
To the editor, Dr. Ervens:

We request that the manuscript be reclassified as a Research Article rather than a
Measurement Report. As stated in the first sentence the significance of mass-diameter and
density-diameter measurements of quite general significance:

“Predictions of precipitation amount, location, and duration have been shown to be
especially sensitive to parameterized expressions for how fast a hydrometeor falls
(Rutledge and Hobbs, 1984; Reisner et al., 1998; Hong et al., 2004; Fovell and Su, 2007;
Lin et al., 2010; Liu et al., 2011; Iguchi et al., 2012; Theriault et al., 2012), affecting
forecasts of hurricane trajectories (Fovell and Su, 2007) and storm lifetimes (Garvert et al.,
2005; Colle et al., 2005; Milbrandt et al., 2010). From the perspective of fluid dynamics,
fallspeed can be related to the mass and density of precipitation particles (Bohm, 1989).”

The measurements presented in this article describe the first direct automated
measurements of hydrometeor mass-diameter and density-diameter relationships, including
a total of 86,285 hydrometeors. For comparison, the widely used Locatelli and Hobbs
(1974) parameterizations are based on 376 hydrometeors. The quantity is sufficient that we
were able to characterize, as described in the revised manuscript, a dependence of the
prefactor and exponent in the power-law relationships on riming and temperature.

Thus, the manuscript in its revised form presents measurements that we believe to have
more general implications for the atmospheric sciences, not only for the results that were
obtained, but due to the substantial methodological advance of the particle-by-particle
hotplate technique.

Regards,

Karlie N. Rees
Dhiraj K. Singh
Eric R. Pardyjak
Timothy J. Garrett



Comment on acp-2021-179 Anonymous Referee #1 Referee comment on "Measurement
report: Mass and Density of Individual Frozen Hydrometeors" by Karlie Rees et al., Atmos.
Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-179-RC1, 2021

RC1: 'Comment on acp-2021-179', Anonymous Referee #1, 23 Apr 2021

We thank the reviewer for the constructive comments.

I support publication. The authors describe measurements of mass and density of thousands of
frozen hydrometeors, during two months in 2020, using a newly developed instrument. A paper
describing that instrument, the Differential Emissivity Imaging Disdrometer (DEID), is currently in
review in AMTD (Singh et al.). While it isn't necessary to read both papers to understand this
one, I did find a brief review of that paper helpful as I read through this one.

If the paper were essentially published as-is, it would be fine. I have a few comments that the
authors can consider, but have no changes that I feel must be made for the manuscript to be
publishable in ACP.

Lines 120-121: ``...raindrops do not preserve their area after impaction on the plate.''

line 89: "...frozen particles nonetheless tend to maintain their shape such that Amax is
representative..."

A snowflake's impact on the hotplate is a function of two timescales: the contact time between
the plate and the snowflake, and the melting time of the initial contacting layer of the snowflake.
There is a competition between the contact time and melting time. Contact time decreases with
increasing snowflake density, and melting time increases with increasing density. For a given
snowflake density (74 kg m-3), the contact time is O (10-1 sec), and the melting time of a 100 µm
thick layer is O (10-3 sec).

When a snowflake melts, the normal reaction force of the surface to the snowflake is weakened.
A roughened plate surface and the surface tension between the plate and initial melted water
layer help to hold the snowflake in place after impacting the heated plate. Once it has melted
completely, its shape on the plate is decided by gravity and surface tension. When surface
tension dominates gravity, the shape of the snowflake (Amax) is nearly preserved before and after
melting.

Lines 90-92 now read:

Nonetheless, due to surface tension, particles that are initially frozen tend to maintain their
shape following melting so that Amax is approximately representative of the frozen cross-sectional
area in air. In calibration, Singh et al. (2021) found that snowflakes undergo only a 5% change in
Deff during the melting process.

https://acp.copernicus.org/#RC1


We observed for all snowflakes that the height of the water column is less than the capillary
height after melting. Capillary height is defined as a maximum vertical height of water column
accumulation on the hotplate before overflow (force balance between gravity and surface
tension). The calculated capillary height of distilled water on a roughened aluminium plate is
1.987 mm, and in terms of the mass of water droplet/snowflake is approximately 100 mg.

line 211-212: "The plate was roughened with 600 grit sandpaper to allow for droplet spreading
and more rapid evaporation."

Roughening the plate causes the contact angle of a water droplet to decrease and allows
spreading. During water droplet experiments, roughening of the plate with 600 grit sandpaper
allowed for droplet spread when the temperature of the plate was > 120o C or when a large
mass (> 100 mg) was applied. Under operating conditions, however, the roughened surface did
not contribute to a noticeable change in contact angle or area spread.

Lines 231-232 now read:

The plate was roughened with 600 grit (P1200) sandpaper to allow for droplet spreading and
more rapid evaporation of water during calibration experiments.

These three statements introduce some ambiguity for me. I can see why droplet spreading and
more rapid evaporation make the analysis of the heat transfer aspects of the problem easier, but
why don't the droplets resulting from melting snowflakes or graupel spread? Why do they
preserve their area (roughly)? Is it because they land on the plate rather gently? I know from my
own observation of watching single snowflakes or aggregates land on surfaces that they don't
tend to land forcefully. Usually the aggregates don't even break off pieces of the needles if they
are clumps of dendrites. This makes sense to me because the terminal speed of these types of
hydrometeors is usually pretty small.

Many raindrops, on the other hand, are large enough to have an appreciable terminal speed; the
kinetic energy of their impact could flatten them. Does this mean that if drops are small enough
(fog might be the limiting example) that their area would be preserved upon impact and the
DEID could be used to estimate a density?

We agree with the reviewer’s comments that larger drops spread more after impact, and the
same trend was observed using the DEID. The estimated density of a ~1 mm diameter
raindrop using mass and spherical volume is ~ 1000 kg m-3, which indicates that it is small
enough to preserve its shape after impact.

There should be a relationship between the area that a drop makes upon contact and its size.
Marshall and Palmer used a version of that phenomena when they correlated the size that drops
made on dyed filter paper. (Before that, Bentley had used small canisters of flour to measure the
sizes of raindrops.) It seems that something akin to that principle could be used here.



I recognize that this is beyond the scope of the present paper and that what I'm suggesting here
is complicated by the fact that both liquid and frozen hydrometeors are impacting upon the plate.
That said, perhaps the authors could comment on this, even if only in the Reply to the Reviews,
since those are archived as well as the paper.

Citation: https://doi.org/10.5194/acp-2021-179-RC1

https://doi.org/10.5194/acp-2021-179-RC1


RC2: 'Comment on acp-2021-179', David Mitchell, 07 May 2021

We thank the reviewer for the constructive comments.

General Comments:

This paper analyzes measurements from a new instrument, the Differential Emissivity Imaging
Disdrometer (DEID) to obtain continuous measurements of ice particle mass and effective size
Deff.  The DEID data are combined with photographic imagery obtained using a Multi Angle
Snowflake Camera (MASC) to obtain estimates of particle density.  Results for three ice particle
shapes are presented; graupel, densely rimed crystals and aggregates, where the number (N) of
ice particles sampled in the latter two categories exceeds 15,000 (for each category).  For
graupel, N = 34.  Mass-Deff and density-Deff power law relationships are presented for each
shape category.  The paper is well organized and well written with high-quality figures.  It should
be acceptable for publication after minor revisions. There are some concerns however that
need to be addressed before publication, mentioned below and under Major Comments.

More information is needed for the ice particle shape categories of “densely rimed” and
“aggregates”.  What is densely rimed; columnar crystals, planar crystals, or both? Does this
include densely rimed aggregates?

Densely rimed aggregates were initially classified as aggregates. Upon review, we found that
the January 26, 2020 storm comprised 11,080 large, aggregate snowflakes, which were initially
classified as aggregates but perhaps are better classified as “densely rimed.” The densely rimed
category contains all snowflakes not categorized as graupel or aggregates, similar to Garrett
and Yuter (2014) who used the MASC derived complexity parameter, χ = 𝑃(1 +< σ >)/(2π𝑟) 
where P is snowflake perimeter, r is snowflake radius, and is intensity variability, to< σ >
classify snowflakes into three categories: graupel ( <1.35), densely rimed (1.35≤ ≤1.75), andχ χ
aggregates ( >1.75).χ

For aggregates, please indicate the type of primary component ice crystal, whether it is
columnar or planar, and if columnar, whether it is short or long columns (or needles).  This
information may help explain why the power term b is so large in the aggregate relationship M =
a Db where M is ice particle mass and D = Deff.

Added to lines 158-160:

The  densely  rimed  category  includes  all  snowflakes not  categorized  as  graupel  or
aggregates  following  Garrett  and  Yuter (2014). It also includes densely rimed aggregates and
partially melted aggregates. Figures 3 and C1-C4 show mostly planar type crystals present, but
aggregated needles are frequently seen as well.

https://acp.copernicus.org/#RC2


Figure 12 in Chen and Lamb (1994, JAS) compares theoretical and observed values of the
inherent ice crystal growth ratio Γ*, from which b can easily be calculated.  Theory assumes
prolate spheroids for columns and oblate spheroids for planar crystals, with the latter being
relevant for hexagonal plates, broad branched dendrites and rimed planar crystals.  Since there
is reasonable agreement between theory and observations, their results provide constraints for
likely values of b.  For short and long columns/needles, 1.8 ≤ b ≤ 2.7, while for the above noted
planar crystals, 2.3 ≤ b ≤ 2.5.  While the DEID b value for “densely rimed” conforms well with
these ranges, the aggregates (DEID b = 2.75) would need to be comprised mostly of short
columns to conform with the expected b range, and short columns tend not to aggregate well.
Thus, it is difficult to reconcile the b value for aggregates with both theory and observations.

The authors compare their aggregate b with aggregate b values from Locatelli and Hobbs
(1974), ranging from 1.4 (unrimed dendrites or side planes) to 1.9 (containing either side planes,
columns & bullets or densely rimed dendrites).  Given the component crystals, it makes sense
that the latter value is larger (i.e., the increase in mass per unit size increase is larger). But it is
hard to imagine packing the crystals so densely in an aggregate that b = 2.75.

The large fraction of snowflakes from the January 26, 2020 storm were largely partially melted
(Figure C3), which likely contributed to such a large value of b=2.75. The mass-diameter
relationship was recalculated (below) for snowflakes binned by MASC-derived snowflake
complexity. The blue curves represent the same analysis where partially melted snowflakes
were excluded using the ambient air temperature.



While the value of b does drop to 2.2 for the most complex and least rimed snowflakes, its
relationship is not clearly dependent on complexity in this analysis. Although, filtering out
snowflakes that occurred when the ambient air temperature was above -3C resulted in b values
substantially lower than previously obtained. The value of b is between 2.0-2.3 for all
complexities when the air temperature is <-3C, and ranges from 2.2-2.7 for all air temperatures
in this dataset, which are up to 1.5C. Both temperature curves are shown in this response and
for clarity, Figure 9 was added to the manuscript, which has just the T<-3◦C case.

The values of a and b in the mass-diameter relationship for all snowflakes are as follows:

T > 0C: a=0.02 b=2.80
T < 0C: a=0.02 b=2.33
T <-2C: a=0.02 b=2.38
T <-3C: a=0.01 b=2.12

Added Table 3 and the following to lines 197-198:

The values of a and b were also obtained when filtering snowflakes by temperature to exclude
partially melted snowflakes (T<0◦C) and to reflect primarily aggregate snowflakes (T<-3◦C) and
are shown in Table 3.

Taking this a step further, Westbrook et al. (2004, “Theory of growth by differential
sedimentation, with application to snowflake formation”, Phys. Review E) presents a model of
columnar particle aggregation based on the differential sedimentation of the particles.  A
condensation of these results are reported in Westbrook et al. (2004, “Universality in snowflake
aggregation”, GRL, 31, L15104, doi:10.1029/2004GL020363, but the paper is difficult to
understand due to missing information.  They state that “The structure of the aggregates
produced by this process is found to feed back on the dynamics in such a way as to stabilize
both the exponents controlling the growth rate, and the fractal dimension of the clusters” (i.e.,
the value of b).  Their model predicts b = 2.05 ± 0.1, with theory giving b = 2.  This is either close
to or the same as the measured value of b reported for all seven types of observed aggregates
in Table 1 of Mitchell et al. (1990, “Mass-Dimensional Relationships for Ice Particles and the
Influence of Riming on Snowfall Rates”, JAM).

Overall, the evidence appears compelling for rejecting 2.75 as a plausible b value for
aggregates.  Nonetheless, these are new and interesting measurements, and the community
can decide how seriously to take them.  But to make that decision, all of the above studies
should be described and cited.

We thank the reviewer for pointing out the b value of 2.75, which appears to be the result of a
large fraction of partially melted aggregate snowflakes included in the aggregate category. We
have recategorized those flakes into the densely rimed category and included a figure with
mass-diameter relationships and a table with density-diameter relationships as filtered by
ambient temperature.



Added to lines 170-186:

Figure 9 illustrates the sensitivity of mass-diameter relationship parameters to particle type and
ambient air temperature. Garrett and Yuter (2014) employed the MASC-derived complexity
parameter, where P is snowflake perimeter, r is snowflake radius, andχ = 𝑃(1 +< σ >)/(2π𝑟) 

is intensity variability, to classify snowflakes into three categories: graupel ( <1.35),< σ > χ
densely rimed (1.35≤ ≤1.75), and aggregates ( >1.75). Threshold values of 1.3 and 1.8 haveχ χ
also been previously used (Garrett et al. (2015). Here we adopt threshold values of 1.3 and 1.7.
Graupel-like snow is included in the graupel category; the two datapoints with <1.3 includeχ
9,506 snowflakes, which are unlikely to be solely graupel due to one-minute averaging of andχ
the presence of other snow types observed during graupel events. This category has values of b
consistent with the exponent values of between 2.1 and 2.4 found by Locatelli and Hobbs
(1974). The densely rimed category however has exponent values between 2.5 and 2.7, higher
than those seen by Locatelli and Hobbs (1974), although the difference may be influenced by
presence of a large number of partially melted snowflakes that bring the exponent closer to 3.
Overall, smaller values of b are obtained as exceeds 1.7 and snowflakes transition intoχ
aggregates. Notably, the value of b is never lower than 2.

Partially melted snowflakes are excluded favoring more aggregate-type snowflakes by restricting
analysis to particles that fell when the ambient air temperature was <-3◦C, as represented by
blue lines in Figure 9. There is a clear sensitivity in the mass-diameter relationships to ambient
air temperature. For all snowflakes that occurred when the ambient air temperature was < 0◦C
(N=30,651), the values of a and b are 0.017 and 2.33 respectively with R2=0.85. For all
snowflakes that fell when the ambient air temperature was < -3◦C (N=4,630), the corresponding
values are 0.015 and 2.12 with R2=0.84.

Major Comments:

1. Line 104: While this identity appears plausible, it is not convincing mathematically.  Can
this identity be demonstrated mathematically?  Seems important since it is used to derive
Eq. 3 below.

Added Figure 4 to clarify diameter and volume measurements and calculations

1. Table 1: Please add N (# samples) to this table.

Added N to Table 1.

1. Figure 7: It might be of interest that “heavily rimed dendrites” in Mitchell et al. (1990) have
m = 0.068 D2 in mg-mm units. This snow-type probably has more riming than the
“densely rimed” category here (hence the larger prefactor), but b is quite consistent with



the Locatelli and Hobbs b range.  Erfani and Mitchell (2017, ACP) present evidence that
riming changes the prefactor but not b.

Added to lines 167-169: In contrast to the findings of Erfani and Mitchell (2017) which
state that particle riming changes the prefactor a but not b, here both a and b decrease
with increased riming.

1. Lines 189-191: This statement seems to contradict the findings of Chen and Lamb (1994,
JAS) who show theoretically and observationally that the mass exponent for long
columnar ice crystals is < 2 and lies between 2 and 2.5 for planar ice crystals.

Removed this statement to be consistent with updated results.

1. Line 220: Please also provide the standard deviation values here.

Added standard deviation values to line 241: 4.1±0.01603

1. Figure B3: Can this be understood as a 3-D volume showing the distribution of ice
particles within that volume?  If so, can it be used to evaluate the PSD post-processing
algorithms based on interarrival times, which are designed to reduce the contribution of
shattered ice particles to the number concentration measured by optical probes?  The
science question that might be addressed is whether “inertial clustering” of ice particles
occurs naturally as it does for cloud droplets (Ray Shaw’s work).  If ice particles tend to
naturally cluster with relatively little space between particles, then interarrival algorithms
may be “throwing the baby out with the bathwater” more often than is currently known.
While this is outside the scope of this paper, perhaps it might be worth looking into?

The 3D volumes do reveal both spatial and temporal clustering. Non-poissonian
droplet clustering is detectable by the DEID, and is briefly addressed in our paper,
Idealized simulation study of the relationship of disdrometer sampling statistics to the
precision of precipitation rate measurement. Further studies of hydrometeor clustering is a
novel application of the DEID.

Minor Comments:

1. Line 74: Eq: 2 => Eq. 2?

Line 74 now reads: Eq. 2

With best wishes for this paper,



David Mitchell

Citation: https://doi.org/10.5194/acp-2021-179-RC2
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