Highly Oxygenated Organic Molecules Produced by the Oxidation of Benzene and Toluene in a Wide Range of OH Exposure and NOx Conditions

Xi Cheng,1 Qi Chen,1,* Yong Jie Li,2,* Yan Zheng,1 Keren Liao,1 Guancong Huang1

1State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
2Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, China

*Correspondence to: Qi Chen (qichenpku@pku.edu.cn) and Yong Jie Li (yongjieli@um.edu.mo)

Abstract. Oxidation of aromatic volatile organic compounds (VOCs) leads to the formation of tropospheric ozone and secondary organic aerosol, for which gaseous oxygenated products are important intermediates. We show herein experimental results of highly oxygenated organic molecules (HOMs) produced by the oxidation of benzene and toluene in a wide range of OH exposure and NOx conditions. The results suggest multi-generation OH oxidation plays an important role in the product distribution, which likely proceeds more preferably via H subtraction than OH addition for early-generation products from light aromatics. Our experimental conditions promote the formation of more oxygenated products than previous flow-tube studies. The formation of dimeric products however was suppressed and might be unfavorable under conditions of high OH exposure and low NOx in toluene oxidation. Under high-NOx conditions, nitrogen-containing multifunctional products are formed, while the formation of other HOMs is suppressed. Products containing two nitrogen atoms become more important as the NOx level increases, and the concentrations of these compounds depend significantly on NO2. The highly oxygenated nitrogen-containing products might be peroxyacylnitrates, implying a prolonged effective lifetime of RO2 that facilitates regional pollution. Our results call for further investigation on the roles of high-NO2 conditions in the oxidation of aromatic VOCs.
1 Introduction

Atmospheric oxidation of volatile organic compounds (VOCs) are crucial in the formation of tropospheric ozone (O₃) and secondary organic aerosol (SOA) (Calvert et al., 2015; Seinfeld and Pandis, 2016). Enormous studies have been conducted for the O₃ formation potentials and SOA yields of light aromatic VOCs such as benzene and toluene (Calvert et al., 2002; Atkinson and Arey, 2003; Ziemann and Atkinson, 2012). The peroxy radicals (either RO₂ or HO₂) that are generated from the oxidation process convert NO to NO₂. Ground-state oxygen atoms O(^3)P are produced through the photolysis of NO₂, and the reaction between the O(^3)P and O₂ is the main source of tropospheric O₃ (Calvert et al., 2015). The oxygenated organic products, on the other hand, may form SOA through either nucleation or condensation with various mass yields, depending on the structure of the precursors and the NOₓ (= NO + NO₂) level (Ng et al., 2007; Li et al., 2016). Therefore, for both O₃ and SOA formation via VOC oxidation, NOₓ plays critical roles (Atkinson, 2000; Sato et al., 2012; Tsiligiannis et al., 2019; Garmash et al., 2020).

OH-initiated oxidation of light aromatics occurs mainly via OH addition, with about 90% of preference (Calvert et al., 2002; Wu et al., 2014; Schwantes et al., 2017). As described in Sect. S1 in the Supplement, the formation of bicyclic peroxy radicals (BPRs) is central to aromatic oxidation in the absence of NOₓ. Significant fractions of the oxidation (e.g., 0.35 for benzene and 0.65 for toluene) may lead to the formation of BPRs (Scheme S1 in the Supplement) (Birdsall et al., 2010), followed by further reactions to form highly oxygenated organic molecules (HOMs) (Crounse et al., 2013; Ehn et al., 2014; Berndt et al., 2016; Bianchi et al., 2019). The fate of the BPRs has been recently investigated by using time-of-flight chemical ionization mass spectrometer (TOF-CIMS), which is suitable for measuring HOMs. The TOF-CIMS measurements show that major products for the reactions between BPRs and HO₂/RO₂ in the absence of NOₓ include carbonyls, alcohols, hydroperoxides, dimers, and alkoxy (RO) radicals (Birdsall et al., 2010; Wang et al., 2017; Molteni et al., 2018; Zaytsev et al., 2019; Garmash et al., 2020). The BPR-derived products that still possess the bicyclic skeleton are considered as the major ring-retaining products from the oxidation of light aromatics (Zaytsev et al., 2019). Decomposition of RO radicals may lead to fragmented products such as di-carbonyls and epoxides (Yu and Jeffries, 1997; Yu et al., 1997; Arey et al., 2009; Zaytsev et al., 2019). The formation of HOMs may involve multi-step auto-oxidation and multi-generation OH reaction (Zaytsev et al., 2019; Garmash et al., 2020; Y. Wang et al., 2020). Yet, it is still unclear whether the formation of HOMs is controlled by multi-step auto-oxidation or multi-generation OH oxidation.

Conditions of flow-tube or smog-chamber experiments have covered various conditions of OH concentrations (10⁴ to 10¹¹ molecule cm⁻³) and residence times (10 s to 1 h) (Wang et al., 2017; Molteni et al., 2018; Garmash et al., 2020). Extrapolation of these results to tropospheric conditions requires further investigations under a wide range of NOₓ levels. NOₓ are rich in urban environments and compete with HO₂ and RO₂ for the termination of RO₂ radicals (Calvert et al., 2002; Seinfeld and Pandis, 2016). Early studies show a strong dependence of SOA mass yields on NOₓ, owing to the formation of more-volatile products through the termination of RO₂ by NO (Ng et al., 2007; Sato et al., 2012). There are also a few recent studies on the gaseous oxygenated products from aromatic oxidation in the presence of NOₓ (Tsiligiannis et al., 2019; Garmash et al., 2020; Y. Wang et al., 2020). Garmash et al. (2020) found that nitrated phenols (NPs) contribute significantly to the gaseous nitrogen-
containing HOMs produced by the benzene oxidation in the presence of NOx. Tsiligiannis et al. (2019) show prevalent formation of organic nitrates (ONs) from 1,3,5-trimethylbenzene (TMB) oxidation, especially for atmospherically relevant \([\text{NO}_2]:[\text{VOC}]\) ratios of greater than 1. In addition to ONs, Y. Wang et al. (2020) show the elevated formation of dinitrates from the oxidation of TMB isomers in the presence of NOx. In general, the formation of these nitrogen-containing products suppresses the formation of other HOMs (Tsiligiannis et al., 2019; Garmash et al., 2020; Y. Wang et al., 2020). However, the dependence of product distributions on NOx conditions (e.g., \([\text{NO}_x]:[\text{VOC}]\) or \([\text{NO}_2]:[\text{NO}]\) ratios) remains largely unclear.

In this study, we investigate the production of gaseous HOMs from the OH-initiated oxidation of benzene and toluene in an oxidation flow reactor (OFR) by using nitrate-adduct TOF-CIMS (NO\(_2^+\)-TOF-CIMS). A wide range of OH exposure and NOx conditions are studied. Distributions and molar yields of key products are investigated. Kinetic analysis helps inferring the possible formulas of nitrogen-containing HOMs.

2 Experimental Section

2.1 Oxidation flow reactor

The oxidation experiments are conducted in a 13.3-L Aerodyne Potential Aerosol Mass (PAM) OFR reactor. The schematic of the experimental setup and the example experimental sequence are shown in Figs. S1 and S2 in the Supplement, respectively. The OFR was operated in two continuous-flow modes named as OFR254-5 and OFR254-5-iN\(_2\)O (Lambe et al., 2017; Peng et al., 2018). For the OFR254-5 mode, the inside UV lamps emit photons at 254 nm to generate OH radicals in the reactor via the reaction of \(\text{O}^{(1)}\text{D}) + \text{H}_2\text{O} \rightarrow 2\text{OH}\). An outside UV lamp produces O\(_3\) and leads to about 5 ppm of O\(_3\) in the OFR. For the OFR254-5-iN\(_2\)O mode, N\(_2\)O (99.5\%) is injected into the OFR to achieve N\(_2\)O mixing ratios of 1.1\% (OFR254-5-iN\(_2\)O1.1) and 4.4\% (OFR254-5-iN\(_2\)O4.4). NO and NO\(_2\) are then formed by the reaction \(\text{O}^{(1)}\text{D}) + \text{N}_2\text{O} \rightarrow 2\text{NO}\), followed by the reaction NO + O\(_3\) → NO\(_2\) + O\(_2\) (Lambe et al., 2017). The conditions for OFR254-5 are considered as low-NO\(_x\), whereas the latter are high-NO\(_x\). Under each of these three sets of experiments, OH exposure and NOx levels were varied by ramping the voltage of the UV lamps in the OFR. The total flow rate was about 8.4 L min\(^{-1}\), resulting in a mean residence time of 95 s in the OFR. Relative humidity (RH) in the OFR was about 20 to 55\% at 25 ± 2 °C, corresponding to H\(_2\)O mixing ratios of about 0.7 to 1.5\%. Details about the experimental setup are provided in Sect. S2 in the Supplement.

In total, 28 experiments were conducted for initial mixing ratios of 110 ppb benzene and 50 ppb toluene. Table S1 in the Supplement lists the experimental conditions as well as measured and derived quantities for all experiments. The concentrations of reactive species such as OH, HO\(_2\), NO, and NO\(_2\) were estimated by an OFR-based photochemical box model (PAMchem) (Lambe et al., 2017). The box model simulations are described in detail in Sect. S2, for which calibration experiments with SO\(_2\) was conducted to constrain the actinic flux at 254 nm (Fig. S3 in the Supplement). Briefly, the model suggests OH exposure of about \(1.1 \times 10^{11}\) to \(2.5 \times 10^{12}\) molecules cm\(^{-3}\) s for our experiments, corresponding to equivalent photochemical age of 0.8 to 19.3 days with a mean OH concentration of \(1.5 \times 10^6\) molecules cm\(^{-3}\). For high NO\(_x\) experiments,
the OFR-exit NO and NO₂ concentrations were 0.2 to 5.1 ppb and 15.8 to 231.4 ppb, respectively, leading to [NO₃]:[VOC] ratios of 0.2 to 2.2 for benzene and 0.4 to 4.7 for toluene.

90 2.2 Chemical characterization

HOMs were characterized by an Aerodyne NO₃-TOF-CIMS. Details about the instrument operation and data analysis are described elsewhere (Cheng et al., 2020). Briefly, mass calibration was performed on the reagent ions and selected Teflon-related ions, which covers the m/z range of 62 to 676 with mass accuracies of less than 10 ppm. The “non-production” ions were identified by positive matrix factorization (PMF) analysis and were removed from the analysis (Fig. S4 in the Supplement). The HNO₃NO₃-adduct ions were identified by the signal correlations between the NO₃-adduct and HNO₃NO₃-adduct ions and were removed from the analysis (Fig. S5 in the Supplement). Only NO₃-adduct ions are presented herein. The background signals of individual ions were determined on the basis of the measurements made without the injection of VOCs (Fig. S2). Because of the lack of standards, we applied the calibration factor of 4-nitrophenol (i.e., 0.0020 ncps ppt⁻¹ or 1.66 × 10¹⁰ molecules cm⁻³) to HOMs, which is similar to the commonly-used calibration factors of H₂SO₄ (i.e., 1.62 × 10¹⁰ molecules cm⁻³ for our instrument herein and 1.89 × 10¹⁰ molecules cm⁻³ reported by Jokinen et al. (2012)) and perfluorohexanoic acid (i.e., 1.6 × 10¹⁰ molecules cm⁻³ reported by Ehn et al. (2014)). All calibration factors are corrected by wall loss. Ehn et al. (2014) reported a ± 50% of uncertainty. For our experiments, we estimate an uncertainty of 42% on the basis of nitrated phenol calibrations (Cheng et al., 2020). In some experiments, the VOC precursors and less-oxygenated gaseous products were monitored by an IONICON proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTof). The instrument operation and data analysis have been described previously (Huang et al., 2019). The measurements have a total uncertainty of about 21%. Particle size distributions were measured by a scanning mobility particle sizer (SMPS, TSI, 3938). The SOA mass concentrations are measured by an Aerodyne long-time-of-flight soot-particle aerosol mass spectrometer (LTOF-SP-AMS) (Zheng et al., 2020).

3 Results and discussion

3.1 Product categories

Figure 1 shows the mass spectra of gaseous oxygenated products produced by benzene and toluene oxidation in typical low- and high-NOₓ experiments. The fitted ion peaks are categorized into fragmented products, open-shell products, closed-shell products, and dimeric products as well as nitrogen-containing products when NOₓ is present. Tables S2-S3 in the Supplement list the corresponding peak lists and relative signal contributions of major products in each category. The fragmented products are the most abundant category under low-NOₓ conditions. They have carbon numbers less than their precursors, indicating possibly ring opening/scission from presumably RO radicals (Zaytsev et al., 2019). C₂H₄O₄ shows the highest signal intensity in the fragmented category under low-NOₓ conditions. C₃H₅O₅ and C₅H₆O₆ are the other two abundant common products in
this category. Under high-NOx conditions, C₆H₅O₅ is the most abundant common product for benzene and toluene oxidation. Many of the fragmented products have been detected in SOA (Gallimore et al., 2011; Gowda and Kawamura, 2018).

The ring-retaining HOM products may have even (closed-shell) or odd (open-shell) hydrogen numbers (Molteni et al., 2018; Zaytsev et al., 2019; Garmash et al., 2020). The open-shell products observed by the NOₓ-TOF-CIMS are more likely RO₂ radicals rather than RO radicals because that with relatively large carbon numbers, the former have lifetimes of seconds that are much longer than the latter of < 10⁻⁴ s (Orlando et al., 2003; Seinfeld and Pandis, 2016; Zhao et al., 2018). Under low-NOₓ conditions, the BPRs (i.e., C₆H₅O₅ from benzene oxidation and C₇H₇O₅ from toluene oxidation) have relatively low signal intensities (0.1%). Products that are presumably formed by further auto-oxidation of BPRs such as C₆H₇O₇ and C₆H₆O₅ for benzene (or C₇H₈O₇ and C₇H₇O₅ for toluene) have much greater signal intensities compared with the BPRs, especially for the O₈ products. Other open-shell products with two less hydrogen atoms (e.g., H₅ for benzene and H₇ for toluene) or with an even number of oxygen atoms (e.g., O₆ or O₁₀) are also present. Under high-NOₓ conditions, the main open-shell products are the O₉ products, similar to the low-NOₓ case.

Among the closed-shell products produced by benzene oxidation, C₆H₅O₅,10 and C₆H₅O₅,10 with one oxygen atom apart show relatively high signal intensities, and C₆H₅O₇ and C₆H₅O₆ are the most abundant ones. C₆H₅O₇ and C₆H₅O₆ might be carbonyl products from the termination of C₆H₇O₆ and C₆H₇O₇ by HO₂ or RO₂ (Zaytsev et al., 2019; Garmash et al., 2020). C₆H₅O₆ is probably formed by the ring breakage of bicyclic alkoxy radical followed by the 1,5 aldehydic alkoxy H-shift reactions (Xu et al., 2020), which involves the RO pathway as described in detail in Sect. S3 of the Supplement. For other products formed by the termination reactions of BPR with HO₂ or RO₂, bicyclic hydroperoxide (C₆H₇O₅), carbonyl (C₆H₅O₆) and alcohol (C₆H₅O₇) have relatively small signals, whereas the products that may involve two or three steps of auto-oxidation (e.g., C₆H₅O₇ and C₆H₅O₆) have greater signal intensities. Similarly for toluene oxidation, the bicyclic hydroperoxide (C₇H₈O₅) shows lower signals than C₇H₈O₇ and C₇H₈O₆ that may be associated with multiple steps of auto-oxidation. C₇H₈O₆ and C₇H₈O₇ are the main closed-shell products that might be carbonyls that are produced by the termination of C₇H₈O₇ and C₇H₈O₆ by HO₂ or RO₂, respectively. The formation of C₇H₈O₇ may also be explained by the RO pathway, similar to C₆H₅O₅ (Sect. S3). The RO pathway, if it occurs, may potentially lead to various products with significant signals, which remains largely overlooked in studies of aromatic oxidation (Xu et al., 2020).

The other two categories are dimeric and nitrogen-containing products. Under low-NOₓ conditions, dimeric products with 8-14 even oxygen atoms are clearly present. C₁₂H₁₄O₈ and C₁₄H₁₆O₈ are perhaps formed via self-reactions of the BPRs for benzene and toluene, respectively. The distribution of dimeric products is in line with the open-shell and closed-shell products. We observe a number of dimeric products with odd oxygen numbers that are perhaps produced by cross-reactions of odd- and even-oxygen RO₂ (Molteni et al., 2018; Garmash et al., 2020). The presence of NOₓ results in the formation of nitrogen-containing products with one or two nitrogen atoms, and the signal abundances of all other oxygenated products are much lower than the case of low-NOₓ experiments. Such a suppression has been reported previously (Tsiligiannis et al., 2019; Garmash et al., 2020; Y. Wang et al., 2020; Mehra et al., 2020). The nitrogen-containing products are expected to be organic...
nitrates or nitrated phenols. For benzene oxidation, C₆H₅NO₃, C₆H₅NO₄, and C₆H₅N₂O₆ are the most abundant, which are plausibly nitrophenol, nitrocatechol, and dinitrocatechol, respectively. For toluene, C₆H₅NO₂ (nitrophenol), C₆H₅NO₄ (nitrocatechol), C₆H₅NO₃ (methylnitrophenol), and C₆H₅NO₄ (methylnitrocatechol) are the main tentatively assigned nitrated phenols. Significant secondary production of these compounds from aromatic oxidation have been observed in urban Beijing (Cheng et al., 2020). Other products such as C₆H₅NO₈, C₆H₅NO₉, and C₆H₅NO₁₀ are most likely organic (peroxy) nitrates. Scheme S2 in the Supplement gives an example of proposed formation mechanisms for nitrogen-containing products starting from the BPR of C₇H₈O₅.

3.2 Low-NOₓ conditions

Product Distribution. The products that we observed herein (Tables S2-S3) are generally in agreement with those found in previous low-NOₓ studies (Schwantes et al., 2017; Molteni et al., 2018; Zaytsev et al., 2019; Mehra et al., 2020; Garmash et al., 2020). Differences exist in the relative abundance of species with different oxygen contents within each product category (Molteni et al., 2018; Garmash et al., 2020). Table S4 in the Supplement lists the experimental conditions and relative signal intensities of some major oxygenated products formed by benzene oxidation. Molteni et al. (2018) observes predominant production of C₆H₅O₅ (plausibly hydroperoxides) and C₁₂H₁₄O₅. Garmash et al. (2020) shows relatively high signals of C₆H₅O₇ and C₁₂H₁₄O₈, whereas the chamber study and our study both show relatively high signals of C₆H₅O₇ and C₆H₅O₉ and lower signals of dimeric products. Moreover, the signal intensities of RO₂ (e.g., C₆H₅O₅ and C₆H₅O₇) are greater in our study than in other studies. Both experimental conditions and instrument detection are factors that may affect the product distribution. For example, a longer residence time might promote multi-step auto-oxidation. For auto-oxidation, H shift has rate constants of about 10⁻³ to 1 s⁻¹ and is likely the rate-determining step under atmospheric conditions, having reaction times of 1 to 10³ s that are much longer than the subsequent O₂ addition of µs (Orlando et al., 2003; Bianchi et al., 2019). Garmash et al. (2020) indicated that fewer auto-oxidation steps would be expected in flow-tube experiments. The flow-tube study herein has relatively longer residence time than others, which is consistent with relatively more abundant O₇ and O₉ products. Ambient environments have much lower OH concentrations but longer residence times depending on meteorological conditions, which may suggest more oxygenated products from multi-steps of auto-oxidation. For detection, the instrument efficiency might be different for HOMs having different clustering capability (e.g., numbers of functional group as hydrogen-bond donors) (Hyttinen et al., 2015). Tuning might affect the transmission of product ions in different m/z range or affect the efficiency of dimer clustering (Heinritzi et al., 2016; Brophy and Farmer, 2015).

Effects of OH Exposure. As shown in Fig. 2a, the concentrations of fragmented, closed-shell, open-shell and dimeric products formed by benzene oxidation increase with increasing OH exposure that corresponds to 2.4 to 16.1 days of atmospheric equivalent photochemical age. Elevated concentrations of open-shell products (e.g., RO₂) and HO₂ are expected for greater OH exposure, leading to enhanced production of the closed-shell and dimeric products through the RO₂ + HO₂ and RO₂ + RO₂ reactions. These processes may be limited by the availability of RO₂ (< 0.9 ppt in our study) rather than that of HO₂ (0.5 - 2.4
Consistently, the concentrations of dimeric products are much lower than that of monomeric closed-shell products. For toluene oxidation, the dependence of the product formation on OH exposure is less significant than that for benzene (Fig. 2b). The concentrations of fragmented, closed-shell and open-shell products first increase and then slightly decrease with the increasing OH exposure that corresponds to 2.4 to 19.4 days of atmospheric equivalent photochemical age. Interestingly, the concentrations of dimeric products decrease as the OH exposure increases, suggesting unfavorable dimer formation under conditions of high OH exposure for toluene oxidation. Whether this phenomenon is related to the substituted methyl group or not needs further investigations.

Enhanced formation of more oxygenated products was observed for elevated OH exposures. For example, the concentrations of C₆H₄O₇ increase first and stay relatively stable as the OH exposure increases, whereas the concentrations of C₆H₅O₅ decreases at high OH exposures for benzene oxidation. The concentrations of the hydroperoxide products (C₆H₄O₅⁺) such as C₆H₆O₇ increases as OH exposure increases whereas the concentrations of C₆H₅O₅ decreases. For toluene oxidation, the concentrations of C₆H₄O₅⁺ (C₇H₁₀O₅ and C₇H₁₀O₇) both decrease. The concentrations of carbonyl products (C₅H₄O₆) increase with OH exposure for benzene but not for toluene. We do not observe significant signals for C₅H₁₀O₄ (alcohols) from BPR C₅H₁₁O₅, but C₅H₁₀O₆ from RO₂ C₅H₁₁O₇ are of high concentrations. The concentrations of C₅H₁₀O₆ (alcohol) from benzene also increase as the OH exposure increases while the concentrations for C₅H₁₀O₅ from toluene decrease. Overall, the enhanced formation of more-oxygenated products at high OH exposure is more significant for benzene than for toluene. A possible explanation is that toluene oxidation may involve more multi-generation OH oxidation because of the substituted methyl group.
Increasing OH exposure also enhances the formation of more-oxygenated fragmented products (Fig. S6 in the Supplement). C₅H₄O₃ (perhaps epoxybutanodial) has been widely observed in aromatic oxidation (Wang et al., 2013; Wu et al., 2014; Zaytsev et al., 2019). The concentrations of C₅H₄O₃ decrease monotonically as the OH exposure increases for both benzene and toluene oxidation. For toluene oxidation, C₆H₆O₂ (perhaps methylglyoxal), C₆H₆O₂ (perhaps butenedial) and C₇H₆O₂ (perhaps methylbutenedial) that were detected by the PTR-QiTOF also show similar monotonic decreases. By contrast, the concentrations of C₃H₆O₅, C₃H₆O₅, and C₃H₆O₆ increase with increasing OH exposures for both benzene and toluene oxidation. The concentrations of other O₅,7 products also increase as the OH exposure increases. Similar to the open-shell and closed-shell products, the increasing trends are more significant for benzene-derived products than those for toluene-derived ones. This observation is in agreement with Garmash et al. (2020) who suggested that first-generation fragmented products were converted to more-oxygenated ones through further oxidation as the OH exposure increases. Alternatively, these more-oxygenated fragmented products might also be direct decomposition products of highly oxygenated RO radicals, which have been shown to play important roles in product formation (Noda et al., 2009; Birdsall and Elrod, 2011).

Multi-generation OH oxidation. Because of high OH exposures, the OFR conditions usually favor multi-generation reactions (Lambe et al., 2011). Products with hydrogen numbers < y and > y+2 may be produced by multi-generation OH reactions. For example, the closed-shell products from benzene oxidation should contain at least one double bond which can further react with OH radicals via OH addition to form products with two more hydrogen atoms (e.g., to form C₅H₁₀O₂). The formation of C₇H₆O₂ from the closed-shell products of benzene oxidation may involve multi-generation OH reactions via H abstraction and subsequent termination by a loss of OH or HO₂ (Molteni et al., 2018; Garmash et al., 2020). There are significant contributions of products with hydrogen numbers < y and > y+2 in our experiments (Tables S2 and S3), highlighting the importance of multi-generation OH reactions in production formation. On the other hand, the formation of y and y+2 products may also involve multi-step OH addition or H subtraction that make conversions between the two groups of products. For the phenolic pathway, the main products of C₇H₆O₂ and C₇H₆O₂ may be produced by dihydroxy-, trihydroxy- and even multi-OH substituted-benzene or toluene (Schwantes et al., 2017).

Figure 3 shows the concentrations and the relative contributions of the closed-shell product groups including C₅H₃O₂, C₅H₄O₂, C₇H₅O₂ and C₇H₆O₃. For both benzene and toluene oxidation, the concentrations of these closed-shell products increase as the OH exposure increases for the atmospherically relevant equivalent photochemical age (< 10 days). For greater OH exposures, the concentrations of y-2 products keep increasing, whereas the concentrations of other products start to decrease (Fig. 3a-b). The decreasing trends at high OH exposures are more significant for toluene-derived products. Such differences might be explained by the methyl group in toluene and the added -OH groups during oxidation. Both functional groups increase the electron density on the aromatic ring through a resonant electron-donating effect, thereby activating the aromatic ring and facilitating further addition reactions to form products with multiple -OH groups (M. Wang et al., 2020). Interestingly, the relative fractions of the C₅H₃O₂ and C₇H₅O₃ products for both benzene and toluene oxidation show opposite trends (Fig. 3c-d). The increasing fractions of y-2 products but decreasing fractions of y+4 products for increasing OH exposures as well as
the monotonically increasing concentration of y-2 products suggest that the multi-generation OH oxidation may proceed preferably via H subtraction rather than OH addition. Compared with their precursors (benzene and toluene), the closed-shell products are less conjugated and thus OH addition is probably less favorable.

Estimated Molar Yields. Figure S7 in the Supplement shows the scatter plot of the concentrations of HOMs detected by NO$_2$-TOF-CIMS and the VOC oxidation rate for benzene and toluene oxidation under low-NO$_x$ conditions. As expected, the product concentrations increase with the VOC oxidation rates. Our estimated molar yields for the HOM products are 0.22 ± 0.10% (mean ± one standard deviation) for benzene oxidation and 0.46 ± 0.20% for toluene oxidation (Sect. S4). These yields are much lower than the smog-chamber results of 4.1% to 14.0% for benzene oxidation reported by Garmash et al. (2020) but slightly greater than the flow-tube yields of 0.1% to 0.2% reported by Molteni et al. (2018). A key difference of the experimental conditions is the much longer residence time in the chamber study (Table S4), suggesting perhaps a long characteristic time of HOM formation from aromatic oxidation. Instrument sensitivity might also affect the detection of HOMs but less likely lead to orders of magnitude difference in yields.

3.3 High-NO$_x$ conditions

Effects of NO$_x$ Level. The NO or NO$_2$ termination of RO$_2$ radicals competes with the HO$_2$ or RO$_2$ termination and forms nitrogen-containing species at the expense of other highly oxygenated products (Tsiligiannis et al., 2019; Garmash et al., 2020; Y. Wang et al., 2020; Mehra et al., 2020). Yet, quantitative understanding in the effects of NO$_x$ on the formation of oxygenated products is limited for aromatic precursors compared with those for biogenic VOCs (Nah et al., 2016; Lambe et al., 2017; Sarnela et al., 2018). The high-NO$_x$ experiments herein were conducted with [NO$_2$]:[NO] ratios of 20 to 120 (Table S1), which may represent urban afternoon conditions when fresh NO$_x$ emission is mostly converted to NO$_2$ and intense photochemistry fuels the oxidation of aromatics accompanying the NO$_x$ emission (Newland et al., 2021). Figure 4 shows the concentrations of observed HOMs for various [NO$_x$]:[HO$_2$] conditions. We use [NO$_2$]:[HO$_2$] instead of [NO]:[HO$_2$] to evaluate termination pathways to form various nitrogen-containing products such as nitrated phenols, organic nitrate, and peroxynitrate. The contributions from RO$_2$ + RO$_2$ termination are probably minor because of the low concentrations of RO$_2$ (< 0.9 ppt). Given the low and narrow range of NO$_x$ levels in the OFR254-iN$_2$O1.1 experiments, the product concentrations for all lamp voltages (i.e., a range of OH exposure) are averaged and shown as the first data point in each panel of Fig. 4.

Similar to previous findings, nitrogen-containing products are the dominant species in the spectra with concentrations up to 18.3 and 7.3 ppt for benzene and toluene oxidation, respectively. The concentrations of all HOMs start to decrease at high [NO$_x$]:[HO$_2$] ratios, except that the concentrations of dimeric products from benzene oxidation remain steady (Fig. 4a-b). The decreasing trends for closed-shell, open-shell, and fragmented products are expected, indicating significant competition of radical terminations by NO or NO$_2$. The decreasing concentrations of nitrogen-containing products for increasing [NO$_x$]:[HO$_2$] are however counterintuitive. Figure 4c-d shows the concentrations of main individual nitrogen-containing products. The initial increase of the concentrations of nitrogen-containing species might be explained by a decrease of HO$_2$ concentrations from 0.8...
- 1.5 ppb to 0.5 - 0.7 ppb as a result of the switch of 1.1% of N2O injection to 4.4% (Table S1). The further reduction of these compounds as [NO3]:[HO2] increases is probably related to the simultaneous decrease of RO2, or alternatively further reactions to products that have two nitrogen atoms. Figure S8 in the Supplement shows similar concentration trends for individual ring-scission and ring-retaining products with or without nitrogen in their formulas. There seems to be “optimal” [NO3]:[HO2] ratios of 130 to 240 for the formation of nitrogen-containing products. The dependence of those products with only one nitrogen atom on NOx is however not strong. The availability of RO2 is perhaps the key factor that limits their formation at low NOx levels and affects further reactions to form products with two nitrogen atoms at high NOx levels.

Nitrated phenols are the most abundant nitrogen-containing products under high-NOx conditions. In aromatic oxidation, these compounds are formed by the reaction of phenoxy RO radicals with NO2 (Jenkin et al., 2003). In the Master Chemical Mechanism (MCM v3.3.1), the phenoxy RO radicals can be formed via OH oxidation of phenols ($k_{OH} = 2.8 \times 10^{-11} \text{ cm}^3 \text{ molecule s}^{-1}$) with a low branching ratio of 0.06. They can also be formed by the NO3 oxidation of phenols ($k_{NO3} = 3.8 \times 10^{-12} \text{ cm}^3 \text{ molecule s}^{-1}$) with a high branching ratio of 0.74 (IUPAC, 2008). Under high-NOx conditions, the estimated concentrations of OH and NO3 radicals are 0.05 to 0.3 ppb and 0.01 to 0.09 ppb, respectively, suggesting that the NO3 oxidation of phenols contributed efficiently to the formation of nitrated phenols in the OFR experiments herein. When [NO3]:[HO2] increases, the concentrations of C$_6$H$_3$NO$_4$ (perhaps nitrocatechol or methylnitrocatechol) increase first and then decrease. The concentrations of C$_6$H$_5$NO$_3$ (perhaps nitrophenol or methylnitrophenol) however show a weak dependence on the NO3 level, suggesting the availability of RO radical might be the limiting factor in controlling the formation of nitrated phenols herein. Interestingly, the concentrations of products with two nitrogen atoms such as C$_6$H$_4$N$_2$O$_6$, C$_8$H$_7$N$_2$O$_6$, and C$_7$H$_{10}$N$_2$O$_9$ (only for toluene) steadily increase as [NO3]:[HO2] rises, suggesting a strong dependence of the formation of these species on NO2.

Formation of ROOH, RONO2, and ROONO2. Jenkin et al. (2019) suggested that the overall rate coefficients for RO2 + HO2 reactions are 1.92×10^{-11} and $1.98 \times 10^{-11} \text{ cm}^3 \text{ molecule s}^{-1}$ at 298 K for benzene and toluene oxidation, respectively. For the OFR conditions (Table S1), the characteristic time for the RO2 termination by HO2 was perhaps < 10 s, which is much shorter than the OFR residence time of 95 s. The rate coefficients of the hydroperoxide pathway (RO2 + HO2 \rightarrow ROOH + O2) may be constrained by the concentration ratios of [ROOH] multiplied by the loss rate of ROOH to [RO2][HO2] (Sect. S5 in the Supplement). For example, assuming that the C$_6$H$_4$O$_2$ and C$_5$H$_6$O$_2$ are the RO2 radicals, and C$_6$H$_8$O$_7$ and C$_7$H$_{10}$O$_7$ are the corresponding ROOH for benzene and toluene oxidation, respectively, the slopes in Fig. 5a indicate that the rate coefficients of hydroperoxides are 1.20×10^{-11} and $1.26 \times 10^{-11} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$. These rate coefficients suggest that the branching ratios of the hydroperoxide formation under low-NOx conditions are 0.62 and 0.64 for benzene- and toluene-derived RO2, respectively, which are consistent with the estimated branching ratios of 0.52 - 1.00 in literature (Jenkin et al., 2019).

In the presence of NOx, the reactions between C$_{6,7,8}$O$_7$ and nitrogen oxides lead to both chain propagation and chain termination to form RO radicals and nitrogen-containing products. Similar to the analysis of the hydroperoxide formation, the slopes in Fig. 5b suggest that the rate coefficients of RO2 + NO(+M) \rightarrow RONO2(+M) are 2.87×10^{-11} and $6.12 \times 10^{-11} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$ for benzene and toluene oxidation under OFR254-5-iN$_2$O1.1 conditions, respectively (Sect. S5). These
coefficients are more than one order of magnitude greater than the values reported by Jenkin et al. (2019) (i.e., 8.09×10^{-13} and $1.10 - 8.45 \times 10^{-13}$ cm3 molecules$^{-1}$ s$^{-1}$ for benzene and toluene oxidation, respectively). One explanation is that the detected C$_{6}$H$_{5}$NO$_{8}$ contains multifunctional groups and represents not only non-peroxy organic nitrates (ROONO$_{2}$) but also peroxo organic nitrates (ROOO$_{2}$). As shown in Fig. 5c, the [C$_{6}$H$_{5}$NO$_{8}$]:[C$_{6}$H$_{5}$O$_{7}$] ratios start to decrease at higher [NO]:[HO$_{2}$] in our OFR254-5-iN$_{2}$O4.4 experiments. The competition between NO and HO$_{2}$ for terminating RO$_{2}$ should not alter the rate coefficients and the branching ratios (Atkinson and Arey, 2003). The lack of linear relationship of [C$_{6}$H$_{5}$NO$_{8}$]:[C$_{6}$H$_{5}$O$_{7}$] (i.e., assumed as [ROONO$_{2}$]:[ROOH]) on [NO]:[HO$_{2}$] ratio is consistent with the possibility of C$_{6}$H$_{5}$NO$_{8}$ partially being ROONO$_{2}$, especially for toluene oxidation.

Xu et al. (2020) indicate that the formation of non-peroxy organic nitrates (ROONO$_{2}$) is minor in aromatic oxidation. The detected ROONO$_{2}$ are likely RC(O)OONO$_{2}$, because that ROONO$_{2}$ are usually thermally unstable intermediates (Kirchner et al., 1999) and RC(O)OONO$_{2}$ can be detected by the NO$_{3}$-TOF-CIMS (Rissanen, 2018). Acylperoxy radicals RC(O)OO (i.e., a type of peroxo radical) may react with NO$_{2}$ to produce peroxyacylnitrate (RC(O)OONO$_{2}$) (Jenkin et al., 2019). The formation of the RC(O)OONO$_{2}$ requires (1) the original RO$_{2}$ radicals to be C$_{6}$H$_{5}$O$_{6}$ instead of C$_{6}$H$_{5}$O$_{7}$; and (2) an acyl (-C=O) group that is connected to the O-O bond. The formation of C$_{6}$H$_{5}$O$_{6}$ is feasible through the RO pathway (Sect. S3). The hydroperoxides corresponding to C$_{6}$H$_{5}$O$_{6}$ are C$_{6}$H$_{5}$O$_{2}$O$_{2}$ (i.e., C$_{6}$H$_{5}$OO$_{2}$ and C$_{6}$H$_{5}$O$_{2}$O$_{2}$ for benzene and toluene, respectively). Figure 5d-e shows the increase of [C$_{6}$H$_{5}$NO$_{8}$]:[C$_{6}$H$_{5}$O$_{7}$] (i.e., perhaps [RC(O)OONO$_{2}$]:[ROOH]) for increasing [NO$_{2}$]:[HO$_{2}$] ratios. In particular, the relationship between [C$_{6}$H$_{5}$NO$_{8}$]:[C$_{6}$H$_{5}$O$_{7}$] and [NO$_{2}$]:[HO$_{2}$] is nearly linear at high [NO$_{2}$]:[HO$_{2}$] ratios in the OFR254-5-iN$_{2}$O4.4 experiments. There is a lack of kinetic data for the reactions of RC(O)OO + NO$_{2}$ (Rissanen, 2018), which prevents us from further investigation.

4 Atmospheric Implications

In this study, we investigated the formation of HOMs in the OFR by the oxidation of benzene and toluene in a wide range of OH exposure and NO$_{x}$ conditions. The results show enhanced formation of more-oxygenated products for elevated OH exposures. The formation of dimeric products however seems unfavorable under conditions of high OH exposure and low NO$_{x}$ for substituted aromatics. The suppression of dimeric products may affect the contribution of aromatic HOMs to new particle formation in the downwind of urban atmosphere. The changes of product distribution and concentration also suggest that multigeneration OH oxidation may proceed preferably via H subtraction rather than OH addition. For aged air masses, this may reduce the H:C ratios of HOM products from aromatic oxidation. Under high-NO$_{x}$ conditions, we show that the formation of products containing one nitrogen atom perhaps depend more significantly on the organic radicals (RO or RO$_{2}$) but less so on NO$_{2}$, while formation of products containing two nitrogen atoms depends significantly on NO$_{2}$. Further investigation on the roles of high-NO$_{2}$ conditions that represent a wide range of anthropogenically influenced environments in the oxidation of aromatic VOCs are needed. Moreover, we found that non-peroxy organic nitrates might form via RO$_{2}$ + NO under low-NO$_{2}$ conditions; and RO$_{2}$ + NO$_{2}$ may dominate to produce ROONO$_{2}$ or RC(O)OONO$_{2}$ under high-NO$_{2}$ conditions. The reaction of
RC(O)OO with NO₂ to produce peroxyacylnitrates should be of particular importance with high [NO₂]:[NO] ratios of tens to hundreds. Both of ROONO₂ and RC(O)OONO₂ are reservoirs of RO₂ radicals. Under conditions of high [NO₂]:[NO] ratios (e.g., late afternoon in urban or suburban environments), the “effective” lifetimes of RO₂ radicals might become longer because of the formation of RC(O)OONO₂. Subsequent slow release of RO₂ radicals with the help of NO₂ may extend the formation of HOMs from VOC oxidation in urban environments to early evening when OH starts to decline and NO₃ has not yet built up, facilitating the development of regional SOA pollution.

Data availability. Data presented in this manuscript are available upon request to the corresponding author.

Author contributions. QC and YJL designed the study. XC conducted the experiments and data analysis with the help of YZ, KL, and GH. QC, YJL, and XC wrote the manuscript.

Competing interests. The authors declare no competing financial interests.

Acknowledgments. This work is supported by the MOST National Key R&D Program of China (2017YFC0213000, Task 3), the National Natural Science Foundation of China (41875165, 41961134034, 51861135102), the 111 Project of Urban Air Pollution and Health Effects (B20009), The Science and Technology Development Fund, Macau SAR (File no. 0019/2020/A1), University of Macau (File no. MYRG2018-00006-FST). The authors gratefully acknowledge Tong Zhu, Ying Liu, Manjula R. Canagaratna, Andrew Lambe, and Peng Zhe for instrument support and helpful discussion.

References

List of Figures

Figure 1. Mass spectra of HOM products measured by the NO$_3^-$-TOF-CIMS for Exp. #2, #11, #16, and #26 in Table S1. (a): benzene, OFR254-5; (b) benzene, OFR254-5-iN$_2$O$_4$.4; (c): toluene, OFR254-5; (d) toluene, OFR254-5-iN$_2$O$_4$.4. The reagent ion NO$_3^-$ is omitted from the molecular formulas, whereas the m/z values refer to the mass-to-charge ratios of the fitted ions with NO$_3^–$. The relative intensities of ions having $m/z \geq 300$ are multiplied by 10.

Figure 2. Concentrations of fragmented, closed-shell, open-shell and dimeric products formed by benzene and toluene oxidation under low-NO$_x$ conditions (OFR254-5) at various OH exposures. For benzene oxidation, both of x and y are 6. For toluene oxidation, x is 7 and y is 8. BPR: bicyclic peroxy radical; HP: hydroperoxide; -C=O: carbonyl; -OH: alcohol.

Figure 3. Concentrations and relative contributions of closed-shell products formed by benzene and toluene oxidation under low-NO$_x$ conditions (OFR254-5) at various OH exposures. For benzene oxidation, both of x and y are 6. For toluene oxidation, x is 7 and y is 8.

Figure 4. Concentrations of fragmented, closed-shell, open-shell, dimeric and nitrogen-containing products formed by benzene and toluene oxidation under high-NO$_x$ conditions (OFR254-5-iN$_2$O$_1$.1/4.4) at various [NO$_x$]:[HO$_2$] levels. Data for OFR254-5-iN$_2$O$_1$.1 experiments were averaged and shown as the first data point in each panel. For benzene oxidation, both of x and y are 6. For toluene oxidation, x is 7 and y is 8.

Figure 5. Kinetic analysis on the formation of nitrogen-containing HOMs. (a): [ROOH]×k_{loss} vs. [RO$_2$][HO$_2$]; (b-c) [RONO$_2$]:[ROOH] vs. [NO]:[HO$_2$]; (d-e) [RC(O)OONO$_2$]:[ROOH] vs. [NO$_2$]:[HO$_2$]. For benzene oxidation, both of x and y are 6. For toluene oxidation, x is 7 and y is 8. k_{loss} represents the loss rate of corresponding HOM products in unit of s$^{-1}$.
Figure 1
Figure 2

560
Figure 3
Figure 4
Figure 5