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Abstract.

Meteorological forecast and climate models require good knowledge of the microphysical properties of hydrometeors and
the atmospheric snow and ice crystals in clouds. For instance, their size, cross-sectional area, shape, mass, and fall speed.
Especially shape is an important parameter in that it strongly affects the scattering properties of ice particles, and consequently
their response to remote sensing techniques. The fall speed and mass of ice particles are other important parameters both for
numerical forecast models and for the representation of snow and ice clouds in climate models. In the case of fall speed, it
is responsible for the rate of removal of ice from these models. The particle mass is a key quantity that connects the cloud
microphysical properties to radiative properties. Using an empirical relationship between the dimensionless Reynolds and Best
numbers, fall speed and mass can be derived from each other if particle size and cross-sectional area are also known.

In this study, ground-based in-situ measurements of snow particle microphysical properties are used to analyse mass as a
function of shape and the other properties particle size, cross-sectional area, and fall speed. The measurements for this study
were done in Kiruna, Sweden during snowfall seasons of 2014 to 2019 and using the ground-based in-situ instrument Dual Ice
Crystal Imager (D-ICI), which takes high-resolution side- and top-view images of natural hydrometeors. From these images,
particle size (maximum dimension), cross-sectional area, and fall speed of individual particles are determined. The particles are
shape classified according to the scheme presented in our previous study, in which particles sort into 15 different shape groups
depending on their shape and morphology. Particle masses of individual ice particles are estimated from measured particle size,
cross-sectional area, and fall speed. The selected dataset covers sizes from about 0.1 mm to 3.2 mm, fall speeds from 0.1 m g1
to 1.6 ms~?!, and masses from O4—pe+t0-2304s 0.2 ug to 450 ug. In our previous study, the fall speed relationships between
particle size and cross-sectional area were studied. In this study, the same dataset is used to determine the particle mass, and
consequently, the mass relationships between particle size, cross-sectional area, and fall speed are studied for these 15 shape

groups. Furthermore, the mass relationships presented in this study are compared with the previous studies.

Keywords: Natural snow crystals; hydrometeors; microphysical properties; fall speed; mass; ground-based in-situ measure-

ments.
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1 Introduction

Atmospheric models need accurate knowledge of atmospheric ice crystals and snow particles’ microphysical properties to
ensure realistic parameterizations (e.g., Stoelinga et al., 2003; Tao et al., 2003). These properties, including size, cross-sectional
area, shape, fall speed, and mass of ice particles, cannot be measured directly with remote sensing methods. Therefore, retrieval
methods of cloud and snow properties also rely on good assumptions of the microphysical properties.

Particle shape is an essential parameter for retrievals of cloud properties from optical remote sensing (see, e.g., Yang et al.,
2008; Baum et al., 2011; Xie et al., 2011; Loeb et al., 2018). Furthermore, it can affect retrievals from active and passive
microwave measurements of clouds and snowfall (e.g., Sun et al., 2011; Matrosov et al., 2012; Marchand et al., 2013; Kneifel
et al., 2010; Cooper et al., 2017). Therefore, the shape dependence of the other microphysical properties is crucial to ensure
accurate parameterizations. The fall speed of ice and snow crystals is a critical parameter for the modelling of the microphysical
precipitation processes (Schefold et al., 2002) and the climate as it influences the lifetime of cirrus clouds, the vertical transport
of water, and the snowfall rate (e.g., Mitchell et al., 2008). Ice particle mass parameterizations are required to derive ice water
content (IWC). IWC is a crucial parameter to describe cloud contribution to the atmospheric models’ radiation budget (Waliser
et al., 2009; Thornberry et al., 2017).

Therefore, it is desirable to have datasets of falling snow particles based on simultaneous measurements of the microphysical
properties maximum dimension (particle size), cross-sectional area, shape, fall speed, and particle mass. If not available as
measurement, particle mass or fall speed is retrievable based on all other properties. The fall speed cannot be computed
directly from maximum dimension, cross-sectional area, and mass, because the drag force on the particle depends on the
drag coefficient Cp that also depends on the fall speed. The dimensionless Best number X that only depends on maximum
dimension, cross-sectional area, and mass can eliminate this interdependency. The Best number can then help determine the
Reynolds number, Re, through empirical relationships between Re and X. Finally, Re is used to calculate the fall speed, v.

For spherical particles, this Re—X relationship is well known (Abraham, 1970). Bohm (1989) suggested a modified Re—X
relationship to determine v for all snow particles. Mitchell (1996) used that relationship to derive v vs maximum dimension
power laws from dimensional power laws of cross-sectional area and mass. Heymsfield and Westbrook (2010) suggested a
shape-dependent modification of the Best number based on the area ratio. With this modified Best number, they showed that
the error in fall speed determined from the Re—X relationship could be reduced for particles with open geometries, i.e. particles
with low area ratio.

Fhesamelnstead of deriving fall speed from mass, the Re—X relationship may also be used to determine mass from measured

fall speed. 4 A-1he Reynolds number can be derived from
fall speed, and then mass from X together with maximum dimension and cross-sectional area. Szyrmer and Zawadzki (2010)

have done this to determine average v vs mass relationships from measurements of snow aggregates’ fall speeds.
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In this study, the Re—X relationship together with the modified Best number (Heymsfield and Westbrook, 2010) is used
to determine masses of individual particles are-derived from measured maximum dimensions, cross-sectional areas, and fall
speeds using-the-datasetfremgiven by the dataset of our previous study, Vazquez-Martin et al. (2021), that also includes particle
shape. We analyse mass relationships as functions of maximum dimension, cross-sectional area, and fall speed for different
snow particle shapes. Section 2 describes the dataset used in this study. Section 3 shows the derivation of particle mass and
mass relationships. Section 4 shows and discusses the resulting relationship between mass, size, cross-sectional area, and fall
speed. All relationships are studied separately for various particle shapes. In the same section, we also present comparisons

between our mass relationships and those from previous studies. In Sect. 5, this study is summarized and concluded.

2 Dataset

The dataset consists of 2461 high-resolution dual images of falling natural snow crystals and other hydrometeors. The same
dataset has been used in Vazquez-Martin et al. (2021). The data have been collected using D-ICI, the ground-based in-situ
instrument described in Kuhn and Vazquez-Martin (2020), at a site in Kiruna, Sweden (67.83° N, 20.41° E), described in
Viazquez-Martin et al. (2020) during multiple snowfall seasons, the winters of 2014/2015 to 2018/2019. The images are taken
when the snow particles fall into the inlet and consequently fall down the sampling tube and traverse the optical cell. In the
centre of the optical cell is the sensing volume. If particles are falling through the sensing volume they are detected by the
detecting optics (for a detailed description see Kuhn and Vazquez-Martin, 2020). Upon detection, the particles are optically
Show-partielesare imaged simultaneously from two different viewing directions. One is horizontal, recording a side view, and
one is close to vertical, recording a top view. From the top-view images, we can determine for each particle its maximum
dimension D,,,x, which we use to describe particle size, cross-sectional area A, and area ratio. From the side-view images,
since they are exposed twice, we can determine fall speed. These images are high-resolution (optical resolution of about 10 pm)
where one pixel corresponds to 3.7 um. The additional information dual images provide, improves the shape classification
carried out by looking at both top- and side-view images. The particles are classified according to their shape and sorted
into 15 different shape groups as described in Vazquez-Martin et al. (2020). A complete description of the dataset and data
processing methods is given by Vazquez-Martin et al. (2021).

3 Methods
3.1 Mass derivation

The motion of hydrometeors when free-falling through the atmosphere establishes an equilibrium between two forces; the
gravity and the aerodynamic drag. The resulting particle settling speed is called fall speed v. Thus, the fall speed is governed
by the physical properties of the hydrometeors, including their mass and projected area, and it involves aerodynamic principles
and environmental conditions. The gravitational force is proportional to the particle mass m, while the frictional or drag force

is proportional to both the particle projected area, i.e. the cross-sectional area A, and the square of its fall speed v. The force
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balance yields

1 2
m-g=gpav A Cb, (1
where ¢ is the gravitational acceleration, p, the air density, and Cpthe drag coefficient. To determine v from the particle
properties m and A using this equation, the drag coefficient Cp has to be known as well. However, Cp depends on maximum
dimension, shape, and on v itself. To circumvent these interdependencies, one can first determine the Best number X = Cp ‘Re?

by rearranging Eq. 1 together with the Reynolds number

U Dpax
Re = Pal . ) (2)
n

where 7 is the dynamic viscosity of air, we-get-+theto get an expression that does not depend on fall speed v:

2

2m-q-p.- D>
mgpd mdx. (3)

A-n?

Thus, X can be calculated from the particle properties Dy,ax, A, and m. If the relationship between Re and X is known,

X =

one can determine Re from X. In these circumstances, Eq. 2 provides the fallspeed, v. Bohm (1989) provides a relationship

between Re and X for snow particles, which is shown here in the form given by Mitchell (1996)
1/2 2
52 4- X1/2
d - Co

where ég—=-5-83-and-C—=-0-60, and () are unit-less constants, and uses it together with the approach described above to
determine v from the particle properties Dy, A, and m.
In a similar approach, one can determine particle mass if Dy, A, and v are known. For this, Re is determined from v and

Dy ax using Eq. 2. Then, X is determined from Eq. 4 solved for X

4-Re 1/2 ?
( 5 ) “

Finally, m is added to the dataset using Eq. 3

e
16

X

-1 . ®)

X-A-n?
m:—’ (6)
2'g'pa'D12nax

where the atmospheric conditions can be accounted for each particle by adapting 1 and p, to the measured temperature and
pressure.

Instead of using Eq. 4 or Eq. 5 with one set of §p and Cj for all particles regardless of their shape, as proposed by Bohm
(1989), Heymsfield and Westbrook (2010) suggested using a modified Best number X*, replacing X in Eq. 4 or Eq. 5, to
correct for effects due to open-geometry shapes. They proposed X* = X - At / 2, where A, = # is the area ratio, which
is close to 1 for compact shapes and smaller the more open the geometry is. Heymsfield and :Ve;:g);ook (2010) showed that
by using this approach they could reduce errors of determined fall speeds associated to open-geometry particles with low area

ratios. Using our data for simple thick columns in shape group (3), we could confirm that their approach is better than the
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approach by Bohm (1989) without modifying X (see Appendix C). Therefore, here, we use the modified Best number X *
Consequently, Eq. 6 is modified to

X* A2 77F~T]2~X*~A%/2
Ai/Q 2'g'pa'D12nax— 8:9-pa '

)

Note, that then the Best number determined from Eq. 5 is the modified Best number X*. In Eq. 5, we use J; = 8.0 and
Cy = 0.35 from Heymsfield and Westbrook (2010).

3.2 Fitting relationships to data

Once mass is calculated, we can parameterize the relationships mass vs maximum dimension, m(Dy,ax), mass vs cross-

sectional area, m(A), and fall speed vs mass, v(m), by fittns-oun-data-to-the-peowertawsfitting the following power laws to our
data:

Dmax ED
m(Dmax) =ap <1 mm) ’ @®)
_ A M
m(A):aA-(lmm2> , 9
m bm
=a,- | — , 10
vm) =a (1 ug> 1o

which represent straight lines on logarithmic plots. Hence, linear least-squares fits to the logarithm of the data yield the param-
eters ap, l~)D, aa, l~)A, @y, and by,. The parameter ap corresponds to the mass at D, = 1 mm, G 4 to the mass at A =1 mm?2,
and a,, to the fall speed at m = 1 pg. The parameters bp, ba, and by, are the exponents in the power laws and the slopes in the

linear fits.

- As seen in Vazquez-Martin et al.
(2021), using binned data instead of individual data reduces the data spread so that fit-functions based on binned data are more
robust than fit-functions based on individual data. Therefore, also here the data are first binned into a suitable number of bins
before fitting Eq. 8—Eq. 10 to the data. Ten mass bins (for m vs Dy, and m vs A relationships) and ten fall speed bins (for
v vs m) are used, respectively. The bins are spaced such that each bin contains as close to the same number of particles as
possible. As a consequence, the bin widths are variable and specific to each shape group, and thereby avoid the problem of

individual bins having a disproportional effect on the fit. The binned data consist of the median values for each bin. Then, the
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m VS Dax, m vs A, and v vs m relationships are fitted to the median masses vs median maximum dimensions, median masses
vs median cross-sectional areas, and median fall speeds vs median masses, respectively. Vazquez-Martin et al. (2021) found
that about 40 particles in a shape group (currently the lowest number in our dataset is 37) is the limit where binning can still

be used. The advantages of binning become prominent only at larger numbers of particles.
3.3 Analytical derivation of relationships

These relationships may be useful for parameterizations in models and retrievals and are readily comparable to other studies.
In case a suitable dataset is not available, an alternative to fitting these relationships to measured data, is to derive particle mass
analytically from previously determined parameterizations of cross-sectional area vs maximum dimension (A vs Dy,x), fall

speed vs maximum dimension (v vs Dy,,,) and fall speed vs cross-sectional area (v vs A) given by power laws

Dinax \ "
A(Dmax):a' (1IHIH) ) (11a)
(A
Dmax bD
U(Dmax) =ap - <1 mm) (1221)
, v bp
D (v) = 'y - (Tyl) , (12b)
A\
v(A)=ax- (11111112) ) (13a)
A(v) =d! (L)b;‘ (13b)
v) = aA 1m S_l .

For each relationship, the inverse is also shown as the corresponding parameters are convenient for some of the derivations.
The parameter a corresponds to the cross-sectional area at Dy, = 1 mm, a’ corresponds to the maximum dimension at A =
1 mm2, ap to the fall speed at Dy = 1 mm, a/, to the maximum dimension at v =1 m s™1 a4 to the fall speed at A =
1 mm?, and @/, to the cross-sectional area at v = 1 m s~ . The parameters b, ¥/, bp, by, ba, and V', are the exponents in the
power laws.

The resulting power laws are

(Dynax) /2Py ( a )1/2 ap - pa-1mm\° [ Dpay ) 2002071 "
M{Lmax) = : . .
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m(A):W n ’yglmm'(aA a pa) ( A ) 7 (15)
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deag-p.-a--1 R A v -(6—i>+l'b/
v(m)=1ms - g P Op ,J/ng'(alp-lms_l-pa‘) -(m)D e (16)
w22y Ul Lug

The derivation of these power laws is shown in Appendix B (Eq. B3-Eq. B6). There, also the X vs Re relationship is

expressed as power law instead of using Eq. 5. This can be done by approximating Eq. 5 piece-wise in several regions of
X tewith power laws Eq. B1 (with coefficient v and exponent §), as done by (Mitchell, 1996). Nete-that-both-methods—for

same-datasetzNote, that both methods for deriving the relationships given by Eq. 8—Eq. 10, i.e., either the method described in
Sect. 3.1 with fitting detailed in Sect. 3.2 or the alternative derivation from existing relationships described in this section, are
equivalent if they are based on the same dataset. The two methods will yield the same relationships if both use the same power
law approximations of X vs Re and the same atmospheric conditions (given as constant 1 and p, for the whole dataset). Thus,
in this study, we have chosen to fit Eq. 8—Eq. 10 directly to our data (Sect. 3.2). This allows using environmental conditions
individually for each particle and avoids the need to consider error propagation when deriving new relationships from existing

ones.

4 Results and discussions
4.1 Results from fitting and correlations

The particle masses have been determined from measured D, A, and v with the method described in Sect. 3.1. The m vs
Dinax, m vs A, and v vs m relationships given by Eq. 8—Eq. 10 are then fitted to the resulting data, now consisting of Dy,
A, v, and m, for the 15 shape groups using the fitting method based on binned data described in Sect. 3.2. Figure 1 and Table 1
show the results. For simplicity, we use short names included in Table 1 for the shape groups from here on, and Fig. 1 shows
their full names. The large spread in the data represented as individual points is apparent in Figs. A1-A3 in Appendix A.
When fitting m vs Dpyax, m vs A, and v vs m relationships to the binned data, we note that, in general, there is a high
correlation (86 0.9 < R? < 1) for most shape groups. In the following, we call the correlation coefficients R%,, R, and R2, to

indicate to which of the three relationships they belong to. FeHhe%—D—rrehﬁmrsh}p—ehe-efﬁ-}he*eep&e%-hagh-eeﬁe-
- For

the m vs Dy, .« relationship, the only exceptions to high correlations are shape groups (1) Needles, (2) Crossed needles, and (3)
Thick columns, as well as (6) Stellar and (10) Spatial plates, which both have low number of particles, having all R% ~ 0.7.

For the m vs A relationship,

ply-shape-g petie-plateshe e eta -45-only shape groups
(2) and (6), with R4 ~ 0.8, and (10) with R2 =~ 0.5, have a lower correlation. l-n—t-hese—fev’hea-ses—ﬁ-}dgng—by—shese-}ew—R—
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watues;Only in the case of (/0), it is uncertain if the fit fenetions-arefunction is representative of the measured data, as judged

by the low R%.

shape groups, the coefficients R2D and Ri are similar. Only the four groups (1), (2), (3), and (10), mentioned above with lower

correlation in one of the relationships, have a distinct difference between R%, and R%. Of these, the three shape groups (1)—(3)
abeve-the-Hne have a better correlation for m vs A than for m vs D,,., which is consistent with a better v vs A correlation
than v vs Dy, for the same groups (Vazquez-Martin et al., 2021), given that we have derived m using measured v here.

For the v vs m relationship, all values of R?, are 88+ 0.85 or higher. These high values indicate that v is better correlated
to m than to Dy, or A (see the generally lower R? values reported in Védzquez-Martin et al., 2021). The generally very high

correlations are partly also a consequence of m being derived from v, rather than being an independent measurement.
4.2 Mass versus D,,.x and A

Figure 1a and Fig. 1b show the m vs Dy, and m vs A relationships including, for reference, the mass of liquid water spheres
symbolizing rain or fog droplets given by the power laws m = % - py, - D3 .. andm= ;%/‘:7 A 2, respectively, where py, =
1 gecm™3 is the density of liquid water. The mass of spheres is proportional to D3 and to A’ Thus, comparing to Eq. 8 and
Eq. 9, one can see that the exponents bp =3 and by = 1.5 for spheres. The values of ap and a4 for spheres are 524 g, the

mass of a droplet with 1 mm diameter, and 752 pg, the mass of a droplet with a cross-sectional area A = 1 mm?, respectively.
4.2.1 Slopes ED and b A

The exponent bp for shape groups (12) Graupel and (15) Spherical is close to the value of 3 for spheres, 287 and2-8+ 2.74
and 2.84, respectively. For the same groups, b is close to the value of 1.5 for spheres, +-42-for-both-shape-greups 1.34 and 1.43
for shape groups (12) Graupel and (15) Spherical, respectively. For these shape groups, this is expected due to their spherical
or roundish morphology. These exponent values, corresponding to the slopes in Fig. 1a) and b) are among the highest values

for all shape groups. Shape groups (6) Stellar and (11) Spatial stellar are the only other shape groups that have similarly

steep m vs Dy,.x and m vs A relationships. These two groups do not have a roundish morphology that could explain this.

tors- However, a slope similar to spherical particles
may indicate that the morphology remains similar in these groups independent of size, i.e., ice particles scale equally in all
three dimensions. An example for this would be hexagonal plates or columns that all have the same aspect ratio. For pristine
stellar particles one may not expect such a steep slope similar to spherical particles, but rather a decreasing area ratio with
increasing size. Shape group (6), however, contains other shapes besides pristine stellar particles, such as rimed stellar and split
stellar crystals. A particular mix of shapes may cause an apparently steep slope. Indeed, the area ratio in this shape group is

approximately constant (Vazquez-Martin et al., 2021). Our dataset does not contain a sufficient number of stellar particles yet
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to analyse this further, by for example regrouping particle shapes. Additionally, the low number of particles in this group also
results in a relatively high uncertainty (bp =2.61 4 0.59 and by = 1.34 + 0.29).

For most other shape groups, the exponent BD varies between 1.2 and 2, and all other b 4 values range between 0.8 and
1.2. Three shape groups, (1) Needles, (2) Crossed Needles, and (3) Thick columns, stand out with the lowest exponents b p of

approximately 0.8 or lower. These can easily be seen in Fig. 1a) as the lines with the most shallow slopes. For these groups, this

is understandable due to their morphology. We-have

W%ewee&e&a%wn—&n—ﬁkxese—ﬁe—eaﬁes- We have seen in Vazquez Martin et al. (2021) that an increase in Dy, (needle

length) is directly proportional to A, indicating that the diameter of these needle-shaped particles (needle width) remains

similar, when Dy, and consequently also A are growing. Thus, Dy, .. is approximately proportional to A, and predictably,
both bp and b4 are close to 1 for these three shape groups. Vazquez-Martin et al. (2021), observing the very poor correlation
between Dy, .« and measured fall speed, argued that D, is not suitable to determine the Reynolds number. Therefore, a more
suitable characteristic length than D, should be used to determine Reynolds number and derive mass from it. Otherwise,
the derived mass, and consequently bp, are likely not useful. Jayaweera (1971) suggested a characteristic length for hexagonal
crystals, for which the dimensions of the basal facet and the aspect ratio are known. Unfortunately, this information is not
readily available for all particles in our dataset (or is not defined in case of more complex particles). Therefore, determined
mass and relationships based on it should not be used for these shape groups.

The ratio between the exponents bp and by is equal to the exponent b, as can be seen from Eq. 8, Eq. 9, and E¢—8 Eq. 11a.

Figure 3 shows the ratios ZZ—D lotted vs b, and most ratios on this plot are close to the line, bp — b, and range between +=61.7
g p p ba g

to 2. The exceptions Wthh have ratios much below the line are the two shape groups swhere-RZ-was-relativelytows—-Ri-or0-2
for-m-vsDnmrelationship—-e-with the lowest R%,, groups (1) Needles and (2) Crossed needles. The ratios for shape groups

(3) Thick columns, (9) Side planes, and (13) Ice particles are found slightly below the line-with-valaes-between-0-9-and—-5.
Of these groups, (3) and (/3) are among the groups showing more uncertainty in the determined relationship, as indicated
in Fig. 1a) by the larger confidence regions around the fits. For group (9) Side planes, the uncertainty is smaller and can not

explain the lower ratio. I

Intuitively, b D, the exponent of the m—D,, relationship, should be larger than b, the exponent of A—D,, ., as confirmed
by literature, such as by Mitchell (1996). For some shape groups, however, b is larger than bp. Not surprisingly, groups (1)—(3)
that were noticed earlier for the lowest by values are among these groups, as well as groups (9) and (10). The latter two were
noticed in Vazquez-Martin et al. (2021) with very poor correlations between Dy,ax or A and fall speed. This problem likely

indicates that for these shape groups Dpax is not suitable as size parameter to calculate Re. For simple thick columns, this is
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demonstrated in Appendix C. While suitable substitutes exist for regular shapes, such as the characteristic length suggested by
Jayaweera (1971), for an arbitrary shape our current image analysis methods cannot determine a similar quantity. Thus, the
modified X* approach according to Heymsfield and Westbrook (2010) remains the best alternative for our study, it lessens the

problem considerably for groups (1)—(3).
4.2.2 Coefficients ap and a 4

All relationships but those of shape group (15) Spherical form a cluster of lines located in a smaller region in both Figs. 1a)
and b). The only relationship found outside this cluster is that of shape group (15), which, if extrapolated towards larger sizes
or cross-sectional areas, predicts larger masses than any relationship of the other shape groups. The fit coefficients ap and

a4 reflect this since they predict the mass at the unit reference of 1 mm for ap and 1 mm? for @4. These values are much
larger for spheres, ap = 244pe—andar=738+e 260 ug and a4 = 404 pg, respectively, than for any other shape group.
The second-largest values are for shape group (12) Graupel, 6p—=->56-0-pg-and-ar—=138ps ap = 53.9 ug and a4 = 124 pg,

respectively, all other groups have still much smaller values. The smallest values are found for the five groups (/-3), (6), and
(8). Of these, (/-3) form the lower edge of the cluster of all m vs Dy, relationships except for group (15) (Fig. 1a), which
furthermore have the lowest and most distinct slopes mentioned earlier. Similarly, these five groups (/-3), (6), and (8) form the
lower edge of the cluster of all m vs A relationships except for group (15) (Fig. 1b).

As can be seen in Figs. 1a) and b), the power laws for (15) are close to the reference lines for liquid droplets, however,
predicting somewhat lower masses. These differences may be due to several reasons. While shape group (15) Spherical may
contain liquid droplets, it also contains ice particles that have a lower bulk density p;.. compared to the bulk density of liquid
water py,. Also, the small frozen rain droplets that shape group (15) contains, are not perfectly spherical, which leads to overes-
timating mass if assuming a spherical shape. Furthermore, sizing errors cause an apparent error in fall speeds. Overestimating

the size leads effectively to too low v, which in turn yields too low derived m.
4.3 Fall speed versus particle mass

The exponent values b,,,, i.e. the slopes of the v vs m relationships on Fig. 1c), vary less than the slopes of the m vs D,y and
m vs A relationships, they range only from 8-34-+e-8-508 0.33 to 0.54. The shape groups with the highest slope values include
group (15) as well as most of the groups that had the lowest slope values in the m vs Dy, and m vs A relationships, bp and
ba, respectively, i.e. groups (/-3) and (6). Rather than the slopes, different speeds at any given mass distinguish the different
shapes. This can be seen with the values of a,,, representing the fall speed predicted by the relationships at the mass given by
the reference unit of 1 ug. However, 1 pg is below the masses usually encountered for most shape groups. Therefore, it is more
instructive to evaluate predicted fall speeds closer to the median of masses in the dataset. At a mass of for example 3 pg, the
fall speeds vary between 8347-ms=0.14 ms~! and 0.53 ms~! as seen in Fig. 1c). The highest four fall speeds at this mass
correspond to shape groups (15), (13), (3), and (12), in order of descending speed. These groups contain the most compact

shapes. Contrarily, the group with the lowest speed at 3 ug, shape group (6), features the most open structures.

10
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Figure 1. Mass vs maximum dimension (1m vs Dmax), mass vs cross-sectional area (m vs A), and fall speed vs mass (v vs m) relationships
are shown in logarithmic scale for all the shape groups (solid lines) and all data (dashed black line). The median Dmax, A, and m of the data
is represented as a single point on each line. The length of fit lines is defined by 16*® and 84" percentiles of Dyyax, A, and m. The 68%
confidence region for the fits is also shown. a) The m vs D, relationships. For comparison, the mass of spheres, corresponding to rain or
fog droplets, given by m = 5 - pw - D3 ., where the density p, = 1 gecm ™3, is shown as a grey dashed line. b) The m vs A relationships.

For comparison, the mass of spheres given by m = ;’% - A%/2 is shown as a grey dashed line. ¢) The v vs m relationships.

4.4 Comparison with previous studies

The mass vs particle size (m vs D) and fall speed vs mass (v vs m) relationships of the common shapes plates, dendrites,

graupel, and spheres, i.e. for our shape groups (5) Plates, (6) Stellar (called dendrites in other studies), (12) Graupel, and
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(15) Spherical, respectively, are compared to previously published relationships based on measurements of mass of individual

particles. The parameterizations of m vs D (see Fig. 4a—c) selected for this comparison are taken from Locatelli and Hobbs
(1974) e L74, Heymsfield and Kajikawa (1987) 84 H87, Kajikawa (1989) £&F K89, Mitchell (1996) {444 M96, and Erfani
and Mitchell (2017) &4 E17 and are listed in Table 2. For comparison with v vs m (see Fig. 4d) of our shape groups (12)
Graupel and (15) Spherical, parameterizations of measurements by +=e+ L74 (see also Table 2) and measurements of Gunn
and Kinzer (1949) £64 G49 have been selected. Relationships from this study are further referred to as {44 VM21 and are
taken from Table 1. They have been determined as described in Sect. 3.2. Fig. 4 shows all these relationships. For comparison, a
line for speeds determined from Eq. 2 using Re calculated from the Re vs X relationship Eq. 4 with-Go-=-0-292-and-65—=9-06
and X given by Eq. 3 for spherical particles having a density p, = 1 gcm™3 is added to the v vs m relationships in Fig. 4.
This line will be referred to as [Re-X].

Depending on the study, the particle size D was defined somewhat differently. For 444 VM21, as well as for {54 H87, &4
E17, 4 K89, and M4 M6, and-Meaf, D corresponds to Dy,.x. For e+ L74, D is the diameter of an estimated circle that

has the same cross-sectional area as the imaged particle.
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Figure 3. Ratio of the eee#ﬁe'teﬂ%s—%—aﬂd—&;—ﬁem—ﬁ-ﬁs—teexponents bp and ba from the m vs Dimax and m vs A relationships, respectively,
and the eeeffieientexponent b corresponding to A vs Dmax relationship are shown for all the shape groups. Fhe-green-solid-line-represents-a
reference for spheres, which corresponds - l;’]z =-b- The green solid line corresponds to the general relationships between the slopes, %’ =b
(derived from Eq. 8, Eq. 9, and Eq. 11a).

4.4.1 Plates

We note that for plates (Fig. 4a), the m and D relationship for crystal with sector-like branches (P1b) reported by £+ M96
is most similar to £+ VM21. It is similar also with respect to its slope given by the value of bp, all other relationships are
steeper with larger values of bp. Reasonably close to 4444 VM21 is also the relationship for hexagonal plate by £+ M6,
which, however, is heavier at larger sizes than about 1 mm. For those larger sizes hexagonal plate by £444 M96 is similar to
hexagonal plate by 4 H87, the latter having the steepest slope (with bp even larger than 3). The relationship for P1b by ¢
H87 predicts the lightest particles below about 2 mm. At about 2 mm, it is also similar to 44 VM21 and P1b by {44 M96.
Thick plates by {44 H87 are heavier at larger sizes, but similar to £#M4 VM21 at about 0.2 mm. Our relationship VM21 for
shape group (5) has a lower slope bp than any of the other relationships from previous studies. Chen (1992) approximated
hexagonal plates with spheroids and found a theoretical lower limit of 2 for bp of plates, which the value 1.76 of VM21
seems to violate. While the selected previous studies with bp values larger than 2 looked at particular shapes, VM21’s shape
group (5) represents a mixture of plate-like shapes such as rimed plates, split plates, and double plates. Two of the shapes are
represented with more than 40 particles, namely rimed plates (R1c) and double plates (Plo, see Vazquez-Martin et al., 2020),

sufficient to determine their own relationships. As can be seen in Table 2 and Fig. 4a, both have steeper relationships with bp
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of approximately 2.1. Double plates are composed of two plates with a small gap in between, so that they almost resemble
thicker plates. They are most similar to the thick plates (C1h) by H87 within their size range. Most rimed plates in our dataset

are thinner plates with light to moderate riming. They are most similar to hexagonal plates by M96.
4.4.2 Dendrites

For stellar particles (Fig. 4b), several m and D relationships are fairly close to #4444 VM21, for example the two relationships
for P2a from £44 H87, which has a similar slope, and £k K89, which has a lower slope than 444 VM21. Relationships for
another stellar particle type, P1d, are still relatively close to 444 VM21. For example the one by {4 M96 crosses {3VM{
VM21 somewhat above 1 mm and is higher for smaller particles, whereas the one by 4 H87 is about a factor of 2 below
V444 VM21. This Pld relationship by £#44 H87 may be compared to the rimed stellar (R1d) of the same study #5+ H87. These
two curves differ by about a factor of two, with the rimed stellar having the larger mass and being very close to £ VM21.
Riming of stellar particles adds mass without increasing their size noticeably (Erfani and Mitchell, 2017) as seen in £&f E17,
which explains the difference seen between the two mentioned relationships of #44 H87. A similar difference is seen between
the two relationships by #&f E17 from a dataset used to study effects of riming. However, the two relationships by &+ K89,
which also feature unrimed and rimed stellar particles, respectively, do not show a significant difference. Particles included
in shape group (6) Stellar of /M4 VM?21 include cases of light riming. Distinguishing between unrimed and rimed stellar
particles in the data of group (6) resulted in two relationships (not shown) that are both, within uncertainties, identical to the

one produced from all data in shape group (6).
4.4.3 Graupel and spheres

64 L74 reported three m vs D relationships for lump graupel (R4b) corresponding to three different particle densities with
larger masses predicted by the relationships for higher densities. Our relationship for graupel is between f&efL.74’s low and
medium density relationships (Fig. 4c). It is well approximatedsby the mass of spherical particles with a density of 0.12 gcm ™3
(not shown in Fig. 4¢), which is at the lower end of the density range reported by e+ L74 for their medium density relationship
(>0.10 to 0.25 gcm—3). The relationship by 454 H87 for lump graupel (R4b) is similar to £&641.74’s medium density. The
relationship by £ E17 agrees also with 4444 VM21, but only around 1 mm, as their relationship has a much lower slope
(bp = 2.16) than all other relationships for graupel (2.7 to 3.1). The mass of liquid water spheres m = % - py, - D3 that was
shown on Fig. 1a) is added also to Fig. 4c) as reference. Its comparison with A4 VM21’s line for shape group (15) Spherical
is discussed in Sect. 4.2.2.

The v vs m relationships from =4 L74 (Fig. 4d) come, within their ranges, close to our relationship for shape group
(12). In general, at a certain particle mass, the size and cross-sectional area, and thus the drag force, decrease with increasing
graupel particle density. This can be seen, to some extent, for the three lines by &6+ L74. However, their lines have different
slopes in a way that makes them intersect with each other. Their slopes are more shallow than the relationship of 44 VM21,

consequently they also cross that line. The slope for graupel of 444 VM21 is more similar to that of the relationships related
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to spherical particles than the lines for graupel by e+ L74. Consequently it approaches spherical particles, which represent
an upper limit in speed, at a lower mass than the lines by {4 L74.

The lines for spherical particles of £&4 G49 and [Re—X] are very close to each other, thus [Re—X] predicts well these
measurements. i i i i

and-at-higherspeeds-above-that-mass—It The stralght line for the shape group (15) of VM21 is at somewhat lower fall speeds

below approximately 10 pg. All data but two particles in shape group (/5) have m below that mass. For those two particles

heavier than 10 pg the fit line VM21 over-predicts mass (see Fig. A3 in the Appendix). While VM21 represents the power-law
fit to our measurements of droplets and spherical and almost spherical ice particles, shereasthe two curved lines of £&4 G49

and [Re—X] represent only liquid droplets, and, thus, an upper limit in fall speed.

5 Summary and conclusions

This manuscript presents new mass and fall speed parameterizations derived from D-ICI measurements of natural snow, ice
crystals and other hydrometeors, covering sizes from 0.1 mm to 3.2 mm. Using the dataset and fall speed vs maximum dimen-
sion and vs cross-sectional area relationships from Vazquez-Martin et al. (2021), where fall speeds cover ranges from 0.1 m s+
to 1.6 ms~1, in this study, we have added particle masses to our dataset of measured maximum dimension, cross-sectional area,
and fall speed of individual particles. The calculated values of individual particle masses range from close to 8-pg—te—230-ps
0.2 pug to 450 ug

Mitchell (1996) presented fall speed relationships derived from power laws of cross-sectional area and mass vs maximum
dimension using a relationship between Re and X. We calculate particle mass data from our measurements of maximum
dimension, cross-sectional area, and fall speed using the same Re—X relationship. With this new extended dataset, mass vs

maximum dimension relationships, mass vs cross-sectional area, and fall speed vs mass, given by Eq. 8—Eq. 10, have been

derived and studied for different particle shapes. We present the conclusions that our results led to below.

e Asseenin Figs. A1-A3 in Appendix A, and discussed in Section 4.1, the data’s large spread is apparent. However, when

fitting m vs Dyax, m vs A, and v vs m relationships to binned data, there are high correlation coefficients for most
shape groups, with values between 8-60.9 and 1. The only exceptions are shape groups (-H-Need-les—(-%—@ms&ed—needleﬁ

R%—*OA&( 1) Needles, (2) Crossed needles, (3) Thick columns, (6) Stellar, and (10) Spatial plates for the m vs Dy ax
relationship with B2 ~ 0.7, as well as for the m vs A relationship shape groups (2) and (6) with R% ~ 0.8 and (6) with
R2205 he-shape-a ..... alue 2 2 a al-arouns-by " he-vialues-6

R—anfmfn}aﬁee-ﬁh&eeﬁespeﬂémg-ﬂa}ue&e%—ésee-ﬁg—g-wmle for all other shape groups R2 and R? are similar,

for these groups with lower R?, R2 is lower than R% for all but shape group (10), for which R is lower. For v vs
m, there is a good correlation for all 15 shape groups (see Table 1). The fact that m is derived from v contributes to a

stronger correlation between both quantities.
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Figure 4. A comparison of the mass vs particle size (m vs D) and fall speed vs mass (v vs m) relationships of this study and previous
studies for some shape groups: (5) Plates, (6) Stellar, (12) Graupel, and (15) Spherical are shown in logarithmic scale. a)-¢) The m vs D
relationships for (5) Plates, (6) Stellar, (12) Graupel and (15) Spherical, respectively. d) The v vs m relationships for (12) Graupel and
(15) Spherical. For the comparison, parameterizations from Gunn and Kinzer (1949) [G], Locatelli and Hobbs (1974) [Lo], Heymsfield and
Kajikawa (1987) [H], Kajikawa (1989) [K], Mitchell (1996) [M], and this study [VM] are shown. In ¢), the line by [G] corresponds to the
mass of spheres given by m = ¢ - pw - D32 ... that was shown also in Fig. 1a). In d), for comparison, a line for speeds determined from Eq. 2
using Re from Eq. 3 and Eq. 4 for spherical particles with density p,, = 1 gcm™? is added as a red dashed line. This line is referred to as
[Re—X1]. These m vs D, v vs m relationships are the same shown and enumerated in Table 2. The power laws that correspond to [VM] are
shown together with their respective 68% confidence regions. The length of all relationships correspond to the ranges of Dy,ax and m in the

z-axis (see Table 2).

e For the three shape groups related to columnar or elongated shapes, i.e. shape groups (7)—(3), width rather than length or
Dynax 1s more closely related to a suitable characteristic length to determine Re. Consequently, mass and relationships
with it are not reliable. For these shape groups, bp is close to or smaller than 1. Additionally, contrary to expectations bp
is larger than b and the ratio of exponents bp to by is too low for these groups. For most other shape groups it is similar
to b, as theoretically expected. Shape groups (9) and (10) (the latter with low number of particles and low correlations

in relationships) show similar limitations when comparing with b. Therefore, as long as a more suitable size parameter
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is not available in our dataset for these shapes, mass derived from Re for these shape groups should only be used with

great caution.

- When deriving the m vs Dyyax, m
vs A, and v vs m relationships analytically from A vs Dyax, v VS Diax, and v vs A given from a suitable dataset (see
Section 3.3), the results are equivalent to fitting to the same dataset after adding m for individual particles derived from v
(see Sect. 3.1). On the one hand, fitting m vs D ., m vs A, and v vs m relationships to data has the advantage that the
X-Re relationship from Eq. 5 can be used rather than power-law approximations required for the analytical derivation
of the same relationships (see B in Appendix). On the other hand, if a suitable dataset is not available but power-law
relationships for A vs Dyax, v VS Diax, and v vs A are, the analytically derived mass relationships Eq. 14-Eq. 16 can

be used.

#al-three-dimenstons: The parameters Z;D and b 4, 1.€. the slopes of the m vs Dy, m vs A power laws, respectively,

are highest for the shape groups (6) Stellar, (11) Spatial stellar, (12) Graupel, and (15) Spherical. For groups (12) and

(15) they are close to the values expected for spheres, i.e. bp=3and by = 3/5.

The exponent values b,,, i.e. the slopes of v vs m, range from 0.33 to 0.55. These b,,-slopes do not distinguish the
different shapes as seen by the b p-slopes for m vs Dy.x. Instead, different speeds at any given mass are characteristic
for the different shapes, with the highest fall speed for (15) Spherical and the lowest for (6) Stellar that has shapes with

open structures.

We compared our m vs D, and v vs m relationships with other mass relationships given by previous studies. The
shape groups compared in this study are (5) Plates, (6) Stellar, (12) Graupel, and (15) Spherical. Our results agree

reasonably well with the references used.

For graupel and spheres, (Section 4.4.3), Locatelli and Hobbs (1974) f&efLLo74 reported m vs D relationships for
lump graupel (R4b) with different particle densities (high, medium, and low). Our relationship for graupel is between
+=64L074’s low and medium density relationships, and it is well approximateds by the mass of spherical particles with a

density of 0.12 gcm™2 (not shown in Fig. 4c).

Looking at v vs m, the two lines for spherical particles of #64G49 and [Re-X], corresponding to a line for speeds

determined from Eq. 2 using Re from Eq. 3 and Eq. 4 for spherical particles with density p,, = 1 gcm™3, are very close
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to each other. We report somewhat lower speeds for the shape group (15) Spherical f#444VM?21. This difference may be
due to shape group (15) in SA44FVM21 consisting of any spherical or almost spherical particle, including ice, whereas

the two lines of £#64G49 and [Re—X] are exclusively for liquid droplets.

These resulting parameterizations may improve our understanding of precipitation in cold climates and improve the micro-
physical parameterizations in the climate and forecast models. Through these relationships, we can determine particle masses

based on fall speed and particle sizes.

Data availability. The presented data will be available at the Swedish National Data Service (DOI will be available).
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Table 2. The m vs D and v vs m relationships of previous studies given by Locatelli and Hobbs (1974) e+ L 74, Heymsfield and Kajikawa
(1987) 44 H87, Kajikawa (1989) £ K89, Mitchell (1996) {444 M96, and Erfani and Mitchell (2017) £&4 E17 are shown for some shapes

that were selected for the comparison and correspond to (5) Plates, (6) Stellar, (12) Graupel, and (15) Spherical. The power laws for M4

MO96 have been determined by using equation [15] in Mitchell (1996). Fhe-relationshipsfound—in-this—werk—are-alse-shown-as{VM} The
relationships in this study (see Table 1) have been found by fitting Eq. 8-Eq. 10 to our data as described in Sect. 3.2. Those selected for

comparison are also shown here as VM21. The snow particles type, the total number of particles N, ranges of particle sizes D, mass m,

fall speeds v, the m vs D, v vs m relationships, the correlation coefficient (R?), and the reference of the studies are displayed. In these

references, the particle sizes are defined somewhat differently. In M4 VM21, as well as {54 H87 and M4 M96, D is defined as Dpax.

Magono and Lee (1966)’s symbols are sometimes added for shape clarification. These m vs D, v vs m relationships are shown in Fig. 4.

The power laws from the literature have been converted in order to have the same units, so that mass m is in pg, particle size D in mm, and

fall speed v in ms ™!,

Snow particle type N Range of D Range of m Range of v Relationships (m-D, v-m) R? Ref.
Shape group (5) Plates 197  0.21-1.7 mm 0.58-57 ug 0.11-09ms™  1.m/(ug) = 18.6- (D/mm)l‘77 1.0 A VM2 1
Rimed plates (R1c) 44 0.37-0.9 mm 12-17pg  0.11-0.6ms™  2.m/(ug) = 21.1-(D/mm)>° 0.66 VM21
Double plates (P1o) 55  0.26-1.5mm 1.7-58pg  021-09ms™*  3.m/(ug) = 31.3-(D/mm)**® 0.88 VM21
Hexagonal plates - 0.10-3.0 mm - - 2:4.m /(ug) = 26.2- (D/mm)?>*° - M4 M96
Crystal with sector-like branches (P1b) - 0.04-2.0 mm - - 3:5.m /(pg) = 13.6- (D/mm)*? - 44 M96
Thick plate (C1h) 19  030-0.6mm  2.6-10pg - 46.m /(ug) = 54.9- (D/mm)*%® 0.67 4 H87
Hexagonal plate (P1a) 34 030-1.5mm  0.20-70 pg - 5:7.m/(ug) = 18.4- (D /mm)>3! 0.93 £HF HST
Crystal with sector-like branches (P1b) 19 0.40-1.6 mm  0.70-34 pg - 6:8.m /(ug) = 9.38- (D/mm)** 0.97 £+ H87
Shape group (6) Stellar 43 0.54-23mm  1.76-77pg  0.13-0.8ms™!  Z£9.m /(ug) = 5.63 - (D/mm)5 0.76 £ VM21
Stellar crystal with broad arms (P1d) - 0.09-1.5 mm - - 8:10. m /(ug) = 5.77- (D/mrn)l'67 - M4 M6
Stellar crystal with broad arms (P1d) 23 0.40-24mm  0.20-31pg - 9:11. m /(ug) = 2.47 - (D/mm)?-5 0.95 £H1 HST
Stellar with end plates (P2a) 11 070-3.0mm  4.9-92pg - +0-12. m /(ug) = 6.23 - (D/mm)*53 0.88 4 H87
Rimed stellar (R1d) 48  0.70-53mm  2.0-539 pg - H=13.m /(pg) = 5.34- (D/mm)*>8 0.85 £H4 HS87
Unrimed dendrites - - - - +2-14. m /(ug) = 15.5- (D/mm)*-%! - [E]
Rimed dendrites - - - - 43-15. m /(pg) = 32.7- (D/mm)*™® _ e B17
Stellar with end plates (P2a) 97 1.4-7 mm - - H-:16. m /(ug) = 6.75- (D/mm)*% =076 K4 K89
Rimed stellar (R1d) 43 1.6-5.8 mm - - +5-17.m /(ug) = 9.18- (D/mm)*"® =068  H&FKS89
Shape group (12) Graupel 37  025-12mm  131-68pg  0.26-1.0ms™ '  46:18. m /(ug) = 53.9- (D/mm)> "™ 0.98 £ VM21
37 025-12mm  131-68ug  0.26-1.0ms™' 4%19.v/(ms™ ') = 0.24- (m/ug)®* 0.94 44 VM21
Lump graupel (R4b) 35 0.50-2.0 mm - - 14820. m /(ug) = 42.0- (D/mm)>%° =098  fLefL74
35  0.50-2.0 mm - - 4921, v (ms™!) = 0.46- (m/ug)’'® r=053  HefL74
Lump graupel (R4b) 58  0.50-3.0 mm - - 2022.m /(ug) = 78.0- (D/mm)*%° =093  HefL74
58 0.50-3.0 mm - - 2423 v (ms™) = 0.46- (m/ug)®** r=084  HefL74
Lump graupel (R4b) 17 0.50-1.0 mm - - 22:24. m /(ug) = 140- (D/mm)*™ r=098 feil74
17 0.50-1.0 mm - - 2325 v /(ms™H) = 0.79- (m/ug)’? r=052  HefL74
Lump graupel (R4b) 116  0.40-9.0mm  14-68,000 ug - 24-26. m /(ug) = 85.0- (D/mm)>1° 0.89 £+ H87
Lump graupel (R4b) - - - - 2527 m /(ug) = 53.7- (D/mm)*16 - 4 E17
Shape group (15) Spherical 41 0.06-0.4 mm 0.16-39 ug 0.09-1.6ms™"  26:28. m /(ug) = 260 - (D/mrn)z'84 0.88 A VM2 1
41 0.06-04mm  0.16-39pg  0.09-1.6ms™! 2729.v/(ms~ ') = 0.30- (m/ug)®>* 0.99 4 VM2I
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Appendix A: Mass relationships for the shape groups

Figures A1-A3 shows the m vs Dy,.x, m vs A, and v vs m relationships for all the 15 shape groups fitted to binned data. These

relationships correspond to power laws given by Eq. 8-Eq. 10.

Appendix B: Mass derivation using power laws

The particle mass relationships are derived analytically from a relationship between the Reynolds and Best numbers, in addition
to A vs Diax, v VS Diax, and v vs A power laws given by Eq. 11a—Eq. 13a. Section 3 has briefly presented this approach of
deriving the particle mass analytically. The m vs Dy,.x, m vs A, and v vs m relationships given by this approach are equivalent
to fitting to individual data. Indeed we get identical results in the ap, b D, QA, b D> Gm,» by, parameters if using % X* vs Re as

power law
X*(Re) =~-Re’, (B1)

where «y and § are the parameters in the power law. We determine these parameters by fitting Eg—5-te-the-pewertawthe power
law to Eq. 5 over ranges of Re corresponding to each shape group. For this, we first calculate Re for all particles in a shape
group and determine % X * using Eq. 5 for this set of Re values. Then, we do a linear fit to the logarithm of & X * vs logarithm
of Re. Consequently, for each shape group, we get one set of -y and 6.
We express Re as a power law in Dy, using Eq. 2 and replacing v with the power law given by Eq. 12a
o(Dusw) - D _ (00" (Pa)"”) - P -1 m -,

Re(v, Dpax) = = =
( ) ; ;

‘Pa* 1 Dmax bott
n 1 mm

Now we can determine the particle mass m using E¢—6Eq. 7 and express it as a function of particle size Dy,,y, area A, or

fall speed v. Consequently, the mass relationship as a function of particle size D« given by Eq. 8 can be derived as follows

. . _ A
(using Eq. B1, Eq. B2, and-Eg—0Eq. 11a, and the area ratio A, = g-T)

max

1/2
2 5§ [ A(Dmax)
7r~7]2~X*-A11-/2 _77-77 -v-Re -<%D2 )

D _ _ max
( max) 89pa 8gpa
4
2 pal Dypay | (b0 +1)-0 : vz
:7'('"'7 "Y'(aDpn mm) '(lmm) ( a'<1D]r;ﬁ)) )
-q- Dinax 2
89/7;1 %'(lmm.lnlm)
s bp-d+o+L-b—1 b
_ 77.1/2.772.')/ ( a )1/2. w ) Diax o —an - Dinax : (B3)
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The mass relationship as a function of A given by Eq. 9 can be derived as follows (using Eq. B1, E¢—0-and-Ee¢—2Eq. 11b,

and Eq. 13a, and expressing Re as a power law in A)

s 1/2
2 U(A)'Dmax(A)'Pa
m(A)_,].(.n2X*A%/2_7T7] 7<7ﬂ ) . ﬁlme
 8gp 8-g-p: NENGE
¢ * %.{all(lmm2) :|
o (A )b’{a/.( A )b’]. ’
7_{_1/2' 2 . 1 mm2 1 mm?2 Pa 1/2
n- n
1 mm?2 1 mm2
4.g- ’ b 12
g pe {a/'(lrfw) }
71/2'772'7 1 mm aA'a/'Pa 5 A ba-0+b"-641/2—b i A ba
470 = : - . 3 =aa- 3 . (B4)
4-g-pa a n 1 mm 1 mm

The mass relationship as a function of v given by Eq. 10 can be derived as follows (using Eq. B1, Egq—0;-and-Eg—2Eq. 12b,

and Eq. 13b, and expressing Re as a power law in v)

1/2 2 'U'Dmax(v)'Pa J 1/2
() 7r-772-X*-Ar L A ( A(v) >
miv) = = .
89+ pa 89+ pa T Dimax(v)
1/2
2 b g ’ v bla
TPy Ve v\ pa ay  (1sT)
_8. . . 1 71. m S .aD. 1 = . . " 3
g Pa m s ms n P / v D
Z'(aD'(lmsfl) )
12 6 / / !/
S R G (RSP VA D U G (B3)
4-g-pa-ap p n 1ms?! '

From Eq. B5, we can determine v(m) as follows

/ / _(5
(e w4 )
n

1ms—! 1ug 'ﬂ1/2.n2.7.a2/2'
1
4oa-pe-a-1 il ICARCEE SR ST AT s
= o(m) =L s | LD (22 ()
7r1/2_,72.%%/ n 1ug
an
475 :am-(lmug> . (B6)

Appendix C: Reynolds and Best numbers for simple thick columns

Selecting a simple shape with area ratio noticeably below 1, we can test if the modified Best number approach by Heymsfield
and Westbrook (2010) yields better results than using Best numbers and the approach by Bohm (1989) (see Sect. 3.1 for details
about these approaches). For a simple-geometry shape we can calculate the particle mass from the geometrical dimensions
480 and, thus, determine both X and Re independently. Then X vs Re, or alternatively X* vs Re can be compared to the empirical

relationship given by Eq. 4 or Eq. 5. Needles or columns would be suitable shapes as they have low area ratios and a simple
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geometry. Looking at particles in the shape group (1) Needles reveals that it contains many bundles of needles and only few
pristine needles. Shape group (3) Thick columns, on the other hand, contains many simple columns. Therefore, we have selected
75 columns from shape group (3) for this comparison study. Figure C1 shows examples of the selected columns.

Most columns fall horizontally so that width and length can be easily determined from the top-view images. We estimate
that the length may be underestimated on the order of up 15% due to deviations from alignment of the column axis in the image
plane. On the other hand, the geometrically determined mass, M geom. may be overestimated for part of the columns that show
signs of cavities or hollowing of faces (see Fig. C1).

For columns, D, .y, Which is similar to the column’s length, is not a suitable representative size parameter to determine
Re. A characteristic length L* (see Eq. 13-81 in Pruppacher and Klett, 2010) can be used instead, which for columns can be
determined from width and length (Jayaweera, 1971). In case of columns, the characteristic length L* is more closely related
to the width. Now, Re can be determined from measured fall speed and L*. The Best number, according to Eq. 3, can be
determined from measured cross-sectional area A and D,,x. Note that Dy, ., in Eq. 3 comes from Eq. 2, i.e. it represents the
size parameter best suited to calculate Re. Thus, also for calculating X one should use the characteristic length L* instead of
Dinax- Then, X can be determined from measured A in addition to calculated mgeom and L*.

Consequently, X vs Re can be plotted and compared to the X—Re relationship (Eq. 5). Figure C2 shows X vs Re determined
either using Dy, or L*. The points related to Dy, do not match well the empirical relationship X—Re by Bohm (1989) with
0o = 5.83 and Cjy = 0.6. This confirms that, as argued above, D, . is not suitable to determine Re or X for this shape. The
points X vs Re determined using L*, on the other hand, are much closer to the empirical relationship. The points X vs Re can
be transformed into X* vs Re according to X* = X - A /2 The resulting points (using L*) are also shown in Fig. C2 and are
even closer to the empirical X vs Re relationship.

In addition to the empirical relationship X—Re by Bohm (1989), also the relationship by Heymsfield and Westbrook (2010)
(6o = 8.0 and Cjy = 0.35) for their the modified Best number approach, used in our study, is shown in Fig. C2. The two lines are

relatively close to each other. Thus, the above discussion remains valid regardless of which relationship is used as comparison.
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Figure Al. Mass vs particle size (m vs Dmax) relationships given by Eq. 8—Eq. 10 for all the shape groups are shown. Individual data
(coloured symbols) and binned data (blue symbols with error bars) are displayed. Median values in the respective bins represent the binned
data. The total length of the error bars represents the spread in mass data, which is given by the difference between the 16*® and 84"
percentiles. The relationships fitted to binned data are shown. The 68% prediction band and the 68% confidence region for the fits are also

shown. The same data are shown in Table 1.
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Figure A2. Same as Figure A1, but mass vs cross-sectional area (m vs A) relationships given by Eq. 8—Eq. 10 are shown here.
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Figure A3. Same as Figures A1-Al1, but fall speed vs mass (v vs m) relationships given by Eq. 8—Eq. 10 are shown here.
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Figure C1. Examples of simple thick columns selected from shape group (3) Thick columns. The black rectangle shown as size reference

corresponds to 1 mm x 100 pm.
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Figure C2. X vs Re and X ™ vs Re for simple thick columns selected from shape group (3) Thick columns. X and Re are determined either
using Dmax or L*. The points X vs Re using L™ are much closer to the empirical relationship (Eq. 5) than the points using Dy,ax. Using the
modified Best number X ™ instead of the Best number X leads to a better agreement with Eq. 5. For comparison, the empirical relationship
given by Eq. 5 is shown with parameters from Bohm (1989) and Heymsfield and Westbrook (2010), respectively. They are, however, very

similar.
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Appendix: Nomenclature

Latin Letters

A cross-sectional area

a coefficient in the A vs Dy, relationship
a’ coefficient in the Dy, vs A relationship
az coefficent in the v vs A relationship

ay coefficient in the A vs v relationship

aa coefficient in the m vs A relationship

ap coefficient in the v vs Dy, relationship
ap coefficient in the Dy, x vs v relationship
ap coefficient in the m vs Dy, .5 relationship
am coefficient in the v vs m relationship

b exponent in the A vs Dy, relationship
v exponent in the Dy, vs A relationship
ba exponent in the v vs A relationship

by exponent in the A vs v relationship

b A exponent in the m vs A relationship

bp exponent in the v vs Dy« relationship
b exponent in the Dy« Vs v relationship

b D exponent in the m vs Dy« relationship
bm exponent in the v vs m relationship

Co unit-less constant in Re vs X relationship
Cp drag coefficient

g acceleration of gravity
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m particle mass

R% correlation coefficient in the m vs A relationship
R2D correlation coefficient in the m vs Dy, relationship
R?, correlation coefficient in the v vs m relationship
Re Reynolds number

v fall speed

X Best number

Greek Letters

) exponent in the X* vs Re relationship

do unit-less constant in Re vs X relationship

n dynamic viscosity of air

vy coefficient in the X* vs Re relationship

Pa air density

DPw density of liquid water
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