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Abstract. Severe haze or low visibility event caused by abundant atmospheric aerosols has 25 
become a serious environmental issue in many countries. A framework based on deep 26 
convolutional neural networks containing more than 20 million parameters, namely HazeNet, has 27 
been developed to forecast the occurrence of such events in two Asian megacities: Beijing and 28 
Shanghai. Trained using time sequential regional maps of up to 16 meteorological and 29 
hydrological variables alongside surface visibility data over the past 41 years, the machine has 30 
achieved a good overall performance in identifying the haze versus non-haze events and thus 31 
their respectively favorite meteorological and hydrological conditions, with a validation accuracy 32 
of 80% in both Beijing and Shanghai cases, exceeding the frequency of non-haze events or no-33 
skill forecasting accuracy, and a F1 score specifically for haze events nearly 0.5. Its performance 34 
is clearly better during months with high haze frequency, that is all months except dusty April 35 
and May in Beijing and from late autumn through entire winter in Shanghai. Certain valuable 36 
knowledge has also obtained from the training such as the sensitivity of the machine’s 37 
performance to the spatial scale of feature patterns that could benefit future applications using 38 
meteorological and hydrological data. Furthermore, an unsupervised cluster analysis using 39 
features with a greatly reduced dimensionality produced by the trained HazeNet has, arguably for 40 
the first time, successfully categorized typical regional meteorological-hydrological regimes 41 
alongside local quantities respectively associated with haze and non-haze events in the two 42 
targeted cities, providing substantial insights to advance our understandings of this 43 
environmental extreme. Interesting similarities in associated weather and hydrological regimes 44 
between haze and false alarm clusters, or differences between haze and missing forecasting 45 
clusters have also been revealed, implying that factors such as energy consumption variations, 46 
long-range aerosol transport, and beyond could also influence the occurrence of hazes, even 47 
under unfavorite weather conditions. 48 

1 Introduction 49 

Frequent low visibility or haze events caused by elevated abundance of atmospheric aerosols 50 
due to fossil fuel and biomass burning have become a serious environmental issue in many Asian 51 
countries in recent decades, interrupting economic and societal activities and causing human 52 
health issues (e.g., Chan and Yao, 2008; Silva et al., 2013; Lee et al., 2017). For example, rapid 53 
economic development and urbanization in China have caused various pollution-related health 54 
issues particularly in populated metropolitans such as Beijing-Tianjin region and Yangtze River 55 
delta centered in Shanghai (e.g., Liu et al., 2017). In Singapore, the total economic cost brought 56 
by severe hazes in 2015 is estimated to be $510 million (0.17% of the GDP), or $643.5 million 57 
based on a wiling-to-pay analysis (Lin et al., 2016). To ultimately prevent this detrimental 58 
environmental extreme from happening requires rigid emission control measures in place 59 
through significant changes in energy consumption as well as land and plantation management. 60 
Before all these measures could finally take place, it would be more practical to develop skills to 61 
accurately predict the occurrence of hazes hence to allow mitigation measures to be implemented 62 
ahead of time. 63 

Severe haze events arise from the solar radiation extinction by aerosols in the atmosphere, 64 
this mechanism can be enhanced with the increase of relative humidity that enlarges the size of 65 
particles (e.g., Kiehl and Briegleb 1993). Aerosols also need favorite atmospheric transport and 66 
mixing conditions to reach places away from their immediate source locations, while their 67 
lifetime in the atmosphere can be significantly reduced by rainfall removal. In addition, soil 68 
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moisture is also a key to dust emissions. Therefore, meteorological and hydrological conditions 69 
are critical to the occurrence of haze events besides particulate emissions. To forecast the 70 
occurrence of such events using existing atmospheric numerical models developed based on fluid 71 
dynamics and explicit or parameterized representations of physical and chemical processes, the 72 
actual task is to accurately predict the concentration of aerosols at a given geographic location 73 
and a given time in order to correctly derive surface visibility (e.g., Lee et al. 2017 & 2018). 74 
However, the propagation of numerical or parameterization errors through the model integration 75 
could easily drift the model away from the original track, not mentioning that lack of real-time 76 
emission data alone would simply handicap such an attempt. Therefore, a more fundamental 77 
issue in practice is whether these models could reproduce the a posteriori distribution of the 78 
possible outcomes of the targeted low-probability extreme events. Ultimately, lack of knowledge 79 
about the extreme events would, in turn, hinder the effort to improve the forecasting skills. 80 

Differing from the deterministic models, an alternative statistical prediction approach could 81 
be adopted, if the predictors of a targeted event could be identified and a statistical correlation 82 
between them could be established with confidence. However, this is a rather difficult task for 83 
the traditional approaches, because it requires an analysis dealing with a very large quantity of 84 
high-dimensional data to establish a likely multi-variate and nonlinear correlation that can be 85 
generalized. Nevertheless, such attempts can obviously benefit now from the fast-growing 86 
machine learning (ML) and deep learning (DL) algorithm development (e.g., LeCun et al., 87 
2015). In addition, technological advancement and continuous investment from governments and 88 
other sectors across the world have led to a rapid increase of quantity alongside substantially 89 
improved quality of meteorological, oceanic, hydrological, land, and atmospheric composition 90 
data. These data might still not be sufficient for evaluating and improving certain detailed 91 
aspects of the deterministic forecasting models. However, rich information contained in these 92 
data about favorite environmental conditions for the occurrence of extreme events such as hazes 93 
could already have a great value for developing alternative forecasting skills. 94 

Many Earth science applications dealing with meteorological or hydrological data need a 95 
trained machine to not only forecast values but also recognize patterns or images. However, this 96 
can easily lead to a curse of dimensionality of many traditional ML algorithms. Fortunately, deep 97 
learning that directly links large quantity of raw data with targeted outcomes through deep 98 
convolutional neural networks or CNNs (Goodfellow et al., 2016) offers a clear advantage in 99 
sufficiently training deep networks suitable for solving highly nonlinear issues. In doing so, DL 100 
can also eliminate the possible mistakes in data derivation or selection introduced by subjective 101 
human opinion regarding a poorly understood phenomenon. Recently, DL algorithms have been 102 
explored in various applications in atmospheric, climate, and environmental sciences, ranging 103 
from recognizing specific weather patterns (e.g., Liu et al., 2016; Kurth et al., 2018; Lagerquist 104 
et al., 2019; Chattopadhyay et al., 2020), weather forecasting including hailstorm detection (e.g., 105 
Grover et al., 2015; Shi et al., 2015; Gagne et al., 2019), to deriving model parameterizations 106 
(e.g., Jiang et al., 2018), and beyond.  107 

In certain applications, the targeted outcomes are the same features as the input but at a 108 
different time, e.g., a given weather feature(s) such as temperature or pressure at a given level. 109 
The forecasting can thus be proceeded by using pattern-to-pattern correlation from a sequential 110 
training dataset with spatial-information-preserving full CNNs such as U-net (Ronneberger et al., 111 
2015; Weyn et al., 2020). However, this is certainly not the case for the applications where the 112 
environmental conditions associated with targeted outcome are yet known. For such applications, 113 
a possible solution is to utilize a large quantity of raw data with minimized human intervention in 114 
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data selection to train a deep CNN to associate targeted outcomes with favorite environmental 115 
conditions. This study represents such an attempt, where a DL forecast framework is trained to 116 
identify the meteorological and hydrological conditions associated with the occurrences of 117 
severe hazes. The DL framework has been developed initially with the severe hazes in Singapore 118 
(Wang, 2020), and now hazes in two megacities of China, Beijing and Shanghai. In terms of 119 
particulate pollutant emissions, all these cities share certain sources including fossil fuel 120 
combustions from transportation, domestic, and industries. On the other hand, each city also has 121 
its own unique sources, for instance, desert and perhaps anthropogenic dust for Beijing, and 122 
massive biomass burning in Singapore (Chen et al., 2013; Liu et al., 2017; Lee et al., 2017, 123 
2018, & 2019). It is obvious that besides meteorological and hydrological conditions, dynamical 124 
patterns of anthropogenic activities leading to the emissions of particulate matters are also 125 
important factors behind the occurrence of severe hazes. Nevertheless, the major purpose of this 126 
study is to advance our fundamental knowledge about the weather conditions favoring the 127 
occurrence of hazes and, through an in-depth analysis on the forecasting results to identify the 128 
limit of such a machine and thus to provide useful information for establishing a more complete 129 
forecasting platform for the task.  130 

In the paper, the architecture alongside method and data for training are firstly described after 131 
this introduction, followed by a discussion of training and validation results. Then, an 132 
unsupervised cluster analysis benefited from the trained machine is introduced along with the 133 
results that furthers the understanding of the CNN’s performance and summarizes, for the first 134 
time, the various typical meteorological and hydrological regimes associated with haze versus 135 
non-haze situations in the two cities. The last section concludes the effort and major findings. 136 

2 Network Architecture, Training Methodology and Data 137 

2.1 Network architecture 138 
The convolutional neural network used in this study, the HazeNet (Wang 2020), has been 139 

developed by adopting the general architecture of the CNN developed by the Oxford 140 
University’s Visual Geometry Group or VGG-Net (Simonyan and Zisserman, 2015). The actual 141 
structure alongside hyper-parameters of HazeNet have been adjusted and fine-tuned based on 142 
numerous test trainings. In addition, certain techniques that were not available when the original 143 
VGG net was developed, e.g., batch normalization (Ioffe and Szegedy, 2015), have been 144 
included as well. The current version for haze applications of Beijing and Shanghai, though 145 
trained separately, contains the same number of parameters of 20,507,161 (11,376 non-trainable) 146 
owing to the same optimized kernel sizes. Figure 1 shows the general architecture of a HazeNet 147 
version with 12 convolutional and 4 dense layers (in total 57 layers).  148 

The network has been trained in a standard supervised learning procedure for classification, 149 
where the network takes input features to produce classification output that are then compared 150 
with known results or labels based on observations. The coefficients of the network are thereafter 151 
optimized in order to minimize the error between the prediction and the observation or label. The 152 
loss function used in optimization is cross-entropy (e.g., Goodfellow et al., 2017). Such a 153 
procedure is repeated until the performance of the network can no longer be improved. In 154 
practice, the trainings usually last about 2000 epochs (each epoch is a training cycle that uses up 155 
the entire training dataset). This procedure in nature is to train a deep CNN to recognize then 156 
associate input features (bundled meteorological and hydrological conditions in this case) with 157 
corresponding class, i.e., severe haze events or non-haze events. As a result, the knowledge 158 
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specifically about the favorite meteorological and hydrological conditions of severe hazes could 159 
be advanced. 160 

 161 

 162 
Figure 1. Architecture of the 12 convolutional plus 4 dense layer HazeNet. Here “Conv” represents a unit 163 
containing a zero-padding then a 2D convolutional layer, followed by a batch normalization layer. There 164 
is a flatten layer before the 2 dense layers. W = width, H = height, and N = number of features of the 165 
input fields, they are 64, 96, and 16 for Beijing, and 64, 64, and 16 for Shanghai case, respectively.  166 

2.2 Training data and methodology 167 
The labels for the training are derived using the observed daily surface visibility (vis. 168 

thereafter), obtained from the Global Surface Summary Of the Day or GSOD dataset consisting 169 
of daily observations of meteorological conditions from tens of thousands of airports around the 170 
globe (Smith et al., 2011). In the cases of Beijing and Shanghai, data are from observations in 171 
corresponding airports of these two cities during the time from 1979 to 2019, containing 14,975 172 
samples. For simplicity, the discussions will be mainly on the 2-class training, where events with 173 
vis. ≤ the long-term mean value of the 25th percentile or p25 of vis. (6.27 km in Beijing, 5.95 km 174 
in Shanghai; Fig. 2, right panel; also Fig. S1 in Supplementary) are defined as class 1 or severe 175 
hazes, otherwise the class 0 or non-haze cases. Although p25 values vary interannually, their 176 
long-term means actually represent a substantial reduction of vis. due to high particulate 177 
pollution (e.g., Lee et al., 2017). Note that unlike in the case of Singapore (Wang 2020), fog and 178 
mist are more common low visibility events in Beijing and Shanghai and thus have been 179 
excluded from the labels of severe hazes by following GSOD fog marks. The number of severe 180 
haze events occurred during 1979-2019 defined in the above procedure is 3099 and 2099 for 181 
Beijing and Shanghai, or in a frequency of 20.7% and 20.0%, respectively.  182 

The training and validation of HazeNet also need the input features with the same sample 183 
dimension of the labels. These input data are derived from hourly maps of meteorological and 184 
hydrological variables covering the data collection domain (Fig. 2, Left), obtained from ERA5 185 
reanalysis data produced by the European Centre for Medium-range Weather Forecasts or 186 
ECMWF (Hersbach et al., 2020). These data are distributed in a grid system with a horizontal 187 
spatial interval of 0.25 degree. Up to 16 features are derived from the original hourly data fields 188 
covering the analysis domain respectively for Beijing (64x96 grids) and Shanghai (64x64 grids), 189 



 6 

including: daily mean of surface relative humidity (REL thereafter); diurnal change as well as 190 
daily standard deviation of 2-meter temperature or DT2M and T2MS, respectively; daily mean of 191 
10-meter zonal and meridional wind speed or U10 and V10, respectively; daily mean of total 192 
column water (TCW); daily mean (TCV) and diurnal change (DTCV) of total column water 193 
vapor; daily mean of planetary boundary layer height (BLH); daily mean soil water volume in 194 
soil layer 1 and 2 or SW1 and SW2, respectively; daily mean of total cloud cover (TCC); daily 195 
mean geopotential heights at 500 (Z500) and 850 (Z850) hPa pressure levels along with their 196 
diurnal changes D500 and D850, respectively. All input features have been normalized into a 197 
range of [-1, +1] (Fig. S2 in Supplementary). 198 

 199 
Figure 2. (Left) The input-feature defining domains for Beijing (red box and dot, 99.25 - 123E, 32.25-200 
48N; 96x64 grids with ERA5 data) and Shanghai (white box and dot, 109.25-125E, 26-41.25N; 64x64 201 
grids), made using Basemap library, a matplotlib extension. (Right) Annual means (solid curves), 25th 202 
percentiles (dash curves), and 25th percentile means (solid straight lines) of surface visibility in Beijing 203 
(red) and Shanghai (blue) between 1979 and 2019. 204 

Before the training, the entire samples of labels alongside corresponding input features were 205 
randomly shuffled first then split as: 2/3 of the samples went to training set and 1/3 to validation 206 
set, each is used duly for its designated purpose throughout the entire training process without 207 
switch. The above procedure treats each of the events as an independent one. For the 208 
convenience in comparing performance or restarting training based on a saved machine, a saved 209 
training dataset alongside a holdout validation dataset that has never been used in training, 210 
produced following the above procedure, was used. 211 

The number of samples used in training HazeNet is rather limited in deep learning standard. 212 
However, to associate 16 joint two-dimensional maps with targeted labels even with the current 213 
number of samples is still a demanding task, requiring a deep CCN to accomplish. Furthermore, 214 
targeted severe hazes are a low probability event. Its frequency of appearance is about 20.0% in 215 
Beijing and Shanghai cases. Therefore, trained machine would easily bias toward the 216 
overwhelming non-haze events. To resolve these issues, a combination of class-weight and batch 217 
normalization has been implemented in HazeNet, both using corresponding Keras functions. The 218 
class weight is to change the weight of training loss of each class, normally by increasing the 219 
weight of the low frequency class. Class weight coefficient was calculated based on the ratio of 220 
class 0 to class 1 frequency. Batch normalization (Ioffe and Szegedy, 2015) is an algorithm to 221 
renormalize the input distribution at certain step (e.g., each mini batch) to eliminate the shift of 222 
such distribution during optimization. The above approach has effectively reduced the overfitting 223 
while overcome the data imbalance issue, making the long training of a deep CNN become 224 
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possible (Wang, 2020). Entire trainings have been conducted using a NVIDIA Tesla V100-225 
SXM2 GPU cluster, costing 25s and 17s per epoch for the machine of Beijing and Shanghai, 226 
respectively. 227 
 228 
2.3 Kernel size optimization 229 

As in the cases of other CNNs, there are many hyperparameters need to be determined or 230 
optimized. These have been done through numerous testing trainings. In practice, it occurs that, 231 
the deep architecture of HazeNet and the long training procedure have actually made the 232 
performance less sensitive to many hyperparameters of the network. One hyperparameter, 233 
however, is specifically interesting to explore for an application using large quantity of 234 
meteorological maps, that is the kernel size of the first convolutional layer, where the input data, 235 
i.e., meteorological and hydrological maps are convoluted then propagated into the subsequent 236 
layers.  237 

 238 
Figure 3. (Left column) Weight coefficients of the first filter set (WN,1), (Middle column) partial output 239 
for each feature (ZN,1), and (Right column) the output (Z) of the first convolution layer (CONV2d_1) with 240 
two selected kernel sizes or ks: (upper panels) 20x20 and (lower panels) 3x3. Here W represents the filters 241 
and Z the output of convolution, the subsets of Z before the feature dimension is merged can be expressed 242 
as: ZN,i = 𝑊!,#(𝑘𝑠, 𝑘𝑠) ∙ 𝑓!$(𝑘𝑠, 𝑘𝑠),	 with the order of input features N =1,…16 and i represents the 243 
convolutional layer index, i.e., 1 is the first layer or CONV2d_1. For the first layer, input feature size is 244 
(h,w) = (64, 64), the sets of filters is 92, thus the final output Z has a dimension of (h-ks+1, w-ks+1, 92). 245 
Shown are results from the trainings for Shanghai haze cases. 246 

Meteorological maps or images often contain characteristic patterns with different spatial 247 
scales. Intuitively, preserving these patterns could be important in predicting the targeted 248 
extremes. Apparently, a larger kernel size produces smoother output images from the first 249 
convolutional layer, while a smaller kernel size can preserve many spatial details of the 250 
meteorological maps as demonstrated from the layer output shown in Fig. 3. In practice, 251 
however, the patterns produced by the latter configuration might be too complicated for the 252 
networks to recognize and to perform classification, whereas patterns resulted from a relatively 253 
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larger kernel size for the first convolutional layer might be more characteristic for the task. The 254 
actual result suggests that HazeNet configured with a first-layer kernel size of 20 to 26 or close 255 
to 5 – 6 degrees in spatial ‘resolution’, consistently produces a better performance (about a 10% 256 
improvement in F1 score) than that by a smaller kernel size of 3 or 6. As a result, a kernel size of 257 
20 has been adopted as the default configuration for the first 2 convolutional layers in this study. 258 

3 Training and Validation Results of Haze Forecasting 259 

Currently, it is still difficult to find any practical score in forecasting the occurrence of severe 260 
hazes for comparison. Therefore, the performance of HazeNet has been mainly measured by 261 
using certain commonly adopted metrics for classification largely derived from the concept of 262 
the so-called confusion matrix (e.g., Swets, 1988; Table A), including accuracy, precision, 263 
recall, F1 score, equitable threat score or ETS, and Heidke skill score or HSS (Appendix A). 264 
Unless otherwise indicated, the discussions on the performance scores are hereafter referring to 265 
the severe haze class, or class 1, and obtained from validation rather than training. In all the 266 
cases, the performance metrics referring to non-haze or class 0 has much better scores. Also note 267 
that, unless otherwise indicated, results shown in this Section are obtained using 16 features. 268 

 269 

 270 
Figure 4. (Left) Validation accuracy (top panel) and loss (lower panel) of HazeNet with 16 features for 271 
Beijing and Shanghai cases, kernel size for the first filter is 20x20. (Right Top) Prediction outcomes in 272 
reference to haze events or class 1 of Beijing and Shanghai with 16 features. Here TP = true positive, TN 273 
= true negative, FP = false positive, and FN = false negative prediction outcomes. (Right Bottom) Scores 274 
of performance metrics as last 100 epoch means for Beijing and Shanghai with 16 and 9 features, 275 
respectively. 276 

In order to train a stable machine, trainings with 2000 epochs or longer have been conducted 277 
instead of using certain commonly adopted skills such as early stop. As a result, the validation 278 
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performance metrics of the trained machines all appeared to be stabilized by approaching the end 279 
of training (Fig. 4). These scores were consistent with the results of ensemble training with the 280 
same configuration but different randomly selected training and validation datasets, also 281 
comparable among trainings with different configurations. Overfitting has been clearly overcome 282 
due to such a long training procedure alongside the adoption of class weight and batch 283 
normalization. In a 2-class classification (haze vs. non-haze), trained deep HazeNet can always 284 
reach an almost perfect training accuracy (e.g., 0.9956 for Beijing cases) and a validation 285 
accuracy of 80% (frequency of non-haze events or no-skill forecasting accuracy) in both Beijing 286 
and Shanghai cases (Fig. 4, left). At the same time, the performance scores in predicting 287 
specifically severe hazes are also very reasonable, e.g., for Beijing cases either precision or recall 288 
exceeds 0.5 (they normally evolve in opposite direction), leading to a nearly 0.5 F1 Score (Fig.4, 289 
right). The corresponding scores in training are obviously much higher, e.g., with precision, 290 
recall, and F1 as 0.9804, 0.9980, and 0.9880, respectively for Beijing cases, owing to the deep 291 
and thus powerful CNNs. HazeNet performed slightly better than several known deep CNNs 292 
such as Inception Net V3 (Szegedy et al., 2015), ResNet50 (He et al., 2015), and VGG-19 293 
(Simonyan and Zisserman, 2015) in the same haze forecasting task (Wang, 2020). Nevertheless, 294 
as indicated previously that a nearly perfect validation performance is not realistic since 295 
meteorological and hydrological conditions are not the only factors behind the occurrence of 296 
haze events. 297 

 298 

 299 
Figure 5. (Top) Monthly counts of predicted TP, FP, and FN outcomes and (Bottom) performance scores 300 
for each month. All from validation of Beijing cases with 16 features. 301 

Looking into the specific prediction outcomes in referring to severe haze, the trained machine 302 
has produced considerably higher ratio of true positive or TP outcomes than in the Southeast 303 
Asia cases (Wang, 2020) despite a number of outcomes of false positive or FP (i.e., false alarm) 304 
and false negative or FN (i.e., missing forecast). In forecasting the severe hazes in Beijing, the 305 
trained machine performs reasonably well throughout all months except for April and May or the 306 
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major dusty season there, producing F1 score, ETS, and HSS all exceed or near 0.5 as well as the 307 
number of TP outcomes is higher than that of FN (Fig. 5). HazeNet actually performs better in 308 
months with more observed haze events. For Beijing, the lowest haze season is during the dusty 309 
April and May when all the major performance metrics are lower than 0.4, and the machine 310 
produces more missing forecasts than true positive outcomes. The relatively poor performance in 311 
spring suggests that the weather and hydrological features associated with dust-dominated haze 312 
events during this period might differ from the situations in the other seasons when hazes are 313 
mainly caused by local particulate pollution. For Shanghai cases, HazeNet performs better during 314 
late autumn and entire winter (from November to February) when haze occurs most frequently 315 
(not shown). The worst performance comes from the monsoon season (July to October), or the 316 
season with lowest haze cases. 317 

Reducing the number of input features. One recognized advantage of deep CNN in 318 
practice is its capacity to directly link the targeted outcome with a large quantity of raw data, 319 
thus avoid human misjudgment in selecting and abstracting input features due to a lack of 320 
knowledge about the application task. Nevertheless, for an application such as this one that uses 321 
a large number of meteorological and hydrological variables (or channels in machine learning 322 
term), reducing the number of input features with a minimized influence on the performance can 323 
still benefit the efforts of establishing physical or dynamical causal relations and beyond. 324 

There are certain available methods to rank features then reduce some unimportant ones. 325 
These do not work straightforwardly for deep CNNs (e.g., McGovern et al., 2019). In the 326 
previous effort, this has been done by testing the sensitivity of the full network performance in 327 
real training with either a single feature only or all but one features (Wang, 2020), which 328 
apparently is also a demanding task. Here, another attempt has been made to use a trained then 329 
saved machine to examine the sensitivity of the network to various features (Appendix B).  330 

The sensitivity analyses using trained machines for Beijing and Shanghai have obtained 331 
largely consistent results, indicating that the network is more sensitive to the same 9 features 332 
than the other 7 (Fig. S3). The highest-ranking features though differ, with diurnal change of 333 
column vapor (DTCV) and soil water content in the second soil layer (SW2) as the most 334 
sensitive features for Beijing, while relative humidity (REL) and planetary boundary layer height 335 
(BLH) for Shanghai. Most importantly, trainings using only the top 9 most sensitive features 336 
have produced a performance equivalent to or even better than the same training but with 16 337 
features (Fig. 4, Right Bottom). With reduced number of features, many further analyses can be 338 
conducted with less workload and produce results that are easily understood. 339 

4 Identifying and Categorizing the Typical Regional Meteorological and Hydrological 340 
Regimes Associated with Haze Events 341 

A major purpose of this study is to identify the meteorological and hydrological conditions 342 
favoring the occurrence of severe hazes in the targeted cities. When using a dataset with a large 343 
number of samples, this type of analyses could be better accomplished by applying, e.g., cluster 344 
analysis (e.g., Steinhaus, 1957), a standard unsupervised ML algorithm that groups data samples 345 
into various clusters in such a way that samples in the same cluster are more similar to each other 346 
than to those in other clusters. Specifically for this study, the derived clusters would likely 347 
represent various regimes in terms of combined meteorological and hydrological conditions for 348 
associated events. However, applying cluster analysis directly to a large number of samples, each 349 
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with a feature volume of ~50000 is an uneasy task. A dimensionality reduction is apparently 350 
needed to reduce the feature volume of data.  351 

In practice, a trained CNN is actually an excellent tool for this purpose. It encodes 352 
(downscales) the input with large feature volume into data with a much smaller size in the so-353 
called latent space (i.e., the output of the layer before the output layer) while equal predictability 354 
for the targeted events. This functionality of CNN has been used in developing various 355 
generative DL algorithms from variational autoencoder or VAE to different generative 356 
adversarial networks or GANs (e.g., Forest, 2019). Therefore, the trained HazeNet for Beijing 357 
and Shanghai using 9 instead of 16 features, benefited from the effort of reducing the number of 358 
input features as described in the end of last Section, have been used here to produce data with 359 
reduced size suitable for clustering (Fig. 6; see also Appendix C). The new sample-feature set 360 
with a size of 14,975´512 produced from this procedure was then used in cluster analysis. 361 

 362 

 363 
Figure 6. A diagram of the cluster analysis procedure. Here 96, 64, and 9 represent the number of 364 
longitudinal, latitudinal grids, and number of features (variables), or the size of the input feature volume 365 
of a trained HazeNet for Beijing cases, while 512 is the size of the output from the dense layer before 366 
output layer of HazeNet or the new feature volume. 367 

In order to provide useful information for understanding the performance of the trained 368 
networks, the clustering has been performed for each of the prediction outcomes rather than just 369 
haze versus non-haze events (Appendix C). In this configuration, haze associated regimes are 370 
represented by derived clusters of TP plus FN outcomes, while non-haze regimes by those of TN 371 
plus FP. Since the clusters were derived using the indices of samples as the record for members, 372 
the actual feature maps of the members in any cluster thus can be conveniently retrieved then 373 
used to identify the representative regimes in terms of combined 9 meteorological and 374 
hydrological features. Here the clustering results have been analyzed using the feature maps in 375 
both normalized (machine native) and unnormalized (original reanalysis data) format. The 376 
characteristics of various regimes can be easily identified from the former as they represent 377 
anomalies to climatological means. An added benefit is to advance the understanding of the 378 
performance of the trained networks. The analysis using the latter maps aims to better appreciate 379 
the conventional regional and local meteorological and hydrological patterns associated with 380 
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various regimes. The feature maps used in both analyses have been averaged across each cluster 381 
for clarity. 382 

4.1 Results based on normalized feature maps 383 

As shown in Figure 7, the 4 clusters of true positive or TP in Beijing cases exhibit a clear 384 
similarity in general feature patterns closely surrounding Beijing (marked by a navy dot in the 385 
figure) among themselves.  These common patterns include an isolated small positive relative 386 
humidity (REL) center covering Beijing, associated with mild diurnal variation change (DT2M) 387 
and standard deviation (T2MS) of surface temperature as well as zonal wind (U10), and a lower 388 
boundary layer height (BLH). Weatherwise, Beijing and its immediate surrounding area appear 389 
to be located between two sharply different airmasses occupying respectively the northwestern 390 
and southeastern part of the domain (weather systems usually progress from northwest to 391 
southeast in this region). When relating this to the other feature characteristics, it is likely that 392 
Beijing and nearby area is not experiencing a drastic weather system change such as fronts when 393 
haze occurs, hence the high REL- a critical condition for aerosol to effectively scatter sunlight - 394 
can be easily formed, aided by a stable boundary layer with mild surface wind to allow aerosols 395 
well mix vertically near the ground while without being significantly reduced through advection 396 
diffusion. In addition, relatively high soil water content could fuel the humidity in the air, and 397 
thin while stable low clouds, if exists (judged based on temperature change) could signal a lack 398 
of persistent precipitation. Altogether, these conditions can apparently allow the haze to easily 399 
form, to last, and to effectively scatter sunlight thus reduce visibility. These conditions are also in 400 
a noticeably contrast to those associated with non-haze events represented by TN outcomes (Fig. 401 
S4).  402 

Note that each cluster consists of a collection of 3D data volumes or images, any two clusters 403 
could be sufficiently differentiated should only one of their images differs based on the 404 
clustering derivation algorithm, even though statistically speaking, they very likely belong to the 405 
same population (i.e., should be tested statistically). As shown in Fig. 7, the distinctions between 406 
TP clusters are largely reflected from the two different airmasses distant from Beijing, in both 407 
strength and spatial extent particularly from DTCV patterns, likely representing different types 408 
of systems or background regimes. Specifically, a strong DTCV anomalous center seen in cluster 409 
1 and 4 patterns occupies most of the domain west of Beijing and directly influence Beijing and 410 
its nearby area. In contrast, DTCV distributions in cluster 2 and 3 are much weaker, where 411 
Beijing and its immediate neighboring area even appear to be influence more by the southeaster 412 
system. In addition, surface wind distributions of the first two clusters clearly differ from those 413 
of cluster 3 and 4, and the patterns of BLH alongside SW1 and SW2 over Beijing and its 414 
immediate neighboring area of cluster3 also suggests a land-atmosphere exchange condition 415 
differing from that of others. The combinations of these differences across various TP clusters 416 
apparently well defines the various regimes of surrounding weather systems as well as their 417 
influence on Beijing. For TP clusters of Shanghai, the above similarities alongside differences 418 
among various clusters also exist, except where the cluster 1, 2, and 4 maintain more similarities 419 
in feature patterns of distant airmasses from Shanghai, while cluster 3 offers certain evident 420 
diversity in many feature patterns comparing to other clusters (Fig. S5). Even more interestingly, 421 
the distribution of the number of members within various TP clusters does not differ evidently in 422 
different months (Table S1) (note that the number of haze events itself differs seasonally – Fig. 423 
5). Therefore, it is very likely that the characteristic weather conditions favoring haze occurrence 424 
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and being captured by HazeNet cannot be simply differentiated by locations (Beijing vs. 425 
Shanghai) and seasons. 426 

427 
Figure 7. Maps of 9 features in normalized format for 4 clusters of true positive or TP outcome, 3 clusters 428 
of false negative or FN outcome, and 4 clusters of false positive or FP outcome. Here TP plus FN = haze 429 
events. Results shown are cluster averages for Beijing (location marked by navy dot) cases. 430 

On the other hand, among three FN clusters (also associated with haze events but missed in 431 
prediction), only the first cluster (the major cluster of FN) displays certain similarity to TP 432 
clusters across various features. Even for this cluster, the characters of the airmasses distantly 433 
surrounding Beijing differ substantially from those of TP clusters, as seen from the patterns of 434 
temperature (DT2M, T2SM), wind particularly V10, and column water (DTCV) that reflect a 435 
much weaker weather system on the west. The patterns of BLH, SW1, and SW2 also differ from 436 
those of TP, indicating a different near site boundary layer and hydrological condition. Such 437 
differences appear to be even more evidently in the two other (minor) clusters, e.g., the size and 438 
strength of high relative humidity center covering Beijing are even different. This result suggests 439 
a possible reason for why HazeNet missed these targets, that is haze might occur under 440 
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unfavorable weather and hydrological conditions owing to, e.g., certain energy consumption 441 
scenarios. Again, the distribution of members of these latter two clusters does not exhibit clear 442 
seasonality (Table S1). Interestingly, first two of the four FP (false alarm) clusters display more 443 
clear similarity in normalized feature patterns to those of TP than FN in Beijing and its 444 
immediate surrounding area (Fig. 7). As in FN cases, however, two other clusters differ more 445 
evidently. All these could explain the false alarming made by the machine, i.e., the machine 446 
could have simply been confused by such similarities between certain TP and FP members. 447 
Nevertheless, these could also suggest an alternative reason behind the incorrect forecasts that is 448 
certain pollution mitigation measures were in place. The results of FP clusters and the last FN 449 
cluster besides TP of Shanghai cases also share some similar characters as analyzed here (Fig S5 450 
& S6). 451 

Therefore, it is worth indicating again that meteorological or hydrological conditions are not 452 
the only factors determining the occurrence of hazes. Other factors such as abnormal energy 453 
consumption events or long-range transport of aerosols could all cause haze to occur even under 454 
unfavorable weather and hydrological conditions. This could well be the reason for some of the 455 
missing forecasts (FN outcomes) when haze occurred under unfavorable conditions, as suggested 456 
above, or for false alarms (FP outcomes) when low aerosol events occurred even under a weather 457 
condition favorable to haze. Future improvement of the skill could benefit from this knowledge. 458 

4.2 Results based on original unnormalized feature maps 459 

Utilizing feature maps in their original unnormalized format represented by actual physical 460 
quantities could provide a convenience to appreciate the conventional regional and local 461 
meteorological and hydrological patterns, and to detect thus to implement additional analysis, if 462 
necessary, on the possible impact of seasonality or trend associated with various events. Note 463 
that the visual differences between unnormalized feature maps particularly in cluster-mean 464 
format might be subtle for bare eyes to recognize.  465 

For haze events in Beijing (i.e., TP and FN outcomes; Fig. 8), the associated cluster-mean 466 
regional meteorological and hydrological patterns of most features except DTCV contain two 467 
regions with sharply contrasting quantities, roughly separated by a line linking the southwest and 468 
northeast corner of the domain, likely due to the typical progression direction of weather systems 469 
in this region besides meridional variation of general climate. In comparison, as same as shown 470 
in the previous analysis using normalized feature maps, the patterns of the first FN cluster share 471 
many characters with those of TP clusters. The differences among TP and FN clusters are more 472 
evident in DTCV (specifically cluster 1 and 4 versus cluster 2 and 3), SW1, SW2, and surface 473 
winds particularly for the 2nd and 3rd FN clusters. FP clusters also display a similarity to those of 474 
TP clusters (Fig. S7), whereas TN clusters show more visible differences particularly in patterns 475 
of meridional wind (V10) and daily change of column water vapor or DTCV (Fig. S8). 476 

The general regional meteorological and hydrological conditions during haze events in the 477 
southeastern in comparison to the northwestern portion of the domain include a higher relative 478 
humidity, lower variation of surface temperature, largely northward or northwestward wind, 479 
lower planetary boundary layer height, and higher soil water content, and quantity wise these are 480 
all in a sharp contrast to the situations in the other half of the domain. Based on the surface wind 481 
direction, Beijing and its immediate surrounding area is clearly located between two airmasses 482 
both with anticyclonic surface winds. The strengths of these two centers differ particularly in the 483 
last two FN clusters, implying regimes with systems having different strengths or in different 484 
development phases. Such a difference is also clearly related to the visually recognized cross-485 



 15 

cluster difference in DTCV patterns, represented by a strong negative center in the middle of the 486 
domain with varying extent and strength across different clusters. Consistent to the analysis 487 
result using normalized feature maps, all these indicate a stable weather condition over Beijing 488 
and its neighboring area during haze events while surrounded by two (or more) different weather 489 
systems. It is known that dust can cause low visibility events in Beijing. During dust seasons, the 490 
condition of the northwestern half of the domain, represented by a dominant eastward wind and 491 
lower soil water content likely favors dust transport from desert to Beijing. However, the details 492 
would need an in-depth analysis to examine since most clusters having members rather well 493 
distributed through different months (Table S1).  494 

 495 
Figure 8. Feature maps associated with severe haze events in Beijing represented by 4 clusters of TP (4 496 
top rows) and 3 clusters of FN (3 lower rows) predicted outcomes. Shown are cluster means of 497 
unnormalized data of relative humidity or REL (ratio), diurnal change (DT2M) and daily standard 498 
deviation (T2MS) of 2-meter temperature in degree, 10-meter winds U10 and V10 in m/s, diurnal change 499 
of column water vapor or DTCV (kg/m2), planetary boundary hheight ot BLH in meter, and soil water 500 
content in soil level 1 (SW1) and level 2 (SW2) in kg/m2.  501 

The cluster-means of 9 features for haze events (TP plus FN) versus non-haze (TN plus FP) 502 
at the grid point of Beijing are also derived and listed in Table 1 for reference. Specifically, the 503 
common local conditions associated with hazes in Beijing in comparison to those with non-haze 504 
events include a higher humidity, less drastic variations in surface temperature, a northwestward 505 
rather than southeastward wind, a lower planetary boundary layer height, and higher soil water 506 
contents. Again, the most recognizable cross-cluster differences appear in DTCV (i.e., cluster 1 507 
versus others), followed by surface wind (cluster 1 and 2 versus 3 and 4). In most of the local 508 
features, variabilities of FN clusters tend to be larger than those of TP clusters. Notably, such 509 
differences in local feature quantities for FN clusters are not necessarily more evident than in the 510 
regional maps over distant airmasses. One interesting result of the local weather conditions 511 
shown in Table 1 is that the cluster means of TN are sharply different than those of TP and FN, 512 
while the cluster means of FP and those of TP+FN are likely to be statistically indifferent except 513 



 16 

for DTCV, providing an evidence to support the assumption that FP outcomes might simply 514 
represent the non-haze events caused by reasons other than weather and hydrological conditions. 515 

For the case of Shanghai, the general weather conditions associated with haze events are 516 
likely stable, with characters similar to the cases of Beijing except for that Shanghai appears to 517 
be located between a northwest airmass with anticyclonic surface wind and a southeast one with 518 
cyclonic wind (Fig. 9). Quantities of most feature patterns display a sharply southeast versus 519 
northwest contrast. DTCV maps display a negative center over a large area, its distribution and 520 
extent vary significantly among different clusters in particular for the first two FN clusters. The 521 
patterns of soil water content in both soil layers exhibit a sharp meridional contrast, much higher 522 
in the south part of the domain than in the north part, largely separated by the Yellow River. 523 
Local quantities of all the features associated with haze events (TP plus FN) in Shanghai display 524 
clear differences with those of non-haze prediction outcomes (TN) (Table 1). The most 525 
recognizable cross-cluster differences for TP appear in U10 of cluster 4 and V10 of cluster 3, 526 
differing from the cases of Beijing, and DTCV particularly of cluster 3 for FN. Like the cases of 527 
Beijing, the cluster mean of the FP outcomes is statistically indifferent to those of haze (TP and 528 
FN) than predicted non-haze (TN) events. Again, this result implies that even a weather pattern 529 
favoring haze appeared and was correctly recognized by HazeNet, due to other factors such as 530 
energy consumption variations, haze could still not to occur. 531 
 532 

 533 
Figure 9. The same as Figure 9 except for Shanghai with 4 clusters for TP and 3 for FN outcomes. 534 
 535 



 17 

It is worth indicating that the current analysis discussed here is only applied to the included 536 
features in clustering, and the presented figures in cluster-wise averaging format might have 537 
effectively smoothed out certain variability among members. A full-scale analysis would 538 
necessarily go beyond this to provide further synoptical or large-scale hydrological insights and 539 
better define different regimes.  540 

Table 1. Cluster means of features associated with haze events (TP and FN) in Beijing and Shanghai 541 
versus means of all clusters of non-haze events of TN and FP, respectively. Number of cluster members 542 
of each cluster are listed in bracket. 543 

Cluster REL 
(0-1) 

DT2 
(oC) 

T2MS 
(oC) 

U10 
(m/s) 

V10 
(m/s) 

DTCV 
(kg/m2) 

BLH 
(m) 

SW1 
(kg/m2) 

SW2 
(kg/m2) 

Beijing          
TP1 (848) 0.64 -5.99 3.24 -0.29 0.20 0.04 379.71 0.23 0.22 
TP2 (181) 0.65 -5.80 3.14 -0.28 0.19 0.57 378.33 0.23 0.23 
TP3 (354) 0.65 -5.39 2.98 -0.45 0.29 0.31 400.20 0.23 0.22 
TP4 (1208) 0.64 -5.82 3.18 -0.34 0.28 0.27 381.28 0.23 0.22 
FN1 (392) 0.63 -6.24 3.32 -0.25 0.20 0.07 422.60 0.23 0.22 
FN2 (90) 0.65 -5.71 3.05 -0.20 0.17 0.19 406.65 0.23 0.22 
FN3 (26) 0.69 -5.37 2.94 -0.61 0.39 -0.17 410.95 0.25 0.23 
TN mean 0.51 -7.13 3.65 0.15 -0.15 0.36 552.90 0.22 0.21 
FP mean 0.65 -5.84 3.15 -0.35 0.25 -0.26 386.27 0.24 0.23 
Shanghai          

TP1 (1228) 0.81 -3.44 1.79 -0.16 -0.55 -2.25 415.59 0.35 0.35 
TP2 (135) 0.81 -3.10 1.71 -0.12 -0.66 -2.08 422.04 0.36 0.36 
TP3 (689) 0.81 -2.95 1.59 -0.17 -1.28 -2.29 472.74 0.36 0.35 
TP4 (355) 0.81 -3.52 1.82 0.03 -0.57 -2.74 411.96 0.35 0.35 
FN1 (372) 0.80 -3.48 1.80 -0.41 -0.42 -0.84 421.13 0.35 0.35 
FN2 (113) 0.80 -3.64 1.84 -0.34 -0.51 -1.21 423.09 0.35 0.34 
FN3 (107) 0.82 -3.28 1.77 -0.68 -0.49 0.10 422.36 0.35 0.35 
TN mean 0.77 -3.29 1.57 -2.86 1.40 0.62 739.75 0.31 0.32 
FP mean 0.82 -3.26 1.71 -0.48 -0.85 -2.26 438.55 0.35 0.35 

5 Summary and Conclusions 544 

Following an earlier preliminary attempt for hazes in Singapore, a deep convolutional neural 545 
network containing more than 20 million parameters, namely HazeNet, has been further 546 
developed to test forecasting the occurrence of severe haze events during 1979-2019 in two 547 
metropolitans of Asia, Beijing and Shanghai. By training the machine to recognize regional 548 
patterns of meteorological and hydrological features associated with haze events, the study 549 
would advance our knowledge about this still poorly known environmental extreme. The deep 550 
CNN has been trained in a supervised learning procedure using the time sequential maps of up to 551 
16 meteorological and hydrological variables or features as inputs and surface visibility 552 
observations as the labels.  553 
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Even with a rather limited samples (14,975), the trained machine has displayed a reasonable 554 
performance measured by commonly adopted validation metrics. Its performance is clearly better 555 
during months with high haze frequency, i.e., all months except dusty April and May in Beijing 556 
and from late autumn through entire winter in Shanghai. Relatively larger spatial patterns appear 557 
to be more effective than the smaller ones to influence the performance of forecasting. On the 558 
other hand, in-depth analysis on performance results has also indicated certain limitations of 559 
current approach of solely using meteorological and hydrological data in performing forecast. 560 

The trained machine has also been used to examine the sensitivity of the CNN to various 561 
input features and thus to identify then remove features ineffective to the performance of the 562 
machine. In addition, to further categorize typical regional weather and hydrological patterns 563 
associated with severe haze versus non-haze events, an unsupervised cluster analysis has been 564 
subsequently conducted, benefited from using features with greatly reduced dimensionality 565 
produced by the trained machine.  566 

The cluster analysis has, arguably for the first time, successfully categorized major regional 567 
meteorological and hydrological patterns associated with severe haze and non-haze events in 568 
Beijing and Shanghai into a limited number of representative groups, with the typical feature 569 
patterns of these clustered groups derived. It has been found that the typical weather and 570 
hydrological regimes of haze events in Beijing and Shanghai are rather stable conditions, 571 
represented by anomalously high relative humidity, low planetary boundary layer height, mild 572 
daily temperature change that likely associated with a thin low cloud cover over the haze 573 
occurring regions. The result has further revealed a rather strong similarities in associated 574 
meteorological and hydrological regimes between haze and false alarm clusters, or differences 575 
between haze and missing forecasting clusters, implying that factors such as energy consumption 576 
variations, long range transport of aerosols, or beyond, could influence the occurrence of hazes  577 
even under unfavorite weather conditions.  578 

Due to the exploratory nature of this specific effort, several aspects could be further 579 
optimized including the rather arbitrary though statistically meaningful labeling. Also, an in-580 
depth analysis on weather regimes would necessarily involve the use of certain features that are 581 
not included in the current clustering, which, however, exceeds the extent of this paper and can 582 
only be discussed properly in a future work. Nevertheless, this study has demonstrated the 583 
potential of applying deep CNNs with extensive multi-dimensional and time sequential 584 
environmental images to advance our understandings about poorly known environmental and 585 
weather extremes. The methodology, results alongside experience obtained from this study could 586 
benefit future improvement of the skills. Besides, the trained machines can be used in many 587 
other types of machine learning and deep learning applications as partially demonstrated here. 588 

Appendix A. Performance metrics  589 

Several commonly used performance metrics have been used in this study. They are largely derived based on 590 
the so-called confusion matrix (e.g., Swets, 1988) as defined in the following Table A. 591 
 592 
Table A. Confusion matrix for measuring the prediction outcomes of a given class. 593 

  Observed  
  Positive Negative 

Predicted Positive True Positive or TP False Positive or FP  

 Negative False Negative or FN  True Negative or TN 
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Here, positive or negative is referring to the outcome of a given event or class in the classification, e.g., severe haze 594 
or non-haze events. Hence, the prediction outcome TP is a correct forecast of a severe haze while TN a correct 595 
forecast of a non-haze event, FP represents a false alarm, and FN a missing forecast. The context of outcomes 596 
changes when the designated class is switched. The major performance metrics used in this paper include: 597 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"#!$
$

        (A1) 598 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#%"

        (A2) 599 

𝑟𝑒𝑐𝑎𝑙𝑙 = !"
!"#%$

        (A3) 600 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ &'()*+*,-	⋅	'()011
&'()*+*,-#'()011

       (A4) 601 

𝐸𝑇𝑆 = !"23*4!"#$%&
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 ;      (A5a) 602 

 where: 𝐻𝑖𝑡'0-5,6 = (!"#%$)⋅(!"#%")
$

    (A5b) 603 

𝐻𝑆𝑆 = 9⋅(!"⋅!$2%"⋅%$)
(!"#%")⋅(%"#!$)#(!"#%$)⋅(!"#!$)

      (A6) 604 

Note that accuracy has the same value for all the classes and thus is a good metrics for the overall classification. 605 
Values of all the other metrics differ depending on the referred specific class. Here, F1 score is the F-score with β = 606 
1 (van Rijsbergen, 1974), ETS represents equitable threat score (or Gilbert skill score; Gilbert, 1884; range = [-1/3, 607 
1]), HSS represents Heidke skill score (Heidke, 1926; range = [-∞,1]), and N is the number of total outcomes.  608 

Appendix B. Examining the network’s sensitivity to features using trained machine 609 

A method has been adopted in this study to use a trained machine from basic training to examine the sensitivity 610 
of the network to a random perturbation applied to the values of different features. The saved machine contains all 611 
the coefficients in different network layers and can be used to predict output from any of these layers using same 612 
input features for training or validation. The sensitivity of the network to a given feature is determined by comparing 613 
the prediction using input feature maps containing randomly perturbation applied to the map of this feature with the 614 
prediction using original input feature maps, and measured by the content loss between these two predictions, with 615 
img1 with MxN pixels as the unperturbed and img2 as perturbed network output: 616 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡	𝐿𝑜𝑠𝑠 = :
;×$

∑ (𝑖𝑚𝑔1*,> − 𝑖𝑚𝑔2*,>)9;,$
*,>    (B1) 617 

The perturbation is applied as random patch with addition of -0.2 or 0.2 to 10% of the pixels of the input map of 618 
the targeted feature in each sample while maps of all the other features remain unperturbed. To reduce the workload, 619 
only validation input set corresponding to the class 1 events (about 1020 samples) are used. Therefore, the 620 
sensitivity tested here is actually the sensitivity of the network to a given feature in predicting class 1 events. To 621 
preserve the spatial information of the perturbation field, the output of the 9th layer, or the MaxPooling layer 622 
following the second convolutional layer (Fig. 1) is used as the prediction. It has a size of (15, 31, 92) for Beijing 623 
cases and (15, 15, 92) for Shanghai cases when a kernel size of 20x20 is adopted. A higher content loss represents 624 
that the performance of the network is more sensitive to the variations in value of this feature. 625 

Appendix C. Cluster analysis 626 

The cluster analysis of this study was conducted in the following three steps (see also Fig. 6). 627 
(i) Firstly, the trained and saved HazeNet for both Beijing and Shanghai cases with 9 input features have been 628 

used to perform prediction using the entire 14,975 input samples in original raw data format, i.e., with a feature 629 
volume size of 96x64x9 for Beijing and 64x64x9 for Shanghai for each sample. The prediction results were then 630 
summarized into various outcomes, e.g., as true positive (TP), true negative (TN), false positive (FP), or false 631 
negative (FN) in referring to the haze class. In the meantime, the output of the second dense layer just before the 632 
output layer or latent space (see Fig. 1 & Fig. 6) were further used to form the new data of each sample with reduced 633 
feature volume of 512. This new dataset with 14075 samples and 512 feature volume were ready for clustering. 634 
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(ii) The second step is to actually perform clustering using the new data with reduced size resulted from the 635 
previous step. For this purpose, it should be conducted separately for different types of samples or events, e.g., 636 
categorizing all the samples for haze into characteristic groups with similarity and same for non-haze events. In 637 
order to provide additional information to further the understanding of the network’s performance, the clustering 638 
was actually conducted for different prediction outcomes, by taking corresponding samples from the new dataset. In 639 
this case, TP plus FN would lead to haze events, and TN plus FP to non-haze events. The clustering calculations 640 
were done by directly using the k-mean (Steinhaus, 1957) function of scikit-learn library (https://scikit-641 
learn.org/stable/modules/clustering.html#clustering). For Beijing cases, the trained machine with 9 features 642 
produced 2591 TP, 11368 TN, 508 FP, and 508 FN outcomes, and 2407 TP, 11484 TN, 492 FP, and 592 FN for 643 
Shanghai. The cluster analysis was performed separately for each of these outcomes in an unsupervised learning 644 
procedure to let the machine to categorize corresponding samples into groups based on similarities among them. In 645 
practice, similarity is judged by the so-called inertia for a cluster with members of xi and mean of 𝜇: 646 

 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = ∑ (‖𝑥* − 𝜇‖)9$
*    (C1) 647 

The clustering is to seek a grouping with minimized inertia within each cluster. The overall measure is the 648 
summation inertia that decreases almost exponentially with the increase of number of clusters. In practice, the 649 
cluster analysis was first tested with various given number of clusters ranging from 1 to 100, to examine the values 650 
alongside decay of the inertia. This provided a base to identify the smallest possible number of cluster centers with 651 
reasonably low inertia in actual cluster analysis. This has actually been decided by using square root of the inertia 652 
weighted by the number of samples to put the varying number of samples across various outcomes in consideration. 653 
An optimized number of clusters was chosen with a weighted inertia lower than 1/e of that of the single cluster case. 654 
For TN, due to the large sample number, this criterion was set to be half of 1/e. As a result, the optimized numbers 655 
of clusters for TP, FN, FP, and TN outcomes are 4, 3, 4, and 15 for Beijing and 4, 3 3, and 10 for Shanghai, 656 
respectively,  657 

(iii) The members of each cluster derived from (ii) were recorded by the actual sample indices with date 658 
attribute. Therefore, actual samples of input data grouped into various clusters can be thus conveniently identified 659 
with corresponding feature maps retrieved, either in the format of normalized or unnormalized (i.e., in original 660 
quantity as in reanalysis dataset), and used for further analyses. In practice, cluster-averaged maps for various 661 
features were performed beforehand. 662 

Code and data availability 663 

The Python script for network architecture, training and validation is rather straightforward and simple, 664 
basically consisting of directly adopted function calls from Keras interface library (https://github.com/keras-665 
team/keras) with TensorFlow-GPU (https://www.tensorflow.org) as backend, or from scikit learn library 666 
(https://scikit-learn.org/). All the data used for analyses are publicly available as indicated in the 667 
Acknowledgements. 668 
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