
1 

Measurement report: Long emission-wavelength chromophores dominate the light absorption 1 

of brown carbon in Aerosols over Bangkok: impact from biomass burning 2 

Jiao Tang1,2,3, Jiaqi Wang1,2,3,7, Guangcai Zhong1,2,3, Hongxing Jiang1,2,3,7, Yangzhi Mo1,2,3, Bolong 3 

Zhang1,2,3,7, Xiaofei Geng1,2,3,7, Yingjun Chen4, Jianhui Tang5, Congguo Tian5, Surat Bualert6, Jun 4 

Li1,2,3, Gan Zhang1,2,3 5 

1State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental 6 

Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of 7 

Sciences, Guangzhou 510640, China 8 

2CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China 9 

3Joint Laboratory of the Guangdong-Hong Kong-Macao Greater Bay Area for the Environment, 10 

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 11 

4Department of Environmental Science and Engineering, Fudan University, Shanghai 200092, P.R. 12 

China 13 

5Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of 14 

Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China 15 

6Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand 16 

7University of Chinese Academy of Sciences, Beijing 100049, China 17 

 18 

Correspondence: Guangcai Zhong (gczhong@gig.ac.cn) 19 

  20 



2 

Abstract: Chromophores represent an important portion of light-absorbing species, i.e. brown carbon. 21 

Yet knowledge on what and how chromophores contribute to aerosol light absorption is still sparse. To 22 

address this problem, we examined soluble independent chromophores in a set of year-round aerosol 23 

samples from Bangkok. The water-soluble fluorescent chromophores identified via excitation-24 

emission matrix (EEM) spectroscopy and follow-up parallel factor analysis could be mainly assigned 25 

as humic-like substances and protein-like substances, which differed in their EEM pattern from that of 26 

the methanol-soluble fraction. The emission wavelength of fluorescent chromophores in 27 

environmental samples tended to increase compared with that of the primary combustion emission, 28 

which could be attributed to secondary formation or the aging process. Fluorescent indices inferred 29 

that these light-absorbing chromophores were not significantly humified and comprised a mixture of 30 

organic matter of terrestrial and microbial origin, which exhibited a different characteristic from 31 

primary biomass burning and coal combustion results. A multiple linear regression analysis revealed 32 

that larger fluorescent chromophores that were oxygen-rich and highly aromatic with high molecular 33 

weights, were the key contributors of light absorption, preferably at longer emission wavelength (λmax > 34 

500 nm). Positive matrix factorization analysis further suggested that up to 50% of these responsible 35 

chromophores originated from biomass burning emissions.  36 

  37 
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1. Introduction 38 

Atmospheric aerosols play a substantial role in climate change through radiative forcing 39 

(Alexander et al., 2008). Carbonaceous aerosols mainly include organic carbon (OC) and elemental 40 

carbon (EC). Brown carbon (BrC) is a specific type of OC that absorbs radiation efficiently in the near-41 

ultraviolet and visible (UV-vis) range (Laskin et al., 2015;Kirchstetter et al., 2004) and may contribute 42 

15% or more of total light absorption over the UV-vis spectrum (Kirchstetter and Thatcher, 2012;Liu 43 

et al., 2013). This fraction can significantly affect atmospheric chemistry, air quality, and climate 44 

change (Marrero-Ortiz et al., 2018;Laskin et al., 2015). Forest fires, residential heating by wood and 45 

coal, biogenic release, and secondary formation contribute to BrC in the atmosphere (Laskin et al., 46 

2015). Many studies have indicated that the optical properties of BrC may significantly evolve as a 47 

result of atmospheric processes such as oxidation (Fan et al., 2020), solar irradiation (Wong et al., 48 

2017), and relative humidity (Kasthuriarachchi et al., 2020). These factors cause variability in the 49 

chemical compositions and levels of BrC across source regions and receptors, resulting in a high degree 50 

of uncertainty regarding the effects of BrC (Dasari et al., 2019;Xie et al., 2019).  51 

Light absorption of BrC is associated with its molecular composition and chemical structure 52 

(Song et al., 2019;Lin et al., 2018;Mo et al., 2018;Jiang et al., 2020). Detailed structural 53 

characterization of BrC compounds is essential to understand their sources and chemical processes in 54 

the atmosphere. High-resolution mass spectrometry (HRMS) is a powerful tool for molecular-level 55 

chemical analysis of organic aerosols (Laskin et al., 2018). Combinations of offline high-performance 56 

liquid chromatography (HPLC), a photodiode array detector, and HRMS allow the chemical 57 

characterization of aerosols specific to BrC (Lin et al., 2018;Lin et al., 2016;Lin et al., 2015;Lin et al., 58 

2017). With these combination approaches, nitroaromatics, aromatic acids, phenols, polycyclic 59 

aromatic hydrocarbons and their derivatives are basically identified as BrC chromophores (Wang et 60 

al., 2020b;Yan et al., 2020). However, it should be noted that it is difficult to ionize some organic 61 

compounds for detection using HRMS, and even for those that can be detected, HRMS can only 62 

provide possible molecular structures based on empirical deduction (Song et al., 2018;Lin et al., 2015). 63 

The isomeric complexity of natural organic matter may have exceeded achievable one-dimensional 64 

chromatographic resolution (Hawkes et al., 2018), and therefore, the majority of components in the 65 

BrC mixture remain undetermined.  66 

Excitation-emission matrix (EEM) fluorescence spectroscopy detects bulk chromophores in a 67 

solution (Chen et al., 2016b). Chromophores can be revealed by EEM with information on their 68 

chemical structures associated with molecular weight, aromatic rings, conjugated systems, etc (Wu et 69 

al., 2003). For example, a redshift in emission spectral maxima can be caused by an increase in the 70 
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number of aromatic rings condensed in a straight chain, conjugated double bonds, or formational 71 

changes that permit vibrational energy losses of the promoted electrons (Wu et al., 2003). A significant 72 

Stokes shift with emission wavelength can be observed in aged secondary organic aerosols (SOA) 73 

using EEM spectroscopy (Lee et al., 2013). Parallel factor (PARAFAC) analysis has been widely used 74 

to decompose the EEM spectral signature into independent underlying components (Han et al., 75 

2020;Yue et al., 2019;Wu et al., 2019;Chen et al., 2019b), adding valuable information to absorbance-76 

based measurements (Yan and Kim, 2017). This technique helps to categorize groups of similar 77 

fluorophores or chromophores or similar optical properties, thereby allowing a better understanding of 78 

the chemical properties of BrC, while it should be noted that not all chromophores in BrC compounds 79 

are fluorescence (Chen et al., 2019a). There is evidence that BrC absorption is closely correlated with 80 

fluorescent chromophores (Huo et al., 2018). However, the intrinsic relationship between fluorescent 81 

chromophores and BrC absorption has not been explored. 82 

Southeast Asia is subject to intensive regional biomass burning, the emissions from which may 83 

contribute to atmospheric brown clouds (Ramanathan et al., 2007;Laskin et al., 2015). The contribution 84 

of biomass burning to aerosol optical depth was evaluated to be more than 56% over this region (Huang 85 

et al., 2013). Despite many studies focused on the characterization of atmospheric black carbon (BC) 86 

(See et al., 2006;Fujii et al., 2014;Permadi et al., 2018), studies on BrC in the region are still limited. 87 

A recent study in Singapore indicated that water-soluble OC (WSOC) exhibited strong wavelength 88 

dependence and even higher values of BrC absorption than those from Korea, India, China, and Nepal 89 

(Adam et al., 2020), indicating abundant water-soluble BrC in the air over Southeast Asia.   90 

This study was performed to explore the relationships between EEM chromophores and BrC light 91 

absorption in soluble aerosol organic matter. A set of year-round aerosol samples from Bangkok, 92 

Thailand, was analyzed. Water-soluble and methanol-soluble BrC in the aerosol samples were 93 

characterized by EEM followed by statistical analyses to retrieve information on the contributions of 94 

fluorescent chromophores to BrC light absorption, as well as their emission sources. This study 95 

provides a comprehensive dataset on seasonal variability in the light absorption properties, sources, 96 

and chemical components of BrC, which may be useful for improving further modeling and field 97 

observation. 98 

2. Experiment 99 

2.1. Sample Collection and Extraction. 100 

Eighty-five total suspended particulate (TSP) samples were collected on the roof (57 m above 101 

ground level) of the Faculty of Environment, Kasetsart University (100°57′ E and 13°85′ N) in 102 

Bangkok, Thailand (Fig. S1). Detailed information about the sampling site is presented elsewhere 103 
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(Wang et al., 2020a). Sampling was performed from January 18, 2016 to January 28, 2017, and the 104 

sampling period was divided into four seasons: the pre-hot season (January 18–February 28, 2016), 105 

hot season (March 2–May 30, 2016), monsoon (June 2–October 30, 2016), and cool season (November 106 

1, 2016–January 28, 2017). Table S1 lists the average meteorological data in the four seasons. 107 

Generally, during the sampling period, the hot season was characterized by high temperatures and wind 108 

speeds, and the monsoon season by high humidity. TSP samples were collected over 24 h using a high-109 

volume (0.3 m3 min−1) sampler with quartz-fiber filters (QFFs, prebaked for 6 h at 450 C). All samples 110 

and field blanks were stored under dark conditions at −20 °C until analysis.  111 

WSOC was prepared by ultrasonication extraction of filter punches with ultra-pure deionized 112 

water (resistivity of > 18.2 MΩ). The methanol-soluble OC (MSOC) fraction was then obtained by 113 

extracting the freeze-dried residue on the same QFFs after water extraction with HPLC-grade methanol, 114 

which is used for water-insoluble fractions (Chen and Bond, 2010). It is worth noting that the MSOC 115 

in this study is not necessarily like that of the same name in other studies. The extract solutions were 116 

passed through 0.22-μm PTFE filters and subjected to follow-up UV-vis absorption and fluorescence 117 

spectral analysis. The mass concentrations of WSOC and MSOC were measured, and the method are 118 

shown in the Supplement. 119 

2.2. Absorption Spectra and Fluorescence Spectra. 120 

The extract solutions were placed in quartz cells with a path-length of 1 cm and subjected to 121 

analysis using an fluorometer (Aqualog; Horiba Scientific, USA). Absorption spectra and EEM spectra 122 

were obtained simultaneously using this instrument. The contribution of solvents was subtracted from 123 

the extract spectra. UV-vis absorption spectra were scanned in the range of 239 to 800 nm with a step 124 

size of 3 nm. The Fluorescence spectra were recorded with emission wavelength (Em) ranging from 125 

247.01 to 825.03 nm and excitation wavelength (Ex) ranging from 239 to 800 nm. The wavelength 126 

increments of the scans for Em and Ex were 4.66 and 3 nm, respectively. The calculation of optical 127 

parameters and the relative contributions of BrC to total aerosol light absorption are presented in the 128 

Supplement. 129 

2.3. Factor analysis 130 

In this study, we built a PARAFAC model, based on 85 TSP sample fluorescence (samples × Ex 131 

× Em: 85 × 188 × 125, 85-model). Original EEM spectra were corrected and decomposed via 132 

PARAFAC analysis with reference to earlier methods using drEEM toolbox version 2.0 with MATLAB 133 

software (http://models.life.ku.dk/drEEM, last access: June 2014) (Murphy et al., 2013;Andersson and 134 

Bro, 2000). The absorbance, all below 1 at 239 nm, was deemed suitable for correcting the EEM 135 
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spectra for inner filter effects (IFEs) (Luciani et al., 2009;Gu and Kenny, 2009;Fu et al., 2015), and the 136 

sample EEM spectra, and blanks were normalized relative to the Raman peak area of ultrapure 137 

deionized water collected on the same day to correct fluorescence in Raman Units (RU) (Murphy et 138 

al., 2013;Murphy et al., 2010). Spectra with Em > 580 nm and Ex < 250 nm were removed to eliminate 139 

noisy data. The non-negativity constraint is necessary to obtain reasonable spectra, and signals of first-140 

order Rayleigh, Raman, and second-order Rayleigh scattering in the EEM spectra were removed using 141 

the interpolation method (Bahram et al., 2006). The two- to nine-component PARAFAC model was 142 

explored, within the context of spectral loading, core consistency, and residual analysis (Figs. S2–S5). 143 

Finally, seven and six components were identified in the WSOC and MSOC fractions, which explained 144 

99.89% and 99.76% of the variance, respectively. Both the seven- and six-component PARAFAC 145 

solutions passed the split-half analysis with the split style of “S4C6T3”, and residuals were examined 146 

to ensure that there was no systematic variation. The parameters obtained from the PARAFAC model 147 

were used to calculate the approximate abundance of each component, expressed as Fmax (in RU), 148 

corresponding to the maximum fluorescence intensity for a particular sample. 149 

Fluorescence indices based on intensity ratios that provide insight into the origins of dissolved 150 

BrC, such as the humification index (HIX) (the ratio of average emission intensity in the 435−480-nm 151 

range to that in the 300−345-nm range following excitation at 254 nm, which was used to reflect the 152 

degree of humification) (Zsolnay et al., 1999), the biological index (BIX) (the ratio of emission 153 

intensities at 380 and 430 nm following excitation at 310 nm, reflecting autochthonous biological 154 

activity in water samples) (Huguet et al., 2009), and fluorescence index (FI) (the ratio of emission 155 

intensities at 470 and 520 nm following excitation at 370 nm, reflecting the possibility of microbial 156 

origin and for examining differences in precursor organic materials) (Lee et al., 2013;Murphy et al., 157 

2018).  158 

2.4. Statistical analysis 159 

A hierarchical cluster method was used to classify aerosol samples based on the relative 160 

contributions of PARAFAC components to the respective samples. The Squared Euclidean distance 161 

method was used to evaluate the distances between samples, and the Between-group linkage method 162 

was chosen for hierarchical cluster analysis. The multiple linear regression (MLR) model was applied 163 

to elucidate the relationship between fluorescent chromophores and light absorption of BrC using a 164 

stepwise screening process. Analyses were performed using SPSS software (SPSS Inc., Chicago, IL, 165 

USA).  166 

3. Results and Discussion 167 
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3.1. EEM of dissolved organic substances. 168 

Fluorescence spectra coupled with PARAFAC results can provide more information about the 169 

chemical structures of chromophores. Figure 1 and Table S2 show the seven-component (P1–7) 170 

PARAFAC solutions of WSOC in the samples of aerosol over Bangkok, the peaks of which fell mainly 171 

into the humic-like and protein-like chromophore regions in the plots. Components P2, P3, P4, and P6 172 

were identified as humic-like substances (HULIS) (Chen et al., 2017a;Stedmon and Markager, 173 

2005;Wu et al., 2019;Chen et al., 2003). A second peak was observed at a high excitation wavelength 174 

for these components, indicating the existence of a large number of condensed aromatic moieties, 175 

conjugated bonds, and nonlinear ring systems (Matos et al., 2015). Among them, P2, P3, and P4 had a 176 

longer emission wavelength (> 400 nm) than P6, likely due to the low probability of fluorescence 177 

emission from quinonoid n-π* transitions (Cory and McKnight, 2005). P3 produced similar spectra to 178 

those of aqueous reaction products of hydroxyacetone with glycine (Gao and Zhang, 2018), and 179 

dissolved organic matter (DOM) in the surface water of Xiangxi Bay and Three Gorges Reservoir 180 

(Wang et al., 2019). P6 had a peak similar to those in the fluorescence spectra of N-containing SOA 181 

species formed by α-pinene under ozonolysis and photooxidation with NH3 in a flow reactor (Babar et 182 

al., 2017) as well as pyridoxine (Pohlker et al., 2012), indicating a possible biological source. P5 was 183 

similar to a previously identified fluorophore in PM2.5 from Xi’an (Chen et al., 2019b). P1 and P7 184 

could be assigned as protein-like organic matter (PLOM) due to their short emission wavelengths (Wu 185 

et al., 2003). Specifically, P7 resembled a tyrosine-like fluorophore (Zhou et al., 2019;Chen et al., 2003) 186 

and may be related to non-N-containing species (Chen et al., 2016b).  187 

The MSOC fraction extracted from the filter residue after water extraction produced fluorescence 188 

signals with fluorescence patterns different from those of the WSOC fraction, indicating a different 189 

chemical composition from that of WSOC. Thus, WSOC with the addition of MSOC may provide a 190 

more comprehensive description of the optical and chemical characteristics of BrC compared to 191 

WSOC alone. Six components (C1–C6) were resolved for the MSOC. Among them, C1 and C2 were 192 

associated with shorter excitation wavelengths (< 250 nm) but longer emission wavelengths (> 380 193 

nm), indicating the presence of fulvic-like substances (Chen et al., 2003;Mounier et al., 1999). C6 194 

produced a pattern similar to that of tyrosine-like fluorescence (Stedmon and Markager, 2005). 195 

Although C4 had a similar EEM spectrum as P4 of WSOC, the two components were chemically 196 

different in polarity, suggesting different behaviors in the environment (Ishii and Boyer, 2012). Note 197 

that there were no special chemical structures for the different types of chromophores, and therefore, 198 

the origins and chemical structures of HULIS and PLOM studied here are not necessarily like those 199 

with the same names in other types of organic matter. 200 
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 201 

Figure 1. The fluorescent components identified by the PARAFAC (parallel factor) analysis for EEM of water-202 

soluble organic carbon (P1‒P7, WSOC, a) and methanol-soluble organic carbon (C1‒C6, MSOC, b) in the aerosol 203 

samples over Bangkok in Thailand (n=85). The color represents that the intensity was normalized to set the maximum 204 

as 0.1. 205 

To further explore the potential sources of the EEM-PARAFAC components, we added 60 source 206 

samples to the matrices. The source sample EEM data were described in our previous study (Tang et 207 

al., 2020b), including those of 33 biomass-burning samples (IDs: 1–33), 17 coal-combustion samples 208 

(IDs: 34–50) samples, eight tunnel samples (IDs: 51–58) and two vehicle-exhaust samples from trucks 209 

(IDs: 59–60) , which are important sources of BrC in the atmosphere. This, in combination with our 210 

Bangkok field samples, yielded a new matrix (145 × 188 × 125, 145-model) for modeling. PARAFAC 211 

analysis successfully decomposed the dataset, and the output was the same as for the 85-model. The 212 

component solutions are presented in Fig. S6. To validate the stability of the model after loading by 213 

the new matrix, the Tucker congruence coefficient (TCC) was calculated to determine the similarity 214 
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of two fluorescence spectra between the two models (refer to Text S3 of Supplement). Note that a 215 

higher TCC value would indicate a higher degree of similarity of the spectra. As shown in Table S2 216 

and Fig. S7, high TCC values were found as expected between the 85-model components and the 145-217 

model components, indicating that the two models identified similar fluorescent chromophores. It 218 

should be noted that one additional fluorescent component was identified each for the WSOC and 219 

MSOC fractions in the new 145-model, respectively, but these components were only highly 220 

characterized by source emission samples, as reported in our previous study (Tang et al., 2020b). 221 

Using the distribution proportions of the EEM-PARAFAC fitted components (145-model), we 222 

conducted hierarchical cluster analysis of the mixed ambient and source samples. The results are 223 

shown in Figs. S9 and S10. For the WSOC fraction, all aerosol samples from Bangkok and tunnel 224 

samples were assigned to cluster A, whereas biomass-burning and coal-combustion aerosols were 225 

assigned to clusters C and D, respectively. This implied that the fluorescent chromophore types could 226 

be somewhat related to the emission precursors of the aerosol components. However, the distribution 227 

of fluorescent chromophores varied clearly between the ambient aerosols and source samples. The 228 

ambient aerosol samples contained higher levels of fluorescent chromophores with longer emission 229 

wavelengths that were related to humic-like or fulvic-like chromophores (components 145M-P1 (P1 230 

component in 145-model), 145M-P5, and 145M-P6), whereas the primary biomass-burning and coal-231 

combustion samples contained high-intensity fluorescent chromophores with shorter emission 232 

wavelengths that were related to protein-like fluorescence (145M-P2 and 145M-P4). These 233 

phenomena was similarly reported previously, i.e., protein-like substances produce compounds with 234 

similar fluorescence properties as humic substances under irradiation conditions (Bianco et al., 2014). 235 

Similar differences between field samples and source samples were found for the MSOC fraction. 236 

Therefore, our results confirmed that chemical reactions or “aging” in the atmosphere greatly modifies 237 

the chromophore patterns of emission sources by both bleaching the source chromophores or 238 

producing new chromophores and, at least in this case, shifts the chromophore emission wavelength 239 

toward longer wavelengths, i.e., from protein-like to fulvic-like (Bianco et al., 2014;Bianco et al., 240 

2016;Lee et al., 2013).  241 

3.2. Fluorescence-derived indices 242 

The ratios of fluorescence intensity from specific spectral regions of an EEM were used as 243 

indicators for the relative contributions of organic matter derived from terrestrial or microbial sources 244 

in natural waters (Shimabuku et al., 2017;Birdwell and Engel, 2010;Mcknight et al., 2001). HIX was 245 

initially introduced to estimate the degree of maturation of DOM in soil (Zsolnay et al., 1999), 246 

representing the degree of humification of organic matter, for which higher HIX values also indicate 247 
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higher degree of polycondensation (low H/C ratio) and aromaticity (Qin et al., 2018). Generally, high 248 

HIX values (> 10) correspond to strongly humified or aromatic organics, principally of terrestrial 249 

origin, whereas low values (< 4) are indicative of autochthonous or microbial origin. As shown in 250 

Table 1 and Fig. 2, the HIX values were 3.4±0.99 and 2.0±0.59 for WSOC and MSOC, respectively, 251 

in aerosol samples from Bangkok. All HIX values were less than 10, which could be viewed as a 252 

nominal cutoff below which DOM is not significantly humified (Birdwell and Valsaraj, 2010;Zsolnay 253 

et al., 1999;Huguet et al., 2009). Figure 2 shows the HIX values in primary biomass-burning and coal-254 

combustion samples, which were much lower than those in the ambient samples, indicating that the 255 

lower values of HIX in the atmosphere likely correspond to freshly introduced material. Lee et al. 256 

(2013) reported that fresh SOA had low HIX values, but these values increased significantly upon 257 

aging with ammonia. The much higher HIX values in the WSOC compared to the MSOC suggest that 258 

WSOC may have a higher degree of aromaticity or a more condensed chemical structure. Our previous 259 

study revealed that MSOC has a higher molecular weight but lower aromaticity index than the 260 

corresponding WSOC in combustion experiment aerosol samples, indicating a more aliphatic structure 261 

in the MSOC (Tang et al., 2020b). The HIX values of WSOC were highest in the hot season (3.9±1.1), 262 

followed by the pre-hot season (3.3±1.1), cool season (2.9±0.36), and monsoon (2.5±0.22), whereas 263 

those of the MSOC tended to be higher in the hot and cool seasons than in the monsoon and pre-hot 264 

seasons. The HIX values in the WSOC fraction were comparable to those of water-soluble organic 265 

aerosols in the high Arctic atmosphere (mean: 2.9) (Fu et al., 2015) and higher than those of water-266 

soluble aerosols (1.2±0.1 in winter and 2.0±0.3 in summer) over northwest China (Qin et al., 2018), 267 

likely indicating a higher degree of chromophore humification. 268 

Table 1 Seasonal averages of the concentration of organic carbon (OC), elemental carbon (EC), water-soluble organic 269 

carbon (WSOC), and methanol-soluble organic carbon (MSOC), BrC absorption, fluorescence indices and 270 

levoglucosan level for aerosol samples collected from Bangkok in Thailand. Pre-hot season is from January 18 to 271 

February 29, 2016; hot season is from March 2 to May 31, 2016; monsoon is from June 2 to October 30, 2016; cool 272 

season is from November 1, 2016 to January 28, 2017. 273 

 
Annual 

(n=85) 

Pre-Hot 

season (n=7) 

Hot season 

(n=41) 

Monsoon 

(n=7) 

Cool season 

(n=30) 

 Ave ± sd Ave ± sd Ave ± sd Ave ± sd Ave ± sd 

aOC (μg C m−3) 12±7.3 19±9.3 9.6±6.7 6.5±0.97 16±5.6 

aEC (μg C m−3) 1.4±0.48 2.0±0.45 1.2±0.47 1.2±0.15 1.5±0.40 

aOC/EC 8.9±5.2 9.6±3.4 8.4±6.8 5.4±0.51 10±2.5 

 WSOC 

μg C m−3 6.2±4.2 9.9±5.7 5.3±4.1 2.6±0.31 7.4±3.4 
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AAE (330‒400 nm) 5.1±0.68 5.0±0.52 5.4±0.56 6.2±0.11 4.5±0.34 

Abs365 (Mm−1) 5.6±4.9 10±7.4 4.5±4.5 1.2±0.21 7.2±4.1 

MAE365 (m2 g−1 C) 0.83±0.25 0.96±0.19 0.78±0.23 0.45±0.06 0.95±0.21 

FI 1.6±0.10 1.6±0.09 1.6±0.08 1.7±0.07 1.7±0.07 

BIX 0.82±0.13 0.83±0.14 0.74±0.13 0.92±0.05 0.89±0.07 

HIX 3.4±0.99 3.3±1.1 3.9±1.1 2.5±0.22 2.9±0.36 

 MSOC 

μg C m−3 6.0±3.4 9.2±4.0 4.3±2.9 3.9±0.86 8.1±2.6 

AAE (330‒400 nm) 5.2±0.94 4.9±0.69 5.5±1.1 5.1±0.15 4.7±0.55 

Abs365 (Mm−1) 1.7±1.4 1.9±1.6 1.0±0.99 0.72±0.23 2.7±1.4 

MAE365 (m2 g−1 C) 0.26±0.12 0.19±0.08 0.23±0.11 0.19±0.06 0.33±0.11 

FI 1.8±0.20 1.5±0.20 1.8±0.23 2.0±0.10 1.8±0.06 

BIX 1.2±0.18 1.4±0.20 1.2±0.19 1.3±0.09 1.3±0.14 

HIX 2.0±0.59 1.3±0.41 2.1±0.68 1.9±0.17 2.1±0.42 

  

aLevoglucosan (ng C 

m−3) 
222±485 362±438 185±654 42±16 280±185 

aLevoglucosan/TSP (×10-

3) 
2.9±2.9 3.4±3.1 2.3±3.6 1.9±0.98 3.9±1.8 

a: described elsewhere (Wang et al., 2020a). 274 
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 275 

Figure 2. Fluorescence index (FI), biological index (BIX), and humification index (HIX) of water-soluble organic 276 

carbon (WSOC, a, c) and methanol-soluble organic carbon (MSOC, b, d) in aerosol samples from Bangkok, Thailand, 277 

as well as source emission samples including biomass burning, coal combustion and vehicle emission which were 278 

encircled by a violet, yellow, and blue region, respectively. Note that the fluorescence characteristic of source samples 279 

was described elsewhere (Tang et al., 2020b), but the fluorescence indices was first reported in this study. Pre-hot 280 

season is from January 18 to February 29, 2016; hot season is from March 2 to May 31, 2016; monsoon is from June 281 

2 to October 30, 2016; cool season is from November 1, 2016 to January 28, 2017. 282 

The BIX and FI were previously proposed as proxies for the contribution of biogenic organic 283 

matter and autochthonous biological activity in natural water, respectively (Fu et al., 2015;Qin et al., 284 

2018). For example, the FI decreased by up to 20% indicating that the samples appeared increasingly 285 

like “terrestrial” DOM, whereas the BIX increased by up to 37% indicating that the samples became 286 

more “autochthonous” in character (Murphy et al., 2018;Gabor et al., 2014). FI values ≤ 1.4 correspond 287 

to terrestrially derived organics and higher aromaticity, whereas values ≥ 1.9 correspond to microbial 288 

sources and a lower aromatic carbon content (Mcknight et al., 2001). An increase in BIX is related to 289 

an increase in the contribution of microbially derived organics, with high values (> 1) shown to 290 

correspond to a predominantly biological or microbial origin of DOM and the presence of organic 291 

matter freshly released into water, whereas values ≤ 0.6 indicate the presence of little biological 292 

material (Huguet et al., 2009).  293 
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The FI and BIX values of the Bangkok aerosol samples are summarized in Table 1 and Fig. 2. 294 

The FI values of the WSOC and MSOC were 1.6±0.10 and 1.8±0.20, respectively, suggesting that 295 

these chromophores are representative of both terrestrially and microbially derived organic matter. The 296 

BIX values of the WSOC and MSOC were 0.82±0.13 and 1.2±0.18, respectively. Almost all BIX 297 

values were greater than 0.6 in the two fractions, suggesting biological or microbial contribution. Lee 298 

et al. (2013) reported that the BIX values of SOA samples averaged 0.6 and increased upon aging. In 299 

addition, the results of our source samples showed that primary biomass-burning and coal-combustion 300 

samples had high FI and BIX values (Fig. 2). These results indicate that these chromophores in 301 

Bangkok were likely freshly introduced or derived from biomass burning and coal combustion. Further, 302 

an increase in BIX in the MSOC in comparison with the WSOC was observed in primary biomass-303 

burning and coal-combustion samples, consistent with the Bangkok samples. The BIX values were 304 

similar to those in the WSOC in Arctic aerosols (0.6‒0.96, mean: 0.72), which were within the extreme 305 

values for the predominance of humic- or protein-like fluorophores (Fu et al., 2015). BIX values 306 

exhibited the opposite trend from HIX values, with low BIX values in the hot season. This may be 307 

explained by a previous study showing that a high BIX appears to indicate little humification (Birdwell 308 

and Engel, 2010). It should be noted that the fluorescence indices (FI, BIX, and HIX) were first applied 309 

for aquatic and soil organic compounds and further extended to the atmosphere due to the similarities 310 

in the properties of organic matter (Graber and Rudich, 2006). However, the values observed for 311 

primary biomass burning and coal combustion in this study differ from with the previously established 312 

fluorescence standards for aquatic environments and soil. Therefore, caution is required when using 313 

these indices to appoint source of atmospheric chromophores (Wu et al., 2021).     314 

3.3. Optical properties of dissolved BrC. 315 

Figure 3 shows the variations in soluble OC concentrations and the corresponding light absorption 316 

coefficient at 365 nm (Abs365). In general, the Abs365 closely tracked the variations in the mass 317 

concentrations of WSOC and MSOC (p < 0.000, R2 = 0.95 and p < 0.000, R2 =0.75, respectively) (Fig. 318 

S11), indicating that the portions of BrC in both fractions were considerably stable. Furthermore, light 319 

absorption at 365nm were higher in the pre-hot season, hot season, and cool season than that in the 320 

monsoon season. According to the levoglucosan level that generally regarded as biomass burning 321 

tracers and the ratios of levoglucosan/TSP (Table 1), we infer that the non-monsoon season were more 322 

affected by biomass burning and also showed high absorption. 323 
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 324 

Figure 3. Time series plots of water-soluble organic carbon (WSOC) and methanol-soluble organic carbon (MSOC) 325 

concentration (μg C m−3) and water- and methanol-extract light absorption coefficient at 365 nm (Abs365) (Mm−1) in 326 

the aerosol samples from Bangkok, Thailand during 2016‒2017.  327 

The absorption Ångström exponent (AAE) and mass absorption efficiency (MAE) are important 328 

optical parameters reflecting the spectral dependence and light absorption ability of BrC, respectively. 329 

The magnitude of the AAE reflects the differences in BrC source and atmospheric processes (Lack et 330 

al., 2013). Typically, the AAE value is close to 1 when light absorption is dominated by soot 331 

(Kirchstetter et al., 2004), roughly 1–3 for simulated biomass-burning aerosols (Hopkins et al., 2007), 332 

and up to 6–7 for water-soluble HULIS in biomass burning-impacted aerosols (Hoffer et al., 2006). 333 

The AAE values of the WSOC and MSOC between 330 and 400 nm in this study were up to 5.1±0.68 334 

and 5.2±0.94 (Fig. 4), respectively, indicating strong wavelength dependence in the light absorption 335 

capability. These high values show that BrC tends to absorb more solar irradiation over ultraviolet 336 

wavelengths, which is comparable to BC absorption as shown in Fig. S12. These observations indicate 337 

that BrC has important impacts on photochemical reactions in the atmosphere (Barnard et al., 2008). 338 

The AAE values in this study are similar to those of water-soluble BrC over biomass burning-impacted 339 

regions, such as Beijing (Mo et al., 2018;Yan et al., 2015) and Guangzhou (Liu et al., 2018), but lower 340 

than those of aerosols from simulated biomass-burning and coal-combustion experiments (Fan et al., 341 

2018;Tang et al., 2020a;Li et al., 2018). However, it should be noted that the BrC AAE varies in the 342 
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atmosphere. Dasari et al. (2019) reported that AAE values of water-soluble BrC increase continuously 343 

due to photolysis of chromophores and atmospheric oxidation during long-range transport over the 344 

Indo-Gangetic Plain (IGP). In addition, pH changes can cause the absorption spectra of some BrC 345 

species to shift to longer wavelengths upon deprotonation, decreasing AAE values (Mo et al., 2017). 346 

The pH values of WSOC fraction for all the samples were within the range of 5–7, generally thinking 347 

it didn’t affect the absorbance according to a prior study (Chen et al., 2016a). 348 

 349 

Figure 4. Time series plots of Absorption Ångström exponent (AAE, a), the mass absorption efficiency at 365 nm 350 

(MAE365, b) in the water-soluble organic carbon (WSOC) and methanol-soluble organic carbon (MSOC) in aerosols 351 

samples from Bangkok in Thailand during 2016‒2017.  352 

The MAE at 365 nm (MAE365) of the WSOC was 0.83±0.25 m2 g−1 C, which was higher than that 353 

of the MSOC (0.26±0.12 m2 g−1 C), indicating that more water-soluble BrC with stronger light 354 

absorption capability could be extracted with ultrapure deionized water, whereas water-insoluble BrC 355 

is characterized by lower light absorption capability over Bangkok. These results were consistent with 356 

those from vehicular exhaust samples in our previous study, where MAE365 values of the WSOC 357 

(0.71±0.30 m2 g−1 C) were higher than those of the MSOC (0.26±0.09 m2 g−1 C) (Tang et al., 2020b). 358 

Opposite results have been shown for primary biomass burning and coal combustion (Tang et al., 359 

2020b). Similarly, Bikkina et al. (2020) observed that the marine-impacted aerosols of the Bay of 360 
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Bengal showed higher MAE365 values in the WSOC fraction than MSOC fraction (only extract using 361 

methanol), and they explained it due to two plausible reasons. First, the BrC aerosols over Bay of 362 

Bengal have a contribution from a different source (i.e., maritime influence) and contain BrC-363 

chromophores that are more soluble in water than methanol. Secondary, there could be significant 364 

photobleaching effects of different chromophores. However, Wu et al. (2020b) reported that the 365 

MAE365 values of methanol-extracts are higher than those of WSOC in winter, whereas the situation 366 

is reversed in summer. Therefore, we infer that the different sources and atmospheric processes would 367 

impact the distribution of water-soluble and methanol-soluble chromophores. Considering the high 368 

temperature and humidity (Table S1), and tropical monsoon climate in Thailand, it seems to promote 369 

more water-soluble chromophores over Thailand. As not all water-insoluble components can be 370 

extracted with methanol, the observed light absorption by MSOC would therefore likely reflect the 371 

lower limit. Table S3 shows a comparison of the MAE values of Bangkok aerosols with those of other 372 

regions, indicating a medium light absorption capacity. The MAE365 values of the water-soluble 373 

fraction in this study were comparable to those of Nanjing (Chen et al., 2018), Guangzhou (Liu et al., 374 

2018), and Beijing in summer (Yan et al., 2015), but lower than those of PM2.5 from Singapore (Adam 375 

et al., 2020), PM10 from Godavari, Nepal, in the pre-monsoon season (Wu et al., 2019), and smoke 376 

particles from biomass burning and coal combustion (Park and Yu, 2016;Fan et al., 2018;Tang et al., 377 

2020b). Lower MAE365 values of both fractions were observed in the monsoon season than in the non-378 

monsoon seasons, likely due to the heavy monsoon rains that effectively remove soluble gases and 379 

aerosols (Lawrence and Lelieveld, 2010) and/or reduce biomass-burning activity (levoglucosan level 380 

in Table 1). A previous study reported similar findings in the USA in that the MAE365 was 381 

approximately three-fold higher in biomass burning-impacted samples than in non-biomass burning-382 

impacted samples (Hecobian et al., 2010). Another study in the central Tibetan Plateau highlighted that 383 

BrC emitted by biomass burning has stronger light absorption capability than does secondary BrC 384 

formed in the atmosphere (Wu et al., 2018). On the Indo-China peninsula, Bangkok receives 99% of 385 

the fire-derived aerosols from December to April (Lee et al., 2017), which may explain the high 386 

absorption levels in the non-monsoon seasons.   387 

3.4. Chromophores responsible for BrC light absorption. 388 

EEM analysis enables the probing of the chemical structure of DOM because of its ability to 389 

distinguish among different classes of organic matter (Wu et al., 2003). Generally, BrC absorption is 390 

related to the chromophores within it and is susceptible to change with variations in chemical 391 

properties, e.g., oxidation level (Mo et al., 2018), degree of unsaturation (Jiang et al., 2020), molecular 392 

weight (Tang et al., 2020b;Di Lorenzo et al., 2017), functional groups (Chen et al., 2017b), molecular 393 
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composition, etc (Song et al., 2019;Lin et al., 2018). The fluorescence intensity of each EEM 394 

component was shown to be associated with light absorption indices, such as MAE365 and AAE, of 395 

HULIS in controlled crop straw-combustion experiments (Huo et al., 2018). As a linear relationship 396 

between organic matter concentration and fluorescence intensity can be assumed for very dilute 397 

samples due to the IFE (Murphy et al., 2013), we have corrected our fluorescence data for IFE using 398 

absorbance to enable “clean ” correlation analysis (as shown in Fig. S13 a, b). The linear regression 399 

slopes in the scatter plots of Abs365 versus WSOC or MSOC could mathematically represent the 400 

average MAE values of WSOC or MSOC at 365 nm, respectively (Fig. S11 a, b). The phenomenon 401 

indicates that both fluorescence and Abs365 data point to similar relationships between sources or 402 

chemical processes with organic matter concentrations, and therefore, we attempted to link the 403 

fluorescence results to BrC absorption. It should be noted that light-absorbing substances in 404 

atmospheric particulate matter are not necessarily all fluorescent, such as nitrophenol compounds, 405 

which are a type of BrC commonly found in the atmospheric particulate matter; however, there is no 406 

strong fluorescence signal with which to scan the nitrophenol standards (Chen et al., 2019a).  407 

In order to evaluate the light absorption from different fluorescent chromophores, we used MLR 408 

to explore the relationship between the fluorescence intensities of chromophores and Abs365. In this 409 

study, light absorption properties were treated as the dependent variables, and the fluorescence were 410 

independent variables. During MLR, insignificant fluorescent components were excluded from the 411 

regression using a stepwise screening process to avoid overfitting (Finclusion: p < 0.05; Felimination: p > 412 

0.10). The MLR statistical metrics are listed in Tables S4 and S5. For the independent variables with 413 

significant correlations with the dependent variable (p < 0.05), or with positive contributions to the 414 

independence, Abs365, they will be retained in the statistical model as the efficiency factors to Abs365. 415 

Thus, for the WSOC fraction, a revised model (regression 3) equation was used with an adjusted R2 416 

of 0.995. The final optimized equations were Abs365 = 0.765 × P4 + 0.051 × P2 + 0.091 × P7, for the 417 

WSOC fraction, and Abs365 = 0.238 × C4 for the MSOC fraction (Table S5). The model errors for 418 

water-soluble and methanol-soluble Abs365 were −5.5%–64% and −34%–58%, respectively. The 419 

predicted Abs365 values fit the measured values well (Fig. 5, slope = 0.99 and 0.95, and R2 = 0.99 and 420 

0.94 for WSOC and MSOC, respectively).  421 
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 422 

Figure 5. Linear correlation analysis between modeling Abs365 using multiple linear regression (MLR) analysis and 423 

measured Abs365 in the water-soluble organic carbon (WSOC, a) and methanol-soluble organic carbon (MSOC, b) in 424 

aerosols samples from Bangkok in Thailand during 2016‒2017, respectively. Note that the fluorescent intensities of 425 

parallel factor (PARAFAC) model results (fluorescent components) were used as variables in MLR analysis. 426 

For water-soluble BrC, the P4 component had the largest coefficient with Abs365, which was much 427 

higher than those for P2 and P7. The C4 component had the largest coefficient with Abs365 for 428 

methanol-soluble BrC. These results indicate that the light absorption by BrC is more dependent on 429 

chromophores with longer emission wavelengths (P4 and C4). These characteristics also indicate that 430 

the strongly absorbing substances in BrC probably originate from large conjugated electron functional 431 

groups or include donor and acceptor molecules for charge-transfer interactions (Del Vecchio and 432 

Blough, 2004;Cory and McKnight, 2005). Kellerman et al. (2015) reported that these components are 433 

highly aromatic and oxygen-rich with high apparent molecular weight. These important findings 434 

highlight that larger chromophores may be the most persistent BrC species in the atmosphere and 435 

hence exert the greatest influence for perturbing the global radiative balance. 436 

To further interpret the BrC source profiles as real-world TSP sources, we examined 84 (minus 437 

one missing value) TSP samples from Bangkok using the US EPA PMF5.0 model. All samples were 438 

merged together to form an 84 × 30 dataset (84 samples with 30 species). The initial data of positive 439 

matrix factorization input were from our previous study (Wang et al., 2020a). We further added Abs365 440 

values of WSOC and MSOC, and the fluorescence intensities (in RU) of P2, P4, P7, and C4 441 

components to the model. A seven-factor solution was achieved that provided the most physically 442 

reasonable source profiles (Fig. S14), including ship emission, secondary sulfate, dust, land fossil-fuel 443 

combustion, sea salt, biomass burning, and industrial emission, consistent with our previous study 444 
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(Wang et al., 2020a). Figure S15 shows the contributions of the above sources to light absorption at 445 

λ= 365 nm, which represent the fraction of BrC for each factor. Biomass burning was found to be the 446 

main source of BrC over Bangkok; 58% and 74% for water-soluble and methanol-soluble BrC, 447 

respectively. These were comparable to previous observations using a similar approach in Xi’an (55%) 448 

(Wu et al., 2020a). The time-series of Abs365 of WSOC and MSOC contributed by factors shows the 449 

high biomass burning contribution is related to the higher local fire spots (i.e., pre-hot season, hot 450 

season, and cool season) and/or air mass from the continent (Fig. S16–S17). Jiang et al. (2021) 451 

observed increases in biomass burning contributions to BrC absorption during the winter period that 452 

was dominant in continental-origin air masses. Furthermore, the P4 and C4 components, which were 453 

more closely associated with Abs365, could be mostly attributed to biomass burning (54% and 70%, 454 

respectively) as shown in Fig. 6. Our previous study showed that biomass burning accounted for a 455 

considerably large portion (mean: 26%) of the TSP mass concentration in the same samples (Wang et 456 

al., 2020a). This result suggests that biomass burning makes a significant contribution to not only 457 

particulate matter but also BrC light absorption.  458 

 459 
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Figure 6. The time-series of P4 component of the WSOC (a) and C4 of the MSOC (b) in TSP samples over Bangkok 460 

in Thailand contributed by each factor resolved by positive matrix factorization.  461 

4. Conclusions  462 

This study presents a comprehensive analysis of water- and methanol-soluble chromophores in 463 

aerosol samples over Bangkok in Thailand during 2016‒2017. EEM combining with PARAFAC 464 

analysis showed that the identified fluorescent components were humic-like and protein-like 465 

substances but different patterns in the WSOC and MSOC, indicating different chemical compositions. 466 

By adding three-source fluorescence into the original PARAFAC model, we found that chromophores 467 

with longer emission wavelengths in the atmosphere may be due to atmospheric chemical reactions or 468 

“aging” by both bleaching the source chromophores or producing new chromophores. We also suggest 469 

that caution is required when using fluorescence indices to appoint source of atmospheric 470 

chromophores. In addition, more water-soluble BrC with stronger light absorption capability could be 471 

extracted with ultrapure deionized water over Bangkok (0.83±0.25 vs. 0.26±0.12 m2 g-1 C), and both 472 

water-soluble and methanol-soluble BrC exhibited a high light-absorption in non-monsoon seasons 473 

due to the influence of biomass burning. The MLR analysis showed that both the light absorption of 474 

BrC at 365 nm in the two fractions was significantly dependent on the special fluorescent 475 

chromophores with longer emission wavelength that are generally highly aromatic and oxygen-rich 476 

with high apparent molecular weight. Positive matrix factorization model results further showed that 477 

biomass burning was main contributor of these fluorescent chromophores (up to 50%). In summary, 478 

this study provides a new insight into BrC absorption and sources, which may promote the application 479 

of EEM spectroscopy to predict and model the light absorption of BrC in the atmosphere. 480 
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