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Abstract. Feldspar is an important constituent of airborne mineral dust. Some alkali feldspars exhibit particularly high ice 

nucleation (IN) activity. This has been related to structural similarities of the ice (101̅0) prism planes and the (100) planes of 10 

alkali feldspar. Here the effect of generating feldspar surfaces with close to (100) orientation by means of chemically induced 

fracturing on the IN activity of alkali feldspar was investigated experimentally. To this end, gem quality K-rich alkali feldspar 

was shifted towards more Na-rich compositions by cation exchange with an NaCl-KCl salt melt at 850°C. By this procedure,  

a system of parallel cracks with an orientation close to the (100) plane of the feldspar was induced. Droplet freezing assay 

experiments performed on grain mounts of the cation exchanged alkali feldspars revealed an increase of the overall density of 15 

ice nucleating active sites (INAS) with respect to the untreated feldspar. In addition, annealing at 550°C subsequent to primary 

cation exchange further enhanced the INAS density and lead to IN activity at exceptionally high temperatures. Although very 

efficient in experiment, fracturing by cation exchange with an alkali halide salt is unlikely to be of relevance in the conditioning 

of alkali feldspars in nature. However, parting planes with similar orientation as the chemically induced cracks may be 

generated in lamellar microstructures resulting from the exsolution of initially homogeneous alkali feldspar, a widespread 20 

phenomenon in natural alkali feldspar known as perthite formation. Perthitic alkali feldspars indeed show the highest IN 

activity. We tentatively ascribe this phenomenon to the preferential exposure of feldspar crystal surfaces oriented sub-parallel 

to (100). 

1 Introduction - mineralogical aspects and relevance for atmospheric science 

Feldspar is the most abundant mineral in the Earth's crust. It is a major constituent of magmatic, metamorphic, and sedimentary 25 

rocks (Smith and Brown, 1988), and due to its ubiquity on the Earth's surface, feldspar is also an abundant constituent of the 

solid aerosol particles. Desert dust (Boucher et al., 2014) and volcanic ash (Durant et al., 2008; Durant et al., 2010) are the 

main sources of airborne mineral dust contributing about 1000 – 4000 Tg/a and 176 – 256 Tg/a, respectively. Solid aerosol 

particles are of interest in the context of ice formation in clouds. Mineral dust may substantially increase the freezing 

temperature of supercooled cloud droplets and foster the formation of ice particles at relatively high temperatures (Tang et al., 30 

2016). Atmospheric ice particles have a strong influence on the physical properties of clouds and exert first order controls on 

processes such as radiative transfer, precipitation and absorption of trace gases (Kanji et al., 2017). Moreover, the albedo of 

clouds generally increases with the formation of ice particles (McFarquhar et al., 2002), an effect that is of pivotal importance 

for the Earth’s radiation budget und is thus a key factor for global climate (Boucher et al., 2014; Bony et al., 2006). Among 

the different types of airborne mineral dust particles some feldspars have been reported to have particularly high ice nucleation 35 

(IN) activity (Atkinson et al., 2013; Harrison et al., 2016; Peckhaus et al., 2016). 

Feldspar is a framework silicate and forms a ternary solid-solution among the Ca (Ca2Al2Si2O8 - anorthite), Na (NaAlSi3O8 -

albite), and K (KAlSi3O8 - potassium feldspar) end-members, where the latter two pertain to the alkali feldspar solid-solution. 

The crystal structure of feldspar is comprised of a three-dimensional framework of corner-sharing SiO4 and AlO4 tetrahedrons 
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with the alkali and alkali earth cations located in large framework cavities. Depending on chemical composition, pressure, 40 

temperature, and the state of Al-Si ordering on the tetrahedral sub-lattice, feldspar may have monoclinic C2/m or triclinic C1 

symmetry (Ribbe, 1983). The mineralogy of feldspar has a crucial effect on its ability to cause freezing of supercooled water. 

The ice nucleating efficacy expressed in terms of the surface density of ice nucleating active sites (INAS, 𝑛𝑠(𝑇)), (Connolly 

et al., 2009) was shown to vary over two orders of magnitude for various alkali feldspars (Harrison et al., 2016). Perthites, 

which are exsolved feldspars that typically take the form of (sub) micron scale lamellar intergrowth of more K-rich and more 45 

Na-rich alkali feldspar, were found to have the highest IN efficacy among all feldspar dust particles (Whale et al., 2017). The 

mechanisms relating the lamellar microstructure formed by exsolution and enhanced IN efficacy are, however, not known and 

are currently debated. 

In a previous study that used natural perthitic alkali feldspars, the preferential epitaxial nucleation and growth of ice crystals 

by the alignment of the ice (101̅0) prism plane with (100) faces of the feldspar was identified as the key mechanism underlying 50 

the high IN activity of alkali feldspar in deposition freezing (Kiselev et al., 2017). The proposed mechanism was supported by 

a later study by Pach and Verdaguer, (2019), but could not be reproduced by molecular dynamic (MD) simulation (Soni and 

Patey, 2019). In this latter study it was suggested that the (100) surfaces need to be structurally rearranged or chemically altered 

to enable the preferential oriented nucleation of ice crystals.  

Facets with (100) orientation do, however, not pertain to the commonly exposed crystal surfaces of alkali feldspar. The surfaces 55 

of natural feldspar are either represented by the typical growth facets including the (110), (1̅01), (001), (201̅) and (010) facets 

(Smith and Brown, 1988), or by the (001) and (010) cleavage planes, where the cleavage is perfect on the (001) and good on 

the (010) plane. Crystal surfaces with (100) orientation have high surface energy, and (100) facets or cleavage planes hardly 

ever occur. It has been argued that small patches of (100) crystal surfaces may be exposed at defects such as cracks and cavities 

(Kiselev et al., 2017). Holden et al., (2019) observed nucleation of ice in supercooled water in contact with feldspar, where the 60 

ice nucleation appeared to be associated with pits on the specimen surface. In this context perthites are of particular interest. 

The boundaries between the more Na-rich and the more K-rich lamellae of perthite are oriented so that the crystallographic 

lattice misfit between the compositionally distinct lamellae is minimized. This condition defines the so-called Murchison plane 

(Fitz Gerald et al., 2006; Smith and Brown, 1988), which has non-rational Miller indices between (6̅01) and (8̅01). The 

Murchison plane does, in general, not coincide with any of the primary atomic planes. It is oriented sub-parallel to (100) within 65 

8° to 11°, and parting planes following the Murchison plane may well contain patches of (100) crystal surface (see 

Supplementary Figure 4 for the orientation of chemically induced cracks and of the Murchison plane relative to (100). In the 

light of the extraordinarily high IN activity of alkali feldspar and the preferential epitaxial nucleation of ice on feldspar (100) 

surfaces, it is important to understand the mechanisms by which such surfaces may form and to what extent the IN activity of 

these surfaces differs from the IN activity of the more commonly exposed growth facets and cleavage planes of alkali feldspar. 70 

In particular, the potential effects of different formation mechanisms and associated crystal surface morphologies on the 

efficacy of IN on alkali feldspar aerosol particles is of interest. In this communication we investigate the IN activities of alkali 

feldspars that were subject to different pre-treatments designed to mimic natural processes leading to the exposure of crystal 

surfaces sub-parallel to (100). We relate the IN activity to the mode and the extent of the modification of the crystal surface 

by fracturing and discuss the potential role that (100) surfaces play for the IN activity of alkali feldspars. 75 

2 Experiment 

2.1 Sample preparation  

2.1.1 Cation exchange and annealing experiments 

For preparing feldspar fragments with a significant fraction of (100) surfaces we made use of the fact that fracturing of alkali 

feldspar sub-parallel to the Murchison plane may be induced by shifting the composition of a K-rich alkali feldspar towards 80 
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more Na-rich compositions by diffusion-mediated Na-K cation exchange with an NaCl-KCl salt melt (Neusser et al., 2012; 

Petrishcheva et al., 2019; Predan et al., 2020; Scheidl et al., 2014). This effect is due to the strongly anisotropic contraction of 

the crystal structure with increasing Na content (Kroll et al., 1986; Angel et al., 2012) with the strongest contraction 

approximately perpendicular to the Murchison plane. During diffusion-mediated cation exchange with NaCl-KCl salt melt of 

appropriate composition a more Na-rich layer forms on the surface of the specimen, while the original more K-rich composition 85 

is retained in the internal regions. Both, the internal regions with zero compositional eigenstrain state and the more Na-rich 

surface layer with strong negative eigenstrain state perpendicular to the Murchison plane pertain to one solid, and a tensile 

stress state is induced in the chemically altered surface layer. When the compositional shift towards more Na-rich compositions 

of the surface layer exceeds a certain extent, a critical stress level is reached, followed by fracturing approximately parallel to 

the Murchison plane that is perpendicular to the direction of strongest contraction of the crystal structure (Neusser et al., 2012; 90 

Petrishcheva et al., 2019; Scheidl et al., 2014; Predan et al., 2020). 

We exploited this mechanical effect for producing surfaces with orientations close to (100) by performing cation exchange 

experiments using powders of gem-quality alkali feldspar and an NaCl-KCl salt mixture as starting materials. The original 

feldspar is a sanidine from Volkesfeld (Eifel, Germany) with cK
fsp = 0.84, where cK

fsp is the atomic site fraction of K on the 

alkali sublattice, cK
fsp =[K]/([Na]+[K]) (marked with the red solid circle in the phase diagram in the Figure 1). The feldspar 95 

was gently crushed and sieved, and the grains of the 100-200 µm sieve fraction were exchanged with a mixed molten NaCl-

KCl salt with a composition of cK
salt = 0.21 at 850°C for 8 days to attain equilibrium Na/K partitioning between feldspar and 

the salt. The salt was applied in excess so that it practically retained its composition unchanged during the cation exchange 

experiment. At 850°C the composition of Volkesfeld sanidine in equilibrium with NaCl-KCl salt melt with cK
salt = 0.21 is cK

fsp 

=0.43 (Neusser et al., 2012). The induced compositional change corresponds to a shift of ∆c = 0.41 towards more Na-rich 100 

compositions.  

 

 

 

Figure 1: Schematic isobaric phase diagram for alkali feldspar showing the stability fields and respective symmetries of albite, 105 
sanidine and microcline; the miscibility gap (the yellow-shaded region under the solvus curve) represents the two-phase region; the 

filled red circle shows the original composition of the Volkesfeld sanidine (sample FS08-VS), which was shifted to intermediate 

composition by cation exchange at 850°C (sample FS08-01); subsequent annealing at 550°C in vacuum produced sample FS08-64c, 

and annealing at 550°C in contact with the NaCl-KCl salt produced sample FS08-64o with a somewhat variable composition due to 

incomplete cation exchange (see below).  110 
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At 850°C Na-K exchange equilibrium between the surface of alkali feldspar and an NaCL-KCl salt melt is closely approached 

within less than a day (Schaeffer et al., 2014). With time, the chemically altered surface layer grows in thickness. This process 

is controlled by the interdiffusion of Na and K on the alkali sublattice of the feldspar. According to the calibration of Na-K 

interdiffusion in alkali feldspar by Schaeffer et al., (2014) and by Petrishcheva et al., (2014, 2020) in 8 days at 850°C the 

diffusion front would propagate a distance of 20 to 30 µm, depending on crystallographic direction. The compositional shift 115 

in the chemically altered surface layer produced sufficiently large tensile stress so that fracturing was induced, and a system 

of parallel cracks with an orientation close to the Murchison plane developed (see further down). 

After the cation exchange, the feldspar samples were split into three batches. One batch was annealed at 550°C for 64 days, 

while the grains were kept in contact with the salt so that further cation exchange between the salt and the feldspar occurred. 

At 550°C the salt is solidified and cation exchange is slower than during the primary cation exchange, but it is still sufficiently 120 

fast so that the resulting chemical alteration can well be detected (see below). We refer to this annealing route as the open 

system setting, and the sample produced by this route is labelled FS08-64o. A second batch of cation exchanged feldspar grains 

was removed from the salt and annealed at 550°C in vacuum for 64 days. The conditions lay within the miscibility gap of 

alkali feldspar (the yellow-shaded region in Figure 1), that is a region on the isobaric phase diagram, where two alkali feldspars 

of different composition coexist in equilibrium (Work et al., 2004; Brown and Parsons, 1984). At these conditions phase 125 

separation of the originally compositionally homogeneous feldspar with cK
fsp =0.43 into sub-micron scale lamellas of more K- 

and more Na-rich feldspars may have occurred (Petrishcheva et al., 2020) but was not observed in this study, as this would 

have required targeted analysis by transmission electron micorscopy, which was beyond our scope. We refer to this annealing 

route as the closed system setting, and the sample produced is labelled FS08-64c. A third batch of cation exchanged feldspar 

grains was removed from the melt after the primary cation exchange.  It was rinsed with distilled water to remove the salt and 130 

then gently dried and stored without further treatment. This sample is labelled FS08-01. The details of the treatment are 

illustrated in Figure 1 and the properties of the resulting feldspar grains are summarized in Table 1.  Grain mounts were 

prepared from all three sample batches as described in the next section. 

2.1.2 Preparation of grain mounts and thin sections 

The amount of chemically altered feldspar prepared as described in the previous section was too small for conducting droplet 135 

freezing experiments with aqueous suspensions of feldspar powder, as usually done in mineral dust IN efficiency studies, as 

in, e.g. Hiranuma et al. (2015). As an alternative, we prepared grain mounts by casting feldspar grains in a thin layer of epoxy 

resin on top of a standard microscope glass slide. After solidification of the resin the layer of cast epoxy-feldspar aggregate 

was ground to a thickness of 200 µm and subsequently polished to optical quality. Through this procedure, the majority of the 

feldspar grains was exposed on the polished sample surface. The grain mounts were cut into 10x10 mm square plates and end-140 

polished using a Leica TIC3X ion-milling device. A current of 0.5 mA and an acceleration voltage of 1 kV were applied for 

45 min, and the sample was continuously rotated in the horizontal plane. The same procedure was applied for preparing grain-

free mounts of epoxy resin (FS08-Epx) to be used for reference measurements.  

The grain mounts were analyzed by polarization microscopy using a Leica DM4 polarization microscope and in a FEI Thermo 

Fisher Quattro Environmental Scanning Electron Microscope (ESEM) equipped with an EDAX Octane Super energy 145 

dispersive X-Ray spectrometer (EDS). Exemplary views of the grain mount prepared from the cation exchanged alkali feldspar 

(sample FS08-01) are shown in Figure 2. For comparison, a natural perthitic alkali feldspar from Pakistan (sample FS06-010) 

was analysed. The sample was prepared from a centimetre-sized specimen with partially developed facets. Visually, the 

feldspar specimen is pale beige and turbid (see Supplementary Figure 1). The X-Ray diffraction (XRD, Panalytical, Cu K-

alpha 1&2) analysis yielded a phase content of 41% orthoclase, 39% microcline, and 20% albite (see supplemental material 150 

for details). 
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Figure 2. Grain mounts used in the droplet freezing assay study. A. Optical microscope image in transmitted light with crossed-155 
polarizers and first-order retardation plate showing feldspar grains embedded in epoxy resin (sample FS08-01). B. Back-Scattered 

Electron (BSE) image of the area marked by the black frame in panel A. The white circles illustrate the footprints of water droplets 

used in the cold stage experiment.  

In transmitted light optical microscopy and in the SEM a complex microperthitic structure overlain by polysynthetic twinning 

after the pericline law and porosity, which is very likely related to hydrothermal or deuteric alteration, were identified (see 160 

Supplementary Figure 2). For our experiments the specimen was cut parallel to the (010) cleavage plane, and a thin section 

was prepared employing the same polishing routine as used for the grain mounts. The crystallographic orientation of the 

cleavage plane was confirmed by backscattered electron diffraction (BSED) obtained with a Hikari Super BSED detector 

(EDAX AMETEK) mounted on the ESEM. The BSED patterns were analysed with the EDAX OIM v8.0 software package 

using the built-in structure file of generic triclinic feldspar. The thin sections with different orientations prepared from the 165 

same specimen have been reserved for a different study which is currently under evaluation.  

2.2 Droplet freezing assay experiments 

2.2.1 Measurement routine and calculation of INAS density  

The ice nucleating efficacy of the altered feldspar was measured in the droplet freezing assay setup previously described in 

Peckhaus et al., (2016). Briefly, a 10-by-10 mm grain mount was placed into a temperature-controlled cold stage setup 170 

consisting of a Linkam MDBCS-196 motorized cold stage, a piezo-driven drop-on-demand dispenser (GeSIM, model A010-

006 SPIP) and a video camera with a wide-field objective allowing for detection of individual freezing events with 0.125 s 

time resolution. In the experiments described in this work, nearly 500 droplets of pure water each with a volume of 

approximately 0.4 nL were deposited onto the polished surface of the grain mount in a chequerboard pattern with 400 µm 

center-to-center separation distance between the droplets (see Figure 2B). During the freezing experiments the cold stage was 175 

cooled with a rate of 3 K/min. The temperature was monitored with a thin-film platinum resistance sensor (Pt-100) that was 

fixed directly on the sample surface using a vacuum grade heat-conducting paste. Freezing of individual droplets was detected 

by an intensity change of the light reflected by the droplets, which happens at the moment of freezing and is best detected 

using crossed polarizers. An automated LabView video analysis routine was used to identify the individual droplet positions 

and freezing temperatures and for calculating the fraction of frozen droplets as a function of temperature 𝑓𝑖𝑐𝑒(𝑇) (see Figure 180 

5A). To account for the different freezing efficacies of feldspar and epoxy resin, several freezing experiments were conducted 

with the droplets deposited on the surface of a feldspar-free epoxy mount (sample FS08-Epx). For each sample, at least three 

replicate measurements were done. Between successive measurements the droplets were evaporated and redeposited in the 

similar pattern. Note, however, that due to the limited positioning accuracy of the motorized cooling stage, the new pattern 

1 mm A B 
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could be shifted with respect to the previous one by a distance of up to 100 µm in random direction. During the cooling ramp, 185 

some droplets located near the side of the grain mount have reduced their sizes or disappeared completely due to evaporation.  

These droplets were excluded from the post-processing analysis, resulting in a fewer total number of droplets actually used for 

evaluation of the INAS density of feldspar (see Table 1 for the actual total number of droplets in every experiment). The 

droplet footprint area was obtained by measuring 20 randomly chosen droplet contours in a video frame recorded just before 

the detection of the first freezing event. In this way the gradual droplet evaporation and associated reduction of footprint area 190 

during the cooling ramp could be taken into account.  

The heterogeneous freezing efficacy of a substrate is usually expressed in terms of the INAS density (Murray et al., 2012; 

Connolly et al., 2009). Within the framework of the classical nucleation theory (see e.g., Hoose and Möhler, 2012), the INAS 

density 𝑛𝑠(𝑇) at temperature T is obtained from the fraction of frozen droplets 𝑓𝑖𝑐𝑒(𝑇) and the area of contact 𝑆𝑑  between the 

droplet and the substrate: 195 

𝑛𝑠(𝑇) = −
ln (1−𝑓𝑖𝑐𝑒(𝑇))

𝑆𝑑
  (1) 

The average water-feldspar contact area was determined from the droplet size and from the exposed surface area of the feldspar 

grains. Due to the comparable size of the footprints of the droplets and the feldspar fragments exposed on the sample surface, 

a droplet may be in contact with feldspar and epoxy resin or it may be in contact with epoxy resin exclusively (see Figure 2B). 

This is why the IN efficacy of the epoxy resin needs to be considered. Moreover, in the replicate experiments the droplets were 200 

deposited on slightly different positions, and therefore the water-feldspar contact area did not only vary from droplet to droplet 

but also between replicate measurements. The water-feldspar contact area was evaluated using the back-scattered electron 

microscope images of the grain mounts (Figure 3). A black-and-white binary mask created from the segmented image of a 

grain map was overlain with the contour image of a droplet array, as illustrated in Figure 3, and the average overlapping area 

𝑆𝐹𝑆 per droplet was determined. Given that the number of IN active sites associated with the surface of feldspar grains 𝑛𝑠
𝐹𝑆(𝑇) 205 

and the number of INAS associated with the surface of epoxy resin 𝑛𝑠
𝐸𝑃𝑋(𝑇) are additive, we may write:  

𝑛𝑠
𝑎𝑝𝑝

(𝑇) ∙ 𝑆𝑑 = 𝑛𝑠
𝐹𝑆(𝑇) ∙ 𝑆𝐹𝑆 + 𝑛𝑠

𝐸𝑃𝑋(𝑇) ∙ 𝑆𝐸𝑃𝑋 (2) 

where  𝑛𝑠
𝑎𝑝𝑝

(𝑇) is the apparent INAS density obtained from the droplet freezing experiments via equation 1, and 𝑆𝐹𝑆 and 𝑆𝐸𝑃𝑋 

are the average droplet-feldspar and droplet-epoxy contact areas, which satisfy the condition 𝑆𝑑 = 𝑆𝐹𝑆 + 𝑆𝐸𝑃𝑋. Combining 

equations 1 and 2, the INAS density associated with feldspar grains is calculated as 210 

𝑛𝑠
𝐹𝑆(𝑇) = −

ln(1−𝑓𝑖𝑐𝑒(𝑇))

𝑆𝐹𝑆
− 𝑛𝑠

𝐸𝑃𝑋(𝑇) ∙ (
𝑆𝑑

𝑆𝐹𝑆
− 1), (3) 

with 𝑛𝑠
𝐸𝑃𝑋(𝑇) obtained from the droplet freezing experiments conducted on the grain-free mount of epoxy resin (sample 

FS08-Epx).  

The actual position of every droplet could not be measured precisely as the resolution of the main camera was not sufficient 

to recognize the footprint of every droplet automatically. Therefore, the droplet array was created using the coordinates of the 215 

individual droplets identified by the video processing software and the diameter of droplet footprint measured manually for 

several droplets clearly visible in the video frames. To estimate the error arising from use of such synthetic droplet array, the 

calculation of 𝑆𝐹𝑆 was repeated 100 times for every grain mount with the position of every droplet in the array varying 

randomly within a droplet diameter from the initial position. The resulting distribution of  𝑆𝐹𝑆 values was used to obtain the 

mean feldspar-water overlapping area per droplet and its standard deviation, which was then used for calculating the INAS 220 

density. The values of 𝑆𝐹𝑆 and the corresponding standard deviations are given in the last column of Table 1. The standard 

deviations of 𝑆𝐹𝑆 were used to estimate the uncertainty of the INAS density, which was found to be within ±100% from the 

mean value for all measurements conducted with the grain mounts. 
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Figure 3. Binary images of grain mounts (A) FS08-04, (B) FS08-64O, and (C) FS08-64C, overlaid with the heat maps of droplet 

arrays color-coded according to the droplet freezing temperatures. Heat maps for three repeated experiments are combined. The 

numbers on the X and Y axes are pixel coordinates of the images. The pixel size is 8.8 µm.  

For reference, the original Volkesfeld sanidine (sample FS08-VS) was prepared as a powder by grinding the specimen in a 

mortar and sieving the powder through a 20 µm sieve. The powder was then used for preparing aqueous suspensions containing 230 

0.1 wt% and 1 wt% feldspar. Suspension droplets with a volume of 21.6 nL were deposited in a 9 x 9 array with a PipeJet 

Nano dispenser (BioFluidix GmbH) on a clean 10 x 10 mm silicon wafer (Ted Pella, Inc.). About 10 droplets were deposited 

on top of the thin-film temperature sensor and could not be used for freezing measurements, so that approximately 70 droplets 

in a single experiment could be used. Freezing of the suspension droplets was measured using the same device as described 

above, see also Peckhaus et al. (2016). For the calculation of the INAS density of the sample FS08-VS the specific surface 235 

area (SSA) of the feldspar powder was determined using an Autosorb iQ model 7 gas sorption system (Quantachrome 

Instruments, a brand of Anton Paar QuantaTec Inc.) Using Ar as a sorbent gas at 87 K and applying Brunauer–Emmett–Teller 

(BET) theory (Brunauer et al., 1938), the SSA of sample FS08-VS was found to be (1.8±0.2) m2/g, implying a total surface 

area of the feldspar particles contained in a single droplet of (3.9 ± 0.4)×10-9 m2 for the 0.1 wt% suspension and of (3.9 ± 

0.4)×10-8 m2 for the 1 wt% suspension. 240 

 

Table 1. Overview of the feldspar samples and experimental conditions 

Sample 

label 

Sample origin and 

preparation 

Preparation for cold stage 

experiments 

Number of 

droplets 

Droplet 

footprint 

area, 𝑺𝒅 [m2] 

Contact area of 

feldspar-droplet 

interface, [m2] 

FS08-VS 

Sanidine from Volkesfeld, 
Eifel, Germany; grinded and 
sieved to < 20µm 

Aqueous particle 
suspension  

0.1 wt% 
160 2.1×10-7 

(3.9±0.4)×10-9  

1 wt% (3.9±0.4)×10-8 

FS08-Epx Feldspar-free epoxy resin 
Grain-free epoxy resin 
mount, ground and polished 
< 1 µm, ion-milled 

540 1.2×10-8 NA 

FS08-01 

Albite-shifted sanidine, 8 
days at 850°C in NaCl-KCl 
salt mixture melt 

Grain mount, ground and 
polished < 1 µm, ion-milled 

386 9.9×10-9 (12.9±1.5)×10-10 

FS08-64o 

Albite-shifted sanidine 
tempered at 550°C for 64 
days in NaCl-KCl salt mixture 
melt 

Grain mount, ground and 
polished < 1 µm, ion-milled 

504 1.2×10-8 (39.4±1.8)×10-10 

FS08-64c 

Albite-shifted sanidine 
tempered at 550°C for 64 
days in vacuum 

Grain mount, ground and 
polished < 1 µm, ion-milled 

523 7.8×10-9 (16.7±1.2)×10-10 

FS06-010 

Pakistan feldspar (41% or, 
39% mic, 20% ab), showing 
polysynthetic twinning 
according to the pericline 
law and K-Na exsolution 
lamella structure 

Thin section for optical 
microscopy (~ 20 µm), 
polished to < 1 µm,  
ion milled 

340 1.9×10-8 1.9×10-8 

A B C 
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For the droplet freezing experiments on the thin section of Pakistan microcline (sample FS06-010), droplets with a volume of 

1.4 nL were used. Accordingly, larger droplet footprint areas were taken into account when calculating the INAS density. 

To estimate the possible effect of the purity of the water used in the experiments we conducted several freezing experiments 245 

with pure water droplets deposited on a clean silicon wafer. The silicon wafer was shown previously to have no effect on ice 

nucleation (Peckhaus et al., 2016), and the freezing of droplets occurs within a narrow temperature interval between -35°C 

and -36°C as shown by the dashed curve in Figure 4. When freezing occurs at temperature higher than this, the presence of an 

ice nucleating substrate or of ice nucleating particles suspended in a water droplet is inferred.  

3 Results and discussion 250 

3.1 Droplet freezing experiments 

The ability of feldspar to induce freezing of supercooled water was investigated in a series of droplet freezing experiments as 

described in section 2.2.1. The experimental results are summarized in Figure 4. Panel A shows the fraction of frozen droplets 

as a function of supercooling temperature, and panel B shows the INAS density 𝑛𝑠(𝑇) calculated from the data presented in 

panel A and accounting for the contact area between supercooled water and feldspar (see Table 1). Representation of the results 255 

of the freezing experiments in terms of 𝑛𝑠(𝑇) allows for comparison of the IN efficacy of various substrates and powder 

samples even if obtained by different methods.  

The droplet freezing temperature is a function of substrate activity, droplet footprint area, and cooling rate, and therefore the 

freezing behaviour of different samples cannot be directly compared based on the freezing curves alone (Figure 4A). 

Nevertheless, some general features are clearly recognized. Freezing of more than 90% of pure water droplets on a Si wafer 260 

occurs within a narrow temperature interval of 1 K. This behaviour is characteristic for homogeneous freezing of supercooled 

water (see e.g. Ickes et al. (2015). The freezing curve of supercooled droplets on the epoxy resin (FS08-Epx) has a pronounced 

steep section between –28°C and –30°C, where the majority of the droplets freeze almost simultaneously. This freezing 

behaviour suggests that a single type of ice nucleating active sites, albeit with low freezing efficacy, prevails (Vali, 2008; 

Wright and Petters, 2013). The freezing curves of the samples containing feldspar exhibit less steep slopes pointing to an 265 

intrinsic variability of ice nucleating active sites in contact with a droplet of supercooled water.  

 

Figure 4. Results of the droplet freezing experiments. A. Fraction of frozen water droplets as a function of supercooling temperature. 

The cooling rate was 3 K/min in all experiments. Pure water droplets on a clean silicon wafer freeze within a small temperature 

range between -35°C and -36°C (as shown by the blue dashed curve). B. INAS density calculated from the data shown in panel A. 270 
In addition, the INAS density calculated for the untreated Volkesfeld sanidine (sample FS08-VS) obtained from suspension droplet 

freezing experiments is shown for comparison in two different shades of blue for the two weight concentrations (dark blue for 

0.1 wt% and light blue for 1 wt%).  
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Figure 4, panel B, shows the 𝑛𝑠(𝑇) curves obtained from the chemically altered feldspar and from the original Volkesfeld 

sanidine, together with the 𝑛𝑠(𝑇) curves for the epoxy resin and of the microcline from Pakistan (FS06-010). As expected, the 275 

epoxy resin has the lowest INAS density, followed by the original feldspar FS08-VS, the feldspar FS08-01 that was cation-

exchanged at 850°C, and the feldspars, which were first cation-exchanged at 850°C and then annealed at 550° in an open 

system setting (sample FS08-64o) and in a closed system setting (sample FS08-64c). Note that the original Volkesfeld sanidine 

was prepared as a powder and suspension droplets were used for the freezing experiments. Grinding of the material may 

introduce morphology changes beyond a general increase of the specific surface area (Hiranuma et al., 2014), and the 280 

comparison of its IN activity with the IN activities of the other samples, which were determined from grain mounts, needs to 

be considered with caution. In spite of this uncertainty, it may be stated that the INAS density appears to increase substantially 

after the ion-exchange treatment. All ion-exchanged feldspars have substantially higher INAS densities than the untreated 

Volkesfeld sanidine. Recalling that Volkesfeld sanidine was used as the starting material for the cation exchange experiments, 

the observed difference in INAS density is ascribed to the effects of cation exchange. Apart from a shift in chemical 285 

composition, the most obvious effect of cation exchange is the generation of a system of parallel cracks that are oriented sub-

parallel to the Murchison plane. The Murchison plane encloses an angle of about 8° to 11° with the (100) lattice plane and, 

given that the crack flanks are somewhat uneven, they probably contain patches of (100) crystal surface. An increase of the 

INAS density due to exposure of (100) crystal surfaces is well in line with the findings of Kiselev et al., (2017), who observed 

preferential epitaxial nucleation and growth of ice crystals on (100) surfaces of alkali feldspar. It was shown by the latter 290 

authors that the atomic structures of the (101̅0) prism planes of ice and the (100) planes of alkali feldspar have striking 

similarities allowing for efficient epitaxial nucleation and growth of ice on (100) surfaces of alkali feldspar. It must be noted 

that the epitaxy-driven nucleation of ice on feldspar (100) surfaces could not be reproduced in the MD simulation study of 

Soni and Patey, (2019). Interestingly, the 𝑛𝑠(𝑇) of the cation exchanged feldspar FS08-01 is very similar to the INAS density 

of the (010) thin section of Pakistan feldspar (sample FS06-010). The comparison between the two feldspar types is perfectly 295 

justified as identical preparation and measurement routines were applied for both samples, with the only difference that the 

FS08-01 sample contains randomly oriented feldspar grains, whereas in the FS06-010 sample only the crystal plane with (010) 

orientation is exposed.  

The annealing of the cation exchanged samples at 550°C lead to a further increase of the INAS density. Both, sample FS08-64o, 

which was annealed in contact with the salt – open system setting, and sample FS08-64c, which was annealed in vacuum – 300 

closed system setting, show higher INAS densities than sample FS08-01, which was prepared from cation exchanged 

Volkesfeld sanidine without subsequent annealing. Samples FS08-64o and FS08-64c show quite different freezing behavior. 

Whereas sample FS08-64c has a steep temperature dependency and the highest 𝑛𝑠(𝑇) values of all samples, the 𝑛𝑠(𝑇) curve 

of sample FS08-64o is less steep and extends to comparatively high temperatures indicating that a set of very active ice 

nucleating sites is capable of triggering ice nucleation at temperatures as high as -3°C. However, at temperature below -15°C, 305 

the FS08-64o sample has the same INAS density as the FS08-01. Ice nucleation at similarly high temperatures was reported 

from sample FS04 studied in Peckhaus et al. (2016).  

3.2 Grain morphology and chemical composition 

The grain morphologies and chemical compositions were characterized by ESEM for all samples except FS06-010 which was 

additionally studied with powder XRD (see Table 1). ESEM images of the cation exchanged sample FS08-01 and of the cation 310 

exchanged and annealed samples FS08-64o and FS08-64c are shown in Figure 5 and in supplementary Figure 3. The most 

evident feature of all samples is the presence of a system of parallel cracks. The cracks extend at high angles to the (010) and 

the (001) cleavage planes bounding the feldspar fragments. In the cation exchanged feldspar (FS08-01) the cracks are, however, 

hardly visible, whereas they are up to 5 µm wide and well visible in the annealed feldspars. In the grains of sample FS08-64o, 

K-rich zones have developed along the cracks. In the back-scattered electron (BSE) image the K-rich zones appear as light 315 
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grey bands flanking the cracks on both sides (dashed arrows in Figure 5B). The K-rich zones were formed by successive Na-

K exchange between the feldspar and the salt during annealing at 550°. It is inferred from the observed K-rich layers along the 

crack flanks that at this temperature potassium partitions more strongly into the feldspar than during the primary cation 

exchange at 850°C. This induced back in-diffusion of K during annealing at 550°C locally and locally reversed the 

compositional shift attained during the primary cation exchange at 850°C. No such K-rich zones are visible in the BSE images 320 

of feldspar FS08-64c. This is due to the fact that this sample was separated from the salt after primary cation exchange and 

subsequently annealed in vacuum at 550°C. The feldspar fragments of this sample show uniform BSE contrast and appear to 

be compositionally homogeneous. From recent work (Petrishcheva et al., 2020) it is known that during the annealing at 550°C 

an alkali feldspar with cK = 0.41 may experience phase separation by spinodal decomposition. At the applied experimental 

conditions and annealing time, the spinodal decomposition typically produces an alternation of more Na-rich and more K-rich 325 

lamellae with a characteristic lamellar spacing on the order of 30 nm (Petrishcheva et al., 2020), a microstructure that is referred 

to as cryptoperthite (Smith and Brown, 1988). The nm-scaled lamellar intergrowth cannot be resolved with BSE imaging in 

the SEM and a uniform grey shade is observed. It has been shown by Petrishcheva et al. (2020) using Scanning Transmission 

Electron Microscopy (STEM) that the lamellae are coherently intergrown so that lamella boundaries are free of misfit 

dislocations and the lattice misfit between the more Na-rich and the more K-rich lamellae is compensated by elastic strain.  In 330 

contrast, misfit dislocations are frequently observed at lamellar boundaries in natural perthites (Lee et al., 1995; Abart et al., 

2009).  

The general enhancement of the IN activity by the chemically induced cracks is corroborated by the presence of abundant 

parallel cracks in all cation exchanged samples. With respect to the differences in the INAS density between the cation 

exchanged sample FS08-01, and the cation exchanged and subsequently annealed samples FS08-64c and FS08-64o it may be 335 

speculated that the narrow cracks of sample FS08-01 were less accessible to water than the more open cracks of the annealed 

samples. The fact that the 𝑛𝑠(𝑇) curve of sample FS08-64c has quite similar shape as the 𝑛𝑠(𝑇) curve of sample FS08-01 and 

is only shifted to higher temperatures suggests that annealing of sample FS08-64c in vacuum only lead to a further limited 

extension of the cracks but did not change their morphological characteristics. The cracks become deeper and longer, thus 

exposing larger surface that might contain patches with (100) orientation. Limited propagation of the cracks even without a 340 

chemical driving force seems feasible in the light of residual stresses that remained from the cation exchange experiment and 

newly induced thermal stresses. In contrast, the characteristics of the INAS was substantially modified during the annealing 

of sample FS08-64o in contact with salt.  

 

   345 

Figure 5. Back-scattered electron (BSE) images of feldspar grains at different stages of the treatment. The arrows mark chemically 

induced cracks extending approximately parallel to the Murchison plane. A. Surface of a sanidine grain after a compositional shift 

from cK = 0.84 to cK = 0.43 by cation exchange (cation exchanged sample FS08-01). B. Surface of a cation exchanged sample after 

annealing at 550°C for 64 days in contact with salt (open system setting, sample FS08-64o). The light grey bands (marked by the 

dashed arrows) are K-rich zones that are developed by reverse cation exchange along the cracks, dark areas correspond to the 350 
regions with higher concentration of Na. C. Surface of cation exchanged sample after annealing at 550°C in vacuum for 64 days 

(closed system setting, sample FS08-64c). At the resolution of ESEM this sample appears chemically homogeneous despite of the fact 

that the sample is exsolved forming a lamellar intergrowth with characteristic lamellar spacing of about 30 nm (Petrishcheva et al., 

2020). The relatively straight grain edge on the right follows a (010) cleavage plane. 

 355 
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It is known from earlier work (Neusser et al., 2012; Schäffer et al., 2014a) that lattice expansion associated with a 

compositional shift of Na-rich alkali feldspar towards more K-rich compositions may lead to the formation of cracks sub-

parallel to the grain surface. The feldspar may then disintegrate by successively loosing material from a surface layer in an 

onion-skin fashion, a process referred to as "spalling". Formation of the K-rich zones flanking the cracks by in-diffusion of K 

from the crack surfaces into the cation exchanged felspar during annealing at 550°C in contact with the salt may thus have 360 

produced secondary cracks approximately parallel to the crack walls that had previously been induced during primary cation 

exchange. These secondary cracks may explain the second population of INAS inferred from the 𝑛𝑠(𝑇) curve of sample 

FS08-64o. The mechanisms underlying chemically induced fracturing are addressed in the next section. 

3.3 Chemically induced fracturing in alkali feldspar  

In general, the lattice parameters of a crystalline solid-solution depend on its chemical composition, and mechanical stress may 365 

be induced in a single crystal, when it undergoes non-uniform compositional change (Larche and Cahn, 1982). If in a brittle 

crystal the stress level exceeds a critical value, it will undergo fracturing. The rationale underlying the exploitation of this 

phenomenon for generating cracks in alkali feldspar is based on the notion that alkali feldspar is a brittle mineral and its lattice 

parameters show a strongly anisotropic compositional dependence. Generally, the crystal structure of alkali feldspar contracts 

with a compositional shift from K-rich towards more Na-rich compositions, where the effect is largest in the direction of the 370 

crystallographic a-axis and less pronounced parallel to the crystallographic b- and c-axis (Kroll et al., 1986; Angel et al., 2012). 

It is known from earlier work (Petrishcheva et al., 2014; Petrovic, 1972; Schäffer et al., 2014b) that the rate of Na-K exchange 

between alkali feldspar and an NaCl-KCl salt melt is controlled by the interdiffusion of Na and K in the alkali feldspar. The 

in-diffusion of Na into a single crystal of K-rich alkali feldspar thus produces a Na-rich surface layer the thickness of which 

increases with time.  375 

According to the compositional dependence of the lattice parameters of alkali feldspar, a compositional eigenstrain is induced 

within the Na-rich surface layer, which is characterized by contraction primarily sub-parallel to the crystallographic a-

direction. The Na-rich surface layer and the unaltered alkali feldspar beyond the chemically altered surface layer pertain to a 

single solid and are mechanically coupled, and, as long as the chemically altered surface layer is thin compared to the size of 

the unaltered core region of the grain, the chemically induced lattice contraction in the Na-rich surface layer is largely 380 

compensated by elastic distension to keep the lattice dimensions compatible across the compositional transition zone separating 

the unaltered core from the chemically altered surface layer. This leads to a tensile stress state in the Na-rich surface layer, 

where the maximum tensile stress component is approximately parallel to the direction of maximum lattice contraction, which 

is approximately parallel to the crystallographic a-axis. If this tensile stress exceeds about 300 MPa, the surface layer yields 

by fracturing (Neusser et al., 2012; Scheidl et al., 2014) producing a set of parallel cracks oriented approximately perpendicular 385 

to the a-axis, which is close to the orientation of the Murchison plane and of the (100) lattice plane. The cracks show quite 

uniform spacing, which depends on the extent of the applied compositional shift (Scheidl et al., 2014). As soon as the cracks 

are formed, they are infiltrated by the salt melt, and the crack walls serve as new surfaces, where cation exchange takes place. 

This leads to a situation, where the cracks propagate independently, irrespective  of the stress state at the original crystal 

surface. Eventualyl, this may lead to complete disintegration of the original grain into smaller fragments (Petrishcheva et al., 390 

2019; Predan et al., 2020). As the fragments are in part bounded by the crack surfaces, and these are sub-parallel to the (100) 

lattice plane, these particles have a high proportion of (100) surface exposed. In addition, larger particles have cracks with 

orientations close to (100). Although shifting of K-rich alkali felspar towards more Na-rich compositions by cation exchange 

is an efficient route for producing (100) crystal surfaces in experiment, this mechanism very likely is not relevant in nature. 

Nevertheless, similarly oriented parting planes following the Murchison plane may be generated by eigenstrain effects during 395 

perthite formation and possibly by subsequent hydrothermal alteration. This mechanism is addressed in the next section. 
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3.4 Formation of feldspar surfaces sub-parallel to (100) by exsolution and their potential contribution to the 

enhancement of the IN efficacy 

Above about 600°C, depending on pressure and Ca content, alkali feldspar shows complete miscibility. Towards lower 

temperature, a homogeneous alkali feldspar solid-solution of intermediate composition is thermodynamically metastable or 400 

unstable (Brown and Parsons, 1984). If alkali feldspar of intermediate composition is cooled into the two-phase region of its 

phase diagram, it exsolves typically forming a lamellar intergrowth of more Na-rich and more K-rich domains giving rise to 

perthite microstructure (Brown and Parsons, 1984). The lamellar intergrowth is coherent, at least during the early stages of 

exsolution and due to the compositional dependence of the lattice parameters of alkali feldspar (Angel et al., 2012; Kroll et al., 

1986) the compositionally distinct lamellae exhibit considerable lattice misfit. In coherent intergrowth this lattice misfit is 405 

compensated by elastic deformation of the lamellae. The strong anisotropy of the chemically induced eigenstrain exerts a first-

order control on the orientation of the exsolution lamellae. Typically, the exsolution lamellae are oriented parallel to the 

Murchison plane, which ensures the minimum possible crystallographic misfit between the Na-rich and the K-rich lamellae 

and is oriented approximately perpendicular to the direction of maximum compositionally induced eigenstrain (Laves, 1952; 

Robin, 1974; Williame and Brown, 1974). Orientation of the exsolution lamellae parallel to the Murchison plane ensures that 410 

the elastic strain energy associated with coherent intergrowth of Na-rich and K-rich lamellae is minimized. Nevertheless, 

coherency stress is induced during exsolution. In natural exsolved alkali feldspars the lattice misfit at the lamella interfaces is 

partially accommodated by edge dislocations lying in the interface planes (Lee and Parsons, 1995; Fitz Gerald et al., 2006; 

Abart et al., 2009). Around these edge dislocations the feldspar is strained and prone to dissolution in the course of sub-solidus 

hydrothermal alteration and weathering (Parsons et al., 2005; Lee et al., 1995). Parting planes following the Murchison pane 415 

are known from murchisonite, a variety of perthite characterized by pseudo cleavage along these non-rational planes (Bollmann 

and Nissen, 1968). At any rate, alignment of edge dislocations at the lamella interfaces leads to mechanical weakening of these 

interfaces and fosters disintegration of the feldspar by fracturing along the lamella interfaces. The lamellar interfaces and, 

hence, the related parting planes are sub-parallel to the (100) plane. Disintegration of exsolved perthitic alkali feldspar due to 

mechanical stress thus tends to occur along the lamella interfaces and thus very likely exposes patches of (100) surfaces on the 420 

disintegrated feldspar particles (Parsons et al., 2005). In addition, the line defects along the semi-coherent lamellar boundaries 

may develop into corrosion channels during hydrothermal alteration and weathering (Parsons, 1978; Lee et al., 1995). Such 

corrosion channels may become sufficiently large to serve as nucleation sites for ice crystals on patches of (100) surfaces 

exposed on the walls of such corrosion channels. The fact that deposition ice nucleation on feldspar samples was often observed 

to be associated with surface defects (Kiselev et al., 2017; Pach and Verdaguer, 2019), suggests that the ice active sites must 425 

be exposed to liquid water which is likely to form inside the cracks due to capillary condensation (Kanji et al., 2017; Koop, 

2017; Marcolli, 2014; David et al., 2019). A direct observation of ice nucleation associated with surface defects in perthitic 

feldspar was recently published by Holden et al., (2019). Finally, the elastic strain energy that is stored in coherent lamellar 

intergrowth in exsolved alkali feldspar increases its Gibbs energy and makes these minerals prone to fluid-mediated mineral 

replacement (Brown and Parsons, 1993; Parsons and Lee, 2008). Fluid-mediated mineral replacement of exsolved alkali 430 

feldspar produces nano-porosity (Putnis, 2002; Walker et al., 1995; Worden et al., 1990), which is concentrated along lamellar 

interfaces (Abart et al., 2009; Tajčmanová et al., 2012) and likely exposes patches of (100) crystal surfaces, which may serve 

as ice nucleation sites. This scenario probably applies to the natural Pakistan feldspar (sample FS06-010), which has porosity 

that was probably generated during hydrothermal processes or deuteric alteration. 

4 Conclusions  435 

One of the possible explanations suggested for the repeatedly observed ice nucleation in the pores and cracks on the surface 

of alkali feldspars is the presence of small patches of crystal surface with (100) orientation that are exposed in the cracks due 

to natural fracturing or hydrothermal/deuteric alteration of alkali feldspar. Up to now, experimental evidence corroborating 
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this hypothesis was missing. Here, we test this hypothesis experimentally and propose mechanism explaining why such (100) 

surfaces are preferentially found in cracks in alkali feldspar. To this end, K-rich gem quality alkali feldspar was shifted towards 440 

more Na-rich compositions by cation exchange with molten NaCl-KCl salt at 850°C and ambient pressure to exploit the 

associated anisotropic chemically induced contraction of the crystal structure. Through this treatment, a system of parallel 

cracks with orientations approximately parallel to the Murchison plane, an irrational plane in alkali felspar along which the 

lattice misfit between more Na-rich and more K-rich alkali feldspars is minimized, was generated. The Murchison plane is 

oriented close to (100) and the somewhat uneven crack surfaces likely contain patches of (100) crystal surfaces. A substantial 445 

enhancement of the overall INAS density in the cation exchanged samples as compared to the untreated reference material 

corroborates the high IN activity of the chemically induced cracks, which we relate to the presence of patches of (100) crystal 

surfaces on the crack surfaces. Annealing of the cation-exchanged alkali feldspars at 550°C in vacuum subsequent to the 

primary cation exchange lead to an extension of the cracks, which further enhanced the ice nucleating efficacy of the sample. 

Annealing of the cation-exchanged feldspar at 550°C in the presence of the salt, lead to the formation of a K-rich surface layer 450 

along the crystal surfaces and along the surfaces of the previously induced cracks due to reversed cation exchange at the lower 

annealing temperature. It is hypothesized that this may have induced secondary, surface-parallel cracks which enhanced the 

IN activity and created new types of INAS with IN activity at temperatures as high as -3°C. Our results confirm that chemically 

induced fracturing in alkali feldspar is a viable mechanism for increasing the INAS density of alkali feldspar. This mechanism 

is, however, unlikely to play a significant role in the conditioning of natural feldspar, as interaction between alkali feldspar 455 

with an inorganic salt melt is unlikely in natural environments. In natural alkali feldspars, parting planes following the 

Murchison plane may, however, occur due to the mechanical effects associated with exsolution. Separation of initially 

homogeneous alkali feldspar into lamellae of more Na-rich and a more K-rich alkali feldspar during cooling is a widespread 

phenomenon in natural alkali feldspar. The chemical eigenstrain associated with exsolution and the resulting lattice mismatch 

between the two phases is accommodated by elastic strain and/or by the introduction of misfit dislocations at the lamellar 460 

boundaries. Both phenomena make lamella interfaces prone to alteration and corrosion during hydrothermal alteration and 

weathering, which may eventually lead to parting along the Murchison plane. The evolution of a perthite microstructure in 

alkali feldspar thus fosters the exposure of (100) crystal surfaces and thus enhances the IN activity of exsolved alkali feldspars, 

a scenario which probably applies to sample FS06-010 investigated in this study. The low IN efficacy of the original sanidine 

(sample FS08-VS) is explained by the fact that this gem quality sanidine is homogenous on the nm scale and is devoid of 465 

cracks, inclusions or perthitic structure. The random milling of a single crystal of this material apparently produces fragments 

mostly bounded by (001) and (010) cleavage planes. These particles very likely only expose a subordinate fraction of (100) 

oriented patches on their surface. 
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