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Abstract. China has been experiencing rapid changes in emissions of air pollutants in recent decades. Increased emissions of

primary particulates and reactive gases caused severe haze in several polluted regions including the Yangtze River Delta10
(YRD). Measures implemented in recent years for improving air quality have reduced the emissions of NOX, SO2, etc. The

emission changes of these gases are reflected by tropospheric columns from satellite observations and surface measurements

of surface concentrations from urban sites. However, little is known about the long-term variations in regional background

NOX and SO2. In this study, we present NOX and SO2 measurements from the Lin’an station (LAN, 119°44′ E,30°18′

N,138.6 m a.s.l.), one of the Global Atmosphere Watch (GAW) stations in China. We characterize the seasonal and diurnal15
variations and study the long-term trends of NOX and SO2 mixing ratios observed at LAN from 2006 to 2016. We also

interpret the observed variations and trends in term of changes in meteorological conditions as well as emission of these

gases. The overall average mixing ratios of NOX and SO2 during 2006–2016 were 13.6 ± 1.2 ppb and 7.0 ± 4.2 ppb,

respectively. The averaged seasonal variations showed maximum values of NOx and SO2 in December (23.5 ± 4.4 ppb) and

January (11.9 ± 6.2 ppb), respectively, and minimum values of 7.1 ± 0.8 ppb and 2.8 ± 2.3 ppb (both in July), respectively.20
The average diurnal variation characteristics of NOX and SO2 differed considerably from each other though the daily average

mixing ratios of both gases were significantly correlated (R2 = 0.29, P < 0.001). The annual average mixing ratio of NOX

increased during 2006–2011 and then decreased significantly at 0.78 ppb/yr (‒5.16 %/yr, P < 0.01). The annual 95 % and

5 % percentiles of hourly NOX mixing ratios showed upward trends until 2012 and 2014, respectively, before a clear decline.

The annual average mixing ratio of SO2 decreased significantly at 0.99 ppb/yr (‒8.27 %/yr, P < 0.01) from 2006–2016. The25
annual 95 % and 5 % percentiles of hourly SO2 mixing ratios all exhibited significant (P < 0.001) downward trends at 3.18

ppb/yr and 0.19 ppb/yr, respectively. Changes in the total NOX and SO2 emissions as well as the industrial emissions in the

YRD region were significantly correlated with the changes in annual NOX and SO2mixing ratios. The significant decreases

in NOX from 2011 to 2016 and SO2 from 2006 to 2016 highlight the effectiveness of relevant control measures on the

reduction in NOX and SO2 emissions in the YRD region. A decrease of annual S/N ratio was found, suggesting a better30
efficacy in the emission reduction of SO2 than NOX. We found gradual changes in average diurnal patterns of NOX and SO2,
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which could be attributed to increasing contributions of vehicle emissions to NOX and weakening impacts of large sources

on the SO2 concentration. This study reaffirms China’s success in controlling both NOX and SO2 in the YRD but indicate at

the same time a necessity to strengthen the NOX emission control.

Keywords: background NOX and SO2; long-term trend; emission reduction.35

1 Introduction

China’s economy has experienced decades of rapid development, resulting in considerable pollutant emissions from coal

combustion and motor vehicles, which affect ambient air quality and human health (Kan et al., 2009, 2012; Liang et al.,

2019). NOX and SO2 are two major gaseous pollutants that are essential precursors to secondary aerosol formation and

acidification (Li et al., 2020). Therefore, the changes in NOX and SO2 emissions have been receiving increasing attention in40
China (Zhao et al., 2013; Zhao et al., 2018). To improve air quality, the Chinese government has promulgated a series of

policies and regulations on SO2 and NOX control, especially since 2006 and 2011, respectively (Zheng et al., 2015).

Long-term observations of NOX and SO2 are not only critical for the integrated assessment of air quality and atmosphere–

biosphere interactions (Swartz et al., 2020a), but also for the analysis of their reduction effects on PM2.5, nitrate, sulphate,

and near-surface O3, providing a basis for further improvement of atmospheric protection policies (Yu et al., 2019). At a45
regional scale, long-term, reliable NOX and SO2 observations can also provide data to enable the scientific community to

predict the future state of the atmosphere and assess environmental policies, serving to reduce environmental risks and

enhance climate, weather, and air quality prediction capabilities (GAW, 2017). Numerous studies have evaluated the

effectiveness of NOX and SO2 control in China from a long-term perspective by using emission inventories, satellite retrieval

data, and ground monitoring data. For example, Sun et al. (2018) used a unified source emission inventory approach to50
quantify the historical emission trends of SO2 and NOX in China from 1949 to 2015; the results indicated that these

pollutants reached an inflection point in 2006 and 2011, respectively. Source emission inventories by Kurokawa and Ohara

(2020) revealed similar patterns. During the period from January 2005 to December 2015, the column concentration of NO2

from ozone monitoring instrument (OMI) satellite retrieval indicated an increasing trend in most of China until a gradual or

slight decrease in 2011 or 2012 (Cui et al., 2016). Zhao et al. (2019) used ground-based NO2 observations to assess the55
effectiveness of pollution control policy in a southwestern city cluster and revealed fluctuations in NO2 mixing ratios from

2008 to 2013, followed by an irregular declining trend after 2013. All these studies reported that NOX and SO2 mixing ratios

have been effectively controlled in China despite the increasing economic development over the past decades.

The Yangtze River Delta (YRD) region is located in the central-eastern region of China, which has the largest economic

output in China and has the sixth largest urban agglomeration in the world. The region covers an area of 359,100 km2 and60
has a population of 224 million, accounting for 16.08 % of the country’s population (Fang and Tian, 2020). Because of

increases in population, urbanization, and industrialization in recent decades, the air pollution in the YRD has exhibited

complex and regional characteristics (Li et al., 2019; Wang et al., 2019), and the YRD has become one of the most polluted
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regions in the world (Xie, 2017b), with NOX and SO2 being the main factors that influence air quality in the region (Yang

and Luo, 2019). Xu et al.(2008) compared observational data in 2005‒2006 with those 10 years earlier and concluded that65

as early as the mid-1990s, SO2 and NOX mixing ratios had already become considerably high at the background station in the

YRD; since then, anthropogenic emissions have caused a substantial increase in the NOX concentration, making NOX

another major pollutant in addition to SO2. The implementation of pollution control policies and continual innovation in SO2

pollution control technology have mitigated SO2 pollution in the YRD, resulting in a consistent decrease in SO2 mixing

ratios (Qi et al., 2012); however, NOX mixing ratios remain high (Shi et al., 2018).70
In this paper, we present 11-year (2006–2016) surface NOX and SO2 observation data from Lin’an regional atmospheric

background station. We analysed the long-term variations of NOX and SO2 and their influencing factors in the YRD

background area to (1) assess the effectiveness of pollution control in the area and (2) provide a scientific basis and reference

for future pollution control strategies.

2 Information and methods75

2.1 Site information

The Lin’an regional atmospheric background monitoring station (119°44′ E, 30°18′ N, 138.6 m a.s.l.; referred to LAN) is

located in Lin’an District, Hangzhou City, Zhejiang Province (Fig. 1) and is one of the regional atmospheric background

stations operated by China Meteorological Administration; it is also a World Meteorological Organization (WMO) Global

Atmospheric Watch (GAW) member station. LAN is located on an isolated hilltop, surrounded by hilly and mountainous80
terrain, with no large villages within a 3 km radius. It is within the region of subtropical monsoon climate, with the most

dominant wind direction from the northeast and the secondary from the southwest. The seasonal variations in meteorological

elements, namely atmospheric pressure (P), temperature (T), wind speed (WS), relative humidity (RH), and rose maps of

wind speed (WS) and wind direction frequency (WF), are presented in Fig. 2.

2.2 Observations and quality control methods85

At the LAN station, observations of O3, NOX, SO2, and CO are performed by an integrated observation and quality control

system combining O3, NOX, SO2, and CO analysers, calibration equipment, and ancillary materials, such as standard gases

and zero air supply (Lin et al., 2009). NOX and SO2 were measured using a Model 42C-TL trace-level chemiluminescent

analyser and a Model 43C-TL trace-level pulsed fluorescence analyser (Thermo Fishier Scientific, MA, USA), respectively.

Data are recorded as 5 min averages. The meteorological parameters (WS, wind direction, T, and RH) for a given period90
were obtained from the routine meteorological observations at the station. The main objective of operational observations of

reactive gases at regional background stations is to obtain accurate trends in the measured reactive gases, for which reliable

and comparable data are essential. Therefore, strict quality control measures were implemented during the observation
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process (Lin et al., 2019). The quality control measures mainly included the following: (1) daily zero and span checks

(automatic); (2) monthly multi-point calibrations (≥5 points, including zero); (3) comparisons of reference SO2/N2 and95
NO/N2 gas mixtures to the standards of the National Institute of Standards and Technology before and after their usage

(periodically) to ensure data traceability; (4) instrument self-diagnosis, manual testing, checking, and maintenance; and (5)

data correction according to the quality control results, especially the results of zero/span checks and multipoint calibrations.

From 1 January 2006 to 31 December 2016, a total of 93,759 and 90,453 valid hourly average data points were obtained for

NOX and SO2, respectively. Missing data totalled 2673 h and 5979 h for NOX and SO2, respectively. The missing NOX data100
were mainly for the period from 2 to 13 February 2007 and from 24 July to 8 October 2012. The missing SO2 data were

mainly for the period from 23 September to 21 December 2013, from 8 to 26 May 2014, and from 17 October 2014 to 24

January 2015.

2.3 Data processing methods

(1) Data statistics. The daily means of NOX and SO2were calculated using the hourly average data, and only daily mean data105
calculated from at least 18 hourly data were used as valid daily means. The monthly means of NOX and SO2were calculated

from the valid daily average data, and considered valid if they were based on at least 21 valid daily averages (or at least 17

valid daily averages in February). Annual means were calculated on the basis of the complete monthly mean data each year.

If a month’s mean data were unavailable, we used an interpolating value from the corresponding monthly means in different

years during the observation. In China, spring is from March to May, summer is from June to August, autumn is from110
September to November, and winter is from December to February.

(2) Monthly satellite-based NO2 OMI data were provided by Lin’s research group at Peking University; the data were

retrieved using an optimized inversion algorithm (Lin et al., 2014; Lin et al., 2015; Boersma et al., 2019). A grid range of

115.125° E–122.875° E and 27.125° N–35.875° N was selected to cover the entire YRD region.

2.4 Concentration weighted trajectory method115

We used the concentration weighted trajectory (CWT) method to identify potential source areas (PSAs) of NOX and SO2

because this method can effectively distinguish the relative strength of potential sources (Xin et al., 2016). In the CWT

method, the study area is divided into � × � small grids with equal size, and each grid (i, j) is assigned a weighted

concentration according to the following equation:

120

��� =
1

�=1
� �����

�=1

�

��� ���� (1)

Where k denotes the indicator of a trajectory, m denotes the total number of trajectories, Ck denotes the concentration

observed when trajectory k arrives, and τijk is the residence time of trajectory k in the ijth grid cell. To reduce errors in the
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more distant grids, an empirical weighting factor Wij is introduced (Wang et al., 2006; Deng et al., 2020), with the following

equation:

CWT i,j =Wij × �ij (2)

125

�ij =

1 ��,� > 3����

0.7 3���� < ��,� < 1.5����

0.42 1.5���� < ��,� < ����

0.05 ��,� < ����

(3)

Here,

���� =
� × � × �

� × �
(4)

Where D denotes the number of days included, t denotes the number of trajectories per day, n denotes the trajectory

endpoints of each trajectory, and i×j denotes the total number of grids.

We used a hybrid single-particle Lagrangian integrated trajectory model (Hysplit4.9) from National Oceanic and

Atmospheric Administration, USA, to calculate the 24-h backward trajectories at 10 m above ground level over LAN during130
2006–2016; the NCEP–NCAR reanalysis meteorological data set (https://ready.arl.noaa.gov/archives.php) and was used to

calculate the trajectories and atmospheric mixed layer heights. The computed backward trajectories were subsequently

processed using the TrajSat plug-in for CWT in Meteoinfo software (Wang, 2014), covering the region located within 20–

40° N and 110–130° E and with a grid size resolution of 0.5 ° × 0.5 °.

3 Results and discussion135

3.1 Observational levels and comparison with other sites

The hourly average NOX mixing ratios at LAN ranged from 0.4 ppb to 165.6 ppb, with NO2 mixing ratios ranging from 0.2

ppb to 106.8 ppb. Only 3 hours’ data exceeded the secondary standard limit value for NO2 (106 ppb) as stated in the national

ambient air quality standard (GB3095– 2012). The hourly average SO2 mixing ratios ranged from 0.1 ppb to 128.6 ppb,

which were all below the GB3095–2012 secondary standard limit for SO2 (190 ppb).140
Table 1 presents annual statistics of the NOX and SO2 mixing ratios observed at LAN between 2006 and 2016. The overall

average mixing ratios with ± 1 standard deviation of for NOX and SO2 from 2006 to 2016 were 13.6 ± 1.2 ppb and 7.0 ± 4.2

ppb, respectively, with the highest NO2 value being observed in 2012 and the highest SO2 in 2006. NO2 was the dominant

form of NOX, accounting for 82.2 % of NOX (according to the slope value from the reduced major axis regression on hourly

average NO2 and NOX data). The average NO2 mixing ratio was 13.6 ± 1.2 ppb, which was below the primary annual limit of145
21.2 ppb in GB 3095‒2012. The average SO2 mixing ratio from 2006 to 2016 is close to the primary annual limit of 7.6 ppb
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in GB3095–2012. However, the annual average SO2 mixing ratios (10.6–14.6 ppb) from 2006 to 2008 was much higher than

the limit of the primary standard though lower than the limit of the secondary standard (22.8 ppb).

Table 2 compares the levels of NOX and SO2 mixing ratios at LAN with those corresponding SO2/NOX ratios at other

background stations in seven geographic regions of China: north, east, south, northeast, northwest, southwest, and central150
China. The NOX mixing ratio at LAN was slightly higher than that at Shangdianzi (12.7 ± 11.8 ppb) in northern China, equal

to that at Dinghushan (13.6 ppb) in southern China, and much higher than those at Wuyishan (2.70 ppb) in eastern China,

Fukang (8.3 ppb) in northwest China, Changbai Mountain (4.7 ppb) in northeast China, Jinsha (5.6 ± 5.5 ppb) in central

China, and Southwest Gongga Mountain (0.90 ppb). These results indicate that LAN recorded the highest level of NOX

among the regional atmospheric background stations in China, which could be attributed to the developed economy of the155
YRD region. The SO2 mixing ratio at LAN was close to that at Shangdianzi (7.6 ± 10.2 ppb) in northern China, higher than

that at Dinghu Mountain (6.5 ppb) in southern China, and much higher than those at Wuyishan (1.48 ppb) in eastern China,

Changbai Mountain (2.1 ppb) in northeast China, Fukang (2.2 ppb) in northwest China, Gongga Mountain (0.19 ppb), and

Jinsha (2.8 ± 5.5 ppb) in central China. The regional difference in NOX and SO2 was closely related to the diverse levels of

economic development in China’s regions because it was broadly characterised by a higher level in the eastern than in160
central and western regions. The SO2/NOX ratio at LAN was at a high level in China, which reflects the different energy

structures to some extent.

3.2 Seasonal variations

Figure 3 illustrates the average seasonal variations in NOX and SO2 mixing ratios at LAN. The maximum monthly average

mixing ratios of NOX and SO2 were observed in December and January, at 23.5 ± 4.4 ppb and 11.9 ± 6.2 ppb, respectively.165
The minimum values both occurred in July, at 7.1 ± 0.8 ppb and 2.8 ± 2.3 ppb, respectively. The average monthly variations

in NOX exhibited significant correlations with the monthly NO2 satellite data (R2 = 0.82, P < 0.001). Seasonal variation

patterns of NOX and SO2 look alike, showing a concave shape with its minimum in summer. The highest mixing ratios

occurred in winter (NOX: 19.5 ppb; SO2: 10.1 ppb), followed by spring (NOX: 13.4 ppb; SO2: 7.8 ppb), autumn (NOX: 13.6

ppb; SO2: 6.7 ppb), and summer (NOX: 8.1 ppb; SO2: 3.3 ppb). The monthly average mixing ratios of both NOX and SO2170
showed a dip in February—a phenomenon also observed in NOX and SO2 (Wang et al., 2016; Xue et al., 2020) and NO3− and

SO42− in PM2.5 in Shanghai (Duan et al., 2020). The source emission inventory data indicated that NOX and SO2 emissions

from industry, transportation, and coal-fired power plants were all lower in February than in January and March throughout

China (Li et al., 2017), which may be related to decreased emissions due to lower economic activity during Chinese Spring

Festival. In addition, the higher RH in February (Fig. 2) might have led to higher NOX and SO2 removal rates.175

3.3 Diurnal variations

Figure 4 shows the annual and seasonal average diurnal variations in NOX and SO2 at LAN from 2006 to 2016, along with

the annual average diurnal variations in NOX and SO2 at some other sites in the YRD. The overall diurnal profile of NOX
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displayed a double-peak and double-valley pattern (Fig. 4a). The valley values occurred at 05:00‒06:00 and 13:00, with

mixing ratios of 12.3 ppb and 10.0 ppb, respectively, and the peak values occurred at 09:00 and 19:00, with mixing ratios of180
13.1 ppb and 14.4 ppb, respectively. Surrounding areas, such as Chongming, Pudong (Xue et al., 2020), and Xujiahui (Gao

et al., 2017) in Shanghai City, Hangzhou (Zhou et al., 2020) in Zhejiang Province, and Nanjing (Wang et al., 2017) in

Jiangsu Province also exhibited a double-peak and double-valley type of average diurnal variation in NOx (Fig. 4a),

indicating a regional NOX pollution characteristic. However, at most atmospheric background stations, the average diurnal

variations in NOX exhibited a single-peaked and single-valley pattern, such as those at Xinglong in north China (Yang et al.,185
2012), Tianhu in the Pearl River Delta (Shen et al., 2019), Dae Hung in South Korea (Pandey et al., 2008), and Mount

Cimone in Italy (Cristofanelli et al., 2016), suggesting a more complex anthropogenic influence in the YRD region. The

seasonal average diurnal variation in NOX showed a morning peak of NOX in summer at 08:00, which is 1 to 2 h earlier than

during other seasons (Fig. 4c).

SO2 at LAN showed relatively small average diurnal variation (Fig. 4b), with higher mixing ratios from midnight to190
noontime and lower ones during later afternoon and evening. The average diurnal amplitude of SO2 at LAN was much

smaller than those found in Nanjing and Jiaxing. The seasonal average diurnal profiles of SO2 at LAN were similar to the

annual average one except for that in winter, which had a peak around noon (Fig. 4d).

The diurnal variation of pollutants emitted at ground level are closely related to the intensity of emissions, atmospheric

transport, diurnal development in boundary layer height, and atmospheric photochemical reactions (Resmi et al., 2020). The195
mixing layer depth (MLD) was much lower at night than during the daytime, as shown in Fig. 4b. Low MLDs at night are

not conducive to pollutant dispersion, whereas high MLDs during the daytime are conducive to pollutant dispersion. This

day-night difference in the MLD is one of the factors causing lower levels of SO2 and NOX during afternoon hours.

Photochemistry during the daytime also contributes to rapid chemical transformation of SO2 and NOX, which results in low

NOX and SO2 mixing ratios in the afternoon. Overall, the morning peak of NOX was lower than the evening peak, the200
morning peak of SO2 was higher than the evening subpeak, and the morning peak of SO2 was not as protruding as and

occurred slightly later than that of NOX, reflecting the differences in their sources. The morning peak of NOX may be

influenced by vehicle emissions during the morning rush hour, and the early peak of SO2 may be more influenced by vertical

changes during the developing mixed layer depth height (Qi et al., 2012). The evening peaks of NOX and SO2 were relatively

similar because both were closely related to the MLD decrease and for NOX likely also vehicle emissions during the evening205
rush hour.

3.4 Influence of meteorological factors

Changes in meteorological factors have considerable effects on the levels of air pollutants. In this section, we investigate the

influences of meteorological factors on the variations in NOX and SO2 mixing ratios through statistical plots showing

relationships between pollutant concentrations and meteorological factors as well as correlation analysis. The variation210
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characteristics of hourly average mixing ratios of NOX and SO2 along with meteorological parameters are presented in Fig. 5.

The data are grouped into three subsets corresponding to time periods: 2006–2009, 2010–2013, and 2014–2016.

The variation characteristics of NOX and SO2 with WS (Fig. 5a,b) were consistent during 2006–2009, showing decreases of

NOX and SO2 with increasing WS. Higher WS facilitated the dilution of NOX and SO2 and vice versa. However, the situation

for SO2 was different during 2010–2013 and 2014–2016, when the SO2 level was stable with the change of WS. The effect215
of T on the two pollutants varied considerably, with the SO2 mixing ratios decreasing nearly monotonically with increasing T

(Fig. 5d), whereas NOX increased with increasing T in the low temperature range and decreased with increasing T in the high

temperature range (Fig. 5c). Fig. 5c indicates a positive correlation between NOX and T in winter and negative correlations in

other seasons, but the positive correlation in winter is weak and insignificant (Table 3). Pandey et al. ( 2008) reported that

low T might facilitate the increase of NOX emissions from motor vehicle exhaust. The variations in NOX and SO2 with RH220
(Fig. 5e,f) and P (Fig. 5g,h) exhibit a convex pattern and the former patterns in 3 different periods show well consistent but

the latter ones are not.The correlation between SO2 and RH was stronger than that of NOX and RH. The variation

characteristics of NOX and SO2 mixing ratios with the MLD exhibited diverse patterns (Fig. 5g,h). The mixing ratio of NOX

decreased with increasing MLD. However, the SO2 levels during 2010–2013 and 2014–2016 remained nearly stable in the

whole MLD range and a slight decline of SO2 with increasing MLD was only observed during 2006–2009. The difference in225
NOX and SO2 mixing ratios with the MLD implies that the NOX sources mostly impacting the LAN site should be mainly in

the near-surface layer, such as emissions from motor vehicles and small burners, whereas SO2 may originate from the

vertical exchange of elevated sources transported in the higher altitude layer (200–1300 m).

Figure 6 displays the rose diagrams of NOX and SO2 mixing ratios in different seasons. There are some seasonal differences

in the dependence of NOX and SO2 on wind direction. In summer, the high mixing ratios of NOX and SO2 were mainly from230
the NW–NNE and SSW–NW sectors, respectively (Fig. 6b). In other seasons, relatively high NOX and SO2 values were

mainly from the N–ENE and S–WSW directions, respectively, under the influences of the dominant and subdominant WDs

(Fig. 2b, d). Overall, NOX and SO2 observed at LAN originated mainly from the NW-ENE and SSW-NW sectors,

respectively. However, this result provides only little information about the actual geographic distributions of major NOX

and SO2 sources influencing LAN. Therefore, we used the CWT method to identify the PSAs for NOX and SO2. Fig. 7235
presents the areas, from which NOX and SO2 observed at LAN originated. Although the PSAs covered the entire YRD, the

PSAs for the highest NOX and SO2 levels appeared mainly in the eastern coastal region, which is closely related to the

booming local economy. More obvious provincial differences were observed in a higher PSA for NOX than that for SO2.

Temporally, the high PSA (>10 ppb) of NOX and SO2 was most extensive in winter, followed by spring and autumn, with the

least extensive PSA in summer. The NOX PSAs over coastal areas were more extensive than those for SO2 in each season.240
The YRD is one of the five major port clusters in China; thus, this region’s ship emissions might be a major cause of this

difference (Fan et al., 2016; Wan et al., 2020). The CWT analysis indicated that SO2 was mainly influenced by industrial

emissions from inland areas, whereas NOX was mainly influenced by both inland and marine traffic.
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3.5 Long-term variations in NOx and SO2 mixing ratios

Fig. 8 displays the variations in the annual and seasonal average NOX and SO2 mixing ratios observed at LAN during 2006-245
2016, together with estimated annual emissions in the YRD. The annual average of NOX showed an increase followed by a

decrease, while that of SO2 experienced a nearly monotonic decrease. The annual NOX mixing ratio revealed an increase,

with a rate of +0.31 ppb/yr (R2 = 0.28, P = 0.16) during 2006‒2011 and a significant decreasing trend, with a rate of −0.78

ppb/yr or −5.16 %/yr (R2 = 0.85, P < 0.01) during 2011‒2016 (Fig. 8a). The decreasing rate was less than that found in urban

Shanghai (2.1 ppb/yr; Gao et al., 2017). Selecting 2006 as the base year, we compared the annual percentage change in NOX250
at LAN (0.49 %/yr) during 2006‒2016 with those of other regions over the same period. The Ecological and Environmental

Status Bulletin reported a similar change of −0.45 %/yr in the YRD region (without data for Anhui Province), reflecting the

suitable regional representativeness of LAN. The annual percentage decrease of NOX at LAN and in the YRD was much

slower than those in many regions—for example, the Pearl River Delta in China (−2.84 %/yr; Yan et al., 2020), Kraków City

in Poland (−2.21%/yr; Agnieszka and Gruszecka-Kosowska, 2020), at Preila station in Lithuania (−1.60 %/yr; Davuliene et255
al., 2021), and in New York City in the United States (−3.46 %/yr; Squizzato et al., 2018)—but more favourable than those

in some other regions, such as Wuhan City in China (+2.08 %/yr; Li et al., 2020) and Amersfoort City (+6.50 %/yr) and

Louis Trichardt City in South Africa (+1.85 %/yr; Swartz et al., 2020b). Compared with other background regions in China,

the annual change of NOX at LAN was less favourable than that in north China (−3.34 %/yr) with a base year of 2005 (Bai et

al., 2015) and more favourable than that in northwest China (+12.98 %/yr) with a base year of 2010 (Li et al., 2019).260
Figure 8 also presents the NOx emission data from the China Ecological Environment Bulletin in different years. The change

of the annual average NOx mixing ratio was highly correlated with the total NOX emissions (R2 = 0.92, P < 0.001) and total

industrial emissions (R2 = 0.94, P < 0.001) in the YRD region. The peak surface NOX mixing ratio was observed in 2011.

Since China began to control and reduce NOX emissions as part of the 12th Five-Year Plan (2011‒2015) and promulgated

the strict Air Pollution Prevention and Control Action Plan in 2013, many flue gas denitrification systems have been265
installed in coal-fired power plants and heavy industry operations (Zhao et al., 2019), resulting in a decrease in annual NOX

emission since 2011. The seasonal long-term trends of NOX did always resemble the annual trend. While seasonal NOX

mixing ratios in winter, autumn, and spring increased before 2011 and then decreased, just like the annual NOX mixing ratio

did, the seasonal NOX mixing ratio in summer exhibited a nearly monotonic decreases from 2006 to 2016 at 0.11 ppb/yr (R2

= 0.20, P = 0.09) (Fig. 8c). Regarding the seasonal linear fitting trends, the highest increasing and declining trends were270
observed in winter (+1.29 ppb/ yr, R2= 0.52, P = 0.06; −2.33 ppb/yr, R2= 0.94, P < 0.01), followed by autumn (+1.24 ppb/yr,

R2 = 0.65, P = 0.02; −0.41 ppb/yr, R2 = 0.12, P = 0.30) and spring (+0.31 ppb/yr, R2 = 0.93, P < 0.001; −1.16 ppb/yr, R2 =

0.76, P = 0.09).

Annual mean SO2 mixing ratios revealed a significant decreasing trend (−0.99 ppb/yr, R2 = 0.92, P < 0.001) during 2006-

2016 (Fig. 8b). The annual decreasing rate of SO2 at LAN (−8.27 %/yr) was more rapid than those in the whole YRD275
(−6.65 %/yr), in the background area in north China (−0.78 %/yr; Bai et al., 2015), and in northwest China (−5.4 %/yr; Li et
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al., 2019). Different from NOX, the annual average of SO2 at LAN decreased more rapidly than in most of the

aforementioned regions (Table 4), which demonstrates the effectiveness of the policies in controlling SO2 emission during

the observation period in the YRD.

The change in the annual SO2 mixing ratio was closely correlated with changes in industrial SO2 emission (R2 = 0.95, P <280
0.001) and total SO2 emission (R2 = 0.94, P < 0.001) in the YRD (Fig. 8b). In 2011, the SO2 mixing ratio rebounded slightly,

with an increase of 9 % compared with the value in 2010. This seemed to be consistent with the variation of industrial SO2

emission. The weakening impact of the global financial crisis and the recovery of industry in the YRD region may explain

this slight rebound in SO2 emissions (Xie, 2017b). Seasonally, the SO2 mixing ratio exhibited the strongest decreasing trend

(−1.69 ppb/yr, R2 = 0.90, P < 0.001) in winter, followed by spring (−1.05 ppb/yr, R2 = 0.97, P < 0.001) and autumn (−0.99285
ppb/yr, R2= 0.93, P < 0.001), with the smallest decreasing trend observed in summer (−0.35 ppb/yr, R2= 0.61, P < 0.001).

In the annual statistics, the 95th and 5th percentile of the pollutants’ concentrations can be regarded as influenced by polluted

and clean air masses, respectively. The annual trends of the 95th percentile of NOX and SO2 (Fig. 9a) exhibited similar

patterns to the corresponding trends in annual average mixing ratios (Fig. 8a, b), but the peak of the 95th percentile of NOX

occurred in 2012, instead of in 2011. Hao and Song (2018) noted that the NOX emissions from vehicles peaked in Hangzhou290
and Ningbo in 2012, which may explain the peak of the 95th percentile occurring later than that in the annual data. Moreover,

the 95th percentile of the SO2 mixing ratio decreased at a remarkable rate (−8.9 ppb/yr) from 2007 to 2009, which is

approximately 2.8 times as strong as the overall rate of decrease during the 11-year period (−3.2 ppb/yr). Substantial

decreases were also found in the 95th percentiles of the CO mixing ratio (Chen et al., 2020) and the NOX mixing ratio from

2007 to 2009 at LAN. It is highly possible that this phenomenon was caused by reduced industrial productions and related295
emissions following the 2008 global financial crisis. As displayed in Fig. 9b, the level of NOX in cleaner air mass arriving at

LAN exhibited an increasing trend, with a rate of +0.17 ppb/yr, from 2006 to 2014 (R2 = 0.86, P < 0.001) and then declined

after 2014. This is inconsistent with the trend of the 95th percentile of the NOx mixing ratio, suggesting the polluted and

relative clean air masses arriving at LAN were impacted by different emission sources of NOx. Interestingly, the 5th

percentile of the NOx level was significantly correlated (R2 = 0.74, P < 0.001) with the road emissions of NO2 in the YRD300
(Kurokawa and Ohara, 2020), suggesting that the lower end of NOx mixing ratios was mainly determined by long-range

transported background air containing NOx from road emissions, while the high end was mainly associated with emissions

from industrial production as well as power generation. The level of SO2 in cleaner air mass exhibited a decreasing trend at a

rate of −0.2 ppb/yr (R2= 0.61, P < 0.01).

Figure 10 displays the scatter plot of the daily average SO2 and NOX mixing ratio during 2006–2009, 2010–2013, and 2014–305
2016 at LAN. Reduced major axis regressions were performed on three data subsets. The daily mean mixing ratios of NOX

were significantly (R2 = 0.29, P < 0.001) and positively correlated with those of SO2. The ratios of SO2 to NOX (S/N) were

0.96, 0.53, and 0.33 (slopes in the regression lines) during 2006 – 2009, 2010–2013, and 2014 – 2016, respectively. The

decreasing S/N suggests that SO2 emissions were more efficiently reduced than NOX emissions. Such a change in emission

ratio not only affected ambient SO2/NOX but also the ratios of sulphate/nitrate in PM2.5 in Shanghai from 2009 to 2012 (Zhao310
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et al., 2015) SO42−/ NO3− in rainwater in Hangzhou (Yang, 2018; Xu et al., 2019). These results indicate that NOX has been

gaining a more important role in the processes of precipitation acidification and secondary inorganic aerosol formation in the

YRD region. Therefore, NOX emission reduction should be further strengthened in subsequent air pollution control measures

and legislation in the YRD region.

Figure 11 reveals the average diurnal variations in NOX and SO2 during the periods of 2006–2009, 2010–2013, and 2014–315
2016. During these three periods, the average diurnal curves in NOX exhibited a valley around 13:00, with minimum values

of 7.5 ppb, 11.2ppb, and 9.2 ppb, respectively. The morning and evening NOX peaks, which occurred respectively at 09:00

and 19:00, became increasingly distinct over time (Fig. 11a, c, e). The morning and evening peak NOX values were 9.8 ppb

and 10.9 ppb during 2006–2009, 14.6 ppb and 15.8 ppb during 2010–2013, and 12.3 ppb and 13.6 ppb during 2014–2016.

The gradual protruding of the morning and evening peaks should be mainly caused by increasing vehicle emissions during320
the morning and evening rush hours. According to the 2010 Annual Report on China’s Motor Vehicle Pollution Prevention

and Control, the state introduced a series of policies to promote automobile and motorbike ownership in response to the

international financial crisis and to ensure economic growth; these policies effectively stimulated the automobile market (Mi

and Qin, 2011; Hao and Song, 2018) and led to an increase in vehicle emissions and atmospheric oxidation in the YRD

region (Yu et al., 2019). Thus, the NOX mixing ratios around the morning and evening peaks were much higher than those at325
night during 2014–2016 (Fig. 11e), which differs much from the pattern during 2006–2009 (Fig. 11a). The disappearance of

the small peak around 01:00 at night during 2012–2016 may be related to the introduction of stricter air pollution control

policies for factories that emit at night.

The average diurnal variation curve of SO2 at LAN from 2006 to 2009 (Fig. 11b) is of the single-valley type, with an average

valley mixing ratio of 6.5 ppb. After 2010, the peak shape has changed from single-valley type to the double-peak and330
double-valley type (Fig. 11d, f). The valleys of SO2 during 2010‒2013 occurred at 06:00 and 15:00, with average mixing

ratios of 5.2 ppb and 4.7 ppb, and the peaks occurred at 10:00 and 19:00, with average mixing ratios of 5.9 ppb and 5.3 ppb,

respectively. The NOX and SO2 evening peaks occurred at the same time (19:00), but the SO2 morning peak time was 1 hour

later than the NOX morning peak (09:00), indicating that the NOX and SO2 morning peaks were influenced by different

sources, whereas the evening peaks were from similar sources. The formation of the SO2 morning peak may be mainly335
related to the vertical exchange during the development of the atmospheric boundary layer and the air in the upper layer with

a higher SO2 mixing ratio than that at the surface draining down. The formation of the peaks of NOX and SO2 may be mainly

related to the increase in motor vehicle emissions, which are stronger in the rush hours and that of SO2 may be probably

more due to the reduction of power plants emissions. Compared with that during 2010–2013, the SO2 mixing ratios at the

morning and evening peaks in 2014–2016 were approximately 3 ppb lower, suggesting that the large emitters that release340
SO2 all the time were emitting less and less.
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Conclusions

In this study, we characterized the seasonal and diurnal variations and analysed the long-term trends in NOX and SO2 mixing

ratios in the YRD background area during the period of 2006‒2016. We also tried to understand the variations and trends in

terms of the changes in emissions and meteorological conditions. The hourly average mixing ratios of NOX and SO2 at the345
LAN background station varied in the ranges of 0.4–165.6 ppb and 0.1–128.6 ppb, respectively. The levels of NOX and SO2

were highest in winter, followed by spring and autumn, and lowest in summer. Although a significant correlation was

observed between the daily average mixing ratios of NOX and SO2 (R2 = 0.29, P < 0.001), their average diurnal variation

characteristics differed from each other, with morning peaks in SO2 occurring later than in NOX.

The annual average mixing ratio of NOX fluctuated upwards between 2006 and 2011 (+0.31 ppb/yr, P = 0.16) with a mean350
value of 13.8 ppb and then began to decrease significantly from 2011 to 2016 (‒0.78 ppb/yr, P < 0.01), with a mean value of

13.7 ppb. The annual average mixing ratio of NOX was significantly correlated with the industrial (R2 = 0.88, P < 0.001) and

total (R2 = 0.86, P < 0.001) NOX emissions in the YRD. The annual 95 % percentile of NOX mixing ratios followed a similar

trend to the annual average, whereas the 5th percentile levels fluctuated upwards at +0.17 ppb/yr from 2006 to 2014,

reflecting the increasing regional background level of NOX in the YRD during those years, which was related to the355
continued increase in vehicle numbers in the YRD. The annual average mixing ratio of SO2 exhibited a rapid and significant

decreasing trend (‒0.99 ppb/yr, P < 0.001) and was closely correlated to total SO2 emission (R2 = 0.94, P < 0.001) and total

SO2 industrial emission (R2 = 0.95, P < 0.001) in the YRD. The reduced emissions were resulted from the strong and

effective introduction of national control policies. The yearly decrease of S/N ratios suggests a more effective reduction in

SO2 than in NOX. Thus, NOX emission control needs to be further strengthened in the future.360
We found gradual changes in diurnal patterns of both gases. After 2010, both NOX and SO2 showed diurnal patterns with two

peaks and two valleys. The morning peak of NOX occurred at approximately 09:00, earlier than that of SO2 (10:00), and the

evening peak occurred at the same time as SO2 (19:00). The morning and evening peaks of both gases protruded gradually.

This phenomenon can hardly be attributed to changes in meteorological conditions (such as the MLD). We believe that

changes in major sources of NOX and SO2 should be the cause, with increasing NOX emission from vehicles resulting in365
higher NOX peaks during rush hours and reduced SO2 emissions from power plants and other large point sources making the

SO2 peaks relatively protruding.
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Figure 1: Geographical location of LAN.525
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Figure 2: Average seasonal variations in air pressure (P), temperature (T), wind speed (WS), relative humidity (RH), and rose
maps of wind speed (WS) and wind direction frequency (WF) at LAN during 2006‒2016. In the rose maps of WS and WF, red
solid represents spring, blue dash for summer, green short dot for autumn and magenta dash dot for winter.
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Figure 3: Monthly average NOX and SO2 mixing ratios at LAN (left axis) and monthly tropospheric vertical column density of
NO2 (right axis) over 115.125° E–122.875° E and 27.125° N–35.875° N in the YRD during 2006‒2016.
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Figure 4: Annual average diurnal variations in NOX (a, left axis) and in SO2 (b, left axis) at LAN and its surrounding cities (NOX, a,535
right axis; SO2, b, left axis); seasonal average diurnal variations in NOX (c, left axis) and SO2 (d, left axis) at LAN. The average
diurnal mixed layer depth (MLD; right axis) is also plotted in panel b.
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Figure 5: Variation characteristics of NOX and SO2 with wind speed (WS; a and b), temperature (T; c and d), relative humidity
(RH; e and f), and the mixed layer depth (MLD; g and h) at LAN during three periods.540
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Figure 6: Seasonal distributions of NOX and SO2 concentrations in different wind directions.
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Figure 7: Potential source analysis of NOX and SO2 in different seasons at LAN according to concentration weighted trajectory

analysis.545
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Figure 8: Annual mean NOX mixing ratio at LAN (left axis) compared with total NOX emission and industrial NOX emission in the
YRD (a, right axis); annual mean SO2 mixing ratio at LAN (left axis) compared with total SO2 emission, industrial SO2 emission,550
thermal power plants SO2 emission in the YRD (b, right axis), seasonal average annual variation of NOX (c), and SO2 (d) at LAN.

Figure 9: Annual variations in the 95 % percentile concentration (a) and the 5 % percentile concentration (b) of NOX and SO2 at
LAN; data of road emissions in NO2 are obtained from the REASv3.2 data sets in the Regional Emission inventory in Asia555
(Kurokawa and Ohara, 2020).
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Figure 10: Reduced major axis regressions on the scatter plots of daily average SO2 and NOX mixing ratios during three periods at
LAN.
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560
Figure 11: Average diurnal variations in NOX (a, c, e) and in SO2 (b, d, f) during three periods at LAN.
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Table 1 Statistics of NOX and SO2 levels from 2006 to 2016 at LAN.

year NOX (ppb) SO2 (ppb) S/N

Average Median SD Max Min Average Median SD Max Min

2006 12.9 11.5 4.8 22.0 6.5 14.6 13.8 4.7 24.7 8.4 1.13

2007 13.8 11.7 6.0 29.0 7.5 13.4 12.4 5.9 23.4 5.2 0.97

2008 13.0 11.3 6.2 27.9 6.6 10.6 10.6 5.4 19.9 3.7 0.82

2009 13.1 13.8 4.7 24.9 7.0 7.0 7.1 2.9 11.9 2.1 0.54

2010 14.1 12.5 6.2 29.3 7.6 6.2 5.7 3.7 14.9 1.9 0.44

2011 15.4 13.8 7.2 31.3 7.5 6.7 6.7 4.2 13.7 1.1 0.44

2012 15.4 15.8 6.4 26.8 5.9 5.5 6.0 2.9 9.3 1.3 0.36

2013 14.5 13.1 6.1 27.0 6.5 4.7 4.3 2.5 10.0 1.9 0.32

2014 12.9 12.4 4.2 20.2 7.3 3.4 3.0 2.1 8.6 1.0 0.26

2015 12.0 11.7 4.5 19.9 6.4 2.8 2.9 1.3 5.7 1.1 0.23

2016 12.2 11.4 4.3 19.8 7.2 1.9 1.6 1.1 3.7 0.6 0.16

average 13.6 13.1 1.2 15.4 12.0 7.0 6.2 4.2 14.6 1.9 0.52

SD: standard deviation; Max, maximum; Min: minimum.
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Table 2 NOX and SO2 mixing ratios observed at various atmospheric background stations.

Station Latitude and longitude,

altitude

Period of

observation

NOX/ppb SO2/ppb SO2/

NOX

References

Lin'an*, Yangtze River Delta

background station

30.3 ° N,119.73 ° E,

138 m a.s.l.

2006.1–

2016.12

13.6 ± 1.2 7.0 ± 4.2 0.55 This study

Shangdianzi*, North China

Regional Background Station

40.39° N,117.07° E,

293.9 m a.s.l

2006.1–

2006.12

12.7 ± 11.8 7.6 ± 10.2 0.60 (Meng et al.,

2009)

Wuyishan, Eastern China

Regional Background Station

27.58° N,117.72° E,

1139 m a.s.l

2011.3–

2012.2

2.70 1.48 0.55 (Su et al.,

2013)

Dinghushan, South China

Regional Background Station

23.2° N,112.5° E,

100m a.s.l

2009.1–

2010.12

13.6 6.5 0.48 (Chen, 2012)

Changbaishan, Northeast

China Regional Background

Station

42.4° N,117.5° E,

736 m a.s.l

2009.1–

2010.12

4.7 2.1 0.45 (Chen, 2012)

Fukang, Northwest China

Regional Background Station

44.3° N,87.9° E,

470 m a.s.l

2009.1–

2010.12

8.3 2.2 0.27 (Chen, 2012)

Gonggar Mountain, Southwest

China Regional Background

Station

29.92° N,102.61° E,

3541 m a.s.l

2017.1–

2017.12

0.90 0.19 0.21 (Cheng et al.,

2019)

Jinsha, Central China

Regional Background Station

29.63° N,114.2° E,

750 m a.s.l

2006.6–

2007.7

5.6 ± 5.5 2.8 ± 5.5 0.5 (Lin et al.,

2011)

* indicates that the site is also one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW/WMO) atmospheric

background stations
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Table 3 Pearson correlations among NOX, SO2, and meteorological elements (daily average values).

NOx SO2 WS T RH P MLD

NOx annual 1 0.54* −0.25* −0.47* −0.01 0.42* −0.06*

Spring 0.38* −0.23* −0.22* 0.09* 0.18* −0.32*

Summer 0.30* −0.34* −0.24* 0.04 0.25* 0.18*

Autumn 0.46* −0.28* −0.36* −0.06* 0.35* −0.12*

Winter 0.50* −0.30* 0.06 0.09* −0.07* −0.22*

SO2 annual 1 −0.09* −0.34* −0.41* 0.39* 0.08*

Spring −0.05 −0.04 −0.41* 0.17* −0.05

Summer 0.00 0.07* −0.32* 0.11* −0.02

Autumn −0.11* −0.23* −0.56* 0.31* 0.12*

Winter −0.13* −0.07 −0.34* 0.17* 0.02

Two-tailed significance test was used.

*: Significant at 0.05 level of correlation
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Table 4: Annual percentage changes in NOX and SO2 in various regions.570

Location Period Base year NOX SO2

LAN, this study 2006–2016 2006 −0.49 %/yr −8.27 %/yr

YRD, China 2006–2016 2006 −0.45 %/yr −6.65 %/yr

Pearl River Delta, China 2000–2019 2006 −2.84 %/yr −3.93 %/yr

Wuhan City, China 2005–2017 2006 +2.08%/yr −9.46 %/yr

North China 2005–2014 2005 −3.34 %/yr −0.78 %/yr

Northwest China 2010–2016 2010 +12.98%/yr −13.06 %/yr

New York city in America 2005–2016 2005 −3.46 %/yr −5.97 %/yr

Kraków city in Poland 2005–2020 2007 −2.21 %/yr −3.43 %/yr*

Preila station in Lithuania 2005–2017 2006 −1.60 %/yr −6.83 %/yr

Louis Trichardt in South Africa 2005–2017 2006 +1.85%/yr −5.11 %/yr

Amersfoort city in South Africa 2005–2017 2006 +6.50%/yr +2.95%/yr
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