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Abstract.  

Flux measurements of nitrogen oxides (NOx) were made over London using airborne eddy-covariance from a low flying 15 

aircraft. Seven low altitude flights were conducted over Greater London performing multiple over-passes across the city during 

eight days in July 2014. NOx fluxes across the Greater London region (GLR) exhibited high heterogeneity and strong diurnal 

variability, with central areas responsible for the highest emission rates (20 - 30 mg m-2 h-1). Other high emission areas included 

the M25 orbital motorway. The complexity of London’s emission characteristics makes it challenging to pinpoint single 

emission sources definitively using airborne measurements. Multiple sources, including road transport and residential, 20 

commercial and industrial combustion sources are all likely to contribute to measured fluxes. Measured flux estimates were 

compared to scaled National Atmospheric Emissions Inventory (NAEI) estimates, accounting for; monthly, daily and hourly 

variability. Significant differences were found between the flux-driven emissions and the NAEI estimates across Greater 

London, with measured values up to two times higher in Central London than those predicted by the inventory. To overcome 

the limitations of using the national inventory to contextualise measured fluxes, we used physics-guided flux data fusion to 25 

train environmental response functions (ERF) between measured flux and environmental drivers (meteorological and surface). 

The aim was to generate time-of-day emission surfaces using calculated ERF relationships for the entire GLR. 98% spatial 

coverage was achieved across GLR at 400 m2 spatial resolution. All flight leg projections showed substantial heterogeneity 

across the domain, with high emissions emanating from Central London and major road infrastructure. The diurnal emission 

structure of the GLR was also investigated, through ERF, with the morning rush-hour distinguished from lower emissions 30 

during the early afternoon. Overall, the integration of airborne fluxes with an ERF-driven strategy enabled the first independent 

generation of surface NOx emissions, at high resolution using an eddy-covariance approach, for an entire city region. 
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1 Introduction  

Anthropogenic emissions of NOx (NO + NO2 =  NOx) occur over large areas of Europe and the United Kingdom, with 

atmospheric concentrations in many urban areas exceeding the recommended World Health Organisation (WHO) 40 µg m-3 35 

annual health limit value (Brookes et al., 2013). Of all the common gaseous air pollutants, nitrogen dioxide (NO2) is particularly 

problematic as it promotes respiratory diseases, such as lung inflammation, bronchial reactivity and a significant reduction in 

lung capacity (Foster et al., 2000; Kelly and Fussell, 2017; Shao et al., 2019). NO2 also plays a central role in the production 

of ground-level ozone at the regional scale. London has operated a low emission zone (LEZ) since 2008, with the aim of 

reducing air pollution through vehicle-specific restrictions. The effectiveness of the current LEZ on respiratory health is still 40 

unclear, with some studies highlighting the need further to reduce NO2 concentrations, before improvements in public health 

are achieved (Mudway et al., 2019). Analysis of UK and European road-side NOx annual trends have shown a downward trend 

in NO2 concentrations, however; road-side concentrations in regions such as Greater London remain well above WHO 

guidelines as of 2020 (Grange et al., 2017; Lang et al., 2019).  

 45 

In order to bring atmospheric concentrations of air pollutants into alignment with air quality standards, it is first necessary to 

understand where the pollutant originates from so that effective legislative controls can be introduced. The National 

Atmospheric Emissions Inventory (NAEI) is the primary tool used by the UK Government for this purpose. A growing body 

of work has been conducted to evaluate the NAEI, by comparing inventory estimates with real-time flux measurements from 

towers and airborne platforms (Björkegren and Grimmond, 2018; Famulari et al., 2010; Font et al., 2015; Langford et al., 2009, 50 

2010; Lee et al., 2015; Pitt et al., 2019; Vaughan et al., 2016, 2017). 

 

Inventory validation is a vital component towards reducing urban pollutant concentrations, requiring a continued understanding 

of significant emission sources and spatial distributions. Eddy-covariance (EC) is a well-documented technique for quantifying 

atmospheric emission rates within the atmospheric boundary layer (Aubinet et al., 2012). Initially, EC studies focused on 55 

greenhouse gas emission assessment (Baldocchi, 2003), but these have now been extended to include reactive atmospheric 

compounds such as volatile organic carbon compounds (VOCs) and NOx (Baldocchi, 2003; Karl et al., 2001, 2017, 2002; 

Langford et al., 2009, 2010; Lee et al., 2015; Marr et al., 2013; Squires et al., 2020; Vaughan et al., 2016). 

 

The number of studies assessing NOx emissions in urban environments is small and have focused mainly on point source 60 

analysis and emission inventory validation, highlighting often significant underestimation of emissions by inventories (Karl et 

al., 2017; Lee et al., 2015; Squires et al., 2020; Vaughan et al., 2016). The next stage in understanding complex urban emission 

topographies is to directly employ measured fluxes to calculate independent emissions grids. Here we present a new 

methodology for calculating high spatial resolution NOx fluxes by airborne eddy-covariance and use these with other 
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techniques to generate real-time emission grids over complex urban terrain. The method is demonstrated for the GLR but will 65 

be applicable to other metropolitan areas worldwide. 

2 Methods  

2.1 Measurement campaign 

Airborne eddy-covariance measurements were made during seven research flights as part of the Ozone Precurers Fluxes in an 

Urban Environment (OPFUE) project in July 2014 (Shaw et al., 2015; Vaughan et al., 2016, 2017). The project involved 70 

multiple low altitude flights over the GLR using the Natural Environment Research Council’s (NERC) Dornier-228 aircraft, 

based at Gloucestershire Airport’s Airborne Research and Survey Facility (ARSF). The aircraft has a maximum flight range 

of 2,600 km, science ceiling altitude of 4,500 m and a typical science flight speed of 74.5 ± 10 m s-1. 

 

Each research flight consisted of the following structure. An initial profile to 2,600 m was carried out at the beginning of each 75 

flight, allowing for calibrations in lower-NOx air during the transit towards London. After transitting, a spiral descent over 

Goodwood (SE England), gave an estimation of boundary layer height. Straight level transects at 300-400 m were then flown 

across Greater London, starting at the southwest corner of the M25 orbital motorway and finishing at the opposite northeast 

edge of the GLR. A sharp right turn was then made towards the industrial areas of east London and over the Dartford Thames 

river crossing. The final transect ran perpendicular to the original, ending at the northwest corner of London, completing an 80 

open figure-of-eight design. The loop was not completed around the West of London, due to Heathrow airport. Each flight 

contained three repeat passes. Fig. 1 shows the flight path, with each transect type labelled. Table 1 summaries each transect 

type, the typical flight distance, location and the number of completed replicates. Only data collected during flights 3-7 will 

be presented due to instrument issues during flights 1-2. 

 85 
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Transects Length (km) Start Finish Area Type Replicates 

1 50 51.30o N, 0.45o W 51.60o N, 0.18o E suburban & urban 14 

2 30 51.40o N, 0.20o E 51.62o N, 0.25o E suburban & urban 5 

3 30 51.40o N, 0.20o E 51.65o N, 0.15o E suburban & urban 10 

4 13 51.60o N, 0.10o E 51.50o N, 0.30o E urban (major roads) 13 

5 14 51.50o N, 0.30o E 51.40o N, 0.20o E urban (major roads & industry) 16 

 

Flight No. Overpasses Altitude (m) Date Duration Weekday 

3 2 329 ± 59 2014-07-12 13:00 – 15:00 Saturday 

4 4 336 ± 55 2014-07-14 13:00 – 16:00   Monday 

5 4 344 ± 31 2014-07-15 09:00 – 12:00 Tuesday 

6 3 342 ± 78 2014-07-16 07:00 – 09:00 Wednesday 

7 3 359 ± 89 2014-07-16 12:00 – 14:00 Wednesday 

 

Table 1. Top) Individual flight transect information. Bottom) Flight information outlining; the time each flight 
occurred, the number of complete London overpasses and the altitude range. 100 
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Figure 1. OPFUE 2014 flight path over Greater London, highlighting the incomplete figure of eight structure. Each transect type 
has been labelled. Plotted in ArcGIS® (Esri, 2021a). 

2.2 Instrumentation 

Eddy-covariance flux measurements of NOx were made using an Air Quality Design Inc. (Golden, Colorado, USA) NOx 105 

chemiluminescence analyser (Fast-AQD-NOx). The instrument has a dual-channel architecture capable of quantifying ambient 

mixing ratios of NO and NO2 sequentially (Squires et al., 2020). NO is quantified by the ozone-chemiluminescence reaction 

and NO2 via the same detection method with an additional conversion of NO2 to NO first (Drummond et al., 1985; Kley and 

McFarland, 1980; Lee et al., 2009; Reed et al., 2016).  Ambient NO2 is first photolytically converted to NO using a blue-light 

converter. After conversion, detection is achieved using the same ozone-chemiluminescence reaction as NO. 110 

Chemiluminescence detection is achieved using dry-ice cooled (-60 oC) photomultiplier tubes (PMTs) (Hamamatsu Photonics 

K. K.) with a red-window filter. As the resonance time within the NO2 converter was found to be 0.11 s, NO and NO2 mixing 

ratios were measured at a 9 Hz acquisition rate. 
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Instrument precision was quantified by assessing the dark count noise on each PMT through frequency instrument zeros 115 

(supplementary, section 1.1) or by sampling NOx free-air (Lee et al., 2009). Photon counting is a well-established technique, 

with rates following a Poisson distribution (Ingle and Crouch, 1972; Williamson et al., 1988). Instrument zeros were performed 

every 5 minutes during flight, except over the GLR, where zeros were performed during turns only. Fig. S2 shows for each 

flight the dark count distribution as a density area and the calculated Gaussian distribution. A Gaussian distribution was used 

over a Poisson, as the count rate (>3,000 counts s-1) was high enough to ensure both distributions become identical (Lee et al., 120 

2009; Silvia and Skilling, 2006). Across the campaign, the average 2σ precision using in-flight zeroes was calculated to be 

153 and 249 pptv for NO and NO2. 

 

Instrument accuracy was assessed for systematic uncertainties. Sources of instrument inaccuracy were mass-flow controllers, 

calibration standards, the blue-light converter and channel artefacts. Instrument mass-flow controllers are accurate to ± 1% 125 

(manufacturer quoted). The NO/N2 calibration standard has a quoted accuracy of ± 1% (supplied by BOC Group plc). The 

blue-light converter gives consistent, stable calibrations with an accuracy of ± 10% derived from signal stability of the CE 

calculation. By taking the individual uncertainties and propagating them, the overall uncertainty was calculated. Total 

uncertainty for a 1 ppb measurement of NO and NO2 is 142.3% and 143.9% (at 9 Hz acquisition rate). 

 130 

In addition to the Fast-AQD-NOx, on-board instrumentation also included a Proton-Transfer-Reaction Mass-Spectrometer 

(PTR-MS; Ionicon GmbH), an Inertial-Position and Altitude System (IPAS 20) and an Aircraft Integrated Meteorological 

Measurement System (AIMMS-20; Aventech Research Inc.). The AIMMS-20 system delivers 20 Hz measurements of u,v,w 

wind vectors, temperature, pressure and relative humidity. The probe consists of five pitot-static pressure ports, configured in 

a cruciform array, giving horizontal and vertical wind speed measurements. The temperature and humidity sensors are located 135 

at the back of the probe in a reverse-flow housing to reduce particulate contamination (Beswick et al., 2008). The probe was 

calibrated for static and dynamic upwash (Vaughan et al., 2016, 2017). Only data collected from the Fast-AQD-NOx, IPAS 20 

and AIMMs-20 will be discussed in the study. Volatile Organic Carbon (VOC) concentration and flux data from the PTR-MS 

has been discussed already elsewhere (Shaw et al., 2015; Vaughan et al., 2017). 

 140 
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2.3 Eddy Covariance with Environmental Response Functions 

Environmental Response Function (ERF) is a physics-guided flux data fusion designed to create a bridge from EC 

measurements to model grid-scale flux estimates (Metzger, 2018; Metzger et al., 2013; Xu et al., 2017, 2018). In ERF, high-

rate time-frequency wavelet decomposition and flux footprint modelling are used to create a time-aligned dataset between 150 

response (flux) and driver (e.g., concentration, building height etc.) observations. From this time-aligned dataset, machine 

learning extracts a driver-response process model – outputting a multi-dimensional surface that connects flux to process. ERF 

then uses this driver-response process model to project flux maps with hourly and sub-kilometre resolution, extending the areal 

representation of the airborne NOx fluxes from few square kilometres around the flight tracks to the GLR. The following 

subsections detail the software used for ERF EC data processing and the principal processing steps. 155 

2.3.1 Flux processing overview  

NOx fluxes were calculated using the wavelet eddy covariance (EC) approach discussed by Metzger et al. (2013), which has 

been described in detail elsewhere (Karl et al., 2013; Misztal et al., 2014; Thomas and Foken, 2007; Torrence and Compo, 

1998; Wolfe et al., 2015; Yuan et al., 2015). Flux processing was achieved in R using eddy4R, as discussed by Metzger et al., 

(2017). 160 

The eddy4R flux processing followed the workflow shown in Fig. 2. Individual transects were processed separately, with a 

minimum flight distance of 15 km, ensuring large atmospheric transport scales were captured. Data periods containing sharp 

turns or orbital loops were omitted. Meteorology, position and concentration data were merged for each transect, giving a 

regularised data frame at 20 Hz. Each transect was screened for data outside of defined thresholds and omitted. Overall data 

pass rate was set to ≥ 90 %. Successful transects underwent de-spiking using the method outlined by Brock (1986) in the form 165 

of Starkenburg et al. (2016) for wind vectors (u,v,w), temperature and NO & NO2 mixing ratios. The technique is sensitive to 

up to 4 consecutive data spikes. High-pass filtered cross-covariance maximisation (Hartmann et al., 2018) was applied to 

correct NO/NO2 mixing ratios and air temperature for differences in sampling time compared to the vertical wind (w). Once 

lag-time corrected, data was resampled from 20 Hz to 9 Hz using mean rolling averaging (Zeileis and Grothendieck, 2005). 

 170 
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Figure 2. Modular eddy4R workflow giving four processing steps: raw data pre-treatment, time-domain EC, time-frequency-domain 
EC, and post-processing analysis (footprint and ERF). 

 

After data pre-treatment, time-domain (classical) and time-frequency domain (wavelet) fluxes were calculated as outlined in 175 

Fig. 2. Time-domain EC gives a single flux estimate per transect, whereas time-frequency EC gives a flux measurement every 

400 m along the transect using an overlapping 4000 m moving window. Time-frequency EC using CWT for flux analyses. A 

minimum wavelet scale of 4.5 Hz (Nyquist frequency) and a maximum scale of 512 s was chosen for the wavelet calculations. 

512 s was chosen to ensure all long scale transport processes were accounted for, as shown in Fig. S4, whereby scales above 

this point don’t show significant emission structure. Wavelet cone of influence was not removed in accordance with Metzger 180 

et al., (2013). Table 2 outlines eddy4R processing parameters. 

 

 

 

 185 
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 190 

eddy4R parameter Setting  

Data Frequency 9 Hz 

Transect length > 15 km 

De-spiking Median filter (Brock, 1986; Starkenburg et al., 2016) 

Lag correction High-pass filtered cross-correlation maximisation (Hartmann et al., 2018) 

De-trending mean 

High-Frequency Correction Yes (Nordbo and Katul, 2013) 

Wavelet waveform Morlet 

Wavelet 𝛿j 1/8 

Wavelet maximum scale 512 s 

Wavelet COI inclusion yes 

Flux subinterval window 4,000 m 

Flux spatial averaging 400 m 

  

 Table 2. List of eddy-covariance parameters for quantifying airborne NOx fluxes. 

 

Each flight leg underwent the following QA/QC steps. Each flight transect was screened for the presence of a clear cross-

covariance peaks for; NO, NO2 and temperature (Fig. S3). Limit of detection (LOD) (Billesbach, 2011) and signal to noise 

(S/N) statistics (Foken and Wichura, 1996; Vickers and Mahrt, 1997) were calculated and median flux LODs were found to 195 

be 0.19 mg m-2 h-1 for NO and 0.57 mg m-2 h-1 for NO2. Fluxes below these thresholds were flagged. Median S/N statistics for 

NO and NO2 fluxes were found to be 14.54 and 17.26. Stationarity tests were calculated for each flight transect, with a flag 

threshold of 100% used (Foken and Wichura, 1996; Vickers and Mahrt, 1997). Nine out of 42 transects failed the stationarity 

criteria and so were omitted. NO and NO2 fluxes were assessed for high-frequency spectral loss using a wavelet-based 

correction methodology (Nordbo and Katul, 2013). Average high-frequency loss factors for NO and NO2 were found to be 200 

1.014 and 1.015. As these corrections increased fluxes by only 1.4 - 1.5 %, they were not applied. A detailed overview of 

chemical and meteorological NOx flux losses can be found in Vaughan et al. (2016). As a final QA/QC filter, friction velocity 

(u*) was chosen as a metric of developed turbulence. A u* threshold of 0.15 m s-1 was chosen in line with other urban EC 

studies (Langford et al., 2010; Squires et al., 2020), with data falling below this value being filtered out. 
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2.3.2 Footprint model 205 

To assess the spatial influence of each flux, we used a footprint model. The model calculates a spatial representative weighting 

matrix for each measurement along the flight track. In this study, we apply a model capable of assessing influence from 

prevailing wind and crosswind (Metzger et al., 2012). The model uses a parameterised version of the Kljun (KL04) backwards 

Lagrangian model (Kljun et al., 2002, 2004), capable of calculating footprint estimates under stable and strongly convective 

conditions. Parameterisation was achieved using measurement height (Zm), u*, standard deviations of vertical and horizontal 210 

wind speeds, the planetary boundary layer height (Zi) and aerodynamic roughness length (Z0). We used previously published 

Z0 values for the GLR, accounting for westerly and easterly wind influences, at 1 km2 resolution (Drew et al., 2013). The 

model generates a weighting matrix across the same domain as the spatial dataset of interest, summing up to one and is centred 

on the aircraft’s location. The footprint matrix can then be used to weight and cumulative sum the spatial dataset, giving a 

representative value along the flight leg. Fig. 3 shows the average calculated footprint across the campaign at 30, 60, and 90% 215 

influence contours. On average, the 90% influence distance ranged from 3 - 12 km. 

 
Figure 3. Footprint climatology of all aircraft transects, indicated by the 30, 60, 90% contour lines of the cumulative surface influence 
superimposed over the 2014 NAEI for NOx emissions in Tons km-2 yr-1. Plotted in ArcGIS® (Esri, 2021b). 
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2.3.3 Boosted regression tree machine learning 220 

Linking time-of-day measured fluxes at the aircraft transect height to the surface can be challenging and is driven mainly by 

their spatio-temporal variability. The application of an ERF, in contrast, can bridge this gap by building relationships between 

measured flux (spatial and temporal) and environmental drivers. We used boosted regression trees (BRT) (Elith et al., 2008; 

Metzger et al., 2013; Serafimovich et al., 2018) to calculate ERF relationships between measured airborne fluxes (spatial and 

temporal) and multiple environmental drivers. BRT is a non-parametric machine learning technique that combines regression 225 

trees and boosting to formulate ERF relationships (Serafimovich et al., 2018). BRT parameters were determined using the 

same strategy as Metzger et al., (2013), through the cross-validation procedure described in Elith et al., (2008). We found by 

using a learning rate of 0.1, tree complexity of 6, bag fraction of 0.75, absolute (Laplace) error structure and 3.7e4 trees overall, 

we were able to minimise the predicted deviance whilst achieving the optimum model fit. The BRT approach used an initial 

500 trees, with 500 trees added at each step. The training dataset consisted of 1,751 airborne flux observations after QA/QC 230 

filtering. 

3 Results and discussion  

3.1 Airborne NOx fluxes 

NOx fluxes were calculated during four flights, giving 11 complete transects across the GLR and 2884 individual 400 m flux 

averages. Measurements were made at a relatively constant altitude above the surface (340 ± 40 m), corrected for both terrain 235 

elevation and building height. Building height data for the entire Greater London region was obtained from Digimap Ordnance 

Survey Web Map Service (Digimap) (Ordnance Survey, 2020). To account for changing boundary layer heights, we used 

hourly 0.25-degree estimates from the ERA5 fifth-generation ECMWF reanalysis for global climate data (Hersbach et al., 

2018). The calculated depth of the boundary layer (Zm/Zi) ranged from 0.150 to 0.770, with a median Zm/Zi of 0.255. 

Atmospheric stratification was found to be mostly unstable throughout the campaign, with a median Obukhov length (L) of -240 

182 m and dimensionless Monin-Obukhov stability parameter (Zm/L) of -1.98. Friction velocities ranged from 0.06 to 1.09 m 

s-1, with an average of 0.56 m s-1. 

 

EC measurements are affected by random and systematic uncertainties. Random error accounts for uncertainty due to 

insufficient averaging period, resulting in the inadequate sampling of primary contributing eddies (Lenschow et al., 1994; 245 

Mann and Lenschow, 1994). A detailed review of random error estimation approaches for EC can be found in Salesky et al. 

(2012). Systematic error accounts for under-sampling of the largest atmospheric scales responsible for turbulent flux 

(Lenschow et al., 1994; Mann and Lenschow, 1994). At a 400 m averaging interval, the median random error (± median 

absolute deviation) for the NO flux was 126.6 ± 80.6 % and 108.3 ± 58.5 % for NO2. The median systematic error for NO and 

NO2 flux were 14.7 ± 4.7 % and 14.3 ± 4.5 %. Chemical loss of NOx to OH was not corrected for in this study, which is in line 250 

with the discussion in Vaughan et al. (2016), with such losses being small (1 – 2%). 
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As the Fast-AQD-NOx quantifies mixing ratios of NOx in wet air, the effect of density fluctuations (WPL) on calculated NOx 

flux was assessed using the method described by Hartmann et al., (2018), Eq.21. Fast (20 Hz) mixing ratios of water vapour 

were calculated from; relative humidity, pressure, and temperature data and corrected for lag-time differences to the vertical 255 

wind. The water vapour mixing ratio was used to convert NO/NO2 mixing ratios to dry mole before performing EC 

calculations. Fig. S6a shows the linear regression between uncorrected and corrected NOx flux for the influence of WPL. 

Correcting for WPL increased measured NOx flux on average by 1.35%. In addition to WPL corrections, the effect of vertical 

flux divergence was also investigated. Vertical divergence can account for significant flux losses due to weakening vertical 

momentum at increased altitudes below the planetary boundary layer (Deardorff, 1974; Sorbjan, 2006). Fig. S6b shows 260 

corrected vs uncorrected NOx flux using the method outlined by Sorbjan (2006), showing a potential 50% flux increase. Due 

to the coarseness of the ERA5 PLB data at 0.25-degree resolution and the complexity of London’s surface structure, a more 

detailed assessment is needed to understand what potential effects vertical flux divergence may have on urban emission 

estimates. Due to strict air traffic control restrictions, vertical profiles were not possible during the campaign, which would 

have allowed for a more detailed assessment of divergence influences. The NOx fluxes reported in this study are not corrected 265 

for vertical flux divergence, and so will be considered as conservative due to the listed processes having the potential to further 

increase measured rates. 

 

Flux measurements were made across a 5 day period, giving 3 weekdays (Mon-Wed) and 1 weekend day (Saturday). The 

temporal distribution of measurements is well distributed, ranging from 08:00 to 16:00 UTC. Hourly averaging across the 270 

entire dataset shows a partial diurnal profile, with the maximum hourly mean NOx flux for the GLR occurring at 10:00 (8.95 

mg m-2 hr-1). The diurnal profile does not extend past 16:00, due to encountered air traffic control time restrictions. The present 

diurnal is complex due to limited flight hours and the spatial variation of measured fluxes. Focus on the temporal component; 

fluxes were hourly bin averaged and grouping according to the flight leg type (Fig. 1) and measurement location with 3 defined 

areas: central London, North/South Circular area and outer London. Fig. 4 shows hourly boxplot flux averages for each flight 275 

leg type vs location in London. Leg 1 showed a strong morning diurnal for Central and North/South Circular areas of London, 

compared to legs 2 & 3, which typically showed consistent NOx emission rates across the different hours sampled. Emissions 

measured during the hours of 08:00-10:00 UTC in central London are above 20 mg m-2 h-1, which is consistent with other 

London studies assessing London emissions (Lee et al., 2015). The temporal variability of leg 5 was contrastingly different to 

the other 4 legs and is heavily influenced by road transport emissions (M25 orbital motorway). 280 
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Figure 4. Hourly boxplots analysis of measured NOx fluxes, grouped by flight leg type and location within London. Grouping have 
been defined as the following. Central London (51.48o N - 51.52o N, 0.17o W - 0.07o W). North/South Circular (51.44o N – 51.6o N, 
0.29o W – 0.07o E), excluding the Central London area within. Outer London (51.25o N – 51.7o N, 0.54o W – 0.29o E) excluding both 
Central London and North/South Circular areas within. 285 
 

By aggregating and averaging across multiple transects, the temporal variability can be better accounted for, giving a clearer 

picture of the spatial component. Fig. 5 shows mean 400 m latitude flux averages for each of the five transect types. The shaded 

area shows the average flux random error divided by the square root of the number of sample points which went into each 

mean. Averaging reduces the individual flux uncertainty (>100%), with the average flux uncertainty (average error/sqrt(n)) being 290 

48.7 ± 20.7 %. Transect 1 follows an identical path to that of similar measurements made previously in 2013 and shows 

comparable NOx fluxes (Vaughan et al., 2016). The highest observed fluxes (>20 mg m-2 hr-1) were measured over the London 

Borough of Southwark and the City of London. Both areas include major roads, national rail stations and densely packed high-

rise buildings, giving profoundly heterogeneous emission sources of NOx. Transects 2 & 3 (Fig. 5) ran perpendicular to transect 

1, giving emission information over the Southeast and Northwest areas of Greater London. The emission structure of transect 295 

2 shows similarities to that of transect 1, with fluxes in the central area above 10 mg m-2 h-1. Transect 3, in comparison, showed 

50% lower emissions (5 mg m-2 h-1). This transect was over more suburban areas compared to transects 1 and 2. The final 
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transects (4 and 5) ran over eastern parts of the GLR, extending out to the M25 Orbital Motorway and industrial infrastructure. 

The Dartford Crossing (A282) area showed elevated NOx emissions (>10 mg m-2 h-1). It was evident during most flights that 

this area was prone to congestion, suggesting vehicles as the primary source. The design capacity of the bridge is 135,000 300 

vehicles per day, but vehicle flows now routinely exceed 160,000 per day. 

 

 
Figure 5. Ensemble NOx flux flight track averages (400 m) across the campaign, with the shaded area representing the average 
random error divided by the square root of the number of sample points which went into each mean (error/sqrt(n)). The top row (a, 305 
b & c) shows flight transects 1, 2 and 3 which ran over central areas of London such as City of London Borough. The bottom row 
(d & f) transects 4 and 5, ran over eastern regions of Greater London, home to industry and major road network. e) shows each 
individual track transect overlaid onto the OpenStreetMap’s; major road infrastructure, local boundaries, and rivers around the 
GLR (OpenStreetMap contributors, 2021; Padgham et al., 2020). 
 310 
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3.2 Comparison to Emission Inventory 

Measured fluxes are a powerful tool for evaluating bottom-up emission estimates, such as the NAEI.  The NAEI is vital for 

assessing UK air quality, providing annual emissions estimates for a range of pollutants at 1 km2 resolution for the UK region. 

Each pollutant has an individual bottom-up inventory, covering hundreds of different emissions categories, which, when 

summed together, give an annual national estimate. These sources include; road transport, domestic and industrial combustion, 315 

rail, aviation, energy generation, waste, fossil fuel extraction and agricultural production. The NAEI’s road transport sector is 

based on emissions UK road traffic statistics and the COPERT (Calculation of Emissions from Road Transport) 4 emission 

factor model, which is part of the European Monitoring and Evaluation Programme/European Economic Area (EMEP/EEA) 

air pollutant emission inventory guidebook (Bush et al., 2008; EEA, 2013). For each airborne flux, a footprint matrix was 

generated at the same spatial extent and resolution (1 km2) as the NAEI, using the described footprint model. Each footprint 320 

equates to a value of one and weights each grid cell of the NAEI individually. Once weighted, all cells are summarised, giving 

a spatially representative emission estimate. We corrected for time-of-day emission variations by scaling each source sector 

individually for monthly, daily and hourly influences using factors unique to each sector. Once scaled, all sources are summed 

to produce a time-of-day estimate, comparable to the location and time-of-day each flux measurement was made. 

 325 

 
 

Figure 6. a) Transect grouped NOx flux and NAEI emission estimates as a function of latitude. A generalised additive model (GAM) 
has been fitted to each transect grouping, using a k value of 10. The 95% confidence interval of the GAM is shown as the light shaded 
area. b) Spatially median binned 1 km2 difference between predicted NOx emissions (NAEI) and measured NOx fluxes, mapped onto 330 
the OpenStreetMap’s; major road infrastructure, local boundaries, and rivers around the GLR (OpenStreetMap contributors, 2021; 
Padgham et al., 2020). 
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To compare measured fluxes against footprint calculated time-of-day NAEI estimates, each transects type was 1 km mean 335 

binned as a function of latitude. Transects 2 and 3 were grouped to produce a perpendicular comparison to transect 1. Transects 

4 and 5 were grouped to give a comparison in an area more representative of industrial/road transport-dominated emission 

sources. Fig. 6a shows the measured flux (solid) and time-of-day scales NAEI estimates (dotted) as a function of latitude for 

each of the three groupings using a generalised additive model (GAM) fit (Hastie and Tibshirani, 1990). The GAM fits a non-

linear distribution to the data, being either the measured flux or time-of-day inventory estimate as a function of latitude. The 340 

shaded area shows the 95% confidence interval of the GAM fit. Measured fluxes along transect 1 consistently showed higher 

NOx emissions than estimated by the NAEI (mean of 1.5 times higher).  The greatest divergence ratio between the measured 

and inventory-estimate fluxes was  1.98, which is broadly consistent with previous studies  (Lee et al., 2015). The divergence 

for transect 1 was most substantial when a mix of different emission sources were encountered, such as other transport mediums 

(rail and shipping) and, domestic and industrial combustion settings (see Table 3). Comparison for grouped transects 2 and 3 345 

showed improved agreement to the inventory, with measured fluxes on average 1.21 times higher. The percentage contribution 

of emissions sources was similar to transect 1, with only a slightly lower average road transport contribution (63%). The 

stronger agreement between transects 2 and 3 suggests the high emissions observed during transect 1 are dependent on either 

a missing or under-represented source in the inventory. Grouped transects 4 and 5 also displayed a high degree of divergence 

from the inventory. On average, the ratio between measurement and inventory was 2.57, with a peak value of 4.45. The primary 350 

sources for this area include a greater contribution from energy production and industrial combustion. Table 3 summarises the 

three different groups, with average NAEI sector contributions and the ratio between flux measurement and inventory. 

 

Transect Road 

Transport 

Other 

Transport 

Domestic 

Combustion 

Industrial 

Combustion 

Energy 

Production 

Ratio 

(Flux/NAEI) 

1 63.89 % 9.24 % 21.71 % 4.27 % 0.82 % 1.51 ± 0.31 

2 & 3 62.75 % 8.44 % 22.2 % 6.06 % 0.42 % 1.20 ± 0.27 

4 & 5 70.09 % 8.47 % 11.1 % 8.40 % 1.90 % 2.58 ± 1.39 

       

Table 3. predicted NAEI emission sources group by transect time and the median ratio of measurement to NAEI estimate (± 
median absolute deviation). These sources are; road transport, other transport such as rail and shipping, domestic combustion 355 
(combustion in commercial, institutional, residential and agriculture), industrial combustion (combustion in industry) and 
energy production (combustion in energy production and transformation). 

 

Spatially, the disagreement between measurement and inventory is uneven, as shown by Fig. 6b, whether, for each 1 km along 

the flight track, the median inventory minus measurement value has been calculated. South-western areas of the GLR agree 360 

better than the central and north-eastern areas. Greater under-estimation by the inventory compared with measurements was 

predominantly observed in regions of complex source distribution and where no single primary source dominated. The extent 
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of disagreement highlights the challenges and consequent drawbacks of using the NAEI as a predictive tool for estimating NOx 

emissions or as a time-of-day diagnostic for measured NOx fluxes. Several vital processes may likely contribute to the observed 

differences, in addition to NOx emissions being higher than in the NAEI. The first is inventory scaling from annual to time-of-365 

day. As each source sector undergoes individual scaling, these factors play a significant role in predicting time-of-day 

influences. Currently, these factors lack spatial disaggregation and do not account for the unique temporal profiles present per 

area. In contrast to the NAEI, the London Atmospheric Emissions Inventory (LAEI) uses emissions data from individual 

vehicle classes, obtained by on-the-road ‘remote-sensing’, to constrain its predicted emissions from the road transport sector, 

giving a more realistic comparison to “real life” emissions and hence to eddy-covariance measurements (Lee et al., 2015; 370 

Vaughan et al., 2016). 

3.2 Spatio-temporal emissions 

To overcome the limitation of using time-of-day representative NAEI estimates to explain measured fluxes, a more pragmatic 

approach was chosen. Using the outlined ERF methodology, we attempted to generate representative emission grids for each 

flight transect. To train the BRT technique, NOx flux data was filtered to include 0.5 to 99.5% quantile values and positive 375 

fluxes only. We found excellent agreement between measured and ERF reproduced NOx fluxes in the range of 0 - 37 mg m-2 

h-1. The two datasets agreed close to a 1:1 trend (0.96), with an R2 coefficient of correlation of > 0.99 and a residual standard 

deviation of 0.01. Fig. S7a shows the linear regression between median averaged measured flux vs BRT model prediction for 

each flight transect. 

 380 

Six environmental drivers were used in the ERF process to describe the spatio-temporal nature of the measured NOx fluxes. 

Fig. 7 shows the partial response functions calculated for each driver against difference from the mean flux and ranked in terms 

of percentage contribution to the flux distribution. Two different spatial datasets were used to account for the complex 

heterogeneity of the Greater London Region (Fig. 7a & c). Using the described footprint methodology, spatially representative 

surface NOx concentrations and building heights were calculated for each flux from the LAEI and Ordnance Survey datasets 385 

(Greater London Authority, 2013; Ordnance Survey, 2020). Preliminary analyse using surface NOx concentration as the only 

spatial driver appeared to overweight suburban areas and underweight central areas of the GLR. The combination of the two 

datasets helps to reinforce the significant spatial differences between outer and inner London. To account for meteorological 

differences, NOx concentration at altitude (Fig. 7b), relative measurement height in the boundary layer (Zm/Zi) and potential 

temperature were chosen as ERF drivers (Fig. 7e & f). As shown in Fig. 7e, 90% of flight data occurs below a Zm/Zi value of 390 

0.4, with the function above 0.4 being mainly linear. Solar azimuth angle (Fig. 7d) was chosen to account for temporal 

variations in the measured flux. Flight data is well distributed across the solar azimuth angle domain from 100 to 260o, 

corresponding to 08:00-16:00 UTC. 

 



18 
 

 395 
Figure 7. Partial dependency plots for six environmental drivers, showing BRT-fitted ERFs (black line) for each driver as a function 
of flux dependency from the mean, and are ranked in terms of percentage contribution (%) towards accounting for NOx flux 
distribution. The red degree marks on the top x-axis show the data distribution from 0-100% in 10% bins. The Bluel ine shows the 
smoothed trend for each dependency plot. 
 400 

For each flight leg, surface-layer NOx fluxes were projected using median calculated statistics. Median values were chosen to 

account for the high heterogeneity across the length of a flight leg. Zm/Zi values for each ERF flux projection were kept 

constant, to enable comparison between legs. Overall, 20 unique transects were projected onto an aggregated 400 m2 LAEI 

grid, marrying to the spatial resolution of measured flux. Fig. 8 shows the median average of all ERF flux projections across 

the field campaign. Overall, ERF flux projection was possible across 98% of the GLR domain. Strong NOx emission rates are 405 

exhibited in central London with lower emissions in outer London. The standard deviation between individual flight transects 

is low, showing an of ± 2.45 mg m-2 h-1. The calculated relative standard deviation (RSD) shows a more complex picture, with 

predicted emissions in outer regions of London having a high RSD (>40 %) compared to central London (>35 %). Fig. 8C 

shows the calculated RSD across the GLR domain, suggesting central areas showed a more consistent emission profile during 

the campaign, highlighting the need for further refinement of how the ERF predicted emissions in outer areas of London. ERF 410 

did not extrapolate onto areas of much higher or lower surface NOx concentrations (shown as grey), which exceeded the ranges 
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observed in the training dataset. These areas included parts of the M25 orbital motorway, due to limited data airborne over the 

region and where footprints extended beyond the confines of the LAEI grid. Areas of central London are also left blank due 

to footprints not encountering surface concentrations above 122 ug/m3.  

 415 

 
Figure 8. The median average projection of NOx emissions (mg m-2 h-1) at 400 m2 resolution from all flight transect data. The 
standard deviation (b) and relative standard deviation (c) show the variability between individual flight transect projects. Missing 
areas outside of the ERF training dataset are shown in grey. 
 420 

To assess the performance of the BRT model, one flight transect was omitted at a time, and the incomplete model was then 

used to predict the omitted dataset. Fig. S7b shows the comparison between the predicted median flight emission average using 

the incomplete model vs the complete. Linear regression gives a slope of 0.867, with the incomplete model, on average, 

overpredicted fluxes by 13.8% (0.74 mg m-2 h-1), which is taken as the prediction uncertainty of the complete BRT model. 

The difference between the two models is comparable to the finding of Metzger et al., (2013), which found model differences 425 

for sensible and latent heat flux to be between 11-18%, using the same technique. The spatial uncertainty distribution across 
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the GLR is complex, as showing Fig. S7c. The incomplete model generally overestimates NOx emissions in Outer London 

more significantly than in Central London, where the models align more strongly. The prediction performance of the BRT 

model varied from flight transect to transect, as shown in Fig. S8. The majority of flight leg projects successfully scaled Central 

London emissions comparably to that of measured fluxes. The projects also successfully captured key features in the flux 430 

observation, such as major road networks and densely populated areas. 

 

The diurnal variability was also investigated during the campaign by grouping flight data into hourly bins and using the median 

hourly statistics to drive each ERF flux projection. Again, Zm/Zi was kept constant for all projections. Fig. 9 shows the average 

hourly ERF projections, spanning an eight-hour period from 09:00 -16:00. All projections retain a strong heterogeneous profile. 435 

The most substantial emission rates were observed during 09:00 - 10:00 (Fig. 9a-b), aligning with the morning rush-hour. The 

emission rates rise across the GLR, in unison, until 10:00, when emissions stabilise into the afternoon period. Projected central 

London emissions during this period agree well with measured fluxes, whilst more suburban areas are potentially scaled too 

high, suggesting further temporal refinement across the domain is required. The evening rush-hour, previously observed in 

NOx emissions in London after 16:00 (Lee et al., 2015) is not captured in these predictions. 440 
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Figure 9. Hour-of-day ERF flux projections from 09:00 to 16:00. Grey colour highlight areas outside of the ERF training dataset. 
The strong presence of the morning rush-hour period is observed from 09:00 to 10:00 (a-b). 445 

4 Conclusions 

The assessment of NOx emissions in urban areas remains an important area for research, due to the critical impacts that high 

NOx concentrations have on local public health and the attainment of national trans-boundary emissions commitments. In this 

study, we used airborne measurements over the Greater London area to upscale airborne NOx flux observations to high-

resolution emission projections across the region, via Environmental Response Function (ERF) physics-guided flux data 450 

fusion. The work presented here presents a method which can quantify and spatially disaggregate NOx fluxes over challenging 

urban terrain and has the potential to be applied to other metropolitan areas worldwide. 

 

Seven low altitude research flights were made over the Greater London region (GLR) in July 2014, performing multiple over-

passes across the city. From these flights, 2715 individual NOx fluxes at 400 m spatial resolution were measured and processed 455 
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in R using the eddy4R software. Measured NOx fluxes across the Greater London region exhibited high heterogeneity and 

substantial diurnal variability. Central areas of London showed the highest emission rates quantified during the campaign. 

Other high emission source areas included the M25 orbital motorway. The complexity of London’s emission characteristics 

makes it challenging to pinpoint single emission sources definitively. In practice, multiple sources are likely to contribute to 

measured fluxes at the spatial scale used here, including road transport and residential, commercial and industrial combustion 460 

(mainly for space heating). To give a time-of-day reference, we compared measured fluxes to the UK’s National Atmospheric 

Emissions Inventory, scaled to account for monthly, daily and hourly differences from the annual values. We found that for 

central areas of London, the inventory underestimated emissions by up to a factor of two, which is consistent with other 

published studies. Measured fluxes were consistently higher than inventory estimates across most of Greater London. 

 465 

To overcome the limitations of comparing to the national inventory, we trained ERFs between measured spatial-temporal NOx 

fluxes and environmental drivers (meteorological and surface) to generate time-of-day emission surfaces. ERF successfully 

reproduced aircraft measured NOx fluxes, with a coefficient of determination (R2) of 0.99. We used the calculated ERF 

relationships to project the NOx flux for the time of each flight transect across the GLR domain at 400 m2 resolution. We were 

able to achieve a 98% spatial coverage and a highly heterogeneous emission surface. The overall variability between ERF flux 470 

projections was low, with an average relative standard deviation of 40%. All ERF flux projections showed high emissions 

emanating from central areas of London and the major road network. Hour of day projections highlighted a strong morning 

rush-hour, peaking at 10:00, and remaining elevated into the afternoon. Overall, the integration of high-resolution spatio-

temporal fluxes with an ERF driven strategy has enabled the generation of spatial NOx emissions at high-resolution over 

Greater London. 475 

 

This work demonstrates the power of airborne eddy-covariance based measurements of air pollutant fluxes as a tool for 

evaluating emission inventories or as a method of independently obtaining spatially disaggregated city-wide emission rates of 

pollutants. The method is applicable to other metropolitan areas or any other heterogeneous landscape. It should also help 

legislating authorities better understand air pollution sources and the effectiveness of control measures. 480 
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Code availability  490 
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and can be freely accessed at https://github.com/NEONScience/eddy4R. The eddy4R turbulence v0.0.16 software module for 

advanced airborne data processing described in Metzger et al. (2013) was accessed under Terms of Use for this study 

(https://www.eol.ucar.edu/content/cheesehead-code-policy-appendix) and is available upon request. 

 495 

Data availability  

Any flux data presented here may be accessed by contacting the authors. 

 

Author contribution 

JDL, ACL, RMP, BD and CNH conceptualized the study and obtained funding. ARV, JDL, MDS, BD and CNH conducted 500 

the airborne field measurements. ARV, SM and DD analysed the eddy-covariance data and conducted the machine learning 

analysis. All authors reviewed and edited the paper. 

 

Competing interests 

The authors declare that they have no conflict of interest. 505 

 

Acknowledgements 

We thank the UK Natural Environment Research Council for financial support and the staff of the NERC’s Airborne Research 

and Survey Facility for their enthusiasm and skill in performing our multiple low-level flights across London. The National 

Ecological Observatory Network is a project sponsored by the National Science Foundation and managed under cooperative 510 

agreement by Battelle. This material is based upon work supported by the National Science Foundation (grant no. DBI-

0752017). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and 

do not necessarily reflect the views of the National Science Foundation. 

  



24 
 

References 515 

Aubinet, M., Vesala, T. and Papale, D.: Eddy covariance: a practical guide to measurement and data analysis, Springer Science 

& Business Media., 2012. 

Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, 

present and future, Glob. Chang. Biol., 9(4), 479–492, 2003. 

Beswick, K. M., Gallagher, M. W., Webb, A. R., Norton, E. G. and Perry, F.: Application of the Aventech AIMMS20AQ 520 

airborne probe for turbulence measurements during the Convective Storm Initiation Project, Atmos. Chem. Phys., 8(17), 5449–

5463, doi:10.5194/acp-8-5449-2008, 2008. 

Billesbach, D. P.: Estimating uncertainties in individual eddy covariance flux measurements: a comparison of methods and a 

proposed new method, Agric. For. Meteorol., 151(3), 394–405, 2011. 

Björkegren, A. and Grimmond, C. S. B.: Net carbon dioxide emissions from central London, Urban Clim., 23, 131–158, 525 

doi:https://doi.org/10.1016/j.uclim.2016.10.002, 2018. 

Brock, F. V: A nonlinear filter to remove impulse noise from meteorological data, J. Atmos. Ocean. Technol., 3(1), 51–58, 

1986. 

Brookes, D. M., Stedman, J. R., Kent, A. J., King, R. J., Venfield, H. L., Cooke, S. L., Lingard, J. J. N., Vincent, K. J., Bush, 

T. J. and Abbott, J.: Technical report on UK supplementary assessment under the Air Quality Directive (2008/50/EC), the Air 530 

Quality Framework Directive (96/62/EC) and Fourth Daughter Directive (2004/107/EC) for 2011, Rep. Defra UK Devolved 

Adm., 2013. 

Bush, T., Tsagatakis, I., King, K. and Passant, N.: NAEI UK emission mapping methodology 2006., 2008. 

Deardorff, J. W.: Three-dimensional numerical study of turbulence in an entraining mixed layer, Boundary-Layer Meteorol., 

7(2), 199–226, 1974. 535 

Drew, D. R., Barlow, J. F. and Lane, S. E.: Observations of wind speed profiles over Greater London, UK, using a Doppler 

lidar, J. Wind Eng. Ind. Aerodyn., 121, 98–105, doi:10.1016/j.jweia.2013.07.019, 2013. 

Drummond, J. W., Volz, A. and Ehhalt, D. H.: An optimized chemiluminescence detector for tropospheric NO measurements, 

J. Atmos. Chem., 2(3), 287–306, 1985. 

EEA: EMEP/EEA air pollutant emission inventory guidebook 2013, Eur. Environ. Agency, Copenhagen, 2013. 540 

Elith, J., Leathwick, J. R. and Hastie, T.: A working guide to boosted regression trees, J. Anim. Ecol., doi:10.1111/j.1365-

2656.2008.01390.x, 2008. 

Esri: “Human Geography Base” [basemap]. Scale Not Given., [online] Available from: 

https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer (Accessed 1 March 2021a), 2021. 

Esri: “Human Geography Base” [basemap]. Scale Not Given., 2021b. 545 

Famulari, D., Nemitz, E., Di Marco, C., Phillips, G. J., Thomas, R., House, E. and Fowler, D.: Eddy-covariance measurements 

of nitrous oxide fluxes above a city, Agric. For. Meteorol., doi:10.1016/j.agrformet.2009.08.003, 2010. 



25 
 

Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, Agric. For. Meteorol., 

doi:10.1016/0168-1923(95)02248-1, 1996. 

Font, A., Grimmond, C. S. B., Kotthaus, S., Morguí, J.-A., Stockdale, C., O’Connor, E., Priestman, M. and Barratt, B.: Daytime 550 

CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater 

London, Environ. Pollut., 196, 98–106, doi:https://doi.org/10.1016/j.envpol.2014.10.001, 2015. 

Foster, W. M., Brown, R. H., Macri, K. and Mitchell, C. S.: Bronchial reactivity of healthy subjects: 18–20 h postexposure to 

ozone, J. Appl. Physiol., 89(5), 1804–1810, 2000. 

Grange, S. K., Lewis, A. C., Moller, S. J. and Carslaw, D. C.: Lower vehicular primary emissions of NO2 in Europe than 555 

assumed in policy projections, Nat. Geosci., 10(12), 914, 2017. 

Greater London Authority: London Atmospheric Emissions Inventory (LAEI) 2013, [online] Available from: 

https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory-2013, 2013. 

Hartmann, J., Gehrmann, M., Kohnert, K., Metzger, S. and Sachs, T.: New calibration procedures for airborne turbulence 

measurements and accuracy of the methane fluxes during the AirMeth campaigns, Atmos. Meas. Tech., 11(7), 4567–4581, 560 

doi:10.5194/amt-11-4567-2018, 2018. 

Hastie, T. J. and Tibshirani, R. J.: Generalized additive models, CRC press., 1990. 

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, 

I., Schepers, D., Simmons, A., Soci, C., Dee, D. and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present., 

Copernicus Clim. Chang. Serv. Clim. Data Store, doi:10.24381/cds.adbb2d47, 2018. 565 

Ingle, J. D. and Crouch, S. R.: Critical comparison of photon counting and direct current measurement techniques for 

quantitative spectrometric methods, Anal. Chem., 44(4), 785–794, 1972. 

Karl, T., Guenther, A., Lindinger, C., Jordan, A., Fall, R. and Lindinger, W.: Eddy covariance measurements of oxygenated 

volatile organic compound fluxes from crop harvesting using a redesigned proton-transfer-reaction mass spectrometer, J. 

Geophys. Res., 106(D20), 24157–24167, doi:10.1029/2000jd000112, 2001. 570 

Karl, T., Misztal, P. K., Jonsson, H. H., Shertz, S., Goldstein, A. H. and Guenther, A. B.: Airborne Flux Measurements of 

BVOCs above Californian Oak Forests: Experimental Investigation of Surface and Entrainment Fluxes, OH Densities, and 

Damkohler Numbers, J. Atmos. Sci., 70(10), 3277–3287, doi:Doi 10.1175/Jas-D-13-054.1, 2013. 

Karl, T., Graus, M., Striednig, M., Lamprecht, C., Hammerle, A., Wohlfahrt, G., Held, A., Von Der Heyden, L., Deventer, M. 

J., Krismer, A., Haun, C., Feichter, R. and Lee, J.: Urban eddy covariance measurements reveal significant missing NO x 575 

emissions in Central Europe, Sci. Rep., doi:10.1038/s41598-017-02699-9, 2017. 

Karl, T. G., Spirig, C., Rinne, J., Stroud, C., Prevost, P., Greenberg, J., Fall, R. and Guenther, A.: Virtual disjunct eddy 

covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass 

spectrometry, Atmos. Chem. Phys., 2(4), 279–291, 2002. 

Kelly, F. J. and Fussell, J. C.: Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air 580 

pollution, Free Radic. Biol. Med., 110, 345–367, 2017. 



26 
 

Kley, D. and McFarland, M.: Chemiluminescence detector for NO and NO2, Atmos. Technol.;(United States), 12, 1980. 

Kljun, N., Rotach, M. W. and Schmid, H. P.: A three-dimensional backward lagrangian footprint model for a wide range of 

boundary-layer stratifications, Boundary-Layer Meteorol., 103(2), 205–226, doi:Doi 10.1023/A:1014556300021, 2002. 

Kljun, N., Calanca, P., Rotach, M. W. and Schmid, H. P.: A simple parameterisation for flux footprint predictions, Boundary-585 

Layer Meteorol., 112(3), 503–523, doi:Doi 10.1023/B:Boun.0000030653.71031.96, 2004. 

Lang, P. E., Carslaw, D. C. and Moller, S. J.: A trend analysis approach for air quality network data, Atmos. Environ. X, 

100030, 2019. 

Langford, B., Davison, B., Nemitz, E. and Hewitt, C. N.: Mixing ratios and eddy covariance flux measurements of volatile 

organic compounds from an urban canopy (Manchester, UK), Atmos. Chem. Phys., 9(6), 1971–1987, 2009. 590 

Langford, B., Nemitz, E., House, E., Phillips, G. J., Famulari, D., Davison, B., Hopkins, J. R., Lewis, A. C. and Hewitt, C. N.: 

Fluxes and concentrations of volatile organic compounds above central London, UK, Atmos. Chem. Phys., 10(2), 627–645, 

doi:10.5194/acp-10-627-2010, 2010. 

Lee, J. D., Moller, S. J., Read, K. A., Lewis, A. C., Mendes, L. and Carpenter, L. J.: Year-round measurements of nitrogen 

oxides and ozone in the tropical North Atlantic marine boundary layer, J. Geophys. Res., 114, doi:Artn D21302 595 

10.1029/2009jd011878, 2009. 

Lee, J. D., Helfter, C., Purvis, R. M., Beevers, S. D., Carslaw, D. C., Lewis, A. C., Moller, S. J., Tremper, A., Vaughan, A. 

and Nemitz, E. G.: Measurement of NOx Fluxes from a Tall Tower in Central London, UK and Comparison with Emissions 

Inventories, Environ. Sci. Technol., 49(2), 1025–1034, doi:10.1021/es5049072, 2015. 

Lenschow, D. H., Mann, J. and Kristensen, L.: How long is long enough when measuring fluxes and other turbulence 600 

statistics?, J. Atmos. Ocean. Technol., 11(3), 661–673, 1994. 

Mann, J. and Lenschow, D. H.: Errors in Airborne Flux Measurements, J. Geophys. Res., 99(D7), 14519–14526, doi:Doi 

10.1029/94jd00737, 1994. 

Marr, L. C., Moore, T. O., Klapmeyer, M. E. and Killar, M. B.: Comparison of NOx fluxes measured by eddy covariance to 

emission inventories and land use, Environ. Sci. Technol., doi:10.1021/es303150y, 2013. 605 

Metzger, S.: Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ 

observations, Agric. For. Meteorol., doi:10.1016/j.agrformet.2017.08.037, 2018. 

Metzger, S., Junkermann, W., Mauder, M., Beyrich, F., Butterbach-Bahl, K., Schmid, H. P. and Foken, T.: Eddy-covariance 

flux measurements with a weight-shift microlight aircraft, Atmos. Meas. Tech., 5(7), 1699–1717, doi:10.5194/amt-5-1699-

2012, 2012. 610 

Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K., Widemann, B. T. Y., Neidl, F., Schafer, K., Wieneke, S., 

Zheng, X. H., Schmid, H. P. and Foken, T.: Spatially explicit regionalization of airborne flux measurements using 

environmental response functions, Biogeosciences, 10(4), 2193–2217, doi:DOI 10.5194/bg-10-2193-2013, 2013. 

Metzger, S., Durden, D., Sturtevant, C., Luo, H., Pingintha-Durden, N., Sachs, T., Serafimovich, A., Hartmann, J., Li, J. and 

Xu, K.: eddy4R 0.2. 0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on 615 



27 
 

R, Git, Docker, and HDF5, Geosci. Model Dev., 10(9), 3189, 2017. 

Misztal, P. K., Karl, T., Weber, R., Jonsson, H. H., Guenther, A. B. and Goldstein, A. H.: Airborne flux measurements of 

biogenic isoprene over California, Atmos. Chem. Phys., 14(19), 10631–10647, doi:DOI 10.5194/acp-14-10631-2014, 2014. 

Mudway, I. S., Dundas, I., Wood, H. E., Marlin, N., Jamaludin, J. B., Bremner, S. A., Cross, L., Grieve, A., Nanzer, A. and 

Barratt, B. M.: Impact of London’s low emission zone on air quality and children’s respiratory health: a sequential annual 620 

cross-sectional study, Lancet Public Heal., 4(1), e28--e40, 2019. 

Nordbo, A. and Katul, G.: A Wavelet-Based Correction Method for Eddy-Covariance High-Frequency Losses in Scalar 

Concentration Measurements, Boundary-Layer Meteorol., 146(1), 81–102, doi:10.1007/s10546-012-9759-9, 2013. 

OpenStreetMap contributors: Planet dump retrieved from https://planet.osm.org, [online] Available from: 

https://www.openstreetmap.org, 2021. 625 

Ordnance Survey: Simple Building Heights, [online] Available from: https://digimap.edina.ac.uk/, 2020. 

Padgham, M., Rudis, B., Lovelace, R., Salmon, M., Smith, A., Smith, J., Gilardi, A., Spinielli, E., Kalicinski, M., Noam, F. 

and Lukasz, B.: osmdata: Import “OpenStreetMap” Data as Simple Features or Spatial Objects, R Packag. version 0.1.4 

[online] Available from: https://cran.r-project.org/web/packages/osmdata/index.html, 2020. 

Pitt, J. R., Allen, G., Bauguitte, S. J. B., Gallagher, M. W., Lee, J. D., Drysdale, W., Nelson, B., Manning, A. J. and Palmer, 630 

P. I.: Assessing London CO2, CH4 and CO emissions using aircraft measurements and dispersion modelling, Atmos. Chem. 

Phys., doi:10.5194/acp-19-8931-2019, 2019. 

Reed, C., Evans, M. J., Carlo, P. D., Lee, J. D. and Carpenter, L. J.: Interferences in photolytic NO2 measurements: explanation 

for an apparent missing oxidant?, Atmos. Chem. Phys., 16(7), 4707–4724, 2016. 

Serafimovich, A., Metzger, S., Hartmann, J., Kohnert, K., Zona, D. and Sachs, T.: Upscaling surface energy fluxes over the 635 

North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions, Atmos. Chem. 

Phys., doi:10.5194/acp-18-10007-2018, 2018. 

Shao, J., Zosky, G. R., Hall, G. L., Wheeler, A. J., Dharmage, S., Foong, R., Knibbs, L. and Johnston, F. H.: Ambient Nitrogen 

Dioxide Exposure During Infancy Influences Respiratory Mechanics in Preschool Years, in D96. ENVIRONMENTAL 

ASTHMA EPIDEMIOLOGY, pp. A7058--A7058, American Thoracic Society., 2019. 640 

Shaw, M. D., Lee, J. D., Davison, B., Vaughan, A., Purvis, R. M., Harvey, A., Lewis, A. C. and Hewitt, C. N.: Airborne 

determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across 

Greater London, UK, Atmos. Chem. Phys., 15(9), 5083–5097, doi:10.5194/acp-15-5083-2015, 2015. 

Silvia, D. and Skilling, J.: Data analysis: a Bayesian tutorial, OUP Oxford., 2006. 

Sorbjan, Z.: Statistics of scalar fields in the atmospheric boundary layer based on large-eddy simulations. Part II: Forced 645 

convection, Boundary-layer Meteorol., 119(1), 57–79, 2006. 

Squires, F. A., Nemitz, E., Langford, B., Wild, O., Drysdale, W. S., Acton, W. J. F., Fu, P., Grimmond, C. S. B., Hamilton, J. 

F., Hewitt, C. N., Hollaway, M., Kotthaus, S., Lee, J., Metzger, S., Pingintha-Durden, N., Shaw, M., Vaughan, A. R., Wang, 

X., Wu, R., Zhang, Q. and Zhang, Y.: Measurements of traffic-dominated pollutant emissions in a Chinese megacity, Atmos. 



28 
 

Chem. Phys., 20(14), 8737–8761, doi:10.5194/acp-20-8737-2020, 2020. 650 

Starkenburg, D., Metzger, S., Fochesatto, G. J., Alfieri, J. G., Gens, R., Prakash, A. and Cristóbal, J.: Assessment of despiking 

methods for turbulence data in micrometeorology, J. Atmos. Ocean. Technol., doi:10.1175/JTECH-D-15-0154.1, 2016. 

Thomas, C. and Foken, T.: Flux contribution of coherent structures and its implications for the exchange of energy and matter 

in a tall spruce canopy, Boundary-Layer Meteorol., 123(2), 317–337, doi:10.1007/s10546-006-9144-7, 2007. 

Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79(1), 61–78, doi:Doi 655 

10.1175/1520-0477(1998)079<0061:Apgtwa>2.0.Co;2, 1998. 

Vaughan, A. R., Lee, J. D., Misztal, P. K., Metzger, S., Shaw, M. D., Lewis, A. C., Purvis, R. M., Carslaw, D. C., Goldstein, 

A. H. and Hewitt, C. N.: Spatially resolved flux measurements of NOx from London suggest significantly higher emissions 

than predicted by inventories, Faraday Discuss., 189, 455–472, 2016. 

Vaughan, A. R., Lee, J. D., Shaw, M. D., Misztal, P., Metzger, S., Vieno, M., Davison, B., Karl, T., Carpenter, L. J., Lewis, 660 

A. C., Purvis, R., Goldstein, A. and Hewitt, C. N.: VOC emission rates over London and South East England obtained by 

airborne eddy covariance, Faraday Discuss., doi:10.1039/C7FD00002B, 2017. 

Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Technol., 

doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997. 

Williamson, J. A., Kendall-Tobias, M. W., Buhl, M. and Seibert, M.: Statistical evaluation of dead time effects and pulse 665 

pileup in fast photon counting. Introduction of the sequential model, Anal. Chem., 60(20), 2198–2203, 1988. 

Wolfe, G. M., Hanisco, T. F., Arkinson, H. L., Bui, T. P., Crounse, J. D., Dean‐Day, J., Goldstein, A., Guenther, A., Hall, S. 

R. and Huey, G.: Supporting information for Quantifying sources and sinks of reactive gases in the lower atmosphere using 

airborne flux observations, Geophys. Res. Lett., 42(19), 8231–8240, 2015. 

Xu, K., Metzger, S. and Desai, A. R.: Upscaling tower-observed turbulent exchange at fine spatio-temporal resolution using 670 

environmental response functions, Agric. For. Meteorol., 232, 10–22, doi:10.1016/j.agrformet.2016.07.019, 2017. 

Xu, K., Metzger, S. and Desai, A. R.: Surface-atmosphere exchange in a box: Space-time resolved storage and net vertical 

fluxes from tower-based eddy covariance, Agric. For. Meteorol., 255, 81–91, doi:10.1016/j.agrformet.2017.10.011, 2018. 

Yuan, B., Kaser, L., Karl, T., Graus, M., Peischl, J., Campos, T. L., Shertz, S., Apel, E. C., Hornbrook, R. S., Hills, A., Gilman, 

J. B., Lerner, B. M., Warneke, C., Flocke, F. M., Ryerson, T. B., Guenther, A. B. and de Gouw, J. A.: Airborne flux 675 

measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions, 

J. Geophys. Res., 120(12), 6271–6289, doi:10.1002/2015jd023242, 2015. 

Zeileis, A. and Grothendieck, G.: Zoo: S3 infrastructure for regular and irregular time series, J. Stat. Softw., 

doi:10.18637/jss.v014.i06, 2005. 

 680 


