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Abstract. 15 

Secondary organic aerosols (SOA) are major components of atmospheric fine 16 

particulate matter, affecting climate and air quality. Mounting evidence exists that SOA can 17 

adopt glassy and viscous semisolid states, impacting formation and partitioning of SOA. In this 18 

study, we apply the GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in 19 

the Atmosphere) model to conduct explicit chemical modeling of isoprene photooxidation and 20 

α-pinene ozonolysis and their subsequent SOA formation. The detailed gas-phase chemical 21 

schemes from GECKO-A are implemented into a box model and coupled to our recently-22 

developed glass transition temperature parameterizations, allowing us to predict SOA viscosity. 23 

The effects of chemical composition, relative humidity, mass loadings and mass 24 

accommodation on particle viscosity are investigated in comparison with measurements of 25 

SOA viscosity. The simulated viscosity of isoprene SOA agrees well with viscosity 26 

measurements as a function of relative humidity, while the model underestimates viscosity of 27 

a-pinene SOA by a few orders of magnitude. This difference may be due to missing processes 28 

in the model including autoxidation and particle-phase reactions leading to the formation of 29 

high molar mass compounds that would increase particle viscosity. Additional simulations 30 

imply that kinetic limitations of bulk diffusion and reduction in mass accommodation 31 

coefficient may play a role in enhancing particle viscosity by suppressing condensation of semi-32 

volatile compounds. The developed model is a useful tool for analysis and investigation of the 33 

interplay among gas-phase reactions, particle chemical composition and SOA phase state.  34 

  35 
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1. Introduction 36 

Secondary organic aerosols (SOA) are ubiquitous in the atmosphere and represent a 37 

major component of fine particulate matter, affecting air quality, climate and public health 38 

(Jimenez et al., 2009; Pöschl & Shiraiwa, 2015). Due to their complexity, SOA represent a large 39 

source of uncertainty in current understanding of global climate change and air pollution 40 

(Tsigaridis et al., 2014; Ciarelli et al., 2019). Development of SOA models represents one of 41 

the most challenging and demanding problems in atmospheric chemistry (Shrivastava et al., 42 

2017). Formation of SOA is initiated by gas-phase oxidation of biogenic and anthropogenic 43 

volatile organic compounds (VOC) (Kroll and Seinfeld, 2008). Typically, multigenerational 44 

oxidation of VOC in the gas phase leads to the formation of a myriad of semi-volatile and low 45 

volatility compounds which can condense on pre-existing particles (Ziemann and Atkinson, 46 

2012; Noziere et al., 2015) or contribute to nucleation and new particle formation (Tröstl et al., 47 

2016). As gas-phase oxidation is a driving step of SOA formation, there is a strong need for a 48 

computational tool that can generate exhaustive gas-phase chemical mechanisms. The 49 

GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) 50 

model is to-date the most extensive generator of gas-phase chemical schemes; based on 51 

established reaction pathways and structure-activity relationships, it automatically generates 52 

detailed gas-phase mechanisms involving thousands-to-millions of oxidation products from a 53 

given VOC precursor (Aumont et al., 2005; Aumont et al., 2012; Lee-Taylor et al., 2011).  54 

Most aerosol models treat SOA particles as homogeneous and well-mixed liquids with 55 

a dynamic viscosity (h) below 102 Pa s. Recent studies provide accumulating evidence that 56 

SOA can adopt glassy solid (h ³ 1012 Pa s) or amorphous semi-solid phase states (102 £ h < 1012 57 

Pa s) depending on chemical composition, relative humidity (RH), and temperature (Koop et 58 

al., 2011; Reid et al., 2018; Virtanen et al., 2010). The particle phase state is impacted by SOA 59 

chemical composition, hygroscopicity and water content, as water can act as a plasticizer 60 

lowering SOA viscosity (Mikhailov et al., 2009). It has been observed that ambient SOA 61 

particles can bounce off from an impactor stage depending on ambient conditions, indicating 62 

non-liquid states of organic particles (Virtanen et al., 2011; Bateman et al., 2017; Slade et al., 63 

2019). Measurements of the viscosity of SOA bulk materials derived from the oxidation of 64 

limonene (Hinks et al., 2016), toluene (Song et al., 2016a), a-pinene (Renbaum-Wolff et al., 65 

2013; Kidd et al., 2014; Bateman et al., 2015; Zhang et al., 2015; Grayson et al., 2016; Hosny 66 

et al., 2016) and isoprene (Song et al., 2015) have confirmed that viscosity of SOA particles 67 

can vary depending on temperature and RH (Petters et al., 2019). In addition, previous studies 68 
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have shown that SOA chemical composition can be affected by experimental conditions upon 69 

SOA formation such as RH and particle mass concentrations (Kidd et al., 2014; Hinks et al., 70 

2018; Grayson et al., 2016; Jain et al., 2018). These results imply that SOA viscosity and phase 71 

state are dynamic properties in response to chemical processing of organic aerosols and 72 

variations in RH and temperature in the atmosphere.  73 

In liquid particles, molecules diffuse quickly in the particle bulk, leading to rapid 74 

establishment of gas-particle equilibrium. In glassy and viscous particles, kinetic limitations of 75 

bulk diffusion can significantly retard gas-particle partitioning, prolonging equilibration 76 

timescales (Li and Shiraiwa, 2019; Mai et al., 2015; Vaden et al., 2011), while relatively fast 77 

particle-particle mixing were observed at intermediate and high RH (Ye et al., 2016; 2018). 78 

Model simulations suggest that an assumption of instantaneous equilibrium partitioning can 79 

result in substantial overestimation of particle mass concentration and underestimation of gas-80 

phase mass concentration (Shiraiwa and Seinfeld, 2012). A proper consideration of particle 81 

phase state is essential for simulating particle size distribution dynamics in SOA growth 82 

(Shiraiwa et al., 2013; Zaveri et al., 2018; Zaveri et al., 2020). Heterogeneous and multiphase 83 

reactions (Kuwata and Martin, 2012; Shiraiwa et al., 2011; Davies & Wilson, 2015; Zhang et 84 

al., 2018; Marshall et al., 2018; Zhou et al., 2019) as well as activation to cloud droplets and 85 

ice crystals (Slade et al., 2017; Knopf et al., 2018) can also be impacted by glassy and 86 

amorphous semisolid states. Thus, it is important to consider the effects of particle phase state 87 

on SOA processes for accurate representation of the fate of SOA particles in aerosol models.  88 

Recently, we have developed parameterizations to predict glass transition temperature 89 

(Tg) of organic compounds based on molar mass and atomic O:C ratio (Shiraiwa et al., 2017), 90 

elemental composition (i.e., number of carbon, hydrogen, oxygen, nitrogen, and sulfur atoms) 91 

(DeRieux, et al., 2018), and volatility (Li et al., 2020). Tg is a characteristic temperature at 92 

which a phase transition from a glassy solid state to an amorphous semi-solid state occurs (Koop 93 

et al., 2011). Applying the Gordon-Taylor mixing rule for mixtures of SOA multiple 94 

components and water, the viscosity of SOA can be estimated by the Tg-scaled Arrhenius plot 95 

of viscosity (DeRieux, et al., 2018). This method has been successfully applied to estimate 96 

particle viscosity based on elemental composition obtained from high resolution mass 97 

spectrometry (Schum et al., 2018; Ditto et al., 2019; Song et al., 2019). Gervasi et al. (2020) 98 

simulated viscosity of aqueous SOA surrogate mixtures derived from oxidation of a-pinene, 99 

isoprene and toluene using the AIOMFAC-VISC model combined with the Tg parametrization 100 

of DeRieux et al (2018), demonstrating the capability and flexibility of the group-contribution 101 

method in predicting the viscosity for organic mixtures of varying degrees of complexity. 102 
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There is a strong need for the development of a modelling tool for further elucidation 103 

of the impacts of various aerosol properties and processes on particle viscosity. A better 104 

understanding of the interplay among gas-phase reactions, chemical composition and viscosity 105 

of SOA is essential for further development of model representation of the evolution of SOA 106 

in the atmosphere. In this study, the Tg and viscosity prediction methods are implemented into 107 

the GECKO-A and box model. Model simulations with explicit chemical mechanisms are 108 

conducted to reproduce chamber experimental conditions for SOA generation and subsequent 109 

viscosity measurements. The effects of chemical composition and mass accommodation on 110 

SOA partitioning and viscosity are also investigated. The objective of this work is to develop a 111 

useful tool for analysis and investigation of SOA chemical composition and phase state and to 112 

expand our fundamental understanding on such properties. 113 

 114 
2. Methods 115 

2.1. GECKO-A 116 

 GECKO-A generates detailed gas-phase chemical oxidation schemes and the associated 117 

gas-particle mass transfers for SOA formation. It produces explicit highly detailed chemical 118 

mechanisms starting from experimental data and structure-activity relationships (SARs) 119 

(Aumont et al., 2005). Implemented into a box model, these explicit chemical mechanisms 120 

simulate the oxidation of parent VOC precursors to oxidation products, their subsequent gas-121 

phase chemistry, as well as partitioning into the particle phase based on their vapor pressures 122 

(Camredon et al., 2007). GECKO-A is frequently updated to include the newly discovered 123 

chemical processes in the mechanism generator: recently, the mechanism generator has been 124 

extended to treat the chemistry of aromatic organic compounds based on the latest SAR 125 

developments (Jenkin et al., 2018a; Jenkin et al., 2018b; Jenkin et al., 2019; Jenkin et al., 2020). 126 

Other recent updates include the chemistry of cyclic structures (Valorso et al., 2011), the gas-127 

aqueous phase partitioning (Mouchel-Vallon et al., 2013), and the gas to chamber wall 128 

partitioning (La et al., 2016). The chemical mechanism does not account for gas-phase 129 

chemistry of species with vapor pressure below 10-13 atm, which are assumed to be of enough 130 

low volatility to partition to the condensed phase. In our simulations, species vapor pressures 131 

are estimated via the approach by Nannoolal et al. (2008).  132 

The mechanism generator follows a reduction protocol optimizing the number of 133 

generated reactions and chemical species (Valorso et al., 2011). This protocol has been 134 

established to reduce the computational cost of box-model simulations. In the gas phase, isomer 135 

substitution is not allowed for position isomers when the overall yield for the product is > 5%; 136 
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otherwise only the highest-yield positional isomer is considered. For each reaction, pathways 137 

with branching ratios < 5% are not accounted for and the main reaction branches are scaled 138 

proportionally (Valorso et al., 2011). The chemical mechanism accounts for chemistry of 139 

peroxy and alkoxy radicals generated during precursors oxidation. SOA chemistry is a multi-140 

generational process and the generated chemical schemes follow the chemistry of reaction 141 

products up to the 5th generation in our simulations. The GECKO-A version used in this study 142 

has been recently enriched with SARs estimations of alkoxy radical decomposition and H-143 

migration reaction rates (Vereecken and Peeters, 2009; La et al., 2016). Rate coefficients and 144 

branching ratios for gas-phase reactions of OH with aliphatic compounds and peroxy radicals 145 

are estimated based on recent SAR investigations (Jenkin et al., 2018a,b). Our simulations do 146 

not include autoxidation and condensed-phase chemistry, which represent limitations of 147 

GECKO-A modeling.  148 

a-pinene and isoprene oxidation mechanisms have been investigated extensively both 149 

in model and experimental studies. Their oxidation mechanisms are well known, providing 150 

good estimations of resulting SOA composition. The SARs for both a-pinene and isoprene 151 

oxidation are implemented into GECKO-A with state-of-the-art protocols estimating radical 152 

reactions and respective rate constants. The base mechanism for a-pinene photooxidation and 153 

ozonolysis include a detailed description of reactions with OH radicals (McVay et al., 2016), 154 

and branch reactions identified via quantum and theoretical chemical calculations (Peeters et 155 

al., 2001; Vereecken et al., 2007). Stabilized Criegee intermediates (SCIs) chemistry is not 156 

treated explicitly and stable products are directly assigned via a rule-base method. This scheme 157 

accounts for a direct reaction route to account for pinonaldehyde formation during the reaction 158 

of SCIs with water (McVay et al., 2016).  159 

a-pinene GECKO-A mechanisms were evaluated in previous studies by comparisons 160 

with chamber experiments of SOA formation from photo-oxidation (Valorso et al. 2011, 161 

McVay et al., 2016) and ozonolysis (Denjean et al., 2015).  The model captures the qualitative 162 

features of SOA formation with the variation of NOx levels during photolysis experiments, and 163 

with temperature for ozonolysis experiments. The measured SOA mass was overestimated by 164 

the model in Valorso et al. (2011) and Denjean et al. (2015), which could be in part explained 165 

by the loss of low volatile organic compounds onto the chamber wall (McVay et al., 2016; La 166 

et al., 2016). In addition, McVay et al (2016) highlighted a possible overestimation of the 167 

simulated contribution of later-generation oxidation products to SOA mass at high OH levels, 168 

and an underestimation of the SOA growth at low OH levels that could be due to lack of 169 
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autoxidation processes in the mechanisms generated with GECKO-A. The influence of these 170 

limitations on the results simulated here are discussed along the paper. The GECKO-A isoprene 171 

oxidation scheme follows the main protocol developed by Aumont et al. (2005) and branching 172 

reactions for isoprene + OH are also considered (Paulot et al., 2009). Isoprene mechanisms 173 

generated with GECKO-A is for the first time indirectly evaluated in this study. The chemical 174 

schemes for a-pinene and isoprene oxidation are composed of 84,000 and 1,900 species, and 175 

of ~700,000 and ~17,000 reactions, respectively. 176 

 177 

2.2. Box model and simulations setup 178 

Each chemical mechanism is coupled to a box model representing SOA formation from 179 

a-pinene or isoprene oxidation in specific chamber experiments. The time evolution of species 180 

concentration is computed through a two-step method that explicitly solves stiff ordinary 181 

differential equations (Verwer et al., 1994; 1996). The experimental conditions are summarized 182 

in Table 1. All laboratory experiments were performed in absence of seed particles, but the box 183 

model used in our simulations does not treat nucleation. Thus, in our simulations the first steps 184 

of nucleation are approximated by the addition of seed particles with a particle radius of 5 nm 185 

and a concentration of 104 particles cm-3 (McVay et al., 2016). The particle number 186 

concentration is assumed to remain constant during simulations (coagulation is not treated), 187 

while the particle radius evolves following the partitioning of organics. The density of SOA 188 

particles is assumed to be 1.2 g cm-3 (Kuwata et al., 2012). All simulations are conducted with 189 

a NOx mixing ratio of 3 ppt to reflect low NOx conditions of chamber and flow tube 190 

experiments. For all simulations we consider reversible gas-wall partitioning of organic species 191 

with the vapor wall loss rate of of 10-3 s-1 based on experimental observations (Lim and 192 

Ziemann, 2009, McVay et al., 2016). Photolysis rates are computed using the cross-sections 193 

and the quantum yields from Aumont et al. (2005). Photolysis conditions are set to average 194 

daylight conditions of a mid-latitude spring day for isoprene photooxidation simulations and to 195 

zero for a-pinene dark ozonolysis experiments, coherent with the experimental conditions. 196 

For continuous flow reactor experiments, the concentrations of VOC precursors and 197 

oxidants were stable by continuous inflow and outflow of gases from the tube reactor; in the 198 

box model simulations precursor concentrations are fixed at steady state values as measured in 199 

corresponding experiments. In chamber batch experiments, the reactants were injected once at 200 

the beginning of the experiment and the concentrations evolved; in box model simulations the 201 

VOC precursor and ozone concentrations are initially set to the respective experimental values 202 
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and species concentrations evolve due to gas oxidation, gas-particle partitioning, and wall 203 

deposition. SOA particles were formed under dry conditions and then exposed to water vapor 204 

at different RH for viscosity measurements; the same procedure is applied in our simulations 205 

by forming SOA at RH = 0.5% and then viscosity estimations are conducted by considering 206 

hygroscopic growth at elevated RH. For each set of simulations, the measured RH and 207 

temperature were used to constrain the simulation conditions. Note that partitioning of water is 208 

not considered in the box model as particle water uptake should be very minor under the very 209 

low RH values at which SOA particles were formed. 210 

The box model treats the mass transfer of gaseous organic species to particles and to 211 

chamber walls. Gas-particle partitioning is assumed to follow Raoult’s law at equilibrium (La 212 

et al., 2016) (i.e., depending on the saturation vapor pressure of the organic compounds 213 

assuming ideal mixing). Gas to particle partitioning is described in the box model using the gas-214 

particle mass transfer coefficient of a compound (kgp in s-1) with the Fuchs-Sutugin approach in 215 

the transition regime as (Seinfeld and Pandis, 2016): 216 

 217 

 kgp = 4pDg rP NP b       (1) 218 

 219 
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			                    (2) 220 

 221 

where Dg (cm2 s-1) is the gas diffusivity, rp (cm) is the particle radius, Np (cm-3) is the 222 

particle number concentration, Kn is the Knudsen number, and a is the mass accommodation 223 

coefficient. a, also termed as the bulk accommodation coefficient, represents the probability 224 

for a gas molecule colliding with surface to enter the bulk of the particle. Based on recent 225 

experiments and molecular dynamics simulations a is assumed to be unity for the base case 226 

scenario of our simulations (Liu et al., 2019; Julin et al., 2014). This approach does not account 227 

for potential kinetic limitations caused by bulk diffusion in viscous particles. 228 

A recent study has introduced an effective mass accommodation coefficient aeff, which 229 

effectively considers the kinetics of accommodation at the surface, transfer across the gas-230 

particle interface, and further transport into the particle bulk (Shiraiwa and Pöschl, 2020):  231 

 232 

𝛼011 = 𝛼2
(

()	#$	%	&
'	

(	)*		+,	
∙
-,
. ∙(!

/0! 1
21
34/5

4/5

    (3) 233 

 234 



 9 

where as is the surface accommodation coefficient (i.e., the probability for a gas 235 

molecule colliding with surface to adsorb on the particle surface), w (cm s-1) is the mean thermal 236 

velocity of the organic compound in the gas phase, Db (cm2 s-1) is diffusivity in the condensed 237 

phase, rp (g cm-3) is the particle density, and C0 (µg m-3) is the pure compound saturation mass 238 

concentration. Application of aeff in the Fuchs-Sutugin approach (e.g., a = aeff) yields SOA 239 

partitioning with effective consideration of kinetic limitations induced by slow bulk diffusion 240 

in viscous particles. This approach can yield consistent results with a detailed kinetic multilayer 241 

model (KM-GAP, Shiraiwa et al., 2012) and two-film model solutions (Zaveri et al., 2014). We 242 

implement this method to explore the effects of mass accommodation and kinetic partitioning 243 

on predicted viscosity by comparing with the base case scenario (e.g., a fixed to 1). 244 

 245 
2.3. Viscosity prediction implementation 246 

The glass transition temperature of an organic compound i (Tg,i)  can be estimated with 247 

the following recently-developed parameterization based on its elemental composition 248 

(DeRieux et al., 2018): 249 

 250 

Tg,i = (  + ln(nC)) bC + ln(nH) bH + ln(nC) ln(nH) bCH + ln(nO) bO + ln(nC) ln(nO) bCO   (4) 251 

 252 

Where the coefficient values for [ , bC, bH, bCH, bO, and bCO] are [1.96, 61.99, -113.33, 28.74, 253 

0, 0] for CH compounds and [12.13, 10.95, -41.82, 21.61, 118.96, -24.38] for CHO compounds. 254 

We have also included the recently developed parametrization for CHON compounds by Li et 255 

al. (2020): 256 

 257 

Tg,i = (  + ln(nC)) bC + ln(nO) bO + ln(nN) bN + ln(nC) ln(nO) bCO + ln(nC) ln(nN) bCN  + ln(nO) ln(nN) 258 

bON                                                                                                             (5) 259 

 260 

Where the coefficient values for [ , bC, bO, bN, bCO, bCN, and bON] are [5.34, 31.53, -7.06, 261 

134.96, 6.54, -34.36, and -15.35]. These parametrizations can predict Tg,i with an uncertainty 262 

of about ±30 K; note that, however, in multicomponent SOA mixtures this uncertainty would 263 

be much smaller for ideal mixing conditions (Shiraiwa et al., 2017; DeRieux et al., 2018; Li et 264 

al., 2020). The Tg of a mixture of organic compounds (e.g. dry SOA) can be estimated using 265 

the Gordon-Taylor equation with a Gordon-Taylor constant (kGT) of 1: Tg,org = , where 266 

wi is the mass fraction of compound i (Dette et al., 2014).  267 



 10 

 The Gordon-Taylor equation can also be used to estimate the glass transition 268 

temperature of mixtures of organic compounds and water (Tg(worg)): 269 

 270 

                   (5) 271 

 272 

where worg is the mass fraction of organics, Tg,w is the glass transition temperature of pure water 273 

(136 K), and kGT is the Gordon-Taylor constant which is assumed to be 2.5 (Koop et al., 2011; 274 

Zobrist et al., 2008). The worg is calculated using the mass concentration of water (mH2O) and of 275 

the organics in SOA (mSOA) as: worg = mSOA / (mSOA + mH2O). mH2O can be calculated using the 276 

Kohler theory with effective hygroscopicity parameter (k) (Petters and Kreidenweis, 2007).  277 

Once Tg(worg) has been computed, the viscosity (h) can be derived with the following 278 

equation based on the Vogel-Tammann-Fulcher approach (DeRieux et al., 2018): 279 

 280 

             (7) 281 

 282 

                (8) 283 

 284 

where T0 is the Vogel temperature and D is the fragility parameter. The D value is assumed to 285 

be 10 based on previous studies (Shiraiwa et al., 2017; DeRieux et al., 2018). 286 

 Viscosity can then be converted into bulk diffusivity using the Stokes-Einstein equation:  287 

 288 

  (9) 289 

 290 

where k is the Boltzmann constant (1.38 × 10-23 J K-1), T is the temperature (K), and a is the 291 

effective molecular radius (m). This relation, however, may not be accurate for very high 292 

viscosities and needs to be corrected with the fractional Stokes-Einstein (FSE) relation (Evoy 293 

et al., 2019):   294 

  (10) 295 

 296 
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where x is an empirical fit parameter with the value of 0.93 (Evoy et al., 2019), hc is the 297 

crossover viscosity with the value of 10-3 Pa s, and Db,c is the crossover diffusion coefficient at 298 

hc = 10-3 Pa s as determined by the Stokes-Einstein equation (Eq. 9). 299 

For validation and applicability of Tg parameterizations and the viscosity prediction 300 

method, they have been applied to high resolution mass spectrometry data of toluene SOA and 301 

biomass burning aerosols (DeRieux et al., 2018), SOA generated by diesel fuels (Song et al., 302 

2019), β-Caryophyllene SOA (Maclean et al., 2021), and surrogate VOC mixtures by healthy 303 

and stressed plants (Smith et al., 2021), agreeing well with viscosity measurements. 304 

 305 

3. Results and discussion 306 

3.1 Viscosity predictions of isoprene and a-pinene SOA 307 

Figure 1 shows the measured and simulated viscosities of isoprene SOA, showing a 308 

very good agreement with experimental observations. SOA generated by isoprene ozonolysis 309 

adopt a semi-solid state for RH < 40% and a liquid state for RH > 60%. The model predicted 310 

Tg,org is 260 K, which is in agreement with a previous estimation of 255 K (Berkemeier et al., 311 

2014). All simulated viscosities with k = 0.1 fall within uncertainties of experimental 312 

measurements except at 70% RH, which is slightly below the lower bound of the error bar of 313 

experimental measurements. The simulated O:C ratio is 1.0, which is within the range of their 314 

estimation of 0.64-1.1 based on previous chamber experiments (Song et al., 2015). To examine 315 

the effects of k on the calculated viscosity of isoprene SOA, sensitivity studies are conducted 316 

by varying k within the range of 0.05–0.15, showing that lower and higher k would lead to 317 

higher and lower viscosity, respectively. 318 

Isoprene photooxidation in chamber experiments was conducted with very high 319 

precursor concentrations and a short reaction time such that a traditional gas-phase oxidation 320 

scheme dominates, which can be captured well in GECKO-A (Aumont et al., 2005). Note that 321 

the formation of isoprene epoxydiols (IEPOX) (Paulot et al., 2011; Bates et al., 2014) and 322 

subsequent uptake of IEPOX into acidic particles followed by a series of multiphase reactions 323 

including the formation of oligomers and organosulfates (Riva et al, 2019) are found to be 324 

important in the ambient atmosphere (Wennberg et al., 2018). The uptake of IEPOX can be 325 

limited by bulk diffusion in a viscous matrix (Zhang et al., 2018) and IEPOX-SOA is reported 326 

to have high viscosity (Riva et al., 2019). For viscosity simulations of atmospherically relevant 327 

IEPOX-derived SOA, IEPOX multiphase processes would need to be treated in future studies. 328 
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Figure 2 shows viscosity of a-pinene SOA measured in a number of studies and the 329 

corresponding simulated results by the GECKO-A box model for each experimental condition. 330 

Based on previous laboratory measurements k  was assumed to be 0.1 (Lambe et al., 2011b; 331 

Pajunoja et al., 2015; Petters et al., 2019). Overall, the model simulations can reproduce the 332 

RH-dependent viscosity of a-pinene SOA, showing that a-pinene SOA is semi-solid between 333 

0-65% RH and liquid for RH > 65% at the room temperature. Simulated viscosity values of a-334 

pinene SOA are by a few orders of magnitude higher than the ones simulated for isoprene SOA, 335 

which is consistent with experimental observations. Simulation results for Renbaum-Wolff’s 336 

and Grayson’s experiments fall within the relatively large uncertainties of experimental 337 

measurements for the 40-60% RH range. In simulations for Renbaum-Wolff’s experiments at 338 

RH > 60%, the predicted viscosity values are about one order of magnitude lower than the 339 

measured values. Larger deviations are observed for RH < 40%, where simulated viscosities 340 

are up to four orders of magnitude lower than experimental measurements. The simulated 341 

viscosities are about one order of magnitude higher than Graysons’s measurements for 20 < RH 342 

< 40%. The simulated viscosity for Bateman’s experiment agrees well with the observed 343 

experimental value within uncertainties. 344 

Kidd et al. (2014) provided only one data point at 85% RH, which also represents 345 

inferred viscosity based on their impactor measurement; the predicted viscosity is three orders 346 

of magnitude below the inferred value, but only one order of magnitude below its lower bound. 347 

For simulations of Zhang et al. (2015) our predictions are about three to four orders of 348 

magnitude lower than measurements. 349 

The simulated Tg,org are within 255-285 K (see Table 1), which is in good agreement 350 

with a previous estimation of 278 K (Berkemeier et al., 2014) and a measurement of 272 K 351 

(Petters et al., 2019). To assess overall performance of our viscosity predictions, measured and 352 

simulated viscosities were fitted respectively with a second-order polynomial regression. While 353 

the RH dependence of viscosity is very well captured by our simulations, the simulated values 354 

underestimate viscosity by about two or three orders of magnitude on average. The variance of 355 

model simulations and experimental measurements calculated for the logarithm of the viscosity 356 

are very similar (R2 = 0.85), indicating that the GECKO-A box model can reproduce the 357 

variability observed in experimental measurements with different experimental conditions. 358 

Grayson et al. (2016) investigated the impact of SOA mass loadings on viscosity, 359 

observing lower viscosity with higher SOA mass concentrations in the range of 102-104 µg m-360 
3. We conducted four different simulations where precursor concentrations were varied in the 361 
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range of the experimental values to match the final SOA mass loadings. As shown in Fig. 3, 362 

our simulated viscosities are within the experimental uncertainties, capturing this dependence 363 

very well. At higher mass loadings, compounds with relatively high volatility and low Tg can 364 

condense on particles, leading to a reduction of SOA viscosity; for lower mass loadings, 365 

condensation of lower volatility compounds with higher Tg would be dominant, resulting in 366 

higher viscosity. 367 

 368 

3.2. Chemical composition and functional group distributions of SOA 369 

 The GECKO-A box model tracks the concentrations of species both in the gas and 370 

particle phases, while retaining information on molecular properties including molar mass, O:C 371 

ratio, vapor pressure, and volatility or pure compound saturation mass concentration (C0). 372 

Figure 4 shows most abundant particle-phase 500 compounds in simulated isoprene and a-373 

pinene SOA products in the 2-dimensional volatility basis set framework of O:C ratio vs. log 374 

C0 (Donahue et al., 2011).  The markers are color-coded with Tg and the marker size is scaled 375 

with particle-phase concentration in each simulation. Compounds with lower volatility tend to 376 

have higher O:C ratio and higher Tg, in good agreement with recent experimental and model 377 

studies (Zhang et al., 2019; Li et al., 2020).  Isoprene oxidation products are found to have 378 

higher O:C ratio, while a-pinene oxidation products have lower C0 and higher Tg. These results 379 

are in line with higher viscosity of a-pinene SOA compared to isoprene SOA, as measured and 380 

modeled in Figs. 1 and 2.  381 

None of these experimental studies measured average O:C ratio of SOA particles, but 382 

some of them reported estimated O:C ratios based on previous experiments with similar 383 

experimental conditions. Song et al. (2015) estimated the O:C ratio of isoprene SOA to be 0.64 384 

-1.1, which is consistent with our simulated O:C ratio of 1.0. Renbaum-Wolff et al. (2013) 385 

estimated O:C ratio of a-pinene SOA to be 0.3 – 0.4, which is slightly lower than our simulated 386 

value of 0.49. Valorso et al. (2011) reported that the GECKO-A box model tends to 387 

overestimate the O:C ratio of SOA generated by a-pinene photooxidation. Denjean et al. (2015) 388 

showed that the O:C ratio of SOA simulated with GECKO-A from a-pinene ozonolysis was 389 

coherent with the one simulated with the Master Chemical Mechanism, and within the 390 

uncertainty range of the experimental value. A recent study by Gervasi et al. (2020), which 391 

selected 14-21 representative reaction products based on the Master Chemical Mechanism to 392 

simulate viscosity of the same measurement dataset, estimated the O:C ratio to be 1.1 for 393 

isoprene SOA and 0.51 for a-pinene SOA. Overall, the O:C ratios simulated by the GECKO-394 
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A box model are reasonable and in line with available measurements and modeling studies, 395 

while further studies are warranted for simultaneous measurements of O:C ratio and viscosity 396 

along with model applications. 397 

Our method to estimate Tg of organic compounds and SOA viscosity are based on 398 

elemental composition without accounting for molecular structure and specific intramolecular 399 

interactions. Some organic compounds with reactive functional groups may undergo particle-400 

phase reactions, which are not treated in our simulations. To explore these aspects, we 401 

investigate the functional groups distributions computed by GECKO-A and box modeling. The 402 

simulated functionality group distributions of particle-phase SOA compounds are shown in Fig. 403 

5. Isoprene SOA is characterized by high concentrations of alcohols (–ROH) and 404 

hydroperoxides (–ROOH), followed by lower concentrations of ketones (–RC(O)R), and 405 

aldehydes (–RCHO). Our results are consistent with experimental measurements showing that 406 

polyols and organic peroxides are the primary species formed upon isoprene photooxidation 407 

under low NOx conditions (Surratt et al., 2006). Most experiments for a-pinene led to similar 408 

chemical composition with high concentrations of–RC(O)R and–ROOH, followed by slightly 409 

lower concentrations of –RCHO, –ROH and carboxylic acids (–RC(O)OH). The simulations 410 

for Grayson’s experiments are characterized by the highest concentrations of –ROOH and –411 

ROH, and by lower fractions of –RCHO. The simulations for Kidd’s experiments show the 412 

second highest abundance of –ROH and noticeable amounts of –RC(O)OR. The simulation for 413 

Bateman’s experiment is characterized by high –RC(O)R abundance. A previous study 414 

suggested that the hydrogen-bond formation among organic compounds in the SOA organic 415 

matrix may influence the viscosity of a-pinene SOA significantly (Kidd et al., 2014). It has 416 

been further shown that alcohol and carboxylic acid groups can increase viscosity due to the 417 

formation of hydrogen bonding and ionic interactions if carboxylic acids are dissociated 418 

(Grayson et al., 2017; Rothfuss and Petters, 2017). These effects are not explicitly considered 419 

in our viscosity estimation method, which may be one of the reasons for the discrepancies 420 

between measurements and simulations of SOA viscosity. 421 

Chemical composition simulated for Zhang’s experiments is characterized by the 422 

highest –RCHO fraction among all experiments, which may explain the largest difference 423 

between predicted and measured viscosities. Aldehydes are known to be highly reactive in the 424 

condensed phase by reacting with alcohols and hydroperoxides to form peroxyhemiacetals and 425 

oligomers (Ziemann and Atkinson, 2012). Such multiphase reactions could be accelerated 426 

under acidic conditions in the presence of carboxylic acids (Bakker-Arkema and Ziemann, 427 

2020; Shiraiwa et al., 2013). In addition, the GECKO-A model treats neither autoxidation to 428 
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form highly oxygenated organic molecules (HOMs) nor gas-phase dimerization reactions of 429 

peroxy radicals, which are recently found to play a significant role in SOA formation and 430 

growth (Bianchi et al., 2019). These higher molar mass compounds with very low volatility 431 

have higher Tg, hence leading to higher SOA viscosity (Koop et al., 2011; Zhang et al., 2019; 432 

Champion et al., 2019; Li et al., 2020). While the extent of effects of these processes may vary 433 

among reaction conditions applied in each experiment, the lack of treatment of these processes 434 

may be another plausible reason of lower simulated viscosity compared to experimental 435 

measurements. 436 

 437 

3.3. Effects of mass accommodation 438 

All the above simulations were conducted with mass accommodation coefficient equal 439 

to unity. Hereby, we investigate potential kinetic limitations of bulk diffusion on SOA 440 

partitioning and resulting viscosity by simulating two distinct experimental conditions of flow 441 

tube experiments by Renbaum-Wolff et al. (2013) and batch experiments by Kidd et al. (2014). 442 

The effective mass accommodation coefficient (aeff) is computed with Eq. 3, which is 443 

implemented into Eq. 1 and 2 to simulate partitioning that effectively accounts for kinetic 444 

limitations of bulk diffusion. 445 

Figure 6 shows the simulated viscosity estimations for SOA formation under dry 446 

conditions followed by water exposure at different RH. Final viscosity values are higher for 447 

simulations with aeff compared to those with a fixed to 1. For simulations of Renbaum-Wolff’s 448 

experiments there is very small difference in viscosity between the two simulations. For 449 

simulations of Kidd’s experiments, there is a large difference by several orders of magnitude in 450 

viscosity between two simulations of different a when RH < 40%; for example, at 40% RH the 451 

simulated SOA viscosity is ~104 Pa s with a = 1, while it is ~108 Pa s with a = aeff. The 452 

contrasting response between the simulations of Kidd’s and Renbaum-Wolff’s experiments can 453 

be explained by stark differences in SOA composition (see Fig. S1). This effect is caused by 454 

different experimental setups and oxidant and precursor concentrations: Kidd et al. formed SOA 455 

in a batch chamber with a low O3/a-pinene ratio of 0.8, while Renbaum-Wolff et al. used a 456 

continuous flow reactor with high O3/a-pinene ratio of 3.  457 

For the simulation of Kidd’s experiments, ROOH and ROH compounds with relatively 458 

large molar mass, high O:C ratio, and low volatility are formed at the early stage of reaction 459 

followed by rapid condensation into the particle phase (Fig. S1, S2). The relatively low ozone 460 

load limit further oxidation of ROOH and ROH compounds for fragmentation. Hence, SOA 461 
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has relatively high O:C ratio of 0.73 and low volatility, leading to very high viscosity and strong 462 

reduction of aeff (Fig. S5) to retard SOA growth. Consequently, the simulated SOA mass 463 

loading is 15 µg m-3, which is much lower than the simulation with a = 1 (i.e., 7000 µg m-3), 464 

where higher volatility compounds would condense without kinetic limitations, resulting in 465 

lower viscosity. The observed mass loadings in Kidd et al., 2014 were approximately ~1000 µg 466 

m-3. This indicates that particle viscosity and resulting kinetic limitations may be overestimated 467 

in aeff simulations or particle-phase reactions contribute substantially on SOA formation, as 468 

discussed in Sect. 3.2.  469 

For the simulation of Renbaum-Wolff’s experiments, ROH compounds are the major 470 

species formed in the gas phase during the first minutes of reaction (Fig. S1) and the continuous 471 

input of O3 leads to the fragmentation and decomposition of ROH species into RC(O)R 472 

compounds with lower molar mass (Fig. S2, S3). Thus, SOA has relatively low O:C ratio of 473 

0.49 and moderately low volatility (Fig. S4), resulting in lower viscosity compared to the case 474 

of simulation for Kidd et al.. In this case, aeff stays unity for low-volatile compounds (C0 < 10-475 
2 µg m-3), while it is reduced for semi-volatile compounds. The reduction of a of semi-volatile 476 

compounds in a-pinene SOA has been recently observed by Liu et al. (2019), as shown in Fig. 477 

S5. Note that, it is difficult to make a direct comparison between simulated and measured aeff 478 

due to the lack of detailed information on SOA formation conditions in Liu et al. (2019). The 479 

mass loadings are on the same order being 15 and 79 µg m-3 for simulations with aeff and a = 480 

1, respectively. Both results are close with the experimental measurement value of ~50 µg m-3. 481 

As viscosity measurements were not conducted at lower RH in Kidd et al. (2014) and time 482 

evolution of SOA mass concentrations and viscosity are unavailable for both experimental 483 

studies, it is hard to fully resolve impacts of mass accommodation in this study; we intend to 484 

further investigate this aspect in a follow-up study. 485 

 486 
4. Conclusions 487 

We applied the Tg parameterizations and viscosity prediction method in the GECKO-A 488 

box model to simulate the evolution of viscosity and composition of SOA generated via a-489 

pinene and isoprene oxidation. A range of simulations were performed with experimental 490 

conditions applied for viscosity measurements in order to explore various effects such as 491 

chemical composition, relative humidity, mass loadings, and mass accommodation coefficient 492 

on SOA viscosity. Simulated viscosities are consistent with the observed RH-dependence of 493 

viscosity for a-pinene and isoprene SOA, demonstrating the robustness of our viscosity 494 
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prediction method. Simulated viscosity values for isoprene SOA are in good agreement with 495 

measurements, while those for a-pinene SOA were lower than experimental measurements by 496 

a few orders of magnitude. The simulated chemical composition and functional group 497 

distributions indicate that a-pinene SOA contain substantial amounts of aldehydes, ketones, 498 

and carboxylic acids. These compounds are reactive and may undergo dimerization and 499 

oligomerization reactions. In addition, GECKO-A does not treat detailed chemistry involving 500 

stabilized Criegee intermediates, autoxidation and gas-phase dimerization by peroxy radicals. 501 

These processes are known to lead to the formation of high molecular mass compounds that 502 

would increase viscosity of SOA. Moreover, the model assumes that gas-particle partitioning 503 

of organics follows Raoult’s law with ideal mixing conditions. The implementation of these 504 

processes is warranted in future studies for better representation of SOA chemical composition 505 

and viscosity. 506 

Experiments were conducted to form SOA under dry conditions followed by water 507 

exposure for viscosity measurements and it was unnecessary to consider uptake of water into 508 

the condensed phase upon SOA formation. Previous studies have suggested that water vapor 509 

can significantly affect the composition of SOA. At higher RH water vapor interacts with 510 

Criegee intermediates, leading to production of carboxylic acids or aldehydes and ketones via 511 

decomposition routes (Kristensen et al., 2014). Kidd et al. (2014) have reported that as the RH 512 

at which the SOA is formed increases, there is a decrease in viscosity, accompanied by an 513 

increasing contribution from carboxylic acids and a decreasing contribution from higher 514 

molecular mass products. These aspects including chemistry of Criegee intermediates and water 515 

uptake should be a subject of future studies for simulating particle viscosity under humid 516 

conditions. 517 

We have also explored the effects of kinetic partitioning by accounting for reduction of 518 

mass accommodation coefficient in a semisolid or viscous phase. The simulation results suggest 519 

that kinetic limitations in the particle phase would result in a decrease in SOA mass loading 520 

and an increase in viscosity due to suppression of condensation of semi-volatile compounds. It 521 

is still challenging to accurately assess the extent of this effect on viscosity due to the lack of 522 

experimental data for comparison and to the absence of some chemical processes in our 523 

modeling method. Future experiments with simultaneous measurements of chemical 524 

composition in the gas and particle phases as well as particle viscosity under different RH 525 

conditions will be enormously helpful to further improve and constrain the model. While this 526 

study simulated viscosity of pure organic particles, future studies should also investigate 527 

viscosity of inorganic-organic particles and effects of non-ideal interactions including phase 528 
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separation (Zuend & Seinfeld, 2012; You et al., 2014) and gel formation (Richards et al., 2020). 529 

The developed model in this study is a useful tool for further exploration of phase state of 530 

atmospherically relevant SOA and it should also be useful in refining the representation of SOA 531 

chemical evolution and phase state in regional and global air quality models. 532 
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Table 1: Experimental conditions simulated in the box model to explore a-pinene and 961 

isoprene SOA viscosity, and simulated glass transition temperatures of dry SOA (Tg,org) and 962 

the O:C ratio.  963 
Study O3 (ppm) a-pinene (ppm) RH (%) T (K) t (min.) Exp. setup* Tg,org (K) O:C 

Renbaum-Wolff et al., 2013 0.30 0.1 0.5 298 30 Continuous flow. PF-BM 275 K 0.49 

Zhang et al., 2015 30 0.7 0.5 293 6 Batch exp., DMA 258 K 0.43 

Zhang et al., 2015 30 0.7 0.5 293 1.5 Batch exp., DMA 263 K 0.44 

Kidd et al., 2014 0.65 0.8 dry,  297 30 Batch exp., PI 266 K 0.44 

Grayson et al., 2016 0.07 0.1 0.5 298 80 Continuous flow, PF-BM 284 K 0.55 

Bateman et al., 2015 0.1 0.3 0.5 298 174 Continuous flow, R 275 K 0.48 

 O3 (ppm) Isoprene (ppm) RH (%) T (K) t (min.) Exp. setup* Tg,org (K)  

Song et al., 2015 10 4  13.0 293.15 1.4 Continuous flow, PF-BM 260  1.0 

* Poke Flow Bead Mobility (PF-BM), Differential Mobility Analyzer (DMA), Particle 964 

Impactor (PI), Rebound impactor (R). 965 
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 967 
Figure 1: Viscosity of isoprene SOA as a function of RH. Circle markers with error bars 968 

represent measurements and associated uncertainties by Song et al. (2015) and square markers 969 

represent simulations with the GECKO-A box-model with different k values. 970 
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 972 
 973 

Figure 2: Comparison of measured (solid markers) and simulated (open markers) viscosity of 974 

a-pinene SOA as a function of RH. For each set of laboratory experiments the measured 975 

viscosities are reported with uncertainties. The solid and dashed lines represent the polynomial 976 

regression for measurements and model simulations, respectively, to guide eyes. 977 
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 979 
Figure 3: Impacts of SOA mass loadings on viscosity of a-pinene SOA. The red and green 980 

lines represent the upper and lower bounds of measured viscosity in Grayson et al., 2016. 981 

Orange markers represent simulated viscosities by the GECKO-A box model. 982 

 983 

 984 
Figure 4: Chemical composition of SOA derived from oxidation of (a) isoprene and (b)  985 

a-pinene of all simulated experimental conditions reported in Table 1 plotted in the 2D-VBS 986 

framework of volatility and O:C ratio. Markers represent 500 most abundant particle-phase 987 

compounds from each simulation. The markers are color-coded with Tg. The marker size is 988 

scaled with particle phase concentration in each simulation. 989 

  990 

10
2

10
3

10
4

0aVV OoaGing (µg⋅P−3)

10
4

10
5

10
6

10
7

10
8

V
iV

co
Vi

ty
 (3

a⋅
V)

GrayVon et aO., 2016 - upper EounG
GrayVon et aO., 2016 - Oower EounG
G(C.2-A Eox PoGeO

−12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
Oog10(C0, μg ⋅m−3)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2
:C

a) ,soprene

−12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
Oog10(C0, μg ⋅m−3)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2
:C

b) α-pinene

100

150

200

250

300

7
g  (.

)



 33 

 991 
Figure 5: Simulated functional group distributions in particle-phase compounds derived from  992 

isoprene photooxidation (Song et al., 2015) and a-pinene ozonolysis (Bateman et al., 2015; 993 

Kidd et al., 2014; Grayson et al., 2016; Zhang et al., 2015; Renbaum-Wolff et al., 2013). 994 
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 996 
Figure 6: Simulated viscosities of a-pinene SOA with experimental conditions of Kidd et al. 997 

(2014) (blue) and Renbaum-Wolff et al. (2013) (red). The simulations were conducted in two 998 

different scenarios: a = 1 (dashed lines) and a = aeff (solid lines).  999 
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