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Interactive comment on “Mass of different snow crystal shapes derived from fall speed 
measurements” by Sandra Vázquez-Martín et al. 

 
David Mitchell – Referee #1 

 
Received and published: 23 April 2021 

 
 

 
Dear David Mitchell,  
 
We thank you for your constructive feedback. We sincerely appreciate that you took the time to read 
and evaluate our work. Please see below our response to your comments. 
 
We are reporting our response (in blue italics) directly following each point that you have raised. 
Then, we are suggesting changes to the manuscript (still in blue). 
 
 

n General comments: 
 
This paper is the first to demonstrate the calculation of ice particle mass from measurements of 
ice particle maximum dimension, projected area and fall velocity, and in doing so, it represents a 
test of hydrodynamic flow theory. However, as argued below, the method appears successful for 
graupel and quasi-spherical ice particles, but less successful for planar ice crystals (e.g., stellars 
or dendrites) and definitely not successful for needles and columnar ice crystals. Similar findings 
were reported by Heymsfield and Westbrook (2010, JAS; henceforth HW2010), where the fall 
speed treatment of Mitchell (1996, JAS; henceforth M96) worked well for ice crystals having 
aspect ratios closer to unity (e.g., graupel, short columns, thick plates) but not well for stellars 
and needles having more extreme aspect ratios. Therefore, two new approaches are offered for 
modifying the methodology described in this study. 
 
One approach is to define the Reynolds number Re in terms of a characteristic length L*, rather 
than maximum dimension Dmax, where ReL* = V L*/ν, where V = terminal fall speed and ν = 
kinematic viscosity of air = η/ρa where ρa = air density and η = dynamic viscosity of air. This L* 
was found to describe the vapor mass and heat transfer from a ventilated ice crystal well and 
hence captures the flow effect on ice crystal growth. L* is defined as 
 
L* = A/P (1) 
 
where A = total surface area of an ice particle and P = ice particle perimeter projected to the 
flow. See Pruppacher and Klett (1997), Microphysics of Clouds and Precipitation, Kluwer 
Academic Publishers, p. 552, for more details. 
 
Fortunately, Jayaweera (1971, JAS) has formulas describing L* for planar and columnar ice 
crystals. For planar ice crystals, L* = (d/2) (1 + 2e) and  
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(2) ReL* = 0.5(1 + 2e) Red 
 
where subscript d on Reynolds number Re indicates that Re is evaluated using the diameter d of 
a circle having the same area as the basal face of the ice crystal. For hexagonal plates, d = 0.910 
D, where D = maximum dimension of the basal face. Moreover, e refers to the ratio of minor to 
major axis. Reasonable estimates for e can be obtained from Dmax and Auer and Veal (1970, 
JAS). For columnar ice crystals, L* = (π/4)d [1 + (1/(1+e))] and 
 
(3) ReL* = (π/4) [1 + (1/(1+e))] Red . 
 
Notice here that ReL* depends on the “diameter” or thickness of a column and not its maximum 
dimension Dmax (as was used in this ACPD paper). This indicates V is most related to d. By 
substituting ReDmax used in this ACPD paper with ReL* in Eqn. 5 to calculate Best number “X”, 
and substituting Dmax with L* in Eqn. 6 of this paper (while using this new calculation for X), 
the m-Dmax power laws found here for columnar and planar ice crystals may be improved, 
having greater consistency with the body of theoretical and empirical knowledge (discussed 
below under Major Comments). 
 
The second approach is to calculate the “modified Best number” X* from Eqn. 5 of this ACPD 
paper (as described in HW2010) by redefining the constants used to calculate X*, where C0 = 
0.35 and δ0 = 8.0. However, in this case Re = ReDmax (as originally used in this paper) since this 
maintains consistency with HW2010. Then mass m is calculated by inverting the HW2010 
definition of X*:  
 
m = π η2 X* Ar1/2/( 8 g ρa ) (4) 
 
where m = ice particle mass, g = gravity constant and Ar = area of ice crystal normal to the flow 
divided by area of circle having same maximum dimension (referred to as the area ratio). 
 
However, if the “thick columns” shape category in this study corresponds to short, thick 
columns, the M96 fall speed scheme should work fine for this shape category, and this second 
approach may not address the problem for this shape. 
 
It is possible that neither of these alternative approaches will render improved results, but it 
seems worth a try. If there is no improvement, the limitations described below will need to be 
mentioned in the paper. 
 
 
Response: 
Thank you very much for suggesting these two approaches to modify and improve our methodology.  
The first approach seems to have much potential for better describing falling snow particles.  
Unfortunately, it is not easy to determine and add a characteristic length to all particles.  This may be 
attempted after developing more automatic methods to retrieve particle properties from the image 
data.  For a subset of shape group (3) we have performed a manual analysis to determine widths and 
lengths of hexagonal columns. From these dimensions, the characteristic length as defined by the study 
Jayaweera (1971, JAS) that you mentioned can be calculated and then used to determine Re and m. 
The results of this case study will be shown and discussed in our responses to RC2 general comment 1, 
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as referee 2 suggested such a case study to look at the X-Re relationship since m can be estimated 
directly from these dimensions without using X-Re. 
For our current ACPD study, the second approach that you have suggested, i.e. using a modified Best 
number X* as proposed by Heymsfield and Westbrook 2010 (H&W2010), can be easily added to our 
methodology as the needed area ratio is already part of our dataset. We are therefore implementing 
this, for more details please see our response to general comment from RC2. 
 
 

n Major comments: 
 
1) Lines 149-150: Please indicate which relationships in Tables 1 and 2 are based on the 
approach described in Sect. 3.3 vs. the approach given in Sect. 3.2. Since this approach involves 
empirical relationships already having considerable uncertainty, m(D), m(A) and v(m) from this 
approach may have greater uncertainty than the previous approach (Sect. 3.2) due to the 
propagation of uncertainties in the empirical expressions used here. This knowledge may be 
helpful for interpreting the results in Tables 1 and 2. 
 
Response: 
The mass of each particle in our dataset is calculated based on measured maximum dimension, cross-
sectional area, and fall speed as described in Sect. 3.1. All the relationships that we report in Table 1 
are based on the fitting method described in Sect. 3.2. Table 2 contains both our results and previously 
reported results. Our results are the same as in Table 1 and are repeated for convenience. The previous 
results in Table 2 are shown as reported in literature, i.e., we did not use any of the analytical 
relationships described in Sect. 3.3 to convert any of those previous relationships. The derived 
relationships are reported in Sect. 3.3 for convenience in the case that a suitable dataset is not 
available, but existing relationships are. With our dataset we have the choice to use either method. By 
using the method outlined in Sects 3.1 and 3.2 we avoid issues with error propagation. We have 
clarified that in the manuscript. 
Changes to the manuscript: 
Line 149-150: “Note, that both methods for deriving the relationships given by Eq. 7–Eq. 9, described 
in Sect. 3.1 and in this section, are equivalent if they are based on the same dataset.” 
CHANGE TO: “Note, that both methods for deriving the relationships given by Eq. 7–Eq. 9, that is 
either the method described in Sect. 3.1 with fitting detailed in Sect. 3.2 or the alternative derivation 
from existing relationships described in this section, are equivalent if they are based on the same 
dataset.” 
Add at end of Sect. 3.3: “Thus, in this study, we have chosen to fit our data directly to Eq. 7–Eq. 9 
(Sect. 3.2). This allows using environmental conditions individually for each particle and avoids the 
need to consider error propagation when deriving new relationships from existing ones.” 
Line 244: “Relationships from this work are further referred to as [VM].”  
CHANGE TO: “Relationships from this work are further referred to as [VM] and are taken from Table 
1. They have been determined as described in Sect. 3.2.”  
Caption Table 2: “The relationships found in this work are also shown as [VM].” 
CHANGE TO: 
“The relationships in this work have been found by fitting our dataset to Eq. 7–Eq. 9 as described in 
Sect. 3.2 and reported in Table 1. Those selected for comparison are also shown here as [VM].” 
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2) Lines 185-188 on stellar ice crystals: This same argument is expressed more quantitatively in 
Mitchell et al. (1990, Sect. 4a), where hexagonal crystal volume V is approximated by using a 
circular basal face so that aspect ratio k = c/a = c/r, where r = radius of this circle having the 
same area as the basal face. Moreover, c and a are the semi-axes corresponding to the prism and 
basal faces of an ice crystal. Thus, V = π r2 k r = π k r3 for this approximation, and for constant 
density and constant k, the m-D relationship has a power of 3. 
 
However, constant k is an invalid assumption for a stellar ice crystal that only forms between ~ -
14 and -16 °C. As described in Chen and Lamb (1994, JAS), k is rarely constant (definitely not at 
these temperatures), and depends on the ratio of condensation coefficients for the basal and 
prism crystal faces. This is referred to as the inherent growth ratio (IGR), and IGR is related to 
m-D power laws in Sect. 7 of their paper. I strongly recommend that the authors read this paper 
and then revise this commentary accordingly. This information is also in the cloud physics text 
book by Lamb and Verlinde, Physics and Chemistry of Clouds (2011, Cambridge Univ. Press). In 
addition, Jerry Harrington's group at Penn. State Univ. has greatly extended this work through 
several publications (e.g., Harrington et al., 2013, JAS, "A method for adaptive habit prediction 
in bulk microphysical models. Part I: Theoretical development"). 
 
Physical intuition also informs us that slope bD is too high since bD is a measure of the increase 
in mass with respect to size. A large (i.e., steep) slope indicates a relatively large mass increase 
per unit size increment, but this is not true for stellar or dendrite ice crystals since their ice 
density decreases with increasing size. 
 
 
Response: 
The argument presented in Mitchel et al. 1990 Sect 4a applies to plates or columns with constant 
aspect ratio. While, presented in this way, it is very clear, we chose to express it in a more general way 
since we were referring to shape groups 6 stellar and 11 spatial stellar. For stellar particles one 
would, as you are pointing out, not expect a high exponent (steep relationship) as we are observing for 
shape groups 6 and 11. Instead you would expect a decreasing density, or area ratio, with increasing 
size. However, in Vazquez Martin et al. 2020 (Figure 5 Bottom) we showed that, unexpectedly, the area 
ratio in this group is almost constant. This may be caused by a particular mix of shapes in shape group 
(6). Besides pristine stellar shapes, the group contains other shapes, such as for example rimed stellar 
and split stellar crystals. These two shapes (rimed stellar and split stellar crystals) account for 15 out 
of 43 particles in shape group (6) and excluding them results in a reduced exponent (less steep slope). 
These numbers, however, also highlight that the shape group suffers from bad statistics due to a low 
number of particles. Thus, it will be interesting to revisit this issue later, when more pristine stellar 
particles will have been added to our dataset. We will highlight these issues more clearly in the 
manuscript. 
Changes to the manuscript: 
Line 187-188: 
“However, a slope similar to spherical particles indicates that in these groups the morphology remains 
similar independent of size, i.e. during growth the ice particles grow equally in all three dimensions.” 
CHANGE TO: 
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“However, a slope similar to spherical particles may indicate that in these groups the morphology 
remains similar independent of size, i.e. ice particles scale equally in all three dimensions. An example 
for this would be hexagonal plates or columns that all have the same aspect ratio. For pristine stellar 
particles one may not expect such a steep slope similar to spherical particles, but rather a decreasing 
area ratio with increasing size.  Shape group (6), however, contains other shapes besides pristine stellar 
particles, such as rimed stellar and split stellar crystals.  A particular mix of shapes may cause an 
apparently steep slope. Indeed, the area ratio in this shape group is approximately constant (Vazquez 
Martin et al., 2020). Our dataset does not contain a sufficient number of stellar particles yet to analyse 
this further, by for example regrouping particle shapes. Additionally, the low number of particles in 
this group also results in a relatively high uncertainty (b~d = 2.60±0.69).” 
 
 
 
3) Lines 190-196: These shapes are all columnar, which may be a clue to the problem here. 
Reynolds Number Re is expressed by (2) in terms of Dmax, but due to hydrodynamical 
considerations, some argue that Dmax should be replaced by a "characteristic length" L* 
defined in Pruppacher and Klett (1997) as: L* = A/P, where A = total ice particle surface area 
and P = particle perimeter normal to the flow. For needles, changes in A and P will be roughly 
proportional, with L* changing much less than Dmax. 
 
As shown by Jayaweera (1971, JAS), L* is strongly related to the column radius (or basal face 
semi-axis) and weakly related to Dmax, indicating the formulation of Eqns. (2) and (5) in terms 
of Dmax are flawed based on ReL*. This is indeed the case for hexagonal columns. 
 
 
For our response, see Response to your major comment 4) 
 
 
4) Lines 196-199: Note that bD < 1.0 also for thick columns (C1e; group 3), with bD = 0.81. 
Compare this with Tables 1 & 3 in Mitchell et al. (1990, JAM)), where C1e bD =6 is found to be 
consistent with other studies based on dimensional-density relationships. Moreover, bD = 2.6 is 
very consistent with the theoretical prediction of Chen and Lamb for C1e bD (see their Fig. 12). 
This is strong evidence that the C1e bD in this current study suffers from some limitation. Please 
expose this issue for the readers. 
 
 
Response (to major comments 3) and 4) together): 
In Vazquez Martin 2021 (ACP) we showed that fall speed is very poorly correlated to Dmax for shape 
groups (1) Needles, (2) Crossed Needles, and (3) Thick columns. This supports the point that you are 
highlighting, i.e. that Dmax is not suitable to describe relationships. As we have described there, and 
as you are pointing out, a characteristic length that is similar to the width of columnar particles would 
be more suitable as it should be used to determine Reynolds number. Since we are using Reynolds 
number (together with the X-Re relationship), this has consequences for the resulting mass. For these 
three shape groups, related to columnar particles. Using Dmax will result in unreliable and/or 
incorrect mass. As you have suggested, replacing Dmax with the width (diameter) and using Re based 
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on that, should result in a better relationship between size (now width) and derived mass. Indeed, for a 
subset of 75 particles in shape group (3), for which column width can be easily defined, bD is 2.4. This 
seems consistent with bD = 2.6 by Mitchell et al. 1990 (Tab. 1), who, however, have used column length 
(if we interpreted L in that paper correctly) rather than width.  
We will include these arguments to improve the discussion and conclusions. 
Changes to the manuscript: 
Line 192-199: 
“We have seen in Vázquez-Martín et al. (2020b) that an increase in Dmax (needle length) is directly 
proportional to A, indicating that the diameter of these needle-shaped particles (needle width) remains 
similar, whereas Dmax, and consequently A is growing. Thus, these shapes are clear examples of a 
size-dependent morphology, i.e. as size increases, not all three dimensions grow at the same rate. In 
this case, since Dmax is approximately proportional to A, one would expect both values of   ̃bD and  
 ̃bA ≃ 1, which most of them are for these three shape groups. Only   ̃bD for shape groups (1) and (2) 
are smaller than 1, indicating a decreasing width as the particle length increases. This seems 
inconsistent, which might be due to the X–Re relationship given by Eq. 5 not being accurate for these 
shapes. However, this may also be related to the very low correlation in these two cases.” 
CHANGE TO: 
“We have seen in Vázquez-Martín et al. (2020b) that an increase in Dmax (needle length) is directly 
proportional to A, indicating that the diameter of these needle-shaped particles (needle width) remains 
similar, when Dmax and consequently also A are growing. Thus, Dmax is approximately proportional 
to A, and one would expect both values of   ̃bD and   ̃bA to be close to 1, which most of them are for 
these three shape groups. Vázquez-Martín et al. (2020b), observing the very poor correlation between 
Dmax and measured fall speed, argued that Dmax is not suitable to determine the Reynolds number. 
Therefore, a more suitable characteristic length should be used, rather than Dmax, to determine 
Reynolds number and derive mass from it. Otherwise, the derived mass, and consequently bD, are 
likely not useful.  Jayaweera (1971, JAS) suggested a characteristic length for hexagonal crystals for 
which the dimensions of the basal facet and the aspect ratio are known. Unfortunately, this information 
is not readily available for all particles in our dataset (or is not defined in case of more complex 
particles). Therefore, determined mass and relationships based on it should not be used.” 
Conclusions: 
Add a disclaimer about groups (1)-(3) to first bullet point or add a new second bullet point about that.  
 
 
5) Section 4.4.1 on plates: Chen and Lamb (1992) provide theoretical limits for columnar and 
planar ice crystals regarding bD, where bD for hexagonal plates lies between 2.0 and 3.0. In this 
current study for plates, bD = 1.72, indicating its value should be treated with caution; please 
make readers aware of this. Since side planes grow diffusionally through a different mechanism 
(Furakawa, 1982, J. Meteor. Soc. Japan), it is not clear whether these limits apply to side planes. 
Please mention this. 
 
 
Response: 
The shape group (5) Plates contains planar and plate-like shapes such as simple hexagonal plates but 
also stellar plates, rimed plates, split plates, and double plates. This mixture, and in particular the 
inclusion of shapes other than pristine plates, is likely responsible for bD in this study being below 2, 
which is the theoretical limit for planar particles approximated by spheroids (Chen and Lamb, 1994). 
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While we only have a handful simple hexagonal plates, rimed, skeletal, and double plates are 
represented with 39 or more particles, and for these shapes bD is 1.9 for skeletal plates and 2.1 for the 
other two shapes. We will discuss this better in Sect 4.4.1. 
Changes to the manuscript: 
Add to the end of Sect 4.4.1: 
“Our relationship [VM] for shape group (5) has a lower slope bD than any of the other relationships 
from previous studies. Chen and Lamb (1992) approximated hexagonal plates with spheroids and 
found a theoretical lower limit of 2 for bD of plates, which bD = 1.76 of [VM] seems to violate. While 
the selected previous studies with bD values larger than 2 looked at particular shapes, [VM]’s shape 
group (5) represents a mixture of plate-like shapes such as rimed plates, split plates, and double plates.  
Two of the shapes are represented with more than 40 particles, namely rimed plates (R1c) and double 
plates (P1o), sufficient to determine their own relationships. Both have steeper relationships with bD 
of approximately 2.1. Double plates are composed of two plates with a small gap in between, so that 
they resemble almost thicker plates. They are most similar to the thick plates (C1h) by [H] within they 
their size range. Most rimed plates in our dataset are thinner plates with light to moderate riming. They 
are most similar to hexagonal plates by [M].”  
Fig. 4a and Tab. 2: 
We are adding two relationships with the labels 1R. and 1P. In Tab. 2 they will be inserted after 1. 
[VM], in Fig 4a as black dashed lines: 
Rimed plates 44 0.37--0.6 mm 1.2--17 μg 0.11--0.6 m s-1 1R. m /(μg) 
= 21.1 · (D/mm)2.06 0.66 [VM] 
Double plates 55 0.21--0.9 mm 1.7--58 μg 0.11--0.6 m s-1 1P. m /(μg) 
= 31.3 · (D/mm)2.15 0.88 [VM] 
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Fig 4a 
 
 
6) Figure 3 caption, last sentence: The text indicates that this should be valid for all ice particles 
and not just spheres; please make this clear. 
 
 
Response: 
You are correct, it is valid in general regardless of shape. We will correct it in the manuscript. 
Changes to the manuscript: 
Last sentence in caption Fig 3: 
“The green solid line represents a reference for spheres, which corresponds b̃D/b̃A = b.” 
CHANGE TO: 
“The green solid line corresponds to the general relationship between the slopes, b̃D/b̃A = b (derived 
from Eq. 7, 8, and 10).” 
 
 
7) Lines 290-291: Can it be said that Re-X represents the fall speed upper limit? 
 
Response: 
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Yes, this could be said. We should then also mention that the fit line [VM] fits well our data at masses 
below 10 μg. The only two particles heavier than 10 μg would be overpredicted by the fit line (see Fig. 
A3, panel for shape group 15).  
Changes to the manuscript: 
Line 289-290: 
“The straight line for the shape group (15) of [VM] is at somewhat lower fall speeds below 
approximately 10 μg and at higher speeds above that mass. It represents …” 
CHANGE TO: 
“The straight line for the shape group (15) of [VM] is at somewhat lower fall speeds below 
approximately 10 μg. All data but two particles in shape group (15) have m below that mass. For those 
two particles heavier than 10 μg the fit line [VM] overpredicts mass (see Fig. A3 in the Appendix). 
While [VM] represents …” 
Line 291: 
“…, whereas the two curved lines of [G] and [Re–X] represent only liquid droplets.” 
CHANGE TO: 
“…, the two curved lines of [G] and [Re–X] represent only liquid droplets, and, thus, an upper limit in 
fall speed.” 
 
 
8) Summary and conclusions; 1st bullet: Will the fact that m is derived from v produce a co-
variance that contributes to the stronger correlation between v and m? If so, please mention this 
wherever it is most appropriate. 
 
 
Response: 
Yes, thank you for pointing this out. We have already mentioned this in the last sentence in Sect. 4.1. 
We will repeat a similar statement in the Summary and conclusions.   
Changes to the manuscript: 
Line 310, add a last sentence to this bullet point: 
“The fact that m is derived from v contributes to a stronger correlation between both quantities.” 
 
 
9) Summary and conclusions; 2nd bullet: Will not the power-law approximations have greater 
uncertainty than the relationships based on Eq. 5? Please address this concern wherever it is 
most appropriate. 
 
 
Response: 
This point is related to your major comment 1), so please also look at our response to that comment. 
If the same data is used to derive first a v-D relationship and then a m-D relationship from that, or to 
derive a m-D relationship directly m values that have been added to the data (Sect 3.1), then the 
resulting m-D are identical (as long as the same X-Re relationship is used. With our dataset we have 
the choice to use either method. By deriving m-D directly (the method outlined in Sects 3.1 and 3.2) we 
avoid having to consider error propagation, we can use Eq 5 (instead of a power-law approximation of 
Eq. 5). In addition to changes in response to your major comment 1) we will also modify the text in this 
bullet point to make this clearer. 
Changes to the manuscript: 
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Lines 311-314: 
“When deriving the m vs Dmax, m vs A, and v vs m relationships analytically from A vs Dmax (see 
Section 3.3), the results are equivalent to fitting to measured data. The analytical relationships Eq. 13–
Eq. 15 can be used if power laws are available instead of data. However, fitting to data has the 
advantage that Eq. 5 can be used rather than power-law approximations required for the analytical 
derivation of relationships (see B in Appendix).” 
CHANGE TO: 
“When deriving the m vs Dmax, m vs A, and v vs m relationships analytically from A vs Dmax, v vs 
Dmax, and v vs A given from a suitable dataset (see Sect. 3.3), the results are equivalent to fitting to 
the same dataset after adding m for individual particles derived from v (See Sect. 3.1). On the one 
hand, fitting m vs Dmax, m vs A, and v vs m relationships to data has the advantage that the X-Re 
relationship from Eq. 5 can be used rather than power-law approximations required for the analytical 
derivation of the same relationships (see B in Appendix). On the other hand, if a suitable dataset is not 
available but power-law relationships for A vs Dmax, v vs Dmax, and v vs A are, the analytically 
derived mass relationships Eq. 13–Eq. 15 can be used.” 
 
 
10) Summary and conclusions; last sentence of 3rd bullet: But we know this is not true based on 
Chen and Lamb (1994, JAS) and other m-D measurements for stellar crystals. Please remove 
this last sentence. 
 
 
Response: 
Thank you for pointing this out. As the reason for these high slopes of groups (6) and (11) is uncertain 
(see also our response to your major comment 2), we will remove that statement. 
Changes to the manuscript: 
Lines 315-319: 
“Their values are highest for the shape groups (6) Stellar, (11) Spatial stellar, (12) Graupel, and (15) 
Spherical, close to the values for spheres, i.e.  ̃bD = 3 and  ̃bA = 3/2. While this is as expected for 
shape groups (12) and (15), for groups (6) and (11) it indicates that the morphology in these shape 
groups remains similar independent of size, i.e. during growth the ice particles grow equally in all 
three dimensions.” 
CHANGE TO: 
“Their values are highest for the shape groups (6) Stellar, (11) Spatial stellar, (12) Graupel, and (15) 
Spherical. For groups (12) and (15) they are close to the values expected for spheres, i.e.  ̃bD = 3 and 
 ̃bA = 3/2.” 
 
 
11) Line 328-330: I don't see this relationship plotted (spherical ice having a density of 0.12 g cm-
3). If it is not shown, then please add in parentheses, "not shown". 
 
 
Response: 
Thank you, we agree. Accordingly, we will modify this conclusion as well as the corresponding 
sentence in the discussion (Sect. 4.4.3).  
Changes to the manuscript: 
Lines 329-330: 
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“…, and it is well approximated, by the mass of spherical particles with a density of 0.12 g cm−3. 
CHANGE TO: 
“…, and it is well approximated by the mass of spherical particles with a density of 0.12 g cm−3 (not 
shown in Figure 4-d).” 
Line 275:  
“It is well approximated, by the mass of spherical particles with a density of 0.12 g cm−3, which …” 
CHANGE TO: 
“It is well approximated by the mass of spherical particles with a density of 0.12 g cm−3 (not shown in 
Figure 4-d), which …” 
 
 

n Minor comments: 
 
1) Line 150: Apparent typo; Sect. 3.1 => 3.2? 
 
Response: 
Thank you for pointing this out. The method is actually described in Sections 3.1 and 3.2. This line will 
be changed in response to your major comment 1). 
Changes to the manuscript: 
Line 150: 
CHANGE TO “…described in Sect. 3.1 with fitting detailed in Sect. 3.2…” 
 
 
2) Lines 248-9: It appears that Ma has not been defined. 
 
Response: 
Thank you for finding this oversight on our side. [Ma] corresponded to a study that we are not 
displaying, it will be removed. 
Changes to the manuscript: 
Lines 249-249: 
“For [VM], as well as for [H], [E], [K], [M], and [Ma], D corresponds to Dmax.” 
CHANGE TO: 
“For [VM], as well as for [H], [E], [K], and [M], D corresponds to Dmax.” 
 
 
3) Line 329: The second comma is not needed. 
 
Response: 
Thank you. The comma will be removed in response to your major comment 11). 
 
 
 

n Other changes: 
 
1)  We will change the numbers of equations (10)-(12) as follows: 
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2)  References used in Table 2 and Figure 4 and mentioned in the text will be modified and adapted 
to ACP style and for consistency with “Shape dependence of snow crystal fall speed, S. Vázquez-
Martín et al., Atmos. Chem. Phys., 21, 7545–7565, 2021”: 
 
- Locatelli and Hobbs (1974) [Lo] →  L74 
- Heymsfield and Kajikawa (1987) [H] → H87 
- Kajikawa (1989) [K] → K89 
- Mitchell (1996) [M] → M96 
- Erfani and Mitchell (2017) [E] → E17 
- The relationships found in this work will be shown as VM21 instead of as [VM]. 
 
3)  The author contributions Lines 340-342 will be modified and completed as follows: 
 
Author contributions. TK and SVM performed the conceptualization; TK prepared the resources and 
the instrumentation; SVM and TK performed the experiments and data collection; SVM and TK 
prepared the formal analysis; SVM and TK carried out the data curation; SVM prepared the original 
draft; SVM, TK and SE contributed to changes and writing during review and revisions; SVM 
prepared the visualization that includes tables and figures; TK and SE carried out the supervision of 
the research project. 


