017, 2019; Ren et al.,
97	2018; Fan et al., 2020), highlighting the importance of understanding of the connections between
98	aerosols and CCN or cloud droplet close to the source regions. Particularly, owing to the extremely
99	high CN number concentrations (with order of magnitude as high as 10 ⁴ or even 10 ⁵ cm ⁻³) during
100	NPF events in urban area, the effect of competition for water vapor and reduction in cloud
101	supersaturation is expected to be more exacerbated.
102	The current study quantifies the contribution of NPF to <u>N_{CCN}</u> and CDNC in the polluted urban 删除[SihuiJiang]: CCN
103	atmosphere of Beijing using field measurements of aerosol number size distributions and chemical
104	composition. <u>The effect of water vapor competition on evaluating <i>N_d</i> during NPF events is examined. 删除[SihuiJiang]: We aim to investigate the NPF impacts on</u>
105	The impact of the background pre-existing particles on the enhancement of CCN and CDNC is also N_d and S_{max} formed in clouds by applying five updraft velocities. Effect
106	discussed by contrasting the results on typical "clean" NPF day and "polluted" NPF day. Given the
107	strong local primary sources like traffic emissions in urban area, a case study is conducted to
108	$mestigate$ the impact of primary emissions on the evaluation of NPF effect on N_d .
	删除[SihuiJiang]: interference from evening rush hour

删除[SihuiJiang]:

2 Methodology

110	2.1 <u>Site and experiment</u>		删除[SihuiJiang]: Experimental site
111	A field campaign was conducted from May 25, 2017 to June 18, 2017 at the Institute of	I	
112	Atmospheric Physics (IAP), Chinese Academy of Sciences (39.98° N, 116.39° E) for measurements		
113	of aerosol physical and chemical properties. The IAP located between the north Third Ring Road and		
114	Fourth Ring Road in northern Beijing, which is a typical urban background site, mainly affected by		
115	traffic and <u>cooking</u> emissions. Beijing is hot in summer with high ambient relative humidity, which is		删除[SihuiJiang]: catering
116	conductive to generate atmospheric convection and reduce the high background aerosol condensation		
117	sink. The radiation in summer is stronger than other seasons, which promotes the generation of		删除[SihuiJiang]: And the
118	nucleated particles. Besides, local sources from traffic and cooking emissions, which may contribute	_	删除[SihuiJiang]: relatively strong
119	many CCN_size-relevant particles, can be important at the site (Sun et al., 2015). The instruments		删除[SihuiJiang]: -
120	during the campaign were deployed in a container at ground level (~8 m on a meteorological tower).		设置格式[SihuiJiang]: 字体颜色: 背景 2
121	The number size distribution of particles in the size range from 10 to 550 nm (scanned range)		删除[SihuiJiang]: 2.2 Measurements of aerosol size distribution and chemical composition
122	were measured with time resolution of 5 minutes by a scanning mobility particle sizer (SMPS; Wang		删除[SihuiJiang]:),
123	and Flagan, 1990; Collins et al., 2002), which consists of a differential mobility analyzer (DMA,		删除[SihuiJiang]: particle 删除[SihuiJiang]: According to the particle number size
124	model 3081L, TSI Inc.) to classify particles with different sizes of particles, and a condensation		distribution (PNSD), we can identify the NPF event by a typical "banana" shape (Kalkavouras et al., 2019) with a
125	particle counter (CPC, model 3772, TSI Inc.) to detect the size-classified particles. The sampled		sudden increase of nucleated particle number (10-30 nm) and further grow into larger particles over a short time period
126	particles were dried to a relative humidity < 30% before entering the DMA. The non-refractory		(usually less than 4 h). While non-NPF events may also have sudden increases of nucleated particles at a short time scale,
127	chemical composition of PM1 is measured by an Aerosol Chemical Speciation Monitor (ACSM),		but they do not show further growth.
128	which consists of an aerodynamic lens to efficiently sample and focus submicron particles into the		删除[SihuiJiang]: And the measurements were deployed at ground level and at the 260 m level of the tower (Du et al.,
129	ACSM (Ng et al. 2011). Before sampling into the ACSM, aerosol particles are dried by silica gel		2017), 删除[SihuiJiang]:
130	desiccant. The ACSM was operated at a time resolution of 15 min. And the non-refractory chemical		删除[SihuiJiang]:
	6	X	

131	components that can be measured mainly include organics, sulfate salts (SO ₄ ²⁻), nitrate salts (NO ₃ ⁻),	
132	ammonium (NH4 ⁺), and chloride (Cl ⁻) (Ng et al. 2011). The refractory components mainly include	
133	black carbon (BC), and the BC mass concentration was measured using a seven-wavelength	删除[SihuiJiang]: Black
134	aethalometer (AE33, Magee Scientific Corp)	设置格式[SihuiJiang]: 默认段落字体, 字体: (默认) Times New Roman, 小四, 字体颜色: 背景 2
135	2.2 Calculation of <u>N_{CCN}</u>	设置格式[SihuiJiang]: 默认段落字体, 字体: (默认) Times
136	According to the hygroscopic growth process of particles described by Köhler theory (Köhler et	New Roman, 小四, 字体颜色: 背景 2
137	al., 1936), the particles with the dry particle diameter (D_p) larger than the critical dry particle	删除[SihuiJiang]: CCN number concentrations
138	diameter (D_c) can be activated to form a cloud droplet. In this study, the κ -Köhler theory (Petters and	删除[SihuiJiang]: growth of particles, their surface water vapor phase equilibrium (supersaturation ratio) will gradually increase. When they grow to a certain size, the required …
139	Kreidenweis, 2007), which simply describe the approximate relationship between the D_c with the	删除[SihuiJiang]: size and supersaturation ratio are called critical
140	critical supersaturation (S _c), is applied as follows, when $\kappa > 0.1$:	删除[SihuiJiang]: d_c) and critical supersaturation (S_c). Beyond
141	$\underline{K} = \frac{\underline{4A^3}}{27D_{\sigma}^2 \ln^2 S_c}, \underline{A} = \frac{\underline{4\sigma_w M_w}}{RT\rho_w} $ (1)	this critical point, particles can condense and grow
142	where M_w is the molecular weight of water ($M_w = 0.018015$ kg mol ⁻¹), ρ_w is the density of water	spontaneously without increasing the S_c . Therefore, if a
142	$(\rho_w = 997.1 \text{ kg m}^3)$, T is the parcel temperature (T = 298.15 K), where σ_w is the droplet surface	删除[SihuiJiang]: In calculation, the corresponding minimum particle size (d_m) can be obtained according to a prescribed environmental …
144	tension at the point of activation ($\sigma_w = 0.072 \text{ Jm}^{-2}$) and R is the universal gas constant ($R = 8.315 \text{ J}$	设置格式[SihuiJiang]: 字体: 倾斜
145	<u>K⁻¹ mol⁻¹</u>), κ is a hygroscopic parameter which depends on the chemical composition of the particle.	删除[SihuiJiang]: formula (5),
		设置格式[SihuiJiang]: 字体: 非倾斜, 字体颜色: 蓝色
146	In this study, <u>based on the assumption that particles are internally mixed and their chemical</u>	删除[SihuiJiang]: hygroscopic parameter, <i>κ</i> , by
147	composition will not be impacted by changes in particle size, we derived the κ with a simple mixing	删除[SihuiJiang]: under the assumption of internal mixture
148	rule on the basis of chemical volume fractions (Petters and Kreidenweis, 2007; Gunthe et al., 2009).	删除[SihuiJiang]: next calculation rule
149	We used ACSM data, combined with the positive matrix factorization (PMF) analysis data to	$\kappa_{\rm chem} = \sum_{i} \varepsilon_i \kappa_i,$
150	calculate the volume fraction of organic and inorganic, according to the <u>following equation</u> :	删除[SihuiJiang]: i (3
151	$\underline{\kappa_{chem}} \equiv \sum_{i} \underline{\varepsilon_i} \underline{\kappa_i} \tag{2}$	位置格式[SihuiJiang]: 缩进: 首行缩进: 3 字符
		删除[SihuiJiang]:
152	where κ_i and ε_i are the hygroscopic parameter and volume fraction for each individual (dry) ⁴	删除[SihuiJiang]:
	7.	

153	component in the mixture, respectively. The κ value and density (ρ) of each species used in the	2	
154	calculation are given in Table 1, which is referred from Petters and Kreidenweis (2007) and Topping	5	
155	<u>(2005).</u>		
156	Table 1. Densities of different chemical species and their κ measured by the laboratory		
157 158	<u>Species NH4NO3 (NH4)2SO4 NH4HSO4 H2SO4 POA* SOA* BC</u>		
159	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
160	POA* refers to primary organic aerosol and SOA* refers to secondary organic aerosol	ĺ	
161	In the equation (1), the corresponding D_c can be obtained from a given S_c , and all particles with	Ļ	
162	diameters larger than D_c can be activated. So the N_{CCN} can be calculated by integrating the PNSI		
			设置格式[SihuiJiang]: 字体颜色: 背景 2
163	from D_c to the largest particle size measured:		删除[SihuiJiang]: cloud droplet number concentrations
164	$\underline{CCN(\underline{D}_{c})} = \int_{\underline{D}_{c}}^{\underline{550}} \underline{n(log\underline{D}_{p})dlog\underline{D}_{p}} \tag{3}$		设置格式[SihuiJiang]: 字体颜色: 背景 2
165	where $n(log D_p)$ is the particle number that correspond to each particle size bin $dlog D_p$ in the		删除[SihuiJiang]: cloud droplet number
166	aerosol number size distribution.		删除[SihuiJiang]: , since
			删除[SihuiJiang]: is not fixed, it is limited by the competition
167	2.3 Calculation of N ₄	/ // /	of water vapor.
168	The N_d depends on the S_{max} that can be formed in adiabatic ascending clouds. And this		删除[SihuiJiang]: et al (2003
169	"cloud-relevant" supersaturation varies at different updraft velocity. A global scheme of cloud drople	t_//	删除[SihuiJiang]:) established a global cloud parametric model based on the "population splitting" concept, which was
170	parameterization has been established and developed for the calculation of the N_d and S_{max} (Nene	s	later improved by 删除[SihuiJiang]: (
171	and Seinfeld, 2002, 2004; Fountoukis and Nenes, 2005). In this study, the Smax was calculated from		删除[SihuiJiang]: (
172	an equation that expresses the water vapor balance in adiabatic ascending cloud (Nenes and Seinfeld	., /) 删除[SihuiJiang]: $\frac{ds}{dt} = \alpha V - \gamma \frac{dw}{dt}$,
173	2003):		位设置格式[SihuiJiang]: 缩进: 首行缩进: 2 字符
174	$\frac{ds}{dt} = \alpha V - \gamma \frac{dw}{dt} $ (4)		删除[SihuiJiang]: first term on the right side
175	where α and γ are two coefficients can be calculated by meteorological constants, the product of	f4	删除[SihuiJiang]: equation (7)
176			删除[SihuiJiang]:
176	α and V expresses the increase of supersaturation due to the adiabatic cooling of the parcel, while the		删除[SihuiJiang]:
	8	X	

_

177 178 179 180 181 182	$\frac{dw}{dt} = \frac{denotes the water condensation rate during the aerosol activation and subsequent growthprocesses. which is shown in detail in Eqs (5). And the \frac{ds}{dt} express the growth rate of supersaturation,when it is equal to 0, the supersaturation reaches the maximum value.$	删除[SihuiJiang]: second term expresses the decrease of supersaturation due to the depletion of 删除[SihuiJiang]: vapor by the activated droplets. 删除[SihuiJiang]: left side
183	Nenes et al.(2002) used a sectional representation of the CCN spectrum (i.e. particle number	删除[SihuiJiang]: 2001
184	supersaturation distribution $n^{s}(s')$ and total number of particles with <u>Sc</u> smaller than <u>S</u> , $F^{s}(S)$, which	删除[SihuiJiang]: aerosol
185	is given by	删除[SihuiJiang]: critical supersaturation
186	$\underline{F^{\underline{S}}(\underline{S}_x)} = \int_0^{\underline{S}_x} \underline{n^{\underline{S}}(\underline{S'})d\underline{S'}} $ (6)	删除[SihuiJiang]: s
187	Where the S_x is the supersaturation in the environment, the $n^S(S')$ in equation (6) represents the	删除[SihuiJiang]:
188	number concentration of particles activated between S' and S' + dS' in CCN spectrum. The $F^{\underline{S}}(\underline{S_x})$	$F^{S}(s) = \int_{0}^{s} n^{s}(s') ds' = \sum_{j=1}^{i-1} N_{j} + N_{i} \left(\frac{s - s_{c,i-1}}{s_{c,i} - s_{c,i-1}} \right),$
189	can be calculated by the integration of $n^{S}(S')$ from the lower limit 0 to upper limit S_{x} . If the S_{max} is	(5) If the maximum supersaturation (S_{max}) is known, the activated
190	known, the activated N_d can be calculated from equation (7), as	cloud droplet number (N_d) can be calculated from equation (8), as
191	$\underline{N_{d}} = F^{\underline{S}}(\underline{S_{max}}) \tag{7}$	$M = E^{s}(\alpha)$
192	In this study, we used the PNSD, chemical components, and empirical values of cloud updraft	$N_d = F^s(s_{\max}), \tag{6}$
193	velocity to determine the S_{max} and N_d during NPF days in urban Beijing. Owing to that the direct	删除[SihuiJiang]: calculation
194	measurement of cloud-scale updraft velocity in the atmosphere is almost impossible, the prescribed	删除[SihuiJiang]: typical cloud
195	updraft velocity used in this study is referred from previous studies. Generally, the updraft velocities	删除[SihuiJiang]: (ranging
196	are reported very small (Martin et al., 1994) and range from 0.1 to 1.0 m/s in stratocumulus and	删除[SihuiJiang]: s ⁻¹) that can represent the conditions of
197	cumulus clouds in remote or marine boundary layer (Meskhidze et al., 2005; Morales et al., 2010).	different clouds types (stratocumulus/
198	The vertical updraft velocities were derived varying from 0.3 to 3 m/s (Zheng et al., 2015), which are	删除[SihuiJiang]:
	٩	删除[SihuiJiang]:

199	typical for cumulus and convective clouds, in summer of north China and thus was selected and	删除[SihuiJiang]:)
200	applied in this study.	删除[SihuiJiang]: is
201	2.4 Method for calculating the contribution of NPF to <i>N_{CCN}</i> and <i>N_d</i>	删除[SihuiJiang]: here according to field observation or empirical data (Morales and Nenes. 2010; Zheng et al., 2015).
202	The increment of N_{CCN} or N_d by the NPF (ΔN_{CCN} or ΔN_d) is usually quantified by comparing the	设置格式[SihuiJiang]: 非突出显示
203	N _{CCN} or N _d prior and after the NPF event (Peng et al., 2014; Wu et al., 2015; Ma et al., 2016; Ren et	
204	al., 2018; Zhang et al., 2019; Fan et al., 2020). In this study, the N_{CCN} or N_d prior the NPF event was	
205	determined as two-hours average of N_{CCN} or N_d before the burst of newly formed nucleated particles.	
206	And the N_{CCN} and N_d after the NPF event was calculated as the average of N_{CCN} or N_d from begin to	
207	the end of the NPF impact the N_{CCN} or N_d . So it is critical to determine when a NPF event start and	
208	end, or when a NPF begins and ends the impact on the N_{CCN} or N_d .	
209	Generally, the burst in the nucleation mode particles symbolizes the beginning of an NPF event.	
210	Here, the moment when a half-hour concentration of the nucleation-mode particles suddenly	
211	increases with order of magnitude as high as ~10 ⁴ cm ⁻³ during NPF cases was defined as t_{start} . The	
212	end time of an NPF event, t_{end} , is defined by the moment when the half-hour concentrations of	
213	nucleated particle is lower than that at t _{start} .	
214	Since there need some time for the newly formed nucleated particles to grow to sufficient size	
215	to act as CCN, the N _{CCN} would not be enhanced as soon as new particles are generated. To determine	
216	the time that NPF begins and end the impact on the N_{CCN} , denoted as $t_{start,CCN}$ and $t_{end,CCN}$	
217	respectively, the time series of N_{CCN} was firstly divided by the N_{CCN} at t_{start} at each prescribed	
218	supersaturation, to derive the normalized time series of N_{CCN} , denoted as R_s . The equation is written	
219	<u>as follows,</u>	í mun
220	$\underline{R}_{\underline{S}} = \frac{\underline{CCN}_{\underline{S}}}{\underline{CCN}_{\underline{S},\underline{t}_{\underline{start}}}} $ (8)	删除[SihuiJiang]: 删除[SihuiJiang]:

10

221	where S represents the supersaturation. Before the new particles reaches a large enough size to
222	impact N_{CCN} , the variations of R_S should remain constant for different supersaturations if the
223	concentrations of the background or pre-exist aerosols changes insignificant. And at t _{start,CCN} when
224	<u>NPF</u> begin to impact the N_{CCN} , an apparent increase in R_S is observed by taking the observation on
225	June 11 as an example (Fig. 1a). Also, due to the heterogenous composition and distinct CCN
226	activity of the newly formed particles (Duan, et al., 2018; Ren et al., 2018; Zhang et al., 2019; Tao, et
227	al., 2021;), a parameter, R_D , which was calculated with the relative standard deviation of the R_S of
228	different supersaturations at a given time, is applied to fix the $t_{start,CCN}$ and $t_{end,CCN}$. Then the
229	$t_{start,CCN}$ and $t_{end,CCN}$ correspond to the moments when the R_D starts to increase and back to nearly
230	zero (Fig. 1b) respectively between the t_{start} and t_{end} . The same method is used to determine the
231	time that NPF begins and ends the impact on the N_d , which are denoted as t_{start,N_d} and t_{end,N_d}
232	respectively (Fig. 1d, e). More details about the method can be found in Kalkavouras et al. (2019).
233	As shown in Fig. 1, it is clearly that both the N_{CCN} and N_d exhibits large increase in the
234	<u>NPF-impacted time zone between $t_{start,CCN}$ and $t_{end,CCN}$ (Fig. 1c), and between t_{start,N_d} and t_{end,N_d}</u>
235	(Fig. 1f). The average time lag between t_{start} and t_{start,N_d} was about 3-5 hours which is shortened by
236	50% compared to that reported by Kalkavouras et al., (2019). This case on 11 June was not an
237	individual case, and similar patterns are also shown on other NPF days during the campaign (Fig.
238	<u>\$3-\$8).</u>

255 investigate the impact of local emissions on the evaluation of NPF effect on N_d based on a case study.

256 **3 Results and discussion**

270	nucleation to subsequent growth (not interrupted by meteorological conditions either), are selected		
271	for further study (marked in pink shadow in Fig. 2). Fig. 2b, c and d present the time series of N_{CN} ,		differen
272	N_{CCN} and N_d . It exhibits that the NPF event drives the variation of N_{CCN} and N_d , showing that the		删除[S 设置格
273	occurrence of NPF events as an important source of CCN. The variation trend of N_{CN} is more		以直俗 删除[S
274	correlated with that of N_{CCN} than N_d (also see Fig. 4, Table S5). This is because that the N_{CCN} was		删除[S
275	calculated based on a constant S rather than refer to the availability of water vapor, while the		yellow 删除[S
276	calculation of N_d is based on the S_{max} that can reach in the real atmosphere at a given updraft velocity.		results s ⁻¹ , 2.1
277	In the cloud, the change in the quantity of cloud particles can be directly reflected by the change in		respect
278	<u>Smax</u> . As shown in Fig. 2e, the average S_{max} for the two vertical updraft velocity of $V=0.3$ m s ⁻¹ and		删除[S
279	<u>V=2.1 m s⁻¹ was calculated to be under 0.2% and 0.4%, varying largely with the variation of N_{CN} due</u>		during to stud
280	to the effect of water vapor competition, which will be discussed in Section 3.3.		Fig. 1 a has a s
281	3.2 Quantitative evaluation of the NPF impact on <i>N_{CCN}</i> and <i>N_d</i>		删除[S which
282	Based on the method in Section 2.4, the contribution of the NPF to N_{CCN} and N_d is calculated		CCN a aerosol
283	and shown in Fig. 3. The results show that the N _{CCN} is averagely increased by 32.0%, 43.0%, 53.0%,		amoun
284	and 65.0% at S of 0.2%, 0.4%, 0.6% and 0.8% respectively, during NPF events (Fig. 3b, c, Table S3),		删除[S when N
285	amounting to about 24%-37% of environment CCN, at the cloud-relevant supersaturation are	V K	(Kalka enhanc
286	directly originated from NPF during the studied period in urban Beijing. And the rest (about 63-76%)		Theref
287	of CCN are from the other sources or pre-existing particles, which is much larger than that derived in		₩除[S
288	remote Finokalia, Crete, Greece by Kalkavouras et al (2019). In other words, due to the higher	\mathbb{N}	supersa from N
289	background concentration of aerosol particles in polluted urban area, the relative contribution of NPF		删除[S
290	to N_{CCN} is more significant in remote clean regions.		删除[S

删除[SihuiJiang]: N_{CCN} represent the calculated value under different supersaturations (

删除[SihuiJiang]:) (the

设置格式[SihuiJiang]: 字体: 非倾斜

删除[SihuiJiang]: %,

删除[SihuiJiang]: corresponds to the colors in blue, green, yellow, red

删除[SihuiJiang]:). And different colors of N_d represent the results at different updraft vertical velocity (V) (the V of 0.3 m s⁻¹, 2.1 m s⁻¹ corresponds to the colors in orange and purple respectively).

•••

删除[SihuiJiang]: half of the observation time, occurred during the studied periods. Here, we just select 7 NPF events to study as marked in red box in Fig. 1.

Fig. 1 also presents the time series of N_{CCN} and N_d . The N_{CCN} has a strong response to aerosol increase during the NPF

删除[SihuiJiang]: is always sufficient, the increase of N_{CN} which indicates the occurrence of NPF events can bring more CCN as shown in Fig. 1. However, due to the pre-existing aerosol in the background, which may contribute a large amount of

删除[SihuiJiang]: , it is necessary to consider a time node (t_{dec}) when NPF begin to impact N_{CCN} and the duration of this effect (Kalkavouras et al., 2019) when we evaluating the CCN enhancement caused by NPF.

Therefore we used the methods of Kalkavouras et al(2019) ...

设置格式[SihuiJiang]: 缩进: 首行缩进: 0 字符

刖除[SihuiJiang]:at 0.20%, 0.4%, 0.6%, 0.8% upersaturation respectively, suggesting large source of CCN rom NPF events. And about 60-75% CCN

删除[SihuiJiang]: background

删除[SihuiJiang]: in urban Beijing

删除[SihuiJiang]:

307	suggesting that the higher cloud updraft velocity not only generates more cloud droplets, but also	
308	induces larger enhancements in N_d . We also show that the NPF contributes about 30% to the total N_d	
309	during the studied period in urban Beijing (Fig. 3f). And the rest (about 70%) of cloud droplet are	
310	from the other sources or pre-existing particles. With the increase of the S, the percentages of	
311	<u>NPF-initiated N_{CCN} and the contributions of the NPF to N_{CCN} increased more significantly than that</u>	
312	for N_d with the increase of V. In other words, the percentages of NPF-initiated N_d and the	
313	contributions of the NPF to N_d are relatively independent on the variation of V. This is primarily due	
314	to the water vapor competition effect under very high CN number concentrations when calculating	
315	the N_d . Under high N_{CN} , the water vapor competition effect will lead to lower S_{max} , which is smaller	
316	than that the constant S for calculating N_{CCN} . Roughly, the N_d at V of 0.3-3 m/s corresponds to the	
317	<u>N_{CCN} at S of 0.1%-0.5%</u> , within which the percentages of ΔN_{CCN} and the contributions of the NPF to	
318	N _{CCN} don't change much either. The effect of water vapor competition will be further examined in	
319	the following section.	
320	3.3 The effect of water vapor competition on evaluating N_d	
321	Fig. <u>4</u> shows the scatter plots of correlations between N_{CN} and N_{CCN} at supersaturations of 0.6%	
322	and 0.8% and the correlations between N_{CN} and N_d under updraft vertical velocities of 2.1 m s ⁻¹ and	
323	<u>3.0 m s⁻¹</u> . The N_{CCN} and N_{CN} were obviously <u>linearly related</u> , but the correlation between N_d and N_{CN}	
324	was non-linear. When shown as the average values with error bars, the N_d increase linearly as N_{CN}	
325	increase when the N_{CN} is below 15000, then the N_d began to decrease with the further increase of N_{CN} .	
326	This has been presented in previous studies (Nenes et al., 2001; Ramanathan et al., 2001; Sullivan et	
327	al., 2016), and was <u>believed to be</u> caused by the water vapor competition, of the aerosol particles.	
327 328	al., 2016), and was <u>believed to be</u> caused by the water vapor competition <u>of the aerosol particles</u> . Although the larger updraft velocities <u>can achieve greater supersaturation in adiabatic ascending</u>	

删除[SihuiJiang]: While the percentages of the enhancement remain the same from low to high updraft velocity since this value depends both on the increased quantity of cloud droplets and the concentration of pre-exist cloud droplets.

设置格式[SihuiJiang]: 字体: (默认) Calibri

删除[SihuiJiang]: Furthermore, we estimate the changes of N_{CN} and κ to the variance of N_d under different updraft velocities (V) using Eqs. S1, S2 and S3. The results demonstrate changes in N_{CN} contributed 68% in average to the variance of N_d and this contribution increased with the

设置格式[SihuiJiang]: 缩进: 首行缩进: 2 字符
删除[SihuiJiang]: 5
删除[SihuiJiang]: different
删除[SihuiJiang]: different
删除[SihuiJiang]: linear correlated
删除[SihuiJiang]: showing
删除[SihuiJiang]: we find most
删除[SihuiJiang]: as N_{CN} continue to
删除[SihuiJiang]: thought
删除[SihuiJiang]: .
删除[SihuiJiang]: generate
删除[SihuiJiang]:
删除[SihuiJiang]:

删除[SihuiJiang]: water vapor and can form more N_d

删除[SihuiJiang]: fixed supersaturation S used in the

删除[SihuiJiang]: mass used in the calculation of cloud

删除[SihuiJiang]: provide enough water vapor.

•••

•••

设置格式[SihuiJiang]: 字体: 倾斜, 下标

删除[SihuiJiang]: actual supersaturation

删除[SihuiJiang]: suggests

Figure <u>4. Scatter plots of correlation</u> between <u>total</u> number concentration (N_{CN}) and <u>CCN number</u> <u>concentration (N_{CCN})</u> at supersaturation of <u>(a)</u> 0.6% and <u>(c)</u> 0.8% respectively. <u>Scatter plot of</u>

341 <u>correlation</u> between N_{CN} and cloud droplet number concentration (N_d) at updraft vertical velocity of

342 (b) 2.1 m s^{-1} and (d) 3.0 m s^{-1} respectively.

17

删除[SihuiJiang]:

删除[SihuiJiang]: mean

删除[SihuiJiang]: 5. (a), (c) Correlation

 删除[SihuiJiang]: aerosol

 删除[SihuiJiang]: mean

 设置格式[SihuiJiang]: 字体: 非加粗

 删除[SihuiJiang]: (b), (d) Correlation

 删除[SihuiJiang]: aerosol number concentration (

 删除[SihuiJiang]:)

343	To evaluate the effect of water vapor competition on N_d , by taking the case on 11 June as an	
344	example, we compare the N_d calculated from the varied S_{max} at different updraft velocities with the N_d	删除[Sihu
345	at referred constant S (Fig. 5). The results from other NPF cases were also summarized in Table S6	删除[Sihu
346	and Table S7. Obviously, after the t_{start} , the S_{max} starts to decrease and was negatively correlated with	删除[Sihu
347	N_d for both the updraft velocities, reflecting the enhanced effect of competition for water vapor from	删除[Sihu
348	the growing number of droplets (Fig. 5a and 5b). It is shown that S_{max} was decreased by 14.5 \pm 3.5%,	删除[Sihu 删除[Sihu
349	$13.3 \pm 4.0\%$, $13.4 \pm 4.2\%$, $12.0 \pm 4.1\%$, $11.7 \pm 3.9\%$ for V=0.3, 0.9, 1.5, 2.1 and 3 m s ⁻¹ respectively	删除[Sihu
350	<u>(Fig. 5c, d).</u>	删除[Sihu
351	Therefore, by compared to the N_d calculated from the constant S, the N_d calculated from the	 删除[Sihu
		设置格式[
352	variable S_{max} is greatly reduced at both the updraft velocities of 0.3 m s ⁻¹ and 2.1 m s ⁻¹ , suggesting a	删除[Sihu
353	significant suppression of cloud droplet formation, Quantitatively, the N_d are reduced by 19.0±4.5%,	删除[Sihu
354	15.7±4.7%, 14.8±5.6%, 12.3±4.9%, 11.8±5.0% at updraft velocity of 0.3, 0.9, 1.5, 2.1 and 3 m s ⁻¹	删除[Sihu
		删除[Sihu
355	respectively on the NPF days. Our results are similar with that reported by Kalkavouras et al., (2017),	删除[Sihu
356	which shows this competition effects suppress N_d by 20% for $V = 0.3$ m s ⁻¹ and 12.3 % for $V = 0.6$ m	删除[Sihu
357	s ⁻¹ . <u>In addition, the</u> declined percentages with increase of the updraft velocity suggests that the effect	删除[Sihu
358	becomes smaller at larger V that can <u>achieve greater S_{max} in the environment</u> . Essentially, water vapor	删除[Sihu
		删除[Sihu
359	competition led to the reduction in N_d by decreasing the required S_{max} for the CN activation.	删除[Sihu
		删除[Sihu

uiJiang]: calculate and show uiJiang]: diurnal variation of iJiang]: and without the water vapor depletion in uiJiang]: 6a. For the test, if assuming no water va 🚥 uiJiang]: would not uiJiang]: after t_{Nd} (12:00), so the ideal number of \cdots ijiang]: estimated N_{CCN} for uiJiang]: supersaturation of S_{max} at the time of t_{Nc} uiJiang]: water vapor competition under differen [SihuiJiang]: 缩进: 首行缩进: 2 字符 uiJiang]: N_d uiJiang]: largely uiJiang]: due to the water vapor competition uiJiang]: low and high uiJiang]: velocity uiJiang]: , with average suppression percentages of uiJiang]: for N_d uiJiang]: all uiJiang]: It was consistent with the uiJiang]: of uiJiang]: , they found 删除[SihuiJiang]: The 删除[SihuiJiang]: provide more sufficient water vapor. In ... 删除[SihuiJiang]: It is shown that S_{max} was decreased by 1 ...

删除[SihuiJiang]:

 Figure 6. (a) The diurnal variation of N_d with or without

 considering water vapor competition at updraft speeds of 2.1

 m s⁻¹ and 0.3 m s⁻¹ on 11 June 2017; (b) Box diagram for t ····

 设置格式[SihuiJiang]: 缩进: 首行缩进: 2 字符

 删除[SihuiJiang]: Polluted

 删除[SihuiJiang]: Clean

 删除[SihuiJiang]:

205	
385	concentration N_d between a clean and a polluted NPF event. The "clean" NPF day is with a clean,
386	background ($PM_{2.5}=14 (\mu g/m^3)$), and the "polluted" NPF day is with $PM_{2.5}$ of 73 $\mu g/m^3$.
387	For the both cases, the N_{CCN} are increased with the evolution of the NPF events (Fig. 6a, b, e, f).
388	But the magnitude of the enhancements at the two cases are quite different. The N_{CCN} during NPF
389	events under polluted day was generally twice than that of clean day (Fig. 6e and 6f), because there
390	were a large number of pre-existing CCN-size aerosol particles on polluted NPF days. As a result, a
391	larger increment of N_{CCN} is derived on clean NPF day, showing <u>37-80%</u> and <u>15-41%</u> increases
392	percentage of N_{CCN} from NPF on clean and polluted days respectively. (Fig. 7b). As for N_d , on clean
393	days are 22% and 37%, and 34% and 26% on polluted days under updraft velocity of 0.3 and 2.1 m
394	s ⁻¹ . The increase percentages in N_d between clean and polluted days are comparable. The result just
395	further illustrates that the effect of water vapor competition on N_d under high N_{CN} in polluted
396	atmosphere. This suggests that it is critical to fully consider the background meteorological
397	conditions (e.g. using dynamic water vapor under different updraft velocities) to simulate the N_d
398	when evaluating the effect of NPF on clouds and the associated climate effects.

401 CCN number concentration (N_{CCN}) and cloud dropet number concentration (N_d) between the two $21_{\rm v}$

设置格式[SihuiJiang]: 字体: 小四 删除[SihuiJiang]: events, 设置格式[SihuiJiang]: 字体: 小四 设置格式[SihuiJiang]: 字体: 小四 删除[SihuiJiang]: cleaner 设置格式[SihuiJiang]: 字体: 小四 删除[SihuiJiang]: which 设置格式[SihuiJiang]: 字体: 小四 删除[SihuiJiang]:) 设置格式[SihuiJiang]: 字体: 小四 设置格式[SihuiJiang]: 字体: 小四 设置格式[SihuiJiang]: 字体: 小四 删除[SihuiJiang]: = 设置格式[SihuiJiang]: 字体: 小四 删除[SihuiJiang]: (设置格式[SihuiJiang]: 字体: 小四 删除[SihuiJiang]:). Two typical NPF days (10 June and 2 设置格式[SihuiJiang]: 字体: 小四 删除[SihuiJiang]: 7 删除[SihuiJiang]: average CCN number concentration 删除[SihuiJiang]: due to that 删除[SihuiJiang]: exist 删除[SihuiJiang]: While 删除[SihuiJiang]: enhancement 删除[SihuiJiang]: -120 删除[SihuiJiang]: 40-57% contribution 删除[SihuiJiang]: NPF to 设置格式[SihuiJiang]: 字体: 倾斜, 下标 删除[SihuiJiang]: . This result is reasonable ••• 删除[SihuiJiang]: consistent with the conclusion of 删除[SihuiJiang]: clean day, with an overall enhancement 删除[SihuiJiang]: cloud droplet

(a) ₆₀₀

500

different typical NPF events. 402

删除[SihuiJiang]:, (a) Change of N_{CN} which is influence: $\overline{\cdots}$

403	3.5 The impact of primary emissions during evening rush hour on the calculation of NPF	
404	contribution to N_{CCN} and N_d : a case study	
405	During the campaign, very high number concentrations of <u>fine</u> particles were observed during	删除[SihuiJiang]: Aitken
406	evening rush hour (as shown in Fig.2a) when primary emissions related to automobile exhaust or	删除[SihuiJiang]: frequently
407	cooking activities near the site may impact the PNSD. Those particles from primary emissions can	删除[SihuiJiang]: 9a and 9b
408	serve as CCN and thereby impact the evaluation of NPF contribution to $N_{d.}$ Therefore, taking the day	删除[SihuiJiang]: dominate
409	of June 11 as an example, such effect from primary emissions during evening rush hour is	删除[SihuiJiang]: This is also shown in the diurnal variati … 删除[SihuiJiang]: primarily emitted
410	investigated (Fig. 8). On the day, one hour after the burst of newly formed particles at $\sim 12:00$ a.m.	删除[SihuiJiang]: cloud droplet.
411	the N_d began to rise rapidly, and the increase of N_d continued until to 21:30 at night (Fig. 1f). At	删除[SihuiJiang]: .
412	\sim 18:00, the primary emissions also begin to impact the <u>N_{CCN} and N_d</u> . Note that a sudden decrease and	删除[SihuiJiang]: after
		删除[SihuiJiang]: of
413	dilution in the PNSD is due to a precipitation event at $\simeq 21:30$. From 18:00-21:30, the <u>CCN and cloud</u>	删除[SihuiJiang]: eruption
414	droplets were from both NPF source and the primary emissions. The impact of primary emissions is	删除[SihuiJiang]: this moment was <i>t_{Nd}</i> ,
415	also indicated by the variations of particles composition during 18:00-22:00, when both the primary	删除[SihuiJiang]: from 12:00
416	organic aerosols (POA) and BC show a rapid increase in the mass concentration and fraction (Fig. 8c	删除[SihuiJiang]: as shown in
710	organic acrosors (1 0/1) and De snow a rapid increase in the mass concentration and fraction (1 ig. oc	删除[SihuiJiang]:3a and 3b
417	and 8d). Here, a positive matrix factorization (PMF) analysis was performed to separate the primary	设置格式[SihuiJiang]: 字体: 倾斜
418	and secondary organic aerosol factors quantitatively for the purpose of source apportionment based	删除[SihuiJiang]: A
419	on field measurement by a Aerodyne high-resolution time-of-flight aerosol mass spectrometer	删除[SihuiJiang]:
419	on the measurement by a Acrodyne high-resolution time-or-hight acrosol mass spectrometer	设置格式[SihuiJiang]: 字体: 小四
420	(HR-ToF-AMS) (Xu et al., 2017; Zhang et al., 2011). The PMF algorithm in the robust mode (Paatero	设置格式[SihuiJiang]: 字体: 小四, 字体颜色: 背景 2
421	and Tapper, 1994) was applied to the high-resolution mass spectra to resolve distinct OA factors	删除[SihuiJiang]: evaluating
422	representing primary and secondary sources and processes. More details about operation of the	
423	HR-ToF-AMS and PMF analysis also can be found in support information of Liu et al., (2021).	删除[SihuiJiang]: 删除[SihuiJiang]:
	22	

424	To evaluate the impact of the primary emissions, it is critical to separate the particle modes
425	representing the primary aerosols from the observed PNSD. According to the observed
426	characteristics of PNSD, the newly formed particles continue to grow and dominated by Aitken
427	mode for several hours after the NPF occurred (Fig. 8a). The size mode of the newly formed particles
428	during the rush hour is estimated by applying a growth rate of 3.2 ± 0.5 nm h ⁻¹ , which is calculated by
429	the variation of median particle size during 12:00-18:00. The calculation results show that the
430	NPF-tracked particles can grow to ~50-60 nm during the rush hour period. While, the primary
431	particles from vehicles or cooking are generally with a smaller size (~30 nm) than the NPF-tracked
432	particles mode and accumulation mode (~100-120 nm) according to Brines et al. (2015) (Dall'Osto,
433	et al., 2011; Harrison, et al., 2011), so we applied three modes to fit the PNSD from the beginning of
434	the evening rush hour to the end assuming a normal distribution. Note that the size mode for
435	background aerosols almost coincides with the accumulation mode of primary emitted particles
436	during the period. Since the mode and concentration of background aerosols do not change much
437	before and after the occurrence of new particles (Fig. 8a, b), the impact of background aerosol is thus
438	deducted from the fitting accumulation mode. The fitted result shows a major peak in the Aitken
439	mode at ~50 nm that is related to the NPF event, and two minor peaks in Aitken (~30 nm) and
440	accumulation (~100-120 nm) mode (Fig. 8e, f) that are associated with the primary vehicle or
441	cooking emissions. Fig. 8g and Fig. 8h show the separated PNSD of the NPF-related and primary
442	aerosols respectively. Then the increment of N_{CCN} and N_d from NPF are obtained from the PNSD of
443	<u>NPF mode, and the increment of N_{CCN} and N_d from primary emissions are obtained by subtracting the</u>
444	increment of N_{CCN} and N_d by NPF from the total increment of N_d .


```
删除[SihuiJiang]: NPF
设置格式[SihuiJiang]: 字体: 倾斜
删除[SihuiJiang]: increment
设置格式[SihuiJiang]:字体:小五,字体颜色:黑色,字…
设置格式[SihuiJiang]: 居中, 行距: 单倍行距, 孤行控制
删除[SihuiJiang]:,
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 ····
设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字 ----
删除[SihuiJiang]:,
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 ----
设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字...
设置格式[SihuiJiang]: 行距: 单倍行距, 孤行控制
删除[SihuiJiang]:,
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 ....
设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字 💀
删除[SihuiJiang]:,
设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字 ----
设置格式[SihuiJiang]: 缩进: 悬挂缩进: 4.5 字符, 行距 ....
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 💀
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 ....
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 ....
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 ....
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 💀
设置格式[SihuiJiang]: 字体: (默认)宋体, 小五, 字标----
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 ....
设置格式[SihuiJiang]: 字体: 小五, 倾斜, 字体颜色: 黑 …
设置格式[SihuiJiang]: 字体: (默认)宋体, 小五, 字句----
```

删除[SihuiJiang]: $\triangle N_{d_total}, \text{ cm}^{-3}$

设置格式[SihuiJiang]: 字体: (默认)宋体, 小五, 字作…

删除[SihuiJiang]:

Evaluation of	f the contail	ution of mi		ato N			
0.3	140	<u>200</u>	mary emissior <u>84</u> .4%	<u>37</u>	15,6%	237	
0.9	140	543	86 .6%	.84	13,4%	627	
1.5	93	676	87.5%	97	12.5%	773	
2.1	84	750	83.1%	153	<u>16.9</u> %	903	
<u>3.0</u>	75	942	77.1%	279	<u>22.9</u> %	<u>,1221</u>	
Evaluation of	f the contrib	oution of pri	mary emission	ns to N _{CCN}			
<u>0.2%</u>	<u>109</u>	<u>654</u>	<u>92.0%</u>	<u>57</u>	<u>8.0%</u>	<u>711</u>	
<u>0.4%</u>	<u>69</u>	<u>1356</u>	<u>87.2%</u>	<u>199</u>	<u>12.8%</u>	<u>1555</u>	
<u>0.6%</u>	<u>52</u>	<u>1680</u>	<u>87.1%</u>	<u>249</u>	<u>12.9%</u>	<u>1929</u>	
0.8%	43	1801	85.0%	318	15.0%	2119	

453

454 ^aPE, primary emission

455	The calculated results are summarized in Table <u>2. For N_d, the</u> average contribution of primary
456	emission to N_d is <u>15</u> .6%, <u>13</u> .4%, <u>12.5%</u> , <u>16.9</u> % and <u>22.9</u> % cm ⁻³ for updraft velocities of 0.3, 0.9, 1.5,
457	2.1 and 3 m s ⁻¹ respectively. The proportion of contribution from NPF and primary emission to N_d
458	increment change with the variation of V_{ϵ} . The higher proportion of contribution from primary
459	emission is obtained at higher V , which may be determined by the different characteristics between
460	atmospheric particles emitted from the evening traffic sources and generated from NPF events. For
461	N _{CCN} , the average contribution from primary emissions is 8.0%, 12.8%, 12.9%, 15.0% at S of 0.2%,
462	0.4%, 0.6%, 0.8% respectively. Compared with N_d , the contribution percentage of primary emission
463	to N_{CCN} is smaller due to that the total N_{CCN} is much more than the total N_d . Our result shows
464	considerable impact of those primary sources when evaluating the NPF contribution to cloud droplet
465	number, highlighting the importance of considering the influence from multiple (i.e. secondary and
466	primary) sources on clouds in the polluted atmosphere. Finally, it is worth noting that the dynamic
467	changes of PBL would also impact the N_{CCN} and N_d during the period, and the decrease in the height
468	of PBL from the daytime to evening will result in an increase of N_{CCN} or N_d . However, for this case,
469	the impact from primary emissions is much more prominent as indicated by the sharply raised $25_{\rm v}$

设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字 ···· 设置格式[SihuiJiang]: 居中, 行距: 单倍行距, 孤行控制 带格式表格[SihuiJiang] 删除[SihuiJiang]: 241 设置格式[SihuiJiang]: 行距: 单倍行距, 孤行控制 设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字... 删除[SihuiJiang]: 86 设置格式[SihuiJiang]:字体:小五,字体颜色:黑色,字… 删除[SihuiJiang]: 38 设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字… 删除[SihuiJiang]: 13 设置格式[SihuiJiang]:字体:小五,字体颜色:黑色,字… 删除[SihuiJiang]: 279 设置格式[SihuiJiang]:字体:小五,字体颜色:黑色,字… 设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字… 设置格式[SihuiJiang]: 居中, 行距: 单倍行距, 孤行控制 删除[SihuiJiang]: 555 设置格式[SihuiJiang]: 行距: 单倍行距, 孤行控制 设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字 ----删除[SihuiJiang]: 82 设置格式[SihuiJiang]:字体:小五,字体颜色:黑色,字… 删除[SihuiJiang]: 117 设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字… 删除[SihuiJiang]: 17 设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字… 删除[SihuiJiang]: 672 设置格式[SihuiJiang]:字体:小五,字体颜色:黑色, 字… 设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字… 设置格式[SihuiJiang]: 居中, 行距: 单倍行距, 孤行控制 删除[SihuiJiang]: 613 设置格式[SihuiJiang]: 行距: 单倍行距, 孤行控制 设置格式[SihuiJiang]: 字体: 小五, 字体颜色: 黑色, 字… 删除[SihuiJiang]: 75.8 设置格式[SihuiJiang]:字体:小五,字体颜色:黑色,字…

particle number concentrations during the rush hour (Fig. 8b). 470

471 4 Conclusions

		1	
472	In this study, we quantified the contribution of NPF to N_d at typical updraft velocities in clouds		删除[SihuiJiang]: cloud droplet number concentration
473	using field measurements of aerosol number size distributions and chemical composition in urban		(CDNC, or N_d)
474	Beijing. We show that the NPF drives the variations of N_{CCN} and N_d . About 32%-65% N_{CCN} are		删除[SihuiJiang]: CCN
475	increased by NPF events for supersaturation $0.2\%-0.8\%$ in polluted atmosphere. And the N_d is	\mathbb{N}	删除[SihuiJiang]: cloud droplet.
476	increased about <u>32%-40</u> % by NPF at $V= 0.3-3$ m s ⁻¹ accordingly. The <u>significant</u> reduction in N_d is		删除[SihuiJiang]:25%-40% CCN
			删除[SihuiJiang]: from
477	observed due to water vapor competition with consideration of actual environmental updraft velocity,		删除[SihuiJiang]: 30%-33
478	with decrease rates of 11.8% \pm 5.0% at V=3 m s ⁻¹ and 19.0% \pm 4.5% at V=0.3 m s ⁻¹ by comparing with	\	删除[SihuiJiang]: markedly
479	that from a <u>constant</u> supersaturation. The effect of water vapor competition becomes smaller at larger		删除[SihuiJiang]: prescribed
480	V_{at} which the greater S_{max} can be achieved. Essentially, water vapor competition led to the reduction		删除[SihuiJiang]: that
481	in N_d by decreasing the environmental S_{max} for the activation of aerosol particles. It is shown that S_{max}		删除[SihuiJiang]: provide more sufficient water vapor
482	was decreased by 14.5 \pm 3.5% to 11.7 \pm 3.9% for V=0.3-3 m s ⁻¹ . Our results suggest significant		
483	suppression of cloud droplet formation due to the water vapor competition particularly at extremely		
484	high aerosol particle number concentrations. As a result, although a larger enhancement of CCN-size		删除[SihuiJiang]: increase
485	particles by NPF event is derived on clean NPF day when there are few pre-existing background		
486	aerosol particles, no large discrepancy in the enhancement of N_d by NPF between the clean and		删除[SihuiJiang]: are very low
487	polluted NPF day. Finally, we show a considerable impact of the primary sources when evaluating		
488	the NPF contribution to cloud droplet <u>number</u> from a case study. Our study highlights the importance		
489	of fully consideration of both the environmental meteorological conditions and multiple sources (i.e.		
490	secondary and primary) to evaluate the effect of NPF on clouds and the associated climate effects.		删除[SihuiJiang]: variance
491	For example, Merikanto et al. 2010 used model to simulate the <u>variation</u> of CDNC from the year of		删除[SihuiJiang]: 删除[SihuiJiang]:
	26		

492	1850 to 2000, and showed that NPF made a nearly equal contribution (16-13.5%) to global CDNC in
493	all those years, leading to <u>about 50%</u> enhancement in the year from1850 to 2000 change in cloud 删除[SihuiJiang]: ~
494	albedo. There are still large uncertainties about how to accurate quantitatively assess the response of
495	these climate effects to NPF. This study is carried out in polluted urban area, which is a supplement
496	to the <u>research of the microphysical process of aerosol-cloud</u> and provides a new perspective for the 删除[SihuiJiang]: related cloud
497	follow-up research, in urban atmosphere. Note that, there are still limitations of our studies, as we 删除[SihuiJiang]: progress research
498	only investigated several NPF cases within a short period due to the limited measurement data. The 删除[SihuiJiang]: .
499	small sample size might cause bias in the results. Further studies based on more measurement data,
500	i.e. with longer time periods and more observational sites, warrant to verify and refine our results, so
501	as to parameterize the impact of NPF events on cloud, precipitation, and radiative forcing in models.
502	Acknowledgments
503	This work was supported by the National Basic Research Program of China deligibric deligibrication deligibrication deligibrication and a support of the sup
504	(2017YFC1501702), the National Natural Science Foundation of China (Grants 41675141,
505	41975174). All data used in the study are available on
506	https://data.mendeley.com/datasets/hkkzbn4zv3/1 or from the corresponding author upon request
507	(fang.zhang@bnu.edu.cn).
508	Author statement
509	The authors declare no competing financial interest.
510	Author contribution / 设置格式[SihuiJiang]: 缩进: 首行缩进: 2 字符
511	
511	FZ and SJ conceived the conceptual development of the paper. LC, YS and JR contributed * 删除[SihuiJiang]: 删除[SihuiJiang]:
	27.

514	References
513	conducted the data analysis and wrote the draft of the paper. All authors commented on the paper.
512	measurements. SJ directed and performed the experiments with LC, JL, JR, XY, ZL and FZ, SJ

- 515 Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
- 516 Altstädter, B., Platis, A., Wehner, B., Scholtz, A., Wildmann, N., Hermann, M., Käthner, R., Baars, H., Bange, J.,
- 517 and Lampert, A.: ALADINA an unmanned research aircraft for observing vertical and horizontal distributions
- 518 of ultrafine particles within the atmospheric boundary layer. Atmos. Meas. Tech., 8, 1627–1639,
- 519 https://doi.org/10.5194/amt-8-1627-2015, 2015.
- 520 Abdul-Razzak, H., Ghan, S., and Rivera-Carpio, C.: A parametreization of aerosol activation: 1. Single aerosol
- 521 types, J. Geophys. Res., 103, 6123–6131, 1998.
- 522 Abdul-Razzak, H. and Ghan, S.: A parametreization of aerosol activation: 2. Multiple aerosol types, J. Geophys.

523 Res., 105, 6837–6844, 2000.

- 524 Asmi, E., Kivekäs, N., Kerminen, V.-M., Komppula, M., Hyvärinen, A. P., Hatakka, J., Viisanen, Y., and
- 525 Lihavainen, H.: Secondary new particle formation in Northern Finland Pallas site between the years 2000 and
- 526 2010, Atmos. Chem. Phys., 11, 12959–12972, https://doi.org/10.5194/acp-11-12959-2011, 2011.
- 527 Boucher, O. and Lohmann, U.: The sulfate-CCN-cloud albedo effect, Tellus, 47B, 281–300, 1995.
- 528 Bousiotis, D., Dall'Osto, M., Beddows, D. C. S., Pope, F. D., and Harrison, R. M.: Analysis of new particle
- 529 formation (NPF) events at nearby rural, urban background and urban roadside sites, Atmos. Chem. Phys., 19,
- 530 5679–5694, https://doi.org/10.5194/acp-19-5679-2019, 2019.
- 531 Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M., Gómez-Moreno, F., Núñez, L., Artíñano, B.,
- 532 Costabile, F., Gobbi, G. P., Salimi, F., Morawska, L., Sioutas, C., and Querol, X.: Traffic and nucleation events as
- 533 main sources of ultrafine particles in high-insolation developed world cities, Atmos. Chem. Phys., 15, 28

删除[SihuiJiang]:

- 534 5929–5945, https://doi.org/10.5194/acp-15-5929-2015, 2015.
- 535 Cai, M., Liang, B., Sun, Q., Zhou, S., Chen, X., Yuan, B., Shao, M., Tan, H., and Zhao, J.: Effects of continental
- 536 emissions on cloud condensation nuclei (CCN) activity in the northern South China Sea during summertime
- 537 2018, Atmos. Chem. Phys., 20, 9153–9167, https://doi.org/10.5194/acp-20-9153-2020, 2020.
- 538 Collins, D. R., Flagan, R. C., and Seinfeld, J. H.: Improved inversion of scanning DMA data, Aerosol Sci. Tech., 36,
- 539 1–9, 2002.
- 540 Dal, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and Lehtinen, K. E. J.: Formation and 删除[SihuiJiang]: Maso
- 541 growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä,
- 542 Finland, Boreal Environ. Res., 10, 323–336, 2005.
- 543 Dall'Osto, M., Thorpe, A., Beddows, D. C. S., Harrison, R. M., Barlow, J. F., Dunbar, T., Williams, P. I., and Coe,
- 544 H.: Remarkable dynamics of nanoparticles in the urban atmosphere, Atmos. Chem. Phys., 11, 6623–6637,
- 545 https://doi.org/10.5194/acp-11-6623-2011, 2011.
- 546 Duan, J., Wang, Y., Xie, X., Li, M., Tao, J., Wu, Y., Cheng, T.: Influence of pollutants on activity of aerosol cloud
- 547 <u>condensation nuclei (CCN) during pollution and post-rain periods in Guangzhou, southern China, Science of the</u>
- 548 <u>Total Environment, 642, 1008-1019, 10.1016/j.scitotenv.2018.06.053, 2018.</u>
- 549 Fan, J., Leung, R., Rosenfeld, D., Chen, Q., Li, Z., Zhang, J., and Yan, H.: Microphysical effects determine
- 550 macrophysical response for aerosol impacts on deep convective clouds, P. Natl. Aacad. Sci. USA, 110,
- 551 E4581–E4590, https://doi.org/10.1073/pnas.1316830110, 2013.
- 552 Fan, X., Liu, J., Zhang, F., Chen, L., Collins, D., Xu, W., Jin, X., Ren, J., Wang, Y., Wu, H., Li, S., Sun, Y., and Li,
- 553 Z.: Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS
- 554 measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions, Atmos.
- 555 Chem. Phys., 20, 915–929, https://doi.org/10.5194/acp-20-915-2020, 2020.

- 556 Fountoukis, C. and Nenes, A.: Continued development of a cloud droplet formation parameterization for global
- 557 climate models, J. Geophys. Res., 110, D11212, https://doi.org/10.1029/2004JD005591, 2005.
- 558 Genz, C., Schrödner, R., Heinold, B., Henning, S., Baars, H., Spindler, G., and Tegen, I.: Estimation of cloud
- 559 condensation nuclei number concentrations and comparison to in situ and lidar observations during the HOPE
- 560 experiments, Atmos. Chem. Phys., 20, 8787–8806, https://doi.org/10.5194/acp-20-8787-2020, 2020.
- 561 Ghan, S., Chung, C., and Penner, J.: A parameterization of cloud droplet nucleation part I: single aerosol type,
- 562 Atmos. Res., 30, 198–221, https://doi.org/10.1016/0169-8095(93)90024-I, 1993.
- 563 Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O.,
- 564 Martin, S. T., and Pöschl, U.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia:
- size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity, Atmos. Chem.
- 566 Phys., 9, 7551–7575, https://doi.org/10.5194/acp-9-7551-2009, 2009.
- 567 Harrison, R. M., Beddows, D. and Dall'Osto, M.: PMF Analysis of Wide-Range Particle Size Spectra Collected on
- 568 <u>a Major Highway, Environmental Science & Technology, 45(14), 5522, 10.1021/es201998m, 2011.</u>
- 569 Hudson, J. G., Noble, S., and Tabor, S.: Cloud supersaturations from CCN spectra hoppel minima. Journal of
- 570 <u>Geophysical Research Atmospheres</u>, 120(8), 3436 3452. https://doi.org/10.1002/2014JD022669, 2015.
- 571 Kalkavouras, P., Bossioli, E., Bezantakos, S., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Kouvarakis, G.,
- 572 Protonotariou, A. P., Dandou, A., Biskos, G., Mihalopoulos, N., Nenes, A., and Tombrou, M.: New particle
- 573 formation in the southern Aegean Sea during the Etesians: importance for CCN production and cloud droplet
- 574 number, Atmos. Chem. Phys., 17, 175–192, https://doi.org/10.5194/acp-17-175-2017, 2017.
- 575 Kalkavouras, P., Bougiatioti, A., Kalivitis, N., Stavroulas, I., and Mihalopoulos, N.: Regional new particle
- 576 formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern mediterranean.
- 577 <u>Atmos. Chem. Phys., 19(9), 6185-6203, https://doi.org/10.5194/acp-19-6185-2019,2019.</u>

删除[SihuiJiang]: Kalkavouras, P., Bougiatioti, A., Kalivitis, N., Stavroulas, I., and Mihalopoulos, N.: Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern mediterranean. Atmos. Chem. Phys., 19(9), 6185-6203,

https://doi.org/10.5194/acp-19-6185-2019,2019

删除[SihuiJiang]:

删除[SihuiJiang]:

578	Kazil, J., Stier, P., Zhang, K., Quaas, J., Kinne, S., O'Donnell, D., Rast, S., Esch, M., Ferrachat, S., Lohmann, U.,	
579	Feichter, J.: Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model	
580	ECHAM5-HAM, Atmos. Chem. Phys., 10, 10733, https://doi.org/10.5194/acp-10-10733-2010, 2010.	删除[SihuiJiang]: 2010,
581	Kerminen, V. M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso, L.,	
582	Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M., and Petäjä, T.: Cloud	
583	condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature	
584	and new results, Atmos. Chem. Phys., 12, 12037-12059, https://doi.org/10.5194/acp-12-12037-2012, 2012.	
585	Kerminen, V. M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., and Bianchi, F.: Atmospheric new particle	
586	formation and growth: review of field observations, Environ. Res. Lett., 13, 103003,	
587	https://doi.org/10.1088/1748-9326/aadf3c, 2018.	设置格式[SihuiJiang]: 下划线, 字体颜色: 蓝色
588	Khvorostyanov, V. I., and Curry, J. A.: A simple analytical model of aerosol properties with account for hygroscopic	
589	growth: 1. Equilibrium size spectra and cloud condensation nuclei activity spectra, J. Geophys. Res., 104,	
590	2175-2184, https://doi.org/10.1029/98JD02687, 1999.	
591	Köhler, H.: The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society, 32:	删除[SihuiJiang]: [J].
592	1152-1161, https://doi.org/10.1039/tf9363201152, 1936.	删除[SihuiJiang]: <u>1936,</u>
593	Kulmala, M, and Kerminen, V. M.: On the formation and growth of atmospheric nanoparticles, Atmos. Res., 90,	删除[SihuiJiang]:
594	132 _{-150, https://doi.org/10.1016/j.atmosres.2008.01.005, 2008.}	删除[SihuiJiang]: [J]. Atmospheric Research, 2008,
595	Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., Dal, Maso, M., Aalto, P.,	删除[SihuiJiang]: <u>(2-4)</u> :
596	Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., and Kerminen, VM.: Measurement of	删除[SihuiJiang]: _
597	the nucleation of atmospheric aerosol particles, Nat. Protocol., 7, 1651–1667,	
598	https://doi.org/10.1038/nprot.2012.091, 2012.	4
599	Leaitch, W. R., Strapp, J. W., and Isaac, G. A.: Cloud droplet nucleation and cloud scavenging of aerosol sulphate	删除[SihuiJiang]: 删除[SihuiJiang]:
	<u>,31</u> ,	

600	in polluted atmospheres, Tellus, 38B, 328–344, <u>https://doi.org/10.1111/j.1600-0889.1986.tb00258.x</u> _1986	
601	Leino, K., Nieminen, T., Manninen, H. E., Petäjä, T., Kerminen, V. M., and Kulmala, M.: Intermediate ions as a	
602	strong indicator of new particleformation bursts in a boreal forest, Boreal Environ. Res., 21, 274-286, 2016.	
603	Li Y., Zhang F., Li Z., Sun L., Wang Z., Li P., Sun Y., Ren J., Wang Y. and Cribb M.: Influences of aerosol	删除[SihuiJiang]: *.,
604	physiochemical properties and new particle formation on CCN activity from observation at a suburban site of	
605	China, Atmos. Res., 188, 80-89, https://doi.org/10.1016/j.atmosres.2017.01.009,2017.	
606	Li, Z., Niu, F., Fan, J. et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation.	
607	Nature Geosci 4, 888–894 <u>https://doi.org/10.1038/ngeo1313, 2011.</u>	删除[SihuiJiang]: (2011). https://doi.org/10.1038/ngeo1313
608	Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B.: Aerosols and	
609	boundary-layer interactions and impact on air quality. Natl. Sci. Rev., 4, 810-833,	
610	https://doi.org/10.1093/nsr/nwx117, 2017.	
611	Liu, C., Wang, T., Rosenfeld, D., Zhu, Y., Yue, Z., Yu, X.: Anthropogenic effects on cloud condensation nuclei	
612	distribution and rain initiation in East Asia. Geophysical Research Letters, 47,	
613	https://doi.org/10.1029/2019GL086184,2019.	删除[SihuiJiang]: e2019GL086184.
614	Liu, J., Zhang, F., Xu, W., Sun, Y., Chen, L., Li, S.: Hygroscopicity of organic aerosols linked to formation	
615	mechanisms. Geophysical Research Letters, 48, https://doi.org/10.1029/2020GL091683, 2021.	
616	Ma, N., Zhao, C., Tao, J., Wu, Z., Kecorius, S., Wang, Z., Größ, J., Liu, H., Bian, Y., Kuang, Y., Teich, M., Spindler,	
617	G., Müller, K., van Pinxteren, D., Herrmann, H., Hu, M., and Wiedensohler, A.: Variation of CCN activity during	
618	new particle formation events in the North China Plain, Atmos. Chem. Phys., 16, 8593-8607,	
619	https://doi.org/10.5194/acp-16-8593-2016, 2016.	
620	Martin, G., Johnson, D.: The measurement and parameterization of effective radius of droplets in warm	
621	stratocumulus clouds.[J]. Journal of the Atmospheric Sciences, https://doi.org/10.1175/1520-0469(1994)051<182	删除[SihuiJiang]: 删除[SihuiJiang]:
	32	

622 <u>3: TMAPOE>2.0.CO;2,1994.</u>

- 623 Merikanto, J., Spracklen, D. V., Pringle, K. J., and Carslaw, K. S.: Effects of boundary layer particle formation on
- 624 cloud droplet number and changes in cloud albedo from 1850 to 2000, Atmos. Chem. Phys., 10, 695–705,
- 625 https://doi.org/10.5194/acp-10-695-2010, 2010.
- 626 Morales, R. and Nenes, A.: Characteristic updrafts for computing distribution-averaged cloud droplet number and
- 627 stratocumulus cloud properties, J. Geophys. Res., 115, D18220, https://doi.org/10.1029/2009JD013233, 2010.
- 628 Morales, R., Nenes, A.: Understanding the contributions of aerosol properties and parameterization discrepancies to
- droplet number variability in a global climate model. Atmos Chem Phys 14(9):4809–4826,2014.
- 630 Nenes, A., Chan, S., Abdul-Razzak, H., Chuang, P., and Seinfeld, J. H.: Kinetic limitations on cloud droplet
- formation and impact on cloud albedo, Tellus 53B, 133–149, https://doi.org/10.3402/tellusb.v53i2.16569, 2001.
- 632 Nenes, A. and Seinfeld, J. H.: Parameterization of cloud dropletformation in global climate models, J. Geophys.
- 633 <u>Res</u>, 108, 4415, https://doi.org/10.1029/2002JD002911, 2003.
- 634 Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B.: An aerosol chemical
- 635 speciation monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient
- 636 aerosol, Aerosol Science and Tech, 45(7): 780-794, https://doi.org/10.1080/02786826.2011.560211, 2011.
- 637 Paasonen, P. and TAPPER, U.: Positive matrix factorization: A nonnegative factor model with optimal utilization of
- 638 error-estimates of data values, Journal Citation Reports, 5: 112-126, 10.1002/env.3170050203, 1994.
- 639 Paasonen, P., Peltola, M., Kontkanen, J., Junninen, H., Kerminen, V.-M., and Kulmala, M.: Comprehensive analysis
- of particle growth rates from nucleation mode to cloud condensation nuclei in boreal forest, Atmos. Chem. Phys.,
- 641 18, 12085–12103, https://doi.org/10.5194/acp-18-12085-2018, 2018.
- 642 Peng, J. F., Hu, M., Wang, Z. B., Huang, X. F., Kumar, P., Wu, Z. J., Guo, S., Yue, D. L., Shang, D. J., Zheng, Z.,
- and He, L. Y.: Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation

删除[SihuiJiang]: -Betancourt

删除[SihuiJiang]: . and Seinfeld, J. H.: Parameterization of cloud dropletformation in global climate models, J. Geophys. Res, 108, 4415, https://doi.org/10.1029/2002JD002911, 2003. Nenes, A

删除[SihuiJiang]: 2011,

删除[SihuiJiang]:

- and corresponding contribution to cloud condensation nuclei production, Atmos. Chem. Phys., 14, 10249–10265,
- 645 https://doi.org/10.5194/acp-14-10249-2014, 2014.
- 646 Peng, Y., Dong, Y., Li, X. M.: Different Characteristics of New Particle Formation Events at Two Suburban Sites in
- 647 Northern China, Atmosphere, 8(12), 258, https://doi.org/10.3390/atmos8120258, 2017.
- 648 Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud
- 649 condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007,
 650 2007.
- 651 Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the hydrological cycle,
- 652 Science, 294, 2119–2124, https://doi.org/10.1126/science.1064034, 2001.
- Ren, J., Zhang, F., Wang, Y., Collins, D., Fan, X., Jin, X., Xu, W., Sun, Y., Cribb, M., and Li, Z.: Using different
- assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field
- 655 measurements in urban Beijing, Atmos. Chem. Phys., 18, 6907–6921, https://doi.org/10.5194/acp-18-6907-2018,
- 656 2018.
- 657 Rose, C., Sellegri, K., Moreno, I., Velarde, F., Ramonet, M., Weinhold, K., Krejci, R., Andrade, M., Wiedensohler,
- A., Ginot, P., and Laj, P.: CCN production by new particle formation in the free troposphere, Atmos. Chem.
- 659 Phys., 17, 1529–1541, https://doi.org/10.5194/acp-17-1529-2017, 2017.
- 660 Seinfeld, J. H., Bretherton, C. S., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S. J.,
- Guenther, A.B., Kahn, R. A., Kracunas, I. P., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather,
- 662 K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R., Rosenfeld, D., Stephens, G., and
- 663 Wood R.: Improving Our Fundamental Understanding of the Role of Aerosol-Cloud Interactions in the Climate
- 664 System, P. Nat. Acad. Sci. USA, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016.
- 665 Shi, J., Khan, A., Harrison, R.: Measurements of ultrafine particle concentration and size distribution in the urban

删除[SihuiJiang]: [J].

删除[SihuiJiang]: 2017,

删除[SihuiJiang]:):

删除[SihuiJiang]:

666	atmosphere, Science of the Total Environment, 235(1-3):51-64, https://doi.org/10.1016/S0048-9697 (99)00189-8,

667 <u>1999.</u>

668	Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S., Ogren, J. A.,
669	Andrews, E., Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N.,
670	Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O'Dowd, C., Birmili, W., Wiedensohler, A.,
671	Weller, R., Gras, J., Laj, P., Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison,
672	R. M., Talbot, R., and Sun, J.: Explaining global surface aerosol number concentrations in terms of primary
673	emissions and particle formation, Atmos. Chem. Phys., 10, 4775–4793,
674	https://doi.org/10.5194/acp-10-4775-2010, 2010.
675	Stanier, C., Khlystov, A., Pandis, S.: Ambient aerosol size distributions and number concentrations measured during
676	the Pittsburgh Air Quality Study (PAQS), Atmospheric Environment, 38(20):3275-3284, https://doi.org/10.1016/
677	j.atmosenv.2004.03.020, 2004.
678	Sullivan, S. C., Lee, D., Oreopoulos, L., and Nenes, A.: The role of updraft velocity in temporal variability of cloud
679	hydrometeor number, P. Natl. Acad. Sci. USA, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016.
680	Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., and Worsnop, D. R.:
681	Longterm real-time measurements of aerosol particle composition in Beijing, China: seasonal variations,
682	meteorological effects, and source analysis, Atmos. Chem. Phys., 15, 10149-10165,
683	https://doi.org/10.5194/acp-15-10149-2015, 2015.
684	Tao, J., Kuang, Y., Ma, N., Hong, J., Sun, Y., Xu, W., Zhang, Y., He, Y., Luo, Q., Xie, L., Su, H., and Cheng, Y.:
685	Secondary aerosol formation alters CCN activity in the North China Plain, Atmos. Chem. Phys., 21, 7409–7427,
686	https://doi.org/10.5194/acp-21-7409-2021, 2021.

Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152, 1977.

删除[SihuiJiang]:

688	Wang, S. C. and Flagan, R. C.: Scanning Electrical Mobility Spectrometer, Aerosol Sci. Tech., 13, 230–240, 1990.	
689	Wang Y., Zhang F., Li Z., Tan H., Xu H., Ren J., Zhao J., Du W. and Sun Y.: Enhanced hydrophobicity and	
690	volatility of submicron aerosols under severe emission control conditions in Beijing, Atmos Chem Phys, 17,	
691	5239-5251, https://doi.org/10.5194/acp-17-5239-2017, 2017.	
692	Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S.:	
693	Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high	
694	quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5,	
695	657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.	
696	Wiedensohler, A., Chen, Y. F., Nowak, A., Wehner, B., Achtert, P., Berghof, M., Birmili, W., Wu, Z. J., Hu, M., Zhu,	
697	T., Takegawa, N., Kita, K., Kondo, Y., Lou, S. R., Hofzumahaus, A., Holland, F., Wahner, A., Gunthe, S. S., Rose,	
698	D., Su, H., and Pöschl, U.: Rapid aerosol particle growth and increase of cloud condensation nucleus activity by	
699	secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China, J.	
700	Geophys. Res., 114, D00G08, https://doi.org/10.1029/2008JD010884, 2008.	删除[SihuiJiang]: 2009
701	Wu, Z., Hu, M., Liu, S., Wehner, B., and Wiedensohler, A.: Particle number size distribution in the urban	
702	atmosphere of Beijing, China, Atmos. Environ., 42, 7967–7980, 2008.	
703	Wu, Z. J., Hu, M., Yue, D. L.: Evolution of particle number size distribution in an urban atmosphere during	
704	episodes of heavy pollution and new particle formation. Sci China Earth Sci, 2011, 54, https://doi.org/	设置格式[SihuiJiang]: 默认段落字体, 字体: (默认) Times
705	10.1007/s11430-011-4227-9,2011.	New Roman, 无下划线, 字体颜色: 自动设置 删除[SihuiJiang]: <u>:</u>
706	Wu, Z. J., Poulain, L., Birmili, W., Größ, J., Niedermeier, N., Wang, Z. B., Herrmann, H., and Wiedensohler, A.:	musang. <u>-</u>
707	Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of	
708	hygroscopicity measurements, Atmos. Chem. Phys., 15, 13071–13083,	<i>A</i>
709	https://doi.org/10.5194/acp-15-13071-2015, 2015.	删除[SihuiJiang]: 删除[SihuiJiang]:
	36	

710	Xu, W. Q., Han, T. T., Du, W., Wang, Q. Q., Chen, C., Zhao, J.: Effects of aqueous-phase and photochemical	
711	processing on secondary organic aerosol formation and evolution in Beijing, China. Environmental Science &	
712	Technology, 51(2), 762 - 770. https://doi.org/10.1021/acs.est.6b04498, 2017.	
713	Yue, D. L., Hu, M., Zhang, R. Y., Wu, Z. J., Su, H., Wang, Z. B., Peng, J. F., He, L. Y., Huang, X. F., Gong, Y. G.,	
714	Wiedensohler, A.: Potential contribution of new particle formation to cloud condensation nuclei in Beijing[J].	
715	Atmospheric Environment, 2011, 45(33):6070-6077, https://doi.org/10.1016/j.atmosenv.2011.07.037.	
716	Zimmerman, A., Petters, M. D., & Meskhidze, N.: Observations of new particle formation, modal growth rates,	
717	and direct emissions of sub-10 nm particles in an urban environment. Atmospheric Environment, 242, 117835.	
718	Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R., and Sun, Y. L.:	
719	Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: A review.	
720	Analytical and Bioanalytical Chemistry, 401(10), 3045–3067. https://doi.org/10.1007/s00216-011-5355-y, 2011.	
721	Zhang, F., Li, Y., Li, Z., Sun, L., Li, R., Zhao, C., Wang, P., Sun, Y., Liu, X., Li, J., Li, P., Ren, G., and Fan, T.:	
722	Aerosol hygroscopicity and cloud condensation nuclei activity during the AC3Exp campaign: implications for	
723	cloud condensation nuclei parameterization, Atmos. Chem. Phys., 14, 13423-13437,	
724	https://doi.org/10.5194/acp-14-13423-2014, 2014.	
725	Zhang, F., Li, Z., Li, Y., Sun, Y., Wang, Z., Li, P., Sun, L., Wang, P., Cribb, M., Zhao, C., Fan, T., Yang, X., and	
726	Wang, Q.: Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban	
727	site in China, Atmos. Chem. Phys., 16, 5413–5425, https://doi.org/10.5194/acp-16-5413-2016, 2016.	
728	Zhang, F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., Li, Z.: Uncertainty in predicting CCN activity of aged 删除[SihuiJiang]:	
729	and primary aerosols. Journal of Geophysical Research: Atmospheres, 122, 11,723–11,736.	
730	https://doi.org/10.1002/2017JD027058, 2017. 刷除[SihuiJiang]: https://doi.org/10.1002/2017JD027058, 2017.	<u>58</u>
731	Zhang, F., Ren, J., Fan, T., Chen, L., Xu, W., Sun, Y.: Significantly enhanced aerosol CCN activity and number 删除[SihuiJiang]: 删除[SihuiJiang]:	
	37.	

- 732 concentrations by nucleation-initiated haze events: A case study in urban Beijing. J. Geophys. Res.-Atmos., 124.
- 733 https://doi.org/10.1029/ 2019JD031457, 2019
- 734 Zheng, Y. T., Rosenfeld, D., Li, Z. Q.: Satellite Inference of Thermals and Cloud-Base Updraft Speeds Based on
- 735 Retrieved Surface and Cloud-Base Temperatures, Journal of the Atmospheric Sciences, 2015, 72(6), 删除[SihuiJiang]: [J],

736 https://doi.org/10.1175/JAS-D-14-0283.1,2015.

删除[SihuiJiang]: 201

删除[SihuiJiang]: