3 Mass spectral characterization of secondary organic aerosol from urban

4 lifestyle sources emissions

5 Wenfei Zhu¹, Song Guo^{1,2*}, Min Hu¹, Zirui Zhang¹, Hui Wang¹, Ying Yu¹, Zheng Chen¹, Ruizhe Shen¹, Rui

6 Tan¹, Kai Song¹, Kefan Liu¹, Rongzhi Tang¹, Yi Liu¹, Shengrong Lou³, Yuanju Li¹, Wenbin Zhang⁴, Zhou

7 Zhang⁴, Shijin Shuai⁴, Hongming Xu⁴, Shuangde Li⁵, Yunfa Chen⁵, Francesco Canonaco⁶, Andre. S. H.

8 Prévôt⁶

- 9 ¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for
- Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking
 University, Beijing 100871, China P. R.
- ² Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of
 Information Science & Technology, Nanjing 210044, China P. R.
- ³ State Environmental Protection Key Laboratory of Formation of Urban Air Pollution Complex, Shanghai Academy of
 Environmental Sciences, Shanghai 200233, China P. R.
- ⁴ State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China P. R.
- ⁵ State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences,
 Beijing 100190, China P. R.
- ⁶ Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
- 20 Corresponding authors:
- 21 *Song Guo State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
- 22 Environmental Sciences and Engineering, Peking University, Beijing 100871, China P. R.; Email:
- 23 songguo@pku.edu.cn
- 24

25

26

Supplemental Information

This supplemental information includes 10 tables and 8 figures.

- 27
- 28

29 **Contents:**

Figure S1. Schematic depiction of the simulation and measurement system for the cooking and vehicle
 experiments

Figure.S2. The mass spectra of aged HOA emission from different vehicle running conditions under
 different EPA.

- 34 Figure.S3. The mass spectra of aged COA emission from different Chinese dishes under different EPA.
- 35 Figure.S4. The changes in mass spectra of aged HOA emissions from different conditions.

36 Figure.S5. The mass spectra of aged COA oxidation under different OH exposure for different Chinese

37 dishes.

Figure.S6. Van Krevelen diagram of POA, aged COA and aged HOA from vehicle and cooking.

39 **Figure.S7.** The θ angles between vehicle LO-SOA and MO-SOA under five running conditions.

40 Figure.S8. The comparison of the mass spectra, the diurnal variation, and fraction between ME-2 and PMF

- 41 resolved factors during the summertime in Shanghai.
- 42 **Table S1.** The OH exposure and photochemical age for all conditions in cooking and vehicle experiments
- 43 **Table S2.** The θ angles among the mass spectra of aged HOA under EPA 1.7 days.
- **Table S3.** The θ angles among the mass spectra of aged COA under EPA 2.1 days.
- 45 **Table S4.** The θ angles among the mass spectra under different EPA at one vehicle condition 46 (2000rpm 16Nm).
- 47 **Table S5.** The θ angles among the mass spectra under different EPA at one vehicle condition 48 (2000rpm 32Nm).
- 49 **Table S6.** The θ angles among the mass spectra under different EPA for shallow frying.
- 50 **Table S7.** The θ angles among the mass spectra under different EPA for kung pao chicken.
- 51 **Table S8.** The θ angles among the mass spectra of cooking PMF_SOA for different dishes.

- **Table S9.** The θ angles among the mass spectra of cooking PMF_POA for different dishes.
- **Table S10.** The θ angles among the mass spectra of vehicle PMF_LO-SOA at different conditions

57 Fig.S1 Schematic depiction of the simulation and measurement system for the cooking and vehicle experiments.

Cooking experiment Vehicle experiment Photochemical Age O₃ concentration RH (%) OH exposure Photochemical Age O₃ concentration RH (%) OH exposure & Temperature & Temperature (°) (molecules $cm^{-3} s$) (ppbv) (molecules $cm^{-3} s$) (day) (ppbv) (day) (°C) 0 0 0 0 0 0 4.3E+10 7.8E+10 310 0.3 624 0.6 18~23% 44~49% 1183 9.6E+10 0.7 2367 2.1E+11 1.7 &16~19°C &19~22°C 2217 1.4E+11 1.1 4433 3.7E+11 2.9 4025 2.7E+11 2.1 6533 5.4E+11 4.2

60 Table S1. The OH exposure and photochemical age for all conditions in cooking and vehicle experiments

61

Fig.S2. The mass spectra of aged HOA emission from different vehicle running conditions under different EPA.

65 Table S2. The θ angles among the mass spectra of aged HOA under EPA 1.7 days.

EPA1.7days θ angles	1500rpm_16Nm	1750rpm_16Nm	2000rpm_16Nm	2000rpm_32Nm	2000rpm_40Nm
1500rpm_16Nm	0	8	8	16	18
1750 rpm_16 Nm		0	1	9	11
2000 rpm_16 Nm			0	9	11
2000 rpm_32 Nm				0	4
2000 rpm_42 Nm					0

Fig.S3. The mass spectra of aged COA emission from different Chinese dishes under different EPA.

70 Table S3. The θ angles among the mass spectra of aged COA under EPA 2.1 days.

EPA2.1days θ angles	deep-frying chicken	stir-frying cabbage	shallow-frying tofu	Kung Pao chicken
deep-frying chicken	0	22	18	17
stir-frying cabbage		0	10	13
shallow-frying tofu			0	12
Kung Pao chicken				0

Fig.S4. The changes in mass spectra of aged HOA emissions from different conditions.

Table S4. The θ angles among the mass spectra under different EPA at one vehicle condition (2000rpm 16Nm).

2000 rpm_16Nm θ angles	POA	0.6 day	1.7 days	2.9 days	4.1 days
POA	0	29	40	51	57
0.6 day		0	15	29	36
1.7 days			0	15	22
2.9 days				0	7
4.1 days					0

Table S5. The θ angles among the mass spectra under different EPA at one vehicle condition (2000rpm_32Nm).

2000rpm_32Nm θ angles	POA	0.6 day	1.7 days	2.9 days	4.1 days
POA	0	30	35	41	62
0.6 day		0	7	13	38
1.7 days			0	10	37
2.9 days				0	28
4.1 days					0

Fig.S5. The mass spectra of aged COA oxidation under different OH exposure for different Chinese dishes.

80 Table S6. The θ angles among the mass spectra under different EPA for shallow frying.

Shallow frying	POA	0.3 day	0.7 day	1.1 days	2.1 days
POA	0	7	12	15	21
0.3 day		0	6	9	14
0.7 day			0	3	9
1.1 days				0	6
2.1 days					0

82 Table S7. The θ angles among the mass spectra under different EPA for kung pao chicken.

	8	1		01	
Kung Pao chicken	POA	0.3 day	0.7 day	1.1 days	2.1 days
POA	0	7	13	19	23
0.3 day		0	8	13	17
0.7 day			0	7	10
1.1 days				0	7
2.1 days					0

Fig.S6. Van Krevelen diagram of POA, aged COA and aged HOA from vehicle and cooking.

$\frac{\text{cooking}_SOA}{\theta \text{ angles}}$	deep-frying chicken	stir-frying cabbage	shallow-frying tofu	Kung Pao chicken
deep-frying chicken	0	21	18	19
stir-frying cabbage		0	8	13
shallow-frying tofu			0	13
Kung Pao chicken				0

87 Table S8. The θ angles among the mass spectra of cooking PMF_SOA for different dishes.

89 Table S9. The θ angles among the mass spectra of cooking PMF_POA for different dishes.

$\begin{array}{c} \text{cooking}_\text{POA} \\ \theta \text{ angles} \end{array}$	deep-frying chicken	stir-frying cabbage	shallow-frying tofu	Kung Pao chicken
deep-frying chicken	0	31	28	20
stir-frying cabbage		0	13	17
shallow-frying tofu			0	10
Kung Pao chicken				0

91 Table S10. The θ angles among the mass spectra of vehicle PMF_LO-SOA at different conditions.

Vehicle_LO-SOA θ angles	1500rpm_16Nm	1750rpm_16Nm	2000rpm_16Nm	2000rpm_32Nm
1500rpm_16Nm	0	3	3	6
1750 rpm_16 Nm		0	3	7
2000 rpm_16 Nm			0	6
2000 rpm_32 Nm				0
2000 rpm_42 Nm				

⁸⁸

94 Fig.S7. The θ angles between vehicle LO-SOA and MO-SOA under five running conditions.

θ angles	HOA_ambient	COA_ambient	LO-OOA_ambient	MO-OOA_ambient	Cooking_POA	Cooking_SOA	Vehicle_LO-SOA	Vehicle_MO-SOA
HOA_ambient	0	21	36	56	21	27	30	61
COA_ambient	21	0	31	49	18	22	34	55
LO-OOA_ambient	36	31	0	37	18	28	32	52
MO-OOA_ambient	56	49	37	0	18	28	33	18
Cooking_POA	21	18	18	18	0	31	39	64
Cooking_SOA	27	22	28	28	31	0	19	46
Vehicle_LO-SOA	30	34	32	33	39	19	0	46
Vehicle_MO-SOA	61	55	52	18	64	46	46	0

97 Table S11. The θ angles between ambient COA, HOA, LO-OOA and MO-OOA factors and the cooking PMF POA, SOA, and the vehicle PMF LO-SOA, MO-SOA.

Fig.S8. The comparison of the mass spectra, the diurnal variation, and fraction between ME-2 and PMF resolved factorsduring the summertime in Shanghai.