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Abstract. Severe haze or low visibility event caused by abundant atmospheric aerosols has 25 
become a serious environmental issue in many countries. A framework based on deep 26 
convolutional neural networks has been developed to forecast the occurrence of such events in 27 
two Asian megacities: Beijing and Shanghai. Trained using time sequential regional maps of 28 
meteorological and hydrological variables alongside surface visibility data over the past 41 29 
years, the machine has achieved a good overall accuracy in associating the haze events with 30 
favorite meteorological and hydrological conditions. Certain valuable knwoledge has also 31 
obtained from the training such as the sensitivity of the machine’s performance to the spatial 32 
scale of feature patterns that could benefit future applications using meteorological and 33 
hydrological data. Furthermore, an unsupervised cluster analysis using features with a greatly 34 
reduced dimensionality produced by the trained machine has, arguably for the first time, 35 
successfully categorized typical regional meteorological-hydrological regimes alongside local 36 
quantities associated with haze and non-haze events in the two targeted cities, providing 37 
substantial insights to advance our understandings of this environmental extreme.  38 

1 Introduction 39 

Frequent low visibility or haze events caused by elevated abundance of atmospheric aerosols 40 
due to fossil fuel and biomass burning has have become a serious environmental issue in many 41 
Asian countries in recent decades, interrupting economic and societal activities and causing 42 
human health issues (e.g., Chan and Yao, 2008; Silva et al., 2013; Lee et al., 2017). For example, 43 
rapid economic development and urbanization in China have caused various pollution-related 44 
health issues particularly in populated metropolitans such as Beijing-Tianjin region and Yangtze 45 
riverYangtze River delta centered in Shanghai (e.g., Liu et al., 2017). In Singapore, the total 46 
economic cost of brought by severe hazes events in 2015 is estimated to be $510 million (0.17% 47 
of the GDP), or $643.5 million based on a wiling-to-pay analysis (Lin et al., 2016). To ultimately 48 
prevent this detrimental environmental extreme from happening requires rigid emission control 49 
measures in place through significant changes in energy consumption as well as land and 50 
plantation management. Before all these measures could finally take place, it would be more 51 
practical to develop skills to accurately predict its the occurrence of hazes hence to allow 52 
mitigation measures to be implemented ahead of time. 53 

Severe haze events arise from the solar radiation extinction by aerosols in the atmosphere, 54 
this mechanism can be enhanced with the increase of relative humidity that enlarges the size of 55 
particles (e.g., Kiehl and Briegleb 1993). Aerosols also need favorite atmospheric transport and 56 
mixing conditions to reach places away from their immediate source locations, while their 57 
lifetime in the atmosphere can be significantly reduced by rainfall removal. In addition, soil 58 
moisture is also a key to dust emissions. Therefore, meteorological and hydrological conditions 59 
are critical to the occurrence of haze events besides particulate emissions. To forecast the 60 
occurrence of such events using existing atmospheric numerical models developed based on fluid 61 
dynamics and explicit or parameterized representations of physical and chemical processes, the 62 
actual task is to accurately predict the concentration of aerosols at a given geographic location 63 
and a given time in order to correctly derive surface visibility (e.g., Lee et al. 2017 & 2018). 64 
However, the propagation of numerical or parameterization errors through the model integration 65 
could easily drift the model away from the original track, not mentioning that lack of real-time 66 
emission data alone would simply handicap such an attempt. Therefore, a more fundamental 67 
issue in practice is whether these models could reproduce the a posteriori distribution of the 68 
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possible outcomes of the targeted low-probability extreme events. Ultimately, lack of knowledge 69 
about the extreme events would, in turn, hinder the effort to improve the forecasting skills. 70 

Differing from the deterministic models, an alternative statistical prediction approach could 71 
be adopted, should if the predictors of a targeted event could be identified and a statistical 72 
correlation between them could be established with confidence. However, this is a rather difficult 73 
task for the traditional approaches, because it requires an analysis dealing with a very large 74 
quantity of high-dimensional data in order toto establish a likely multi-variate and nonlinear 75 
correlation of generalizationthat can be generalized. Nevertheless, such attempts can obviously 76 
benefit now from the fast-growing machine learning (ML) and deep learning (DL) algorithm 77 
development (e.g., LeCun et al., 2015). In addition, technological advancement and continuous 78 
investment from governments and other sectors across the world have led to a rapid increase of 79 
quantity alongside substantially improved quality of meteorological, oceanic, hydrological, land, 80 
and atmospheric composition data. These data might still not be sufficient for evaluating and 81 
improving certain detailed aspects of the deterministic forecasting models. However, rich 82 
information contained in these data about favorite environmental conditions for the occurrence of 83 
extreme events such as hazes could already have a great value for developing alternative 84 
forecasting skills. 85 

Many Earth science applications dealing with meteorological or hydrological data need a 86 
trained machine to not only forecast values but also recognize patterns or images. However, this 87 
can easily lead to a curse of dimensionality of many traditional ML algorithms. Fortunately, deep 88 
learning that directly links large quantity of raw data with targeted outcomes through deep 89 
convolutional neural networks or CNNs (Goodfellow et al., 2016) offers a clear advantage in 90 
sufficiently training deep networks suitable for solving highly nonlinear issues. In doing so, DL 91 
can also eliminate the possible mistakes in data derivation or selection introduced by subjective 92 
human opinion regarding a poorly understood phenomenon. Recently, DL algorithms have been 93 
explored in various applications in atmospheric, climate, and environmental sciences, ranging 94 
from recognizing specific weather patterns (e.g., Liu et al., 2016; Kurth et al., 2018; Lagerquist 95 
et al., 2019; Chattopadhyay et al., 2020), weather forecasting including hailstorm detection (e.g., 96 
Grover et al., 2015; Shi et al., 2015; Gagne et al., 2019), to deriving model parameterizations 97 
(e.g., Jiang et al., 2018), and beyond.  98 

When In certain applications, the targeted outcomes are the same features as the input but at 99 
a different time, e.g., a given weather feature(s) such as temperature or pressure at a given level. 100 
patterns associated with targeted outcome are known or irrelevant to the task, The the forecasting 101 
can thus be normally proceeded to recognize a given pattern by using pattern-to-pattern 102 
correlation from a sequential training dataset with spatial-information-preserving full CNNs such 103 
as U-net (Ronneberger et al., 2015; Weyn et al., 2020). However, this is certainly not the case 104 
for the applications where the environmental conditions associated with targeted outcome are yet 105 
known. For such applications, a possible solution is to utilize a large quantity of raw data with 106 
minimized human intervention in data selection to train a deep CNN in order toto associate 107 
targeted outcomes with favorite environmental conditions. This study represents such an attempt, 108 
where a DL forecast framework is trained to identify the meteorological and hydrological 109 
conditions associated with the occurrences of severe hazes. The DL framework has been 110 
developed initially with the severe hazes in Singapore (Wang, 2020), and now hazes in two 111 
megacities of China, Beijing and Shanghai. In terms of particulate pollutant emissions, all these 112 
cities share certain sources including fossil fuel combustions from transportation, domestic, and 113 
industries. On the other hand, each city also has its own unique sources, for instance, desert and 114 
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perhaps anthropogenic dust for Beijing, and massive biomass burning in Singapore (Chen et al., 115 
2013; Liu et al., 2017; Lee et al., 2017, 2018, & 2019). It is obvious that besides meteorological 116 
and hydrological conditions, dynamical patterns of anthropogenic activities leading to the 117 
emissions of particulate matters are also important factors behind the occurrence of severe hazes. 118 
Nevertheless, the major purpose of this study is to advance our fundamental knowledge about the 119 
weather conditions favoring the occurrence of hazes and, through an in-depth analysis on the 120 
forecasting results to identify the limit of such a machine and thus to provide useful information 121 
for establishing a more complete forecasting platform for the task.  122 

In the paper, the architecture alongside method and data for training are firstly described after 123 
this iIntroduction, followed by a discussion of training and validation results. Then, an 124 
unsupervised cluster analysis benefited from the trained machine is introduced along with the 125 
results that furthers the understanding of the CNN’s performance and summarizes, for the first 126 
time, the various typical meteorological and hydrological regimes associated with haze versus 127 
non-haze situations in the two cities. The last section concludes the effort and major efforts and 128 
findings. 129 

2 Network Architecture, Training Methodology and Data 130 

The convolutional neural network used in this study, the HazeNet (Wang 2020), has been 131 
developed by adopting the general architecture of the CNN developed by the Oxford 132 
University’s Visual Geometry Group or VGG-Net (Simonyan and Zisserman, 2015). The actual 133 
structure alongside hyper-parameters of HazeNet have been adjusted and fine-tuned based on 134 
numerous test trainings. In addition, certain techniques that were not available when the original 135 
VGG net was developed, e.g., batch normalization (Ioffe and Szegedy, 2015), have been 136 
included as well. The current version for haze applications of Beijing and Shanghai, though 137 
trained separately, contains the same number of parameters of 20,507,161 parameters (11,376 138 
non-trainable) owing to the same optimized kernel sizes. Figure 1 shows the general architecture 139 
of a HazeNet version with 12 convolutional and 4 dense layers (in total 57 layers). 140 

 141 
Figure 1. Architecture of the 12 convolutional plus 4 dense layer HazeNet. Here “Conv” represents a unit 142 
containing a zero-padding then a 2D convolutional layer, followed by a batch normalization layer. There 143 
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is a flatten layer before the 2 dense layers. W = width, H = height, and N = number of features of the 144 
input fields, they are 64, 96, and 16 for Beijing, and 64, 64, and 16 for Shanghai case, respectively.  145 

The network has been trained in a standard supervised learning procedure for classification. 146 
In this procedure, where the network takes input features to produce classification output that are 147 
then compared with known results or labels based on observations. The coefficients of the 148 
network are thereafter optimized in order to minimize the error between the prediction and the 149 
observation or label. The loss function used in optimization is cross-entropy (e.g., Goodfellow et 150 
al., 2017). Such a procedure is repeated until the performance of the network can no longer be 151 
improved. In practice, the trainings usually last about 2000 epochs (each epoch is a training cycle 152 
that uses up the entire training dataset). This procedure in nature is to train a deep CNN to 153 
recognize then associate input features (bundled meteorological and hydrological conditions in 154 
this case) with corresponding class, i.e., severe haze events or non-haze events. As a result, the 155 
knowledge specifically about the favorite meteorological and hydrological conditions of severe 156 
hazes could be advanced. 157 

The labels for the training are derived using the observed daily surface visibility (vis. 158 
thereafter), obtained from the Global Surface Summary Of the Day or GSOD dataset consisting 159 
of daily observations of meteorological conditions from tens of thousands of airports around the 160 
globe (Smith et al., 2011). In the cases of Beijing and Shanghai, data are from observations in 161 
corresponding airports of these two cities during the time periodtime from 1979 to 2019, 162 
containing 14,975 samples. For simplicity, the discussions will be mainly on the 2-class training, 163 
where events with vis. ≤ the long-term mean value of the 25th percentile or p25 of vis. (6.27 km 164 
in Beijing, 5.95 km in Shanghai; Fig. 2, right panel; also Fig. S1 in Supplementary) are defined 165 
as class 1 or severe hazes, otherwise the class 0 or non-haze cases. The Although p25 values vary 166 
interannually, their long-term means actually represent a substantial reduction of vis. due to high 167 
particulate pollution (e.g., Lee et al., 2017). Note that unlike in the case of Singapore (Wang 168 
2020), fog and mist are more common low visibility events in Beijing and Shanghai and thus 169 
have been excluded from the labels of severe hazes by following GSOD fog marks. The number 170 
of severe haze events occurred during 1979-2019 defined in the above procedure is 2999 and 171 
3099 and 2099 for Beijing and Shanghai, or in a frequency of 20.07% and 20.70%, respectively.  172 

 173 
Figure 2. (Left) The input-feature defining domains for Beijing (red box and dot, 99.25 - 123E, 32.25-174 
48N; 96x64 grids with ERA5 data) and Shanghai (white box and dot, 109.25-125E, 26-41.25N; 64x64 175 
grids), made using Basemap library, a matplotlib extension. (Right) Annual means (solid curves), 25th 176 
percentiles (dash curves), and 25th percentile means (solid straight lines) of surface visibility in Beijing 177 
(red) and Shanghai (blue) between 1979 and 2019. 178 
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The training and validation of HazeNet also need the input features with the same sample 179 
dimension of the labels. These input data are derived from hourly longitude-latitude maps of 180 
meteorological and hydrological variables covering the data collection domain (Fig. 2, Left), 181 
obtained from ERA5 reanalysis data produced by the European Centre for Medium-range 182 
Weather Forecasts or ECMWF (Hersbach et al., 2020). These data are distributed in a grid 183 
system with a horizontal spatial interval of 0.25 degree. Up to 16 features are derived from the 184 
original hourly data fields covering the analysis domain respectively for Beijing (64x96 grids) 185 
and Shanghai (64x64 grids), including: daily mean of surface relative humidity (REL thereafter); 186 
diurnal change as well as daily standard deviation of 2-meter temperature or DT2M and T2MS, 187 
respectively; daily mean of 10-meter zonal and meridional wind speed or U10 and V10, 188 
respectively; daily mean of total column water (TCW); daily mean (TCV) and diurnal change 189 
(DTCV) of total column water vapor; daily mean of planetary boundary layer height (BLH); 190 
daily mean soil water volume in soil layer 1 and 2 or SW1 and SW2, respectively; daily mean of 191 
total cloud cover (TCC); daily mean geopotential heights at 500 (Z500) and 850 (Z850) hPa 192 
pressure levels along with their diurnal changes D500 and D850, respectively. All input features 193 
have been normalized into a range of [-1, +1] (Fig. S2 in Supplementary). 194 

Before the training, the entire samples of labels alongside corresponding input features were 195 
randomly shuffled first then split as: 2/3 of the samples went to training set and 1/3 to validation 196 
set, each is used duly for its designated purpose throughout the entire training process without 197 
switch. The above procedure treats each of the events as an independent one. For the 198 
convenience in comparing performance or restarting training based on a saved machine, a pair of 199 
saved training dataset and alongside a holdout validation dataset that has never been used in 200 
training, datasets produced following the above procedure, was used.  201 

The number of samples used in training HazeNet is rather limited in deep learning standard. 202 
However, to associate 16 joint two-dimensional maps with targeted labels even with the current 203 
number of samples is still a demanding task, requiring a deep CCN to accomplish. Furthermore, 204 
targeted severe hazes are a low probability event. Its frequency of appearance is about 20.0% in 205 
Beijing and Shanghai cases. Therefore, trained machine would easily bias toward the 206 
overwhelming non-haze events. To resolve these issues, a combination of class-weight and batch 207 
normalization has been implemented in HazeNet, both using corresponding Keras functions. The 208 
class weight is to change the weight of training loss of each class, normally by increasing the 209 
weight of the low frequency class. Class weight coefficient was calculated based on the ratio of 210 
class 0 to class 1 frequency. Batch normalization (Ioffe and Szegedy, 2015) is an algorithm to 211 
renormalize the input distribution at certain step (e.g., each mini batch) to eliminate the shift of 212 
such distribution during optimization. This The above approach has effectively reduced the 213 
overfitting while overcome the data imbalance issue, making the long training of a deep CNN 214 
become possible (Wang, 2020). Entire trainings have been conducted using a NVIDIA Tesla 215 
V100-SXM2 GPU cluster, costing 25s and 17s per epoch for the machine of Beijing and 216 
Shanghai, respectively. 217 

Kernel size and CNN performanceoptimization. As in the cases of other CNNs, there are 218 
many hyperparameters need to be determined or optimized. These have been done through 219 
numerous testing trainings. In practice, it occurs that, theThe deep architecture of HazeNet and 220 
the long training procedure have actually made the performance less sensitive to many 221 
hyperparameters of the network. One hyperparameter, however, is specifically interesting to 222 
explore for an application using large quantity of meteorological maps, that is the kernel size of 223 
the first convolutional layer, where the input data, i.e., meteorological and hydrological maps are 224 
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convoluted then propagated into the subsequent layers. Meteorological maps or images often 225 
contain characteristic patterns with different spatial scales. Intuitively, preserving these patterns 226 
could be important in predicting the targeted extremes. Apparently, a larger kernel size produces 227 
smoother output images from the first convolutional layer, while a smaller kernel size can 228 
preserve many spatial details of the meteorological maps as demonstrated from the layer output 229 
shown in Fig. 53. In practice, however, the patterns produced by the latter configuration might be 230 
too complicated for the networks to recognize and to perform classification, whereas patterns 231 
resulted from a relatively larger kernel size for the first convolutional layer might be more 232 
characteristic for the task. The actual result suggests that HazeNet configured with a first-layer 233 
kernel size of 20 to 26 or close to 5 – 6 degreedegrees in spatial ‘resolution’, consistently 234 
produces a better performance (about a 10% improvement in F1 score; see next section and 235 
Method) than that by a smaller kernel size of 3 or 6. As a result, a kernel size of 20 has been 236 
adopted as the default configuration for the first 2 convolutional layers in this study. 237 

 238 
Figure 53. (Left column) Weight coefficients of the first filter set (WN,1), (Middle column) partial output 239 
for each feature (ZN,1), and (Right column) the output (Z) of the first convolution layer (CONV2d_1) with 240 
two selected kernel sizes or ks: (upper panels) 20x20 and (lower panels) 3x3. Here W represents the filters 241 
and Z the output of convolution, the subsets of Z before the feature dimension is merged can be expressed 242 
as: ZN,i = 𝑊!,#(𝑘𝑠, 𝑘𝑠) ∙ 𝑓!$(𝑘𝑠, 𝑘𝑠),	 with the order of input features N =1,…16 and i represents the 243 
convolutional layer index, i.e., 1 is the first layer or CONV2d_1. For the first layer, input feature size is 244 
(h,w) = (64, 64), the sets of filters is 92, thus the final output Z has a dimension of (h-ks+1, w-ks+1, 92). 245 
Shown are results from the trainings for Shanghai haze cases.. 246 

 247 

3 Training and Validation Results of Haze Forecasting 248 

Currently, it is still difficult to find any practical score in forecasting the occurrence of severe 249 
hazes for comparison. Therefore, the performance of HazeNet has been mainly measured by 250 
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using certain commonly adopted metrics for classification largely derived from the concept of 251 
the so-called confusion matrix (e.g., Swets, 1988; Table A), including accuracy, precision, 252 
recall, F1 score, equitable threat score or ETS, and Heidke skill score or HSS (Appendix A). 253 
Unless otherwise indicated, the discussions on the performance scores are hereafter referring to 254 
the severe haze class, or class 1, and obtained from validation rather than training. In all the 255 
cases, the performance metrics referring to non-haze or class 0 has much better scores. 256 

In order to train a stable machine, trainings with 2000 epochs or longer have been conducted 257 
instead of using certain commonly used adopted skills such as early stop. As a result, the 258 
validation performance metrics of the trained machines all appeared to be stabilized by 259 
approaching the end of training (Fig. 34). These scores were consistent with the results of 260 
ensemble training with the same configuration but different randomly selected training and 261 
validation datasets, and also comparable among trainings with different configurations. 262 
Overfitting has been clearly overcome due to such a long training procedure alongside the 263 
adoption of class0weight class weight and batch normalization. In a 2-class classification (haze 264 
vs. non-haze), trained deep HazeNet can always reach an almost perfect training accuracy (e.g., 265 
0.9956 for Beijing cases) and a validation accuracy of 80% (frequency of non-haze events or no-266 
skill forecasting accuracy) in both Beijing and Shanghai cases, or the no-skill forecast accuracy 267 
for no-haze (Fig. 34, left). At the same time, the performance scores in predicting specifically 268 
severe hazes are also very reasonable, e.g., for Beijing cases either precision or recall exceeds 0.5 269 
(they normally evolve in opposite direction), leading to a nearly 0.5 F1 Score (Fig.34, right). The 270 
corresponding scores in training are obviously much higher, e.g., with precision, recall, and F1 as 271 
0.9804, 0.9980, and 0.9880, respectively for Beijing cases, owing to the deep and thus powerful 272 
CNNs. HazeNet performed slightly better than several known deep CNNs such as Inception Net 273 
V3 (Szegedy et al., 2015), ResNet50 (He et al., 2015), and VGG-19 (Simonyan and Zisserman, 274 
2015) in the same haze forecasting task (Wang, 2020). Nevertheless, as indicated previously that 275 
a nearly perfect validation performance is not realistic since meteorological and hydrological 276 
conditions are not the only factors behind the occurrence of haze events. 277 

 278 
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 279 
Figure 34. (Left) Validation accuracy (top panel) and loss (lower panel) of HazeNet with 16 features for 280 
Beijing and Shanghai cases, kernel size for the first filter is 20x20. (Right Top) Prediction outcomes in 281 
reference to haze events or class -1 of Beijing and Shanghai. Here TP = true positive, TN = true negative, 282 
FP = false positive, and FN = false negative prediction outcomes. (Right Bottom) Scores of performance 283 
metrics as last 100 epoch means for Beijing and Shanghai with 16 and 9 features, respectively. 284 

Looking into the specific prediction outcomes in referring to severe haze, the trained machine 285 
has produced considerably higher ratio of true positive or TP outcomes than in the Southeast 286 
Asia cases (Wang, 2020) despite a number of outcomes of false positive or FP (i.e., false alarm) 287 
and false negative or FN (i.e., missing forecast). In forecasting the severe hazes in Beijing, the 288 
trained machine performs reasonably well throughout all months except for April and May or the 289 
major dusty season there, producing F1 score, ETS, and HSS all exceed or near 0.5 as well as the 290 
number of TP outcomes is higher than that of FN (Fig. 45). The performance of HazeNet 291 
actually improves performs better in months with higher more observed haze events. For Beijing, 292 
the lowest haze season is during the dusty April and May when all the major performance 293 
metrics are lower than 0.4, and the machine produces more missing forecasts than true positive 294 
outcomes. The relatively poor performance in spring suggests that the weather and hydrological 295 
features associated with dust-dominated haze events during this period might differ from the 296 
situations in the other seasons when hazes are mainly caused by local particulate pollution. For 297 
Shanghai cases, HazeNet performs better during late autumn and entire winter (from November 298 
to February) when haze occurs most frequently (not shown). The worst performance comes from 299 
the monsoon season (July to October), or the season with lowest haze cases. 300 
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 302 
Figure 45. (Top) Predicted Monthly counts of predicted TP, FP, and FN outcomes and (Bottom) 303 
performance scores for each month. All from validation of Beijing cases with 16 features. 304 

Kernel size and CNN performance. The deep architecture of HazeNet and the long training 305 
procedure have actually made the performance less sensitive to many hyperparameters of the 306 
network. One hyperparameter, however, is specifically interesting to explore for an application 307 
using large quantity of meteorological maps, that is the kernel size of the first convolutional 308 
layer, where the input data, i.e., meteorological and hydrological maps are convoluted then 309 
propagated into the subsequent layers. Meteorological maps or images often contain 310 
characteristic patterns with different spatial scales. Intuitively, preserving these patterns could be 311 
important in predicting the targeted extremes. Apparently, a larger kernel size produces smoother 312 
output images from the first convolutional layer, while a smaller kernel size can preserve many 313 
spatial details of the meteorological maps as demonstrated from the layer output shown in Fig. 5. 314 
In practice, however, the patterns produced by the latter configuration might be too complicated 315 
for the networks to recognize and to perform classification, whereas patterns resulted from a 316 
relatively larger kernel size for the first convolutional layer might be more characteristic for the 317 
task. The actual result suggests that HazeNet configured with a first-layer kernel size of 20 to 26 318 
or close to 5 – 6 degree in spatial ‘resolution’, consistently produces a better performance (about 319 
a 10% improvement in F1 score) than that by a smaller kernel size of 3 or 6. As a result, a kernel 320 
size of 20 has been adopted as the default configuration for the first 2 convolutional layers in this 321 
study. 322 
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 323 
Figure 5. (Left column) Weight coefficients of the first filter set (WN,1), (Middle column) partial output 324 
for each feature (ZN,1), and (Right column) the output (Z) of the first convolution layer (CONV2d_1) with 325 
two selected kernel sizes or ks: (upper panels) 20x20 and (lower panels) 3x3. Here W represents the filters 326 
and Z the output of convolution, the subsets of Z before the feature dimension is merged can be expressed 327 
as: ZN,i = 𝑊!,#(𝑘𝑠, 𝑘𝑠) ∙ 𝑓!$(𝑘𝑠, 𝑘𝑠),	 with the order of input features N =1,…16 and i represents the 328 
convolutional layer index, i.e., 1 is the first layer or CONV2d_1. For the first layer, input feature size is 329 
(h,w) = (64, 64), the sets of filters is 92, thus the final output Z has a dimension of (h-ks+1, w-ks+1, 92). 330 
Shown are results from the trainings for Shanghai haze cases. 331 

Reducing the number of input features. One recognized advantage of deep CNN in 332 
practice is its capacity to directly link the targeted outcome with a large quantity of raw data, 333 
thus to avoid human misjudgment in selecting and abstracting input features due to a lack of 334 
knowledge about the application task. Nevertheless, for an application such as this one that uses 335 
a large number of meteorological and hydrological variables (or channels in machine learning 336 
term), reducing the number of input features with a minimized influence on the performance can 337 
still benefit the efforts of establishing physical or dynamical causal relations and beyond. 338 

There are certain available methods to rank features then reduce some unimportant ones. 339 
These do not work straightforwardly for deep CNNs (e.g., McGovern et al., 2019). In the 340 
previous effort, this has been done by testing the sensitivity of the full network performance in 341 
real training with either a single feature only or all but one features (Wang, 2020), which 342 
apparently is also a demanding task. Here, another attempt has been made to use a trained then 343 
saved machine to examine the sensitivity of the network to various features (Appendix B).  344 

The sensitivity analyses for using trained machines for Beijing and Shanghai cases have 345 
obtained largely consistent results, indicating that the network is more sensitive to the same 9 346 
features than the other 7 (Fig. S3). The highest-ranking features though differ, with diurnal 347 
change of column vapor (DTCV) and soil water content in the second soil layer (SW2) as the 348 
most sensitive features for Beijing, while relative humidity (REL) and planetary boundary layer 349 
height (BLH) for Shanghai. Most importantly, trainings using only the top 9 most sensitive 350 
features have produced a performance equivalent to or even better than the same training but 351 
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with 16 features (Fig. 34). With reduced number of features, many further analyses can be 352 
conducted with less workload and produce results that are easily understood. 353 

4 Identifying and Categorizing the Typical Regional Meteorological and Hydrological 354 
Regimes Associated with Haze and Non-Haze Events 355 

A major purpose of this study is to identify the meteorological and hydrological conditions 356 
favoring the occurrence of severe hazes in the targeted cities. When using a dataset with a large 357 
number of samples, this type of analyses could be better accomplished by applying, e.g., cluster 358 
analysis (e.g., Steinhaus, 1957), a standard unsupervised ML algorithm that groups data samples 359 
into various clusters in such a way that samples in the same cluster are more similar to each other 360 
than to those in other clusters. Specifically for this study, the derived clusters would likely 361 
represent various regimes in terms of combined meteorological and hydrological conditions for 362 
associated events. However, applying cluster analysis directly to a large number of samples, each 363 
with a feature volume of ~50000 is an uneasy task. A dimensionality reduction is apparently 364 
needed to reduce the feature volume of data.  365 

In practice, a trained CNN is actually an excellent tool for this purpose. It encodes 366 
(downscales) the input with large feature volume into data with a much smaller size in the so-367 
called latent space (i.e., the output of the layer before the output layer) while equal predictability 368 
for the targeted events. This feature functionality of CNN has been used in developing various 369 
generative DL algorithms from variational autoencoder or VAE to different generative 370 
adversarial networks or GANs (e.g., Forest, 2019). Therefore, the trained HazeNet for Beijing 371 
and Shanghai have been used in this study to produce data with reduced size suitable for 372 
clustering (Fig. 6; see also Appendix C). The new sample-feature set with a size of 14,975´512 373 
produced from this procedure was then used in cluster analysis. 374 

 375 

 376 
Figure 6. A diagram of the cluster analysis procedure. Here 96, 64, and 9 represent the number of 377 
longitudinal, latitudinal grids, and number of features (variables), or the size of the input feature volume 378 
of a trained HazeNet for Beijing cases, while 512 is the size of the output from the second dense layer 379 
before output layer of HazeNet or the new feature volume. 380 
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In order to provide useful information for understanding the performance of the trained 381 
networks, the clustering has been performed for each of the prediction outcomes rather than just 382 
haze versus non-haze events (Appendix C). In this configuration, haze associated regimes are 383 
represented by derived clusters of TP plus FN outcomes, while non-haze regimes by those of TN 384 
plus FP. Since the clusters were actually derived using the indices of samples as the record for 385 
members, the actual feature maps of the members in any cluster thus can be conveniently 386 
retrieved then used to identify the representative regimes in terms of combined 9 meteorological 387 
and hydrological features of various prediction outcomes or haze versus non-haze events. Here 388 
the clustering results have been analyzed using the feature maps in both normalized (machine 389 
native) and unnormalized (original reanalysis data) format. The characteristics of various 390 
regimes can be easily identified from the former as they represent anomalies to climatological 391 
means. An added benefit is to advance the understanding of the performance of the trained 392 
networks. The analysis using the latter maps aims to better appreciate the conventional regional 393 
and local meteorological and hydrological patterns associated with various regimes. The feature 394 
maps used in both analyses have been averaged across each cluster for clarity. 395 

4.1 Results based on normalized feature maps 396 

As shown in Figure 7, the 4 clusters of true positive or TP in Beijing cases exhibit a clear 397 
similarity in general feature patterns closely surrounding Beijing (marked by a navy dot in the 398 
figure) among themselves., differing only in rather minor details. The differences between 399 
clusters are more evident in the daily change of column water vapor or DTCV and in two soil 400 
water contents (SW1 and SW2). On the other hand, FN clusters (also associated with haze events 401 
but missed in prediction) also display a clear similarity to the patterns of TP clusters across most 402 
features except DTCV, SW1, and SW2. These common patterns include an isolated small 403 
positive relative humidity (REL) center covering Beijing, associated with mild diurnal variation 404 
change (DT2M) and standard deviation (T2MS) of surface temperature as well as zonal wind 405 
(U10), and a lower boundary layer height (BLH). Weatherwise, Beijing and its immediate 406 
surrounding area appear to be located between two sharply different airmasses occupying 407 
respectively the northwestern and southeastern part of the domain (weather systems usually 408 
progress from northwest to southeast in this region). When relating this to the other feature 409 
characteristics, it is likely that Beijing and nearby area is not experiencing a drastic weather 410 
system change such as fronts when haze occurs, hence the high REL- a critical condition for 411 
aerosol to effectively scatter sunlight - can be easily formed, aided by a stable boundary layer 412 
with mild surface wind to allow aerosols well mix vertically near the ground while without being 413 
significantly reduced through advection diffusion. In addition, relatively high soil water content 414 
could fuel the humidity in the air, and thin while stable low clouds, if exists (judged based on 415 
temperature change) could signal a lack of persistent precipitation. Altogether, these conditions 416 
can apparently allow the haze to easily form, to last, and to effectively scatter sunlight thus 417 
reduce visibility. These conditions are also in a noticeably contrast to those associated with non-418 
haze events represented by TN outcomes (Fig. S4).  419 

Note that each cluster consists of a collection of 3D data volumes or images, any two clusters 420 
could be sufficiently differentiated should only one of their images differs based on the 421 
clustering derivation algorithm, even though statistically speaking, they very likely belong to the 422 
same population (i.e., should be tested statistically). As shown in Fig. 7, the distinctions between 423 
TP clusters are largely reflected from the two different airmasses distant from Beijing, in both 424 
strength and spatial extent particularly from DTCV patterns, likely representing different types 425 
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of systems or background regimes. Specifically, a strong DTCV anomalous center seen in cluster 426 
1 and 4 patterns occupies most of the domain west of Beijing and directly influence Beijing and 427 
its nearby area. In contrast, DTCV distributions in cluster 2 and 3 are much weaker, where 428 
Beijing and its immediate neighboring area even appear to be influence more by the southeaster 429 
system. In addition, surface wind distributions of the first two clusters clearly differ from those 430 
of cluster 3 and 4, and the patterns of BLH alongside SW1 and SW2 over Beijing and its 431 
immediate neighboring area of cluster3 also suggests a land-atmosphere exchange condition 432 
differing from that of others. The combinations of these differences across various TP clusters 433 
apparently well defines the various regimes of surrounding weather systems as well as their 434 
influence on Beijing. For TP clusters of Shanghai, the above similarities alongside differences 435 
among various clusters also exist, except where the cluster 1, 2, and 4 maintain more similarities 436 
in feature patterns of distant airmasses from Shanghai, while cluster 3 offers certain evident 437 
diversity in many feature patterns comparing to other clusters (Fig. S5). Even more interestingly, 438 
the distribution of the number of members within various TP clusters does not differ evidently in 439 
different months (Table S1) (note that the number of haze events itself differs seasonally – Fig. 440 
5). Therefore, it is very likely that the characteristic weather conditions favoring haze occurrence 441 
and being captured by HazeNet cannot be simply differentiated by locations (Beijing vs. 442 
Shanghai) and seasons. 443 

On the other hand, among three FN clusters (also associated with haze events but missed in 444 
prediction), only the first cluster display a clear similarity to TP clusters across most features, 445 
though the characters of the airmasses distantly surrounding Beijing differ substantially from 446 
those of TP clusters. Such differences appear to be even more evidently in the two other clusters 447 
alongside some of the common features in TP clusters, e.g., the size and strength of high relative 448 
humidity center covering Beijing are even different. This result suggests a possible reason for 449 
why HazeNet missed these targets, that is haze might occurr under unfavorable weather and 450 
hydrological conditions owing to, e.g., certain energy consumption scenarios. Again, the 451 
distribution of members of these latter two clusters does not exhibit clear seasonality (Table S1).  452 

Generally speaking, the common patterns in normalized feature maps shared by most clusters 453 
associated with observed haze events (i.e., TP plus FN outcomes) include an isolated positive 454 
relative humidity (REL) center in the southeast region covering Beijing associated with mild 455 
temperature variations (DT2M and T2MS) as well as zonal wind (U10) and lower boundary 456 
layer height (BLH). Note that the mild daily temperature variation alongside lower BLH 457 
indicates that the haze region is not experiencing drastic weather system change such as fronts 458 
and likely covered by low cloud, hence the high REL can be easily formed. All these characters 459 
reflect a stable regional weather conditions over the southeastern half of the domain where 460 
targeted hazes occurred. They are also in a sharp contrast to the conditions in the northwestern 461 
half of the domain as well as the conditions associated with non-haze events represented by TN 462 
outcomes (Fig. S4). On the other hand, FN clusters (also associated with haze events but missed 463 
in prediction) also display a clear similarity to the patterns of TP clusters across most features 464 
except DTCV, SW1, and SW2. 465 

Interestingly, first two of the 4four FP (false alarm) clusters actually displaydisplay a more 466 
clear similarity in normalized feature patterns to those of TP as those ofthan FN in Beijing and 467 
its immidiate surrounding area  (Fig. 7). As in FN cases, however, two other clusters differ more 468 
evidently. In addition, despite an anticipated diversity in feature patterns across TN clusters (Fig. 469 
S4), four of its clusters (i.e., 2, 5, 12, and 13) exhibit a certain level of similarity to those of TP 470 
clusters. All these could offer an explanation forexplain the forecast false alarming errors made 471 
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by the machine, i.e., the machine could have simply been confused by such similarities between 472 
certain FN and TN members, or between certain TP and FP members. Nevertheless, these could 473 
also suggest an alternative reason behind the incorrect forecasts that is certain pollution 474 
mitigation measures were in place. The results of Shanghai FP clusters and the last FN cluster 475 
besides TP are largely of Shanghai cases also share some similar characters as analyzed here the 476 
same as in Beijing case (Fig S5 & S6). 477 

Therefore, itIt is worth indicating again that meteorological or hydrological conditions are 478 
not the only factors determining the occurrence of hazes. Other factors such as abnormal energy 479 
consumption events or long-range transport of aerosols could all cause haze to occur even under 480 
unfavorable weather and hydrological conditions. This could well be the reason for some of the 481 
missing forecasts (FN outcomes) when haze occurred under unfavorable conditions, as suggested 482 
above, or for false alarms (FP outcomes) when low aerosol events occurred even under a weather 483 
condition favorable to haze. Future improvement of the skill could benefit from this knowledge. 484 

The results of Shanghai are largely the same as in Beijing case (Fig S5 & S6). 485 

 486 
 487 
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489 
Figure 7. Maps of 9 features in normalized format for 4 clusters of true positive or TP outcome, 5 3 490 
clusters of false negative or FN outcome, and 4 clusters of false positive or FP outcome. Here TP plus FN 491 
= haze events. Results shown are cluster averages for Beijing (location marked by navy dot) cases. 492 

4.2 Results based on original unnormalized feature maps 493 

Utilizing feature maps in their original unnormalized format represented by actual physical 494 
quantities could provide a convenience to appreciate the conventional regional and local 495 
meteorological and hydrological patterns associated with various events. Note that the visual 496 
differences between unnormalized feature maps particularly in cluster-mean format might be 497 
subtle for bare eyes to recognize.  498 

For haze events in Beijing (i.e., TP and FN outcomes; Fig. 8), the associated cluster-mean 499 
regional meteorological and hydrological patterns of most features except DTCV contain two 500 
regions with sharply contrasting quantities, roughly separated by a line linking the southwest and 501 
northeast corner of the domain, likely due to the nature typical progression direction of weather 502 
systems in this region besides meridional variation of general climate. Beijing (at ~1/3 domain 503 
width from the east boundary and nearly the north-south center) locates in the southeastern half 504 
of the domain. In comparison, as same as shown in the previous analysis using normalized 505 
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feature maps, the patterns of the first FN clusters share many common patterns characters with 506 
those of TP clusters. Their differences among TP and FN clusters are more evident in DTCV 507 
(specifically cluster 1 and 4 versus cluster 2 and 3), SW1, and SW2, and surface winds 508 
particularly for the 2nd and 3rd FN clusters. In addition, cluster 5 of FN shows more diverse 509 
patterns than the rest. FP clusters also display a similarity to those of TP clusters (Fig. S5S7), 510 
whereas TN clusters show more visible differences particularly in patterns of meridional wind 511 
(V10) and daily change of column water vapor or DTCV (Fig. S6S8).  512 

 513 
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 514 
Figure 8. Feature maps associated with severe haze events in Beijing represented by 4 clusters of TP (4 515 
top rows) and 5 3 clusters of FN (5 3 lower rows) predicted outcomes. Shown are cluster means of 516 
unnormalized data of relative humidity or REL (ratio), diurnal change (DT2M) and daily standard 517 
deviation (T2MS) of 2-meter temperature in degree, 10-meter winds U10 and V10 in m/s, diurnal change 518 
of column water vapor or DTCV (kg/m2), planetary boundary hheight ot BLH in meter, and soil water 519 
content in soil level 1 (SW1) and level 2 (SW2) in kg/m2.  520 

The general regional meteorological and hydrological conditions during haze events in the 521 
southeastern in comparison to the northwestern portion of the domain include a higher relative 522 
humidity, lower variation of surface temperature, largely northward or northwestward wind, 523 
lower planetary boundary layer height, and higher soil water content, and quantity wise these are 524 
all in a sharp contrast to the situations in the other half of the domain. Based on the surface wind 525 
direction, Beijing and its immediate surrounding area is clearly located between two airmasses 526 
both with anticyclonic surface winds. The strengths of these two centers differ particularly in the 527 
last two FN clusters, implying regimes with systems having different strengths or in different 528 
development phases. The Such a difference is also clearly related to the visually recognized 529 
cross-cluster differences of haze events mainly exist in DTCV patterns, represented by a strong 530 
negative center in the middle of the domain with varying extent and strength across different 531 
clusters. To a less extent, patterns of surface wind V10 and U10 also offer some different 532 
characteristics among various clusters particularly of FN clusters. Consistent to the analysis 533 
result using normalized feature maps, all these indicate a stable weather condition over the 534 
southeastern half of the domainBeijing and its neighboring area for during haze events while 535 
surrounded by two (or more) different weather systems in Beijing. It is known that dust can 536 
cause low visibility events in Beijing. During dust seasons, the condition of the northwestern half 537 
of the domain, represented by a dominant eastward wind and lower soil water content likely 538 
favors dust transport from desert to Beijing. However, the details would need an in-depth 539 
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analysis to examine since most clusters having members rather well distributed through different 540 
months (Table S1).  541 

The cluster-means of 9 features for haze events (TP plus FN) versus non-haze (TN plus FP) 542 
at the grid point of Beijing are also derived and listed in Table 1 for reference. Specifically, the 543 
common local conditions associated with hazes in Beijing in comparison to those with non-haze 544 
events include a higher humidity, less drastic variations in surface temperature, a northwestward 545 
rather than southeastward wind, a lower planetary boundary layer height, and higher soil water 546 
contents. Again, the most recognizable cross-cluster differences appear in DTCV (i.e., cluster 1 547 
versus others), followed by surface wind (cluster 1 and 2 versus 3 and 4). In most of the local 548 
features, variabilities of FN clusters tend to be larger than those of TP clusters. Notably, such 549 
differences in local feature quantities for FN clusters are not necessarily more evident than in the 550 
regional maps over distant airmasses. One interesting result of the local weather conditions 551 
shown in Table 1 is that the cluster means of TN are sharply different than those of TP and FN, 552 
while the cluster means of FP and those of TP+FN are likely to be statistically indifferent except 553 
for DTCV, providing an evidence to support the assumption that FP outcomes might simply 554 
represent the non-haze events caused by reasons other than weather and hydrological conditions. 555 
 556 
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 558 
Figure 9. The same as Figure 9 except for Shanghai with 3 4 clusters for TP and 4 3 for FN outcomes. 559 
 560 

For the case of Shanghai, the general weather conditions associated with haze events are 561 
likely stable, with characters similar to the cases of Beijing except for that Shanghai appears to 562 
be located between a northwest airmass with anticyclonic surface wind and a southeast one with 563 
cyclonic wind (Fig. 9). Quantities of most feature patterns display a sharply southeast versus 564 
northwest contrast. DTCV maps display a negative center over a large area, its distribution and 565 
extent vary significantly among different clusters in particular for the first two FN clusters. The 566 
patterns of soil water content in both soil layers exhibit a sharp meridional contrast, much higher 567 
in the south part of the domain than in the north part, largely separated by the Yellow River. 568 
Local quantities of all the features associated with haze events (TP plus FN) in Shanghai display 569 
clear differences with those of non-haze prediction outcomes (TN) (Table 1). The most 570 
recognizable cross-cluster differences for TP appear in U10 of cluster 4 and V10 of cluster 3, 571 
differing from the cases of Beijing, and DTCV particularly of cluster 3 for FN. Similar toLike 572 
the cases of Beijing, the cluster mean of the FP outcomes is statistically indifferent to those of 573 
haze (TP and FN) than predicted non-haze (TN) events. Again, this result implies that even a 574 
weather pattern favoring haze appeared and was correctly recognized by HazeNet, due to other 575 
factors such as energy consumption variations, haze could still not to occur. 576 
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It is worth indicating that the current analysis discussed here is only applied to the included 577 
features in clustering, and the presented figures in cluster-wise averaging format might have 578 
effectively smoothed out certain variability among members. A full-scale analysis would 579 
necessarily go beyond this to provide further synoptical or large-scale hydrological insights and 580 
better define different regimes.  581 

Table 1. Cluster means of features associated with haze events (TP and FN) in Beijing and Shanghai 582 
versus means of all clusters of non-haze events of TN and FP, respectively. Number of cluster members 583 
of each cluster are listed in bracket. 584 

Cluster REL 
(0-1) 

DT2 
(oC) 

T2MS 
(oC) 

U10 
(m/s) 

V10 
(m/s) 

DTCV 
(kg/m2) 

BLH 
(m) 

SW1 
(kg/m2) 

SW2 
(kg/m2) 

Beijing          
TP1 (848) 0.64 -5.99 3.24 -0.29 0.20 0.04 379.71 0.23 0.22 
TP2 (181) 0.65 -5.80 3.14 -0.28 0.19 0.57 378.33 0.23 0.23 
TP3 (354) 0.65 -5.39 2.98 -0.45 0.29 0.31 400.20 0.23 0.22 
TP4 (1208) 0.64 -5.82 3.18 -0.34 0.28 0.27 381.28 0.23 0.22 

FN1 
(157392) 

0.630
.66 

-6.24-
5.83 

3.323.1
6 

-0.25-
0.43 

0.200.3
4 

0.070.1
5 

422.60379.9
1 

0.230.2
3 

0.220.2
1 

FN2 
(1390) 

0.650
.65 

-5.71-
5.05 

3.052.9
8 

-0.20-
0.52 

0.170.4
8 

0.19-
1.88 

406.65422.3
5 

0.230.2
3 

0.220.2
2 

FN3 
(2926) 0.690

.69 
-5.37-
5.90 

2.943.0
5 

-0.61-
0.41 

0.390.3
6 

-
0.170.9

9 
410.95393.5

2 
0.250.2

4 
0.230.2

3 
FN4 (86) 0.64 -5.64 3.02 -0.19 0.11 0.10 420.49 0.23 0.22 
FN5 (223) 0.60 -6.56 3.45 -0.14 0.11 0.01 449.48 0.23 0.22 
TN mean 0.51 -7.13 3.65 0.15 -0.15 0.36 552.90 0.22 0.21 
FP mean 0.65 -5.84 3.15 -0.35 0.25 -0.26 386.27 0.24 0.23 
Shanghai          

TP1 (1228) 0.81 -3.44 1.79 -0.16 -0.55 -2.25 415.59 0.35 0.35 
TP2 (135) 0.81 -3.10 1.71 -0.12 -0.66 -2.08 422.04 0.36 0.36 
TP3 (689) 0.81 -2.95 1.59 -0.17 -1.28 -2.29 472.74 0.36 0.35 
TP4 (355) 0.81 -3.52 1.82 0.03 -0.57 -2.74 411.96 0.35 0.35 

FN1 
(102372) 

0.800
.82 

-3.48-
3.33 

1.801.8
0 

-0.41-
0.67 

-0.42-
0.36 

-0.84-
0.14 

421.13409.5
5 

0.350.3
5 

0.350.3
5 

FN2 (113) 0.800
.80 

-3.64-
3.64 

1.841.8
4 

-0.34-
0.34 

-0.51-
0.51 

-1.21-
1.21 

423.09423.0
9 

0.350.3
5 

0.340.3
4 

FN3 
(370107) 

0.820
.80 

-3.28-
3.47 

1.771.8
0 

-0.68-
0.41 

-0.49-
0.42 

0.10-
0.84 

422.36421.3
6 

0.350.3
5 

0.350.3
5 

FN4 (7) 0.80 -2.82 1.39 -1.19 -2.18 3.63 596.53 0.36 0.36 
TN mean 0.77 -3.29 1.57 -2.86 1.40 0.62 739.75 0.31 0.32 
FP mean 0.82 -3.26 1.71 -0.48 -0.85 -2.26 438.55 0.35 0.35 

5 Summary and Conclusions 585 

Following an earlier preliminary attempt for hazes in Singapore, a deep convolutional neural 586 
network containing more than 20 million parameters, namely HazeNet, has been further 587 
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developed to test forecasting the occurrence of severe haze events during 1979-2019 in two 588 
metropolitans of Asia, Beijing and Shanghai. By training the machine to recognize regional 589 
patterns of meteorological and hydrological features associated with haze events, the study 590 
would advance our knowledge about this still poorly known environmental extreme. The deep 591 
CNN has been trained in a supervised learning procedure using the time sequential maps of up to 592 
16 meteorological and hydrological variables or features as inputs and surface visibility 593 
observations as the labels.  594 

Even with a rather limited samples (14,975), the trained machine has displayed a reasonable 595 
performance measured by commonly adopted validation metrics. Its performance is clearly better 596 
during months with high haze frequency, i.e., all months except dusty April and May in Beijing 597 
and from late autumn through entire winter in Shanghai. Relatively larger spatial patterns appear 598 
to be more effective than the smaller ones to influence the performance of forecasting. On the 599 
other hand, in-depth analysis on performance results has also indicated certain limitations of 600 
current approach of solely using meteorological and hydrological data in performing forecast. 601 

The trained machine has also been used to examine the sensitivity of the CNN to various 602 
input features and thus to identify then remove features ineffective to the performance of the 603 
machine. In addition, in order toto further categorize typical regional weather and hydrological 604 
patterns associated with severe haze versus non-haze events, an unsupervised cluster analysis has 605 
been subsequently conducted, benefited from using features with greatly reduced dimensionality 606 
produced by the trained machine.  607 

The cluster analysis has, arguably for the first time, successfully categorized major regional 608 
meteorological and hydrological patterns associated with severe haze and non-haze events in 609 
Beijing and Shanghai into a limited number of representative groups, with the typical feature 610 
patterns of these clustered groups derived. It has been found that the typical weather and 611 
hydrological regimes of haze events in Beijing and Shanghai are rather stable conditions, 612 
represented by anomalously increasing high relative humidity, low planetary boundary layer 613 
height, mild daily temperature change that likely associated with a thin low cloud cover over the 614 
haze occurring regions, . The result has further revealed a rather strong similarity between the 615 
meteorological and hydrological patterns associated with haze events and those with either false 616 
alarm or missing forecast prediction outcomes, implying that factors other than meteorological 617 
and hydrological ones such as energy consumption variations, long range transport of aerosols, 618 
or beyond, could cause haze events to occur even under unfavorite weather conditions.  619 

Due to the exploratory nature of this specific effort, several aspects could be further 620 
optimized including the rather arbitrary though statistically meaningful labeling. Also, an in-621 
depth analysis on weather regimes would necessarily involve the use of certain features that are 622 
not included in the current clustering, which, however, exceeds the extent of this paper and can 623 
only be discussed properly in a future work. Nevertheless, this study has demonstrated the 624 
potential of applying deep CNNs with extensive multi-dimensional and time sequential 625 
environmental images to advance our understandings about poorly known environmental and 626 
weather extremes. The methodology, results alongside experience obtained from this study could 627 
benefit future improvement of the skills. Besides, the trained machines can be used in many 628 
other types of machine learning and deep learning applications as partially demonstrated here. 629 

Appendix A. Performance metrics  630 
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Several commonly used performance metrics have been used in this study. They are largely derived based on 631 
the so-called confusion matrix (e.g., Swets, 1988) as defined in the following Table A. 632 
 633 
Table A. Confusion matrix for measuring the prediction outcomes of a given class. 634 

  Observed  
  Positive Negative 

Predicted Positive True Positive or TP False Positive or FP  

 Negative False Negative or FN  True Negative or TN 

Here, positive or negative is referring to the outcome of a given event or class in the classification, e.g., severe haze 635 
or non-haze events. Hence, the prediction outcome TP is a correct forecast of a severe haze while TN a correct 636 
forecast of a non-haze event, FP represents a false alarm, and FN a missing forecast. The context of outcomes 637 
changes when the designated class is switched. The major performance metrics used in this paper include: 638 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"#!$
$

        (A1) 639 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#%"

        (A2) 640 

𝑟𝑒𝑐𝑎𝑙𝑙 = !"
!"#%$

        (A3) 641 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ &'()*+*,-	⋅	'()011
&'()*+*,-#'()011

       (A4) 642 

𝐸𝑇𝑆 = !"23*4!"#$%&
!"#%"#%$23*4!"#$%&

 ;      (A5a) 643 

 where: 𝐻𝑖𝑡'0-5,6 = (!"#%$)⋅(!"#%")
$

    (A5b) 644 

𝐻𝑆𝑆 = 9⋅(!"⋅!$2%"⋅%$)
(!"#%")⋅(%"#!$)#(!"#%$)⋅(!"#!$)

      (A6) 645 

Note that accuracy has the same value for all the classes and thus is a good metrics for the overall classification. 646 
Values of all the other metrics differ depending on the referred specific class. Here, F1 score is the F-score with β = 647 
1 (van Rijsbergen, 1974), ETS represents equitable threat score (or Gilbert skill score; Gilbert, 1884; range = [-1/3, 648 
1]), HSS represents Heidke skill score (Heidke, 1926; range = [-∞,1]), and N is the number of total outcomes.  649 

Appendix B. Examining the network’s sensitivity to features using trained machine 650 

A method has been adopted in this study to use a trained machine from basic training to examine the sensitivity 651 
of the network to a random perturbation applied to the values of different features. The saved machine contains all 652 
the coefficients in different network layers and can be used to predict output from any of these layers using same 653 
input features for training or validation. The sensitivity of the network to a given feature is determined by comparing 654 
the prediction using input feature maps containing randomly perturbation applied to the map of this feature with the 655 
prediction using original input feature maps, and measured by the content loss between these two predictions, with 656 
img1 with MxN pixels as the unperturbed and img2 as perturbed network output: 657 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡	𝐿𝑜𝑠𝑠 = :
;×$

∑ (𝑖𝑚𝑔1*,> − 𝑖𝑚𝑔2*,>)9;,$
*,>    (B1) 658 

The perturbation is applied as random patch with addition of -0.2 or 0.2 to 10% of the pixels of the input map of 659 
the targeted feature in each sample while maps of all the other features remain unperturbed. To reduce the workload, 660 
only validation input set corresponding to the class- 1 events (about 1020 samples) are used. Therefore, the 661 
sensitivity tested here is actually the sensitivity of the network to a given feature in predicting class- 1 events. To 662 
preserve the spatial information of the perturbation field, the output of the 9th layer, or the MaxPooling layer 663 
following the second convolutional layer (Fig. 1) is used as the prediction. It has a size of (15, 31, 92) for Beijing 664 
cases and (15, 15, 92) for Shanghai cases when a kernel size of 20x20 is adopted. A higher content loss represents 665 
that the performance of the network is more sensitive to the variations in value of this feature. 666 

Appendix C. Cluster analysis 667 
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The cluster analysis of this study was conducted in the following three steps (see also Fig. 6). 668 
(i) Firstly, the trained and saved HazeNet for both Beijing and Shanghai cases with 9 input features have been 669 

used to perform prediction using the entire 14,975 input samples in original raw data format, i.e., with a feature 670 
volume size of 96x64x9 for Beijing and 64x64x9 for Shanghai for each sample. The prediction results were then 671 
summarized into various outcomes, e.g., as true positive (TP), true negative (TN), false positive (FP), or false 672 
negative (FN) in referring to the haze class. In the meantime, the output of the second dense layer just before the 673 
output layer or latent space (see Fig. 1 & Fig. 6) were further used to form the new data of each sample with reduced 674 
feature volume of 512. This new dataset with 14075 samples and 512 feature volume were ready for clustering. 675 

(ii) The second step is to actually perform clustering using the new data with reduced size resulted from the 676 
previous step. For this purpose, it should be conducted separately for different types of samples or events, e.g., 677 
categorizing all the samples for haze into characteristic groups with similarity and same for non-haze events. In 678 
order to provide additional information to further the understanding of the network’s performance, the clustering 679 
was actually conducted for different prediction outcomes, by taking corresponding samples from the new dataset. In 680 
this case, TP plus FN would lead to haze events, and TN plus FP to non-haze events. The clustering calculations 681 
were done by directly using the k-mean (Steinhaus, 1957) function of scikit-learn library (https://scikit-682 
learn.org/stable/modules/clustering.html#clustering). For Beijing cases, the trained machine with 9 features 683 
produced 2591 TP, 11368 TN, 508 FP, and 508 FN outcomes, and 2407 TP, 11484 TN, 492 FP, and 592 FN for 684 
Shanghai. The cluster analysis was performed separately for each of these outcomes in an unsupervised learning 685 
procedure to let the machine to categorize corresponding samples into groups based on similarities among them. In 686 
practice, similarity is judged by the so-called inertia for a cluster with members of xi and mean of 𝜇: 687 

 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = ∑ (‖𝑥* − 𝜇‖)9$
*    (C1) 688 

The clustering is to seek a grouping with minimized inertia within each cluster. The overall measure is the 689 
summation inertia that decreases almost exponentially with the increase of number of clusters. In practice, the 690 
cluster analysis was first tested with various given number of clusters ranging from 1 to 100, to examine the values 691 
alongside decay of the inertia. This provided a base to identify the smallest possible number of cluster centers with 692 
reasonably low inertia in actual cluster analysis. This has actually been decided by using square root of the inertia 693 
weighted by the number of samples to put the varying number of samples across various outcomes in consideration. 694 
An optimized number of clusters was chosen with a weighted inertia lower than 1/e of that of the single cluster case. 695 
For TN, due to the large sample number, this criterion was set to be half of 1/e. As a result, the optimized numbers 696 
of clusters for TP, FN, FP, and TN outcomes are 4, 53, 4, and 15 for Beijing and 4, 4,3 3, and 10 for Shanghai, 697 
respectively,  698 

(iii) The members of each cluster derived from (ii) were recorded by the actual sample indices with date 699 
attribute. Therefore, actual samples of input data grouped into various clusters can be thus conveniently identified 700 
with corresponding feature maps retrieved, either in the format of normalized or unnormalized (i.e., in original 701 
quantity as in reanalysis dataset), and used for further analyses. In practice, cluster-averaged maps for various 702 
features were performed beforehand. 703 

Code and data availability 704 

The Python script for network architecture, training and validation is rather straightforward and simple, 705 
basically consisting of directly adopted function calls from Keras interface library (https://github.com/keras-706 
team/keras) with TensorFlow-GPU (https://www.tensorflow.org) as backend, or from scikit learn library 707 
(https://scikit-learn.org/). All the data used for analyses are publicly available as indicated in the 708 
Acknowledgements. 709 
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