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Abstract.

Statistical properties are investigated for the stochastic model of eddy hopping, which is a novel cloud microphysical model

that accounts for the effect of the supersaturation fluctuation at unresolved scales on the growth of cloud droplets and on

spectral broadening. Two versions of the model, the original version by Grabowski and Abade (2017) and the second version

by Abade et al. (2018), are considered and validated against the reference data taken from direct numerical simulations and5

large-eddy simulations (LESs). It is shown that the original version fails to reproduce a proper scaling for a certain range

of parameters, resulting in a deviation of the model prediction from the reference data, while the second version successfully

reproduces the proper scaling. In addition, a possible simplification of the model is discussed, which reduces the number

of model variables while keeping the statistical properties almost unchanged in the typical parameter range for the model

implementation in the LES Lagrangian cloud model.10

1 Introduction

The purpose of the present paper is to investigate the statistical properties of the stochastic model of eddy hopping proposed

by Grabowski and Abade (2017). This stochastic model, referred to hereinafter as the eddy hopping model, was developed in

order to account for the effect of the supersaturation fluctuation at unresolved (subgrid) scales on the growth of cloud droplets

by the condensation process. In a turbulent cloud, cloud droplets arriving at a given location follow different trajectories and15

thus experience different growth histories, which leads to significant spectral broadening. This mechanism, referred to as the

stochastic condensation theory, has been investigated since the early 1960s by a number of researchers [mostly Russian, see

Sedunov (1974); Clark and Hall (1979); Korolev and Mazin (2003)], but the importance of this mechanism was later reinforced

by Cooper (1989); Lasher-Trapp et al. (2005). For this mechanism, Grabowski and Wang (2013) emphasized the importance

of large-scale eddies (turbulent eddies with scales not much smaller than the cloud itself) and proposed the concept of large-20

eddy hopping. Grabowski and Abade (2017) formulated this concept and developed the eddy-hopping model. Abade et al.

(2018) extended the model by introducing a term accounting for the relaxation of supersaturation fluctuations due to turbulent

mixing. For clarity, we hereinafter refer to the model by Grabowski and Abade (2017) as the original version, and the model

by Abade et al. (2018) as the second version. For the following study using the eddy-hopping model, readers are referred to

Thomas et al. (2020).25
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It should be noted that the turbulent entrainment-mixing is another important mechanism for the supersaturation fluctuation

generation other than the stochastic condensation and that the effects of the turbulent entrainment-mixing are not included in the

eddy-hopping model considered in the present study. Abade et al. (2018) investigated the effects of the turbulent entrainment-

mixing and entrained CCN activation by using the entraining parcel model.

In the present paper, we take a rather theoretical approach to obtain various statistical properties of the eddy-hopping model,30

such as the variance, covariance, and auto-correlation function of the supersaturation fluctuation. These statistical properties

are used to validate the model against the reference data taken from direct numerical simulations (DNSs) and large-eddy

simulations (LESs). We show that the original version of the eddy-hopping model fails to reproduce a proper scaling for a

certain range of parameters, resulting in the deviation of the model prediction from the reference data, while the second version

successfully reproduces the proper scaling. We show that how the relaxation term introduced by Abade et al. (2018) leads to35

this improvement. We also discuss the possibility of simplification of the model, which reduces the number of model variables

while keeping the statistical properties almost unchanged in the typical parameter range for the model implementation in the

LES Lagrangian cloud model.

The remainder of the present paper is organized as follows. Section 2 describes the governing equations of the original

version. Section 3 presents a theoretical analysis and numerical experiments and demonstrates the improper scaling in the40

model prediction by the original version. Section 4 describes the second version. Finally, Section 5 discusses the possibility of

simplification of the model.

2 Governing equations

The original version of the eddy-hopping model proposed by Grabowski and Abade (2017) consists of the following two

evolution equations. First, the fluctuation of the vertical velocity of turbulent flow at the droplet position, w′(t), is modeled by45

the Ornstein-Uhlenbeck process:

w′(t+ δt) = w′(t)e−δt/τ +

√
1− e−

2δt
τ σw′ψ, (1)

where δt is the time increment, ψ is a Gaussian random number with zero mean and unit variance drawn every time step, σw′

is the standard deviation of w′, and τ is the integral time, or the large-eddy turnover time of the turbulent flow. Here, σw′ and

τ are used as the model parameters. Second, the supersaturation fluctuation at the droplet position, S′(t), is governed by50

dS′

dt
= a1w

′ − S′

τrelax
. (2)

Here, the first term on the right-hand side represents the effect of adiabatic cooling/warming due to air parcel ascent/descent

caused by the vertical velocity w′(t). The parameter a1 has the unit of a scalar gradient. The second term on the right-hand side

represents the effect of condensation/evaporation of droplets. The time scale τrelax is referred to as the phase relaxation time

and is inversely proportional to the average of the number density and radius of the droplets (Politovich and Cooper, 1988;55

Korolev and Mazin, 2003; Kostinski, 2009; Devenish et al., 2012).
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Equation (1) can also be written as the following derivative form (Pope, 2000):

dw′

dt
=−1

τ
w′(t)+Fw′(t). (3)

Here, the term Fw′(t) is statistically independent of S′ and obeys the Gaussian random process that has zero mean and two-time

covariance defined by60

⟨Fw′(t)Fw′(s)⟩=
(
2σ2

w′

τ

)
δ(t− s), (4)

where the angle brackets indicate an ensemble average and δ() is the Dirac delta function. In the following theoretical analysis,

Eqs. (3) and (2) are used as the governing equations of the original version.

3 Statistical properties of the original version

We now obtain the analytical expression for the standard deviation of the supersaturation fluctuation, σS′ , in a statistically65

steady state. Starting from Eqs. (3) and (2), the result is provided in Eq. (13).

First, multiplying Eq. (3) by S′ and taking an ensemble average, we obtain⟨
S′ dw

′

dt

⟩
=−1

τ
⟨w′S′⟩ (5)

because of statistical independence (⟨S′Fw′⟩= 0). Second, multiplying Eq. (2) by w′ and taking an ensemble average, we

obtain70 ⟨
w′ dS

′

dt

⟩
= a1

⟨
w′2⟩− 1

τrelax
⟨w′S′⟩. (6)

Summing Eqs. (5) and (6), we obtain

d

dt
⟨w′S′⟩= a1⟨w′2⟩− 1

τrelax
⟨w′S′⟩− 1

τ
⟨w′S′⟩. (7)

Next, we consider a statistically steady state. Since an ensemble-averaged variable does not change in time (d⟨◦⟩/dt= 0) and

⟨w′2⟩= σ2
w′ in the statistically steady state, we obtain the flux of the supersaturation in the vertical direction as follows:75

⟨w′S′⟩ = a1

(
1

τ
+

1

τrelax

)−1

σ2
w′

= a1(1+Da)−1τσ2
w′ , (8)

where Da is the Damköhler number (Shaw, 2003) defined as

Da=
τ

τrelax
. (9)

Next, multiplying Eq. (2) by S′ and taking an ensemble average, we obtain80

1

2

d

dt
⟨S′2⟩= a1⟨w′S′⟩− 1

τrelax
⟨S′2⟩. (10)
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In the statistically steady state, we have

σ2
S′ = ⟨S′2⟩= a1τrelax⟨w′S′⟩. (11)

Combining Eqs. (8) and (11), we obtain

σ2
S′ = a1τrelax

[
a1(1+Da)−1τσ2

w′

]
85

= a21(1+Da)−1τrelaxτσ
2
w′ , (12)

or equivalently,

σS′ = (1+Da)−1/2Da−1/2 a1τσw′ . (13)

Here, σS′ in Eq. (13) has two important asymptotic forms, as shown below:

1. Large scale limit90

For τ →∞ (or equivalently, Da→∞, L→∞, where L= σw′τ is the integral scale), σS′ in Eq. (13) is approximated

as

σS′ ≈ a1Da
−1/2τ

1/2
relaxτ

1/2σw′

= a1τrelaxσw′ . (14)

For the case of a constant dissipation rate of turbulent kinetic energy ε, σw′ ∼ L1/3 (see Appendix B), and we have the95

following scaling:

σS′ ∼ L1/3. (15)

2. Small scale limit

For τ → 0 (or equivalently, Da→ 0, L→ 0), σS′ in Eq. (13) is approximated as

σS′ ≈ a1τ
1/2
relaxτ

1/2σw′ . (16)100

For the case of a constant dissipation rate of turbulent kinetic energy ε, σw′ ∼ L1/3 and τ ∼ L2/3 (see Appendix B), and

we have the following scaling:

σS′ ∼ L2/3. (17)

The above asymptotic forms of σS′ in the two limits can be validated through comparison with the result of the scaling argument

by Lanotte et al. (2009). From their argument, we should have σS′ ∼ a1τrelaxσw′ for the large scale limit, which is consistent105

with Eq. (14). On the other hand, we should have σS′ ∼ a1τσw′ for the small scale limit, which is inconsistent with Eq. (16).

Therefore, the original version given by Eqs. (3) and (2) does not reproduce the proper scaling for the small scale limit.
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Figure 1. Standard deviation of the supersaturation fluctuation σS′ in the statistically steady state obtained from the analytical expression

given by Eq. (13) (orange curve) and the results of our numerical integration of the original version of the eddy-hopping model (blue squares).

The horizontal axis is the integral length L. The black dots indicate the reference data taken from direct numerical simulations and large-eddy

simulations by Thomas et al. (2020). The red triangles indicate the results of the numerical integration of the original version reported by

Thomas et al. (2020). The range of L and σS′ for the panel is the same as in Figure 10 in Thomas et al. (2020). The three short black lines

indicate slopes of 1, 2/3, and 1/3.

Figure 1 compares the scale dependence of σS′ for the analytical expression given by Eq. (13) (orange curve) with the

results of the numerical integration of the original version given by Eqs. (1) and (2) (blue squares). Here, numerical integration

is conducted in the same manner as that by Thomas et al. (2020) (Section 5 of their study), except that the integration time110

is increased from 6τ to 10τ (see Appendix A for details). After the integration time of 10τ , all of the experimental results

achieved a statistically steady state and agreed with the theoretical curve (compare the orange curve and the blue squares). As

expected based on the analysis, the theoretical curve shows the scaling σS′ ∼ L1/3 for large scales (approximately L > 101m)

and the improper scaling σS′ ∼ L2/3 for small scales (approximately L < 10−1m). These results are contrary to the results of

DNSs and LESs (scaled-up DNSs) conducted by Thomas et al. (2020) (black dots in Figure 1), which show the proper scalings115

both for large and small scales (σS′ ∼ L1/3 and ∼ L1, respectively).

Note that Figure 1 also shows the results of the numerical integration of the original version reported by Thomas et al. (2020)

(red triangles), and their results disagree with the results of the present study. A possible reason for this discrepancy might be

that their results did not achieve a statistically steady state. For details, see Appendix C.
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The original version of the eddy-hopping model given by Eqs. (1) and (2) shows the improper scaling for small scales because120

of the assumption made in the formulation of the model. Originally, Eq. (2) [corresponding to Eq. (8) in Grabowski and Abade

(2017)] was formulated under the assumption of large scales (or Da≫ 1), since this assumption usually holds for typical

situations in atmospheric clouds. Thus, it is reasonable that the original version does not reproduce the proper scaling for small

scales.

4 Statistical properties of the second version125

We next consider the second version of the eddy-hopping model by Abade et al. (2018), which is written as follows:

w′(t+ δt) = w′(t)e−δt/(c1τ) +

√
1− e

− 2δt
(c1τ)σw′ψ, (18)

dS′

dt
= a1w

′ − S′

(c2τrelax)
− S′

(c1τ)
. (19)

Note that, for subsequent use, we write the governing equations in a slightly generalized form by introducing two parameters

c1 and c2. The second version by Abade et al. (2018) has c1 = c2 = 1.130

The important change introduced by Abade et al. (2018) into the original version is the term proportional to −S′/τ in Eq.

(19). Physically, this term represents the damping effect on S′ due to turbulent mixing (eddy diffusivity). This type of term

is commonly included in stochastic models used in cloud turbulence research (Sardina et al., 2015, 2018; Chandrakar et al.,

2016; Siewert et al., 2017; Saito et al., 2019a). The time scale of the damping effect due to turbulent mixing is characterized

by the integral time τ , whereas that due to condensation/evaporation of cloud droplets is characterized by the phase relaxation135

time τrelax. The relative importance of these two effects is characterized by the Damköhler number (Da= τ/τrelax), where

the damping effect due to turbulent mixing is dominant for Da≪ 1 (corresponding to small scales). Below we show that the

term −S′/τ plays an essential role in reproducing the proper scaling.

Note that it would be possible to further extend the second version by additionally introducing the Wiener process term

representing small-scale fluctuations/mixing into Eq. (19) for the supersaturation fluctuation. For the Langevin model including140

such terms, readers are referred to Paoli and Shariff (2009) and Sardina et al. (2015). In the present study, however, we focus

on statistical properties of the second version with Eqs. (18) and (19). This extension is left for future work.

Applying the analytical procedure described in Section 3 to the second version given by Eqs. (18) and (19), we first obtain

⟨w′S′⟩ = a1

(
2

c1τ
+

1

c2τrelax

)−1

σ2
w′

= c1a1[2+ (c1/c2)Da]
−1τσ2

w′ , (20)145

instead of Eq. (8). Next, instead of Eq. (11), we have

σ2
S′ = ⟨S′2⟩ = a1

(
1

c1τ
+

1

c2τrelax

)−1

⟨w′S′⟩

= c1a1[1+ (c1/c2)Da]
−1τ⟨w′S′⟩. (21)
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Finally, the analytical expression corresponding to Eq. (13) is

σS′ = [1+ (c1/c2)Da]
−1/2[2+ (c1/c2)Da]

−1/2c1a1τσw′ . (22)150

Asymptotic forms of σS′ in Eq. (22) for the large and small scale limits are, respectively, given as follows:

1. Large scale limit

For τ →∞ (or equivalently, Da→∞, L→∞), σS′ in Eq. (22) is approximated as

σS′ ≈ c2a1Da
−1τσw′

= c2a1τrelaxσw′ . (23)155

For the case of a constant dissipation rate of turbulent kinetic energy ε, we have

σS′ ∼ L1/3. (24)

2. Small scale limit

For τ → 0 (or equivalently, Da→ 0, L→ 0), σS′ in Eq. (22) is approximated as

σS′ ≈ 2−1/2c1a1τσw′ , (25)160

which indicates that τ1/2relax in Eq. (16) has been replaced by τ1/2 by introducing the term −S′/τ in Eq. (19). For the case

of a constant dissipation rate of turbulent kinetic energy ε, we have

σS′ ∼ L. (26)

Therefore, the second version successfully reproduces asymptotic forms σS′ ∼ a1τrelaxσw′ and ∼ a1τσw′ for the large and

small scale limits, respectively, which are both consistent with the result of the scaling argument by Lanotte et al. (2009).165

Figure 2 (orange curve) shows the theoretical curve given by Eq. (22) for the second version (c1 = c2 = 1). The second

version reproduces the proper scalings both for large and small scales (σS′ ∼ L1/3 and ∼ L1, respectively), and demonstrates

better agreement with the reference data (black dots) than the original version for L < 100 m. Figure 2 (green diamonds) also

shows the results of the numerical integration of the second version, which agree with the theoretical curve (orange curve), as

expected. Here, the numerical integration was conducted in the same manner as in the previous section (see Appendix A for170

details).

Although improved, the second version still slightly over- and underestimates the supersaturation fluctuations for L < 3×
10−1m and L > 2×100m, respectively, as shown in Figure 2 (compare the orange curve with black dots). This deviation from

the reference data can be further reduced by adjusting two parameters c1 and c2 in Eqs. (18) and (19). The analytical expression

(22) and its asymptotic forms (23) and (25) show how c1 and c2 work. These types of parameters are not new. For example, a175

parameter corresponding to c1 is commonly used in the Langevin stochastic equation in turbulence research (Sawford, 1991;
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Figure 2. Standard deviation of the supersaturation fluctuation σS′ in the statistically steady state obtained from the analytical expression

given by Eq. (22) for the second version (c1 = c2 = 1, orange curve) and the results of our numerical integration using the second version

given by Eqs. (18) and (19) (c1 = c2 = 1, green diamonds). The dashed line indicates the analytical expression given by Eq. (13) for the

original version. The two short black lines indicate slopes of 1 and 1/3. The black dots and the axes of the panel are the same as in Figure 1.

Marcq and Naert, 1998). Formally, the inverse of c1 is referred to as the drift coefficient, and the coefficients for the velocity

and scalar equations should be distinguished. However, we treat these coefficients as the same parameter in Eqs. (18) and (19)

for simplicity. On the other hand, the importance of a parameter corresponding to c2 has been demonstrated in a recent study

on turbulence modulation by particles (Saito et al., 2019b)180

Here, we do not consider any physical meaning for c1 and c2 and use them just as tuning parameters. Two parameters c1

and c2 are determined by comparing the theoretical curve given by Eq. (22) with the reference data taken from DNSs and LESs

in Thomas et al. (2020). The best fit is given by c1 = 0.746 and c2 = 1.28. Figure 3 (solid curve) shows the theoretical curve

given by Eq. (22) with these values of c1 and c2, which agrees almost perfectly with the reference data (black dots). Although

the improvement from the second version with c1 = c2 = 1 is slight, this result shows that the eddy-hopping model can be185

easily tuned to reproduce the reference data almost perfectly.

5 Possibility of simplification of the model

Finally, we discuss the possibility of simplification of the eddy-hopping model. Here, our discussion is based on the second

version given by Eqs. (18) and (19), but the same argument also applies to the original version given by Eqs. (1) and (2).
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Figure 3. Standard deviation of the supersaturation fluctuation σS′ in the statistically steady state from the analytical expression (22) for the

second version. The dashed curve is for c1 = c2 = 1, and the solid curve is for c1 = 0.746 and c2 = 1.28. The black dots and the axes of the

panel are the same as in Figure 1.

The eddy-hopping model consists of two evolution equations for the supersaturation and vertical velocity fluctuations, S′190

and w′ respectively, and these two variables fluctuate randomly according to the Ornstein-Uhlenbeck process. However, if we

have S′ that fluctuates with a proper amplitude and auto-correlation function, then we do not need the evolution equation for

w′, because only S′ is used in the growth equation of the droplet size. As described in Section 4, we obtained an analytical

expression for σS′ , i.e., the standard deviation of the supersaturation fluctuation in the statistically steady state given by Eq.

(22). On the other hand, the auto-correlation function for S′ in a statistically steady state can also be obtained analytically. The195

derivation is described in Appendix D. The result is given in Eq. (D14) and is as follows:

A(t) =
⟨S′(t+ t0)S

′(t0)⟩
⟨S′(t0)S′(t0)⟩

(27)

=

(
τ1

τ1 − τ2

)
e−t/τ1 −

(
τ2

τ1 − τ2

)
e−t/τ2 , (28)

where τ1 and τ2 are, respectively, defined as

τ1 = c1τ, and τ2 =

(
1

c1τ
+

1

c2τrelax

)−1

= c1τ

(
1+

c1
c2
Da

)−1

. (29)200
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We can also obtain the auto-correlation time for S′ by time integration of A(t) [see Eq. (D16) in Appendix D], which is given

as

τ0 = τ1 + τ2, (30)

The auto-correlation functionA(t) in Eq. (28) and the auto-correlation time τ0 in Eq. (30), with τ1 and τ2 defined by (29), have

important asymptotic forms in two limits. First, for the large scale limit (Da→∞), the asymptotic forms of A(t) and τ0 are205

given by

lim
Da→∞

A(t) = e−t/(c1τ) and lim
Da→∞

τ0 = c1τ, (31)

respectively. Second, for the small scale limit (Da→ 0), the asymptotic forms of A(t) and τ0 are given by

lim
Da→0

A(t) =

[
1+

t

(c1τ)

]
e−t/(c1τ) and lim

Da→0
τ0 = 2c1τ, (32)

respectively.210

Based on analytical expressions for the fluctuation amplitude and the auto-correlation function for S′ [Eqs. (22) and (30),

respectively], a simplified version of the eddy-hopping model is defined as follows:

S′(t+ δt) = S′(t)e−δt/τ0 +

√
1− e−

2δt
τ0 σS′ψ, (33)

where σS′ and τ0 are given by Eqs. (22) and (30), respectively. Note that the simplified model given by Eq. (33) is a single-

equation model, as compared to the two-equation model given by Eqs. (18) and (19) before the simplification. The auto-215

correlation function for S′ in the simplified model given by Eq. (33) is as follows:

B(t) =
⟨S′(t+ t0)S

′(t0)⟩
⟨S′(t0)S′(t0)⟩

(34)

= e−t/τ0 , (35)

which has the following two asymptotic forms. First, for the large scale limit (Da→∞),

lim
Da→∞

B(t) = e−t/(c1τ), (36)220

which agrees with the corresponding asymptotic form given by Eq. (31) for the second version. Second, for the small scale

limit (Da→ 0),

lim
Da→0

B(t) = e−t/(2c1τ), (37)

which disagrees with the corresponding asymptotic form given by Eq. (32) for the second version.

Figures 4(a) through 4(e) compare the auto-correlation function for the simplified model [B(t) in Eq. (35): blue dashed225

curve] and that for the second version [A(t) in Eq. (28): red solid curve] for five cases ranging from Da≪ 1 to Da≫ 1. Here,

c1 = c2 = 1. Note that the time t is normalized by the auto-correlation time τ0 for each case. Although B(t) and A(t) share

the same auto-correlation time, B(t) deviates from A(t) for cases with Da of order unity or smaller, as shown in Figures 4(a)

through 4(c). On the other hand, for Da≫ 1, B(t) agrees with A(t) very well, as shown in Figures 4(d) and 4(e).
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Figure 4. Auto-correlation functions in the statistically steady state for the simplified model [B(t) in Eq. (35): blue dashed curve] and

the second version [A(t) in Eq. (28): red solid curve]. Here, c1 = c2 = 1. The parameters for each panel are as follows: (a) L= 10−2m,

τ = 0.447 s, τ0 = 0.844 s, Da= 0.127, (b) L= 10−1m, τ = 2.08 s, τ0 = 3.38 s, Da= 0.591, (c) L= 100m, τ = 9.63 s, τ0 = 12.2 s,

Da= 2.74, (d) L= 101m, τ = 44.7 s, τ0 = 48.0 s, Da= 12.7, and (e) L= 102m, τ = 208 s, τ0 = 211 s, Da= 59.1. The phase relaxation

time is fixed to τrelax = 3.513 s. The horizontal axis is the time t normalized by the auto-correlation time τ0 for each case. The parameter τ

is determined from the integral length L based on the setting for the numerical experiment described in Appendices A and B.

The simplified model has the desirable convergence property. The auto-correlation function for the simplified model [B(t)230

in Eq. (35)] converges to that for the second version in the large-scale limit (Da→∞), as shown in Eq. (36). As confirmed

in Figures 4(d) and 4(e), the two auto-correlation functions are almost identical for an integral length L greater than 10 m

(or Da≥ 10). In the implementation of the eddy-hopping model to the LES Lagrangian cloud model, the integral length L is

supposed to roughly correspond to the grid size, which is often greater than several meters to several tens of meters. Therefore,

the assumption of large scales (or Da≫ 1) usually holds, in which case the statistical properties of the simplified model are235

expected to be almost unchanged after the simplification.

Figure 5 compares the time evolutions of the supersaturation fluctuations obtained from the numerical integration of the

original version (dashed red curve), the second version (dotted blue curve), and the simplified model (solid green curve). Here,

the numerical integration was conducted in the same manner as described in Appendix A. All results were obtained by using the

same random number series. The results are shown in the time range 10τ ≤ t≤ 20τ , where all cases are already in statistically240

steady state.

For small scales, the simplified model produces qualitatively different trajectories of S′ from the second version, as shown in

Figure 5a (L= 10−2m, compare the solid green and dotted blue curves), even though these two models share the same fluctu-

ation amplitude σS′ and the auto-correlation time τ0 in the statistically steady state. The difference is smaller for intermediate

scales (Figure 5b, L= 100m). For sufficiently large scales (Figure 5c, L= 102m), the simplified model and the second version245

produce almost identical results.
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Figure 5. Time evolutions of the supersaturation fluctuations obtained from the numerical integration of the original version [Eqs. (1) and

(2), dashed red curve], the second version [Eqs. (18) and (19), dotted blue curve], and the simplified model [Eq. (33), solid green curve]. The

parameters for each panel are as follows: (a) L= 10−2m, τ = 0.447 s, Da= 0.127, (b) L= 100m, τ = 9.63 s, Da= 2.74, (c) L= 102m,

τ = 208 s, Da= 59.1. The phase relaxation time is fixed to τrelax = 3.513 s. Results are shown for the time range 0≤ (t/τ −10)≤ 10 (or

equivalently, 10τ ≤ t≤ 20τ ), where all cases are already in statistically steady state. The numerical integration was conducted in the same

manner as described in Appendix A. All results were obtained by using the same random number series.

6 Summary and conclusions

The purpose of the present paper was to obtain various statistical properties of the eddy-hopping model, a novel cloud micro-

physical model, which accounts for the effect of the supersaturation fluctuation at unresolved scales on the growth of cloud

droplets and on spectral broadening. Two versions of the model are considered: the original version by Grabowski and Abade250

(2017) and the second version by Abade et al. (2018). Based on derived statistical properties, we first showed in Section 3

that the original version fails to reproduce a proper scaling for smaller Damköhler numbers (corresponding to small scales),

resulting in a deviation of the model prediction from the reference data taken from DNSs and LESs, as shown in Figure 1. In

Section 4, we showed that the second version successfully reproduces the proper scaling and agrees better with the reference

data than the original version for small scales (L < 100 m in Figure 2). We also showed that, by adjusting two parameters c1255

and c2, the second version can almost perfectly reproduce the reference data. In Section 5, we discussed the possibility of

simplification of the model. The simplified model consists of a single stochastic equation for the supersaturation fluctuation,

as in Eq. (33), with amplitude and time parameters given by the corresponding analytical expressions for the model before the

simplification. We showed that, for larger Damköhler numbers (corresponding to large scales), the auto-correlation function of

the supersaturation fluctuation for the simplified model converges to that for the model before the simplification. This conver-260

gence property is desirable because the assumption of large scales usually holds in the typical parameter range for the model

implementation in the LES Lagrangian cloud model.
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Appendix A: Numerical integration of the eddy-hopping model

The results of the numerical integration of the original version [Eqs. (1) and (2)] and the second version [Eqs. (18) and (19)] are

shown in Figures 1 (blue squares) and 2 (green diamonds), respectively. For these experiments, we used the same setting as that265

in Section 5 in Thomas et al. (2020), except that the integration time was increased from 6τ to 10τ . We set a1 = 4.753×10−4

m−1, ε= 10 cm2 s−3,and τrelax = 3.513 s, and the integral time τ as

τ =
1

(2π)1/3

(
L

σw′

)
. (A1)

As described in Appendix B, for the case of a constant dissipation rate of turbulent kinetic energy ε, σw′ is given as a function

of L. We time integrated the governing equations of the model using 12 values of L: L=0.0128, 0.0256, 0.064, 0.128, 0.256,270

0.512, 1.024, 2.56, 6.4, 12.8, 25.6, and 64.0 m. The time step δt is set as 1/1,000 of τ , and the integration time is 10τ . The

numerical scheme is the forward Euler method. The initial condition is such that w′(0) = σw′ψ and S′(0) = 0. Each result in

Figures 1 (blue squares) and 2 (green diamonds) is obtained by averaging the results for 1,000 ensembles with different seeds

of random numbers.

Appendix B: Scalings for the case of a constant dissipation rate of turbulent kinetic energy275

We consider classical homogeneous isotropic turbulence, in which energy is mainly injected into the system at large scales,

cascaded to smaller scales by nonlinear interaction, and finally dissipated by the molecular viscosity in the smallest scales. In

a statistically steady state, the dissipation rate of turbulent kinetic energy is defined as ε. If ε is fixed and the integral scale L is

changed, then the kinetic energy E scales as follows (Thomas et al., 2020):

E ∼ (Lε)2/3. (B1)280

The black dots in Figure B1 show the relation between L and E in the reference data taken from DNSs and LESs by

Thomas et al. (2020) (Table 2 of their study). In their simulation, the dissipation rate was fixed to ε= 10 cm2s−3. The or-

ange curve in Figure B1 indicates the function E = αε2/3L2/3, where α is the fitting parameter. The best fit is given by

α= 0.475. The root-mean-square turbulent velocity is calculated as a function of L by urms = σw′ =
√
(2E/3), and σw′ is

used as the parameter in the eddy-hopping model. Note that Thomas et al. (2020) used the same type of large-scale forcing as285

that used by Kumar et al. (2012), where the integral length L is set to be equal to the box length Lbox.

Appendix C: Achievement of a statistically steady state

We confirm that all of the results of the numerical integration of the eddy-hopping model in the present study achieved sta-

tistically steady states. For this purpose, we first derive the analytical expression for the time evolutions of the variance and

covariance of the variables in the model and then compare these analytical expressions with the results of the numerical inte-290

gration.
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Figure B1. Relationship between the integral scale L and the turbulent kinetic energy E. The black dots are taken from the reference data in

Thomas et al. (2020). The orange curve indicates the fitting function E = αε2/3L2/3 with α= 0.475.

The governing equations given by Eqs. (3) and (2) can be rewritten in generalized forms as

dw′

dt
= − 1

τ1
w′(t)+Fw′(t), (C1)

dS′

dt
= a1w

′(t)− S′(t)

τ2
, (C2)

where τ1 and τ2 are the relaxation times for w′ and S′, respectively, and the forcing term Fw′(t) satisfies Eq. (4). Evolution295

equations for the variance and covariance of the variables are derived as follows:

dVw′(t)

dt
= − 2

τ1
Vw′(t)+

(
2σ2

w′

τ1

)
, (C3)

dC(t)

dt
= a1Vw′(t)−

(
1

τ1
+

1

τ2

)
C(t), (C4)

dVS′(t)

dt
= − 2

τ2
VS′(t)+ 2a1C(t), (C5)

where Vw′(t), C(t), and VS′(t) are, respectively, defined as300

Vw′(t) = ⟨w′(t)w′(t)⟩ , (C6)

C(t) = ⟨w′(t)S′(t)⟩ , (C7)

VS′(t) = ⟨S′(t)S′(t)⟩ . (C8)
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For the numerical integration of the eddy-hopping model by Thomas et al. (2020), τ1 = τ and τ2 = τrelax. Since the initial con-

ditions for w′(t) and S′(t) are set to w′(0) = σw′ψ and S′(0) = 0 in Thomas et al. (2020), the corresponding initial conditions305

for the variance and covariance are given by

Vw′(0) = σ2
w′ , (C9)

C(0) = 0, (C10)

VS′(0) = 0. (C11)

Solving Eqs. (C3) through (C5) with the initial conditions given by Eqs. (C9) through (C11), we obtain310

Vw′(t) = σ2
w′ , (C12)

C(t) = a1σ
2
w′τ3

(
1− e−t/τ3

)
, (C13)

VS′(t) = a21σ
2
w′τ3τ2

(
1− e−2t/τ2

)
+2a21σ

2
w′τ3τ4

(
e−t/τ3 − e−2t/τ2

)
, (C14)

where τ3 and τ4 are, respectively, defined as

τ3 =
τ1τ2
τ1 + τ2

, and τ4 =
τ1τ2
τ2 − τ1

. (C15)315
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Figure C1. Standard deviation of the supersaturation fluctuation σS′ at times t= 0.6τ [panel (a)] and t= 6τ [panel (b)] obtained from the

analytical expression given by Eq. (C14) (cyan dots) and the results of the numerical integration of the original version given by Eqs. (1)

and (2) (black crosses). The orange curve, red triangles, and axes of the panel are the same as in Figure 1. The two short black lines indicate

slopes of 2/3 and 1/3. The setting for the numerical integration is the same as that used in Section 3, except that the integration times are

0.6τ and 6τ in (a) and (b), respectively.

Figure C1 compares the analytical expression given by Eq. (C14) (cyan dots) with the results of the numerical integration

of the original version given by Eqs. (1) and (2) (black crosses). The setting for the numerical experiment is the same as that

used in Figure 1, except that the integration time is 0.6τ in Figure C1(a) and 6τ in Figure C1(b). The results of the numerical

integration (black crosses) agree well with the analytical expression (cyan dots), and both approach the theoretical curve for

the statistically steady state (orange curve in each panel) as the integration time increases. Figure C1(a) also indicates that320

the results of the numerical integration of the eddy-hopping model by Thomas et al. (2020) (red triangles) are fairly close to
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our results at 0.6τ . Thus, it might be possible that the integration time of their numerical experiment was not long enough to

achieve a statistically steady state.

Appendix D: Derivation of auto-correlation function

We derive the analytical expression for the auto-correlation function of the supersaturation fluctuation S′(t) in the eddy-325

hopping model. As in Appendix C, we start from the generalized form of the eddy-hopping model as follows:

dw′

dt
= − 1

τ1
w′(t)+Fw′(t), (D1)

dS′

dt
= a1w

′(t)− S′(t)

τ2
, (D2)

where τ1 and τ2 are the relaxation times for w′ and S′, respectively, and the forcing term Fw′(t) satisfies Eq. (4). We consider

that the system is in a statistically steady state.330

First, multiplying Eq. (D2) by et/τ2 and applying the product rule of differentiation, we obtain

d

dt

(
S′(t)et/τ2

)
= a1w

′(t)et/τ2 . (D3)

Integrating Eq. (D3) from t= 0 to t, we obtain

S′(t) = S′(0)e−t/τ2 +

t∫
0

a1w
′(ξ)e(ξ−t)/τ2dξ. (D4)

(Note that we chose the integration range [0, t] for simplicity of notation. Since we consider a statistically steady state, the335

following discussion is unchanged if the integration range is [t0, t0 + t].) Applying a similar procedure as above to Eq. (D1)

with the integration range t : 0→ ξ, we obtain

w′(ξ) = w′(0)e−ξ/τ1 +

ξ∫
0

Fw′(ζ)e(ζ−ξ)/τ1dζ. (D5)

Substituting Eq. (D5) into Eq. (D4) and calculating some of the integrations, we obtain

S′(t) = S′(0)e−t/τ2 +

t∫
0

a1

w′(0)e−ξ/τ1 +

ξ∫
0

Fw′(ζ)e(ζ−ξ)/τ1dζ

e(ξ−t)/τ2dξ (D6)340

= S′(0)e−t/τ2 + a1w
′(0)e−t/τ2

t∫
0

e(τ
−1
2 −τ−1

1 )ξdξ+ a1e
−t/τ2

t∫
0

ξ∫
0

Fw′(ζ)eζ/τ1e(τ
−1
2 −τ−1

1 )ξdζdξ (D7)

= S′(0)e−t/τ2 + a1w
′(0)

(
τ−1
2 − τ−1

1

)−1
(
e−t/τ1 − e−t/τ2

)
+ a1e

−t/τ2

t∫
0

ξ∫
0

Fw′(ζ)eζ/τ1e(τ
−1
2 −τ−1

1 )ξdζdξ. (D8)

Multiplying Eq. (D8) by S′(0) and taking an ensemble average, we obtain

⟨S′(t)S′(0)⟩= ⟨S′(0)S′(0)⟩e−t/τ2 + a1⟨w′(0)S′(0)⟩
(
τ−1
2 − τ−1

1

)−1
(
e−t/τ1 − e−t/τ2

)
, (D9)
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because of the statistical independence (⟨Fw′(ζ)S′(0)⟩= 0). Next, as in the derivation of Eq. (11), we multiply Eq. (D2) by S′345

and consider the statistically steady state. We obtain

⟨S′(0)S′(0)⟩= a1τ2⟨w′(0)S′(0)⟩. (D10)

Substituting Eq. (D10) into Eq. (D9), we have

⟨S′(t)S′(0)⟩= ⟨S′(0)S′(0)⟩e−t/τ2 + ⟨S′(0)S′(0)⟩τ−1
2

(
τ−1
2 − τ−1

1

)−1
(
e−t/τ1 − e−t/τ2

)
. (D11)

Therefore, the auto-correlation function of the supersaturation fluctuation S′(t) for the eddy-hopping model given by Eqs. (D1)350

and (D2) in the statistically steady state is written as follows:

A(t) =
⟨S′(t)S′(0)⟩
⟨S′(0)S′(0)⟩

(D12)

= e−t/τ2 +
τ1

τ1 − τ2

(
e−t/τ1 − e−t/τ2

)
(D13)

=

(
τ1

τ1 − τ2

)
e−t/τ1 −

(
τ2

τ1 − τ2

)
e−t/τ2 (D14)

The auto-correlation time τ0 is obtained by time-integrating A(t) as355

τ0 =

∞∫
0

A(t)dt=
τ21 − τ22
τ1 − τ2

(D15)

= τ1 + τ2. (D16)

For the original version of the eddy-hopping model given by Eqs. (1) and (2), we have

τ1 = τ, and τ2 = τrelax. (D17)

For the second version given by Eqs. (18) and (19), we have360

τ1 = c1τ, and τ2 =

(
1

c1τ
+

1

c2τrelax

)−1

. (D18)
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