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Abstract. Tropospheric ozone (O3) is one of the most important air pollutants in China and is projected 

to continue to increase in the near future. O3 and vegetation closely interact with each other and such 

interactions may not only affect plant physiology (e.g., stomatal conductance and photosynthesis) but 

also influence the overlying meteorology and air quality through modifying leaf stomatal behaviors. 

Previous studies have highlighted China as a hotspot in terms of O3 pollution and O3 damage to vegetation. 20 

Yet, few studies have investigated the effects of O3-vegetation interactions on meteorology and air 

quality in China, especially in the light of recent severe O3 pollution. In this study, a two-way coupled 

land-atmosphere model was applied to simulate O3 damage to vegetation and the subsequent effects on 

meteorology and air quality in China. Our results reveal that O3 causes up to 16% enhancement in 

stomatal resistance, whereby large increases are found in Henan, Hebei and Shandong provinces. O3 25 

damage causes a more than 20% reduction in photosynthesis rate, and at least 5% and 20% decrease in 

leaf area index (LAI) and gross primary production (GPP), respectively, and hotspot areas appear in the 

northeastern and southern China. The associated reduction in transpiration causes a 5–30 W m−2 decrease 

(increase) in latent heat (sensible heat) flux, which induces a 3% reduction in surface relative humidity, 

0.2–0.8 K increase in surface air temperature, and 40–120 m increase in boundary layer height in China. 30 

We also found that the meteorological changes further induce a 2–6 ppb increase in O3 concentration in 

northern and south-central China mainly due to enhanced isoprene emission following increased air 

temperature, demonstrating that O3-vegetation interactions can lead to a strong positive feedback that 

can amplify O3 pollution in China. Our findings emphasize the importance of considering the effects of 

O3 damage and O3-vegetation interactions in air quality simulations, with ramifications for both air 35 

quality and forest management. 

 

1. Introduction 

 

Tropospheric ozone (O3) is a secondary air pollutant, which is mainly formed from the photochemical 40 

oxidation of carbon monoxide (CO), methane (CH4) and non-methane volatile organic compounds 
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(VOCs) by hydroxyl radicals (OH) in the presence of nitrogen oxides (NOx = NO + NO2). O3 is known 

as the third most important greenhouse gas with an estimated radiative forcing of 0.41 W m−2
 for the 

period of 1750–2010 (IPCC, 2013; Stevenson et al., 2013). As an air pollutant, O3 is also shown to be 

harmful to not only human health but also vegetation and crop health (Anenberg et al., 2010; Cohen et 45 

al., 2017). Various field experiments and numerical modeling studies have already demonstrated that O3 

can not only reduce gross primary production (GPP) of natural vegetation as well as crop yields 

(Ainsworth et al., 2012; Lombardozzi et al., 2012; Tai e al., 2014; Feng et al., 2015; Yue et al., 2017; Li 

et al., 2018), but also decrease transpiration (Arnold et al., 2018), decrease runoff (Li et al., 2016) on 

larger scales and therefore affect the global carbon and water cycle (Lombardozzi et al., 2015). 50 

 

Vegetation can in turn modulate O3 concentration through influencing the sources and sinks of O3. Dry 

deposition of O3 onto vegetation is a major sink for O3, mainly via stomatal uptake. Stomata are the pores 

on plant leaves; they control water exiting and carbon entering the leaf interior and hence influence the 

water and carbon exchange between the land and atmosphere. When vegetation is exposed to enhanced 55 

O3 levels, cellular and tissue damage can result in a decrease in photosynthesis rate, thus altering CO2 

assimilation. Stomata conductance may decrease subsequently in response to O3 exposure, thus reducing 

the dry-depositional sink of O3 (Sadiq et al., 2017; Zhou et al., 2018), but some studies also suggest that 

O3 exposure can cause stomata to respond more sluggishly to changing environmental conditions, such 

as drought, with complex overall effects on stomatal behaviors and dry deposition (e.g., Huntingford et 60 

al., 2018). Vegetation also affects the sources of O3; the most abundant biogenic VOC (BVOC) species 

emitted by vegetation is isoprene (C5H8), which is a major precursor for O3 formation in polluted, high-

NOx environments, but removes O3 by ozonolysis or by sequestering NOx in more pristine, low-NOx 

regions (Hollaway et al., 2017). Isoprene production is known to be highly coupled with photosynthesis 

and by extension to stomatal conductance (Arneth et al., 2007). Moreover, transpiration, which is 65 

modulated by stomatal behaviors, significantly regulates surface meteorology including water vapor 

content and air temperature, which further influence the production and loss of O3. Therefore, through 

influencing plant ecophysiology (e.g., photosynthesis and stomata behaviors), O3-vegetation interactions 

can modulate boundary-layer meteorology, climate, and may further affect O3 air quality via a series of 

feedback mechanisms. It is therefore essential to fully understand the O3-vegetation interactions and the 70 

following climatic and biospheric impacts especially in areas with high O3 concentrations and vegetation 

density. 

 

In many land surface and biospheric models, such as Noah-MultiParamaterization (Noah-MP) or 

Community Land Model (CL M), the Farquhar-Ball-Berry model (FBB, Farquhar et al., 1980; Ball et al., 75 

1987) is commonly used in to simulate stomatal conductance and photosynthetic rate. In the FBB model, 

the calculation of stomata conductance is based on the calculation of photosynthesis, which makes them 

tightly coupled with each other. Therefore, in several land surface models that consider O3 damage effect 

on vegetation, the photosynthetic rate is modified firstly and the stomatal conductance is modified 

subsequently, which means stomata conductance and photosynthesis will change collinearly under 80 

chronic O3 exposure (Sitch et al., 2007; Yue and Unger, 2014). However, field experiments have shown 

that, under chronic O3 exposure, stomata conductance decreases with a smaller magnitude than 

photosynthetic rate does, which makes the simulations of stomata conductance and photosynthetic rate 

as well as the following water and carbon cycles in the above models less accurate (Lombardozzi et al., 

2012). Modifying stomata conductance and photosynthesis separately in land surface models is therefore 85 
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more reasonable. Lombardozzi et al (2012) modified the stomata conductance and photosynthetic rate 

separately based on the cumulative uptake of O3 into leaves and has shown a better representation of 

plant responses to O3 exposure. Efforts have been made to investigate the effects of O3 exposure on land 

biosphere based on the above O3 damage schemes. For example, based on an off-line process-based 

vegetation model, Yue and Unger (2014) found that O3 damage decrease GPP by 4–8% on average in the 90 

eastern US and leads to significant decreases of 11–17% in east coast hot spots. Using the offline CLM 

model, Lombardozzi et al. (2015) estimated that the present O3 exposure reduces GPP and transpiration 

globally by 8–12% and 2.0–2.4%, respectively.  

 

Several modeling studies conducted so far have demonstrated the importance of considering the 95 

interactions and feedbacks between atmosphere and biosphere. By dynamically coupling O3 and LAI but 

without considering the meteorological feedbacks of O3-vegetation interactions to O3, Zhou et al. (2018) 

found that O3-induced damage on LAI can lead to changes in O3 concentrations by -1.8 to +3 ppb in 

boreal summer. By considering the interactions between atmospheric chemistry with biosphere in a two-

way coupling model, Lei et al. (2020) quantified the damaging effects of O3 on vegetation and found a 100 

global reduction of annual GPP by 1.5–3.6 %, with regional extremes of 10.9–14.1 % in the eastern US 

and eastern China. Based on the CESM model with fully interactive atmospheric chemistry, 

biogeochemical and biogeophysical cycles, Sadiq et al. (2017) estimated that surface O3 is 4–6 ppb higher 

in Europe, North America and China in simulations with O3-vegetation coupling comparing the surface 

O3 concentrations without O3-vegetation coupling. Based on modified WRF-Chem model, Li et al (2016, 105 

2018) investigated the effect of O3 exposure on hydroclimate and crop productivity in the US, and 

highlighted O3 damage effects on meteorological fields and surface energy balance as well as the crop 

yields, but the feedbacks of changing meteorology onto surface O3 were not investigated. Arnold et al 

(2018) examined the global climate response to O3 exposure and found O3 damage on vegetation can 

induce widespread surface warming and changes in clouds, which could be critical on regional scales. 110 

Although the interactions between O3 and vegetation are critical to our environment, adequate 

representation of O3-vegetation interactions is still missing in most atmospheric models used for climate 

and atmospheric chemistry simulations, at least in part due to incomplete coupling capacities with land 

surface or biospheric model components at high resolutions, and in part due to limited observations to 

optimize O3 damage schemes for wider regional applicability.  115 

 

With the rapid urbanization and industrialization in the recent decades, China has experienced 

increasingly severe O3 pollution, which is expected to continue to worsen in the near future. O3 

concentration in China has been observed to exceed ambient air quality standard by 100–200% (Wang 

et al., 2017) with the maximum 8-hour mean concentration of O3 (MDA8 O3) increasing by 4.6% per 120 

year from 2015 to 2017 (Silver et al., 2018). Lu et al. (2018) showed that urban surface O3 in China 

during 2013–2017 was significantly higher than that in other regions around the world, and thus 

vegetation exposure to O3 is also higher in China. Li et al. (2018) also revealed the increasing trend of 

O3 in megacity clusters of China during 2013–2017, which is closely related with meteorology, 

anthropogenic emissions and PM2.5 concentrations. Global-scale studies have highlighted China as a 125 

hotspot of O3 pollution and damage to vegetation compared with other regions (Sadiq et al., 2017; Arnold 

et al., 2018; Lei et al., 2020). However, a comprehensive study of how O3 affects meteorology and air 

quality through O3-vegetation interactions in China at high spatial resolutions, especially under the severe 

O3 pollution during 2014–2017, is still limited but highly warranted. 
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 130 

This study, therefore, first adopted and implemented a semi-mechanistic O3 damage scheme in a widely 

used regional atmosphere-land modeling framework and hence used it to simulate and assess the impacts 

of O3-vegetation interactions on boundary-layer meteorology and air quality in China at a high spatial 

resolution. Specifically, O3-induced damage to vegetation, changes in meteorology in China due to O3-

vegetation coupling, and the subsequent feedback effects onto O3 concentration itself are examined, 135 

which is crucial to fully understand the O3-vegetation interactions and the following impacts on climate, 

biosphere, and air quality in areas with both high O3 concentrations and high vegetation coverage. 

 

2. Methods 

2.1 WRF-Chem Model Setup 140 

    

The Weather Research and Forecasting (WRF) model is a state-of-the-art mesoscale nonhydrostatic 

meteorological model. An atmospheric chemistry module that includes various gas-phase chemistry and 

aerosol mechanisms has been implemented into and fully coupled with WRF to create the WRF-Chem 

model (Grell et al., 2005; Fast et al., 2006). In WRF-Chem, both the air quality and meteorological 145 

components use the same transport scheme, model grid, subgrid-scale transport physics and time step. 

WRF-Chem has been widely used in previous air quality studies (e.g., Li et al., 2016; Li et al., 2018; Liu 

et al., 2018; Liu et al., 2020). In this study, we applied our revised WRF-Chem model based on version 

3.8.1 to simulate meteorological fields and O3 concentration over China. For the land surface component 

within WRF, we used Noah-MP, which will be described in the next subsection.  150 

 

The model domain was configured at a horizontal resolution of 27 km on the Lambert Conformal 

projection, centered at 37N, 108.1E and covering the whole China. The model has 26 vertical layers, 

with the lowest layer at 0.17 km and the highest layer at 17.67 km. The meteorological initial and 

boundary conditions are provided by the 6-hourly Final Operational Global Analysis (FNL) dataset at a 155 

horizontal resolution of 11. The chemical initial and boundary conditions were generated from the 

Model for Ozone and Related Chemical Tracer version 4 (MOZART-4; Emmons et al., 2010) that are 

available at a horizontal resolution of 1.92.5 with 56 layers and updated for every 6 hours. 

 

Anthropogenic emissions were from the Multi-resolution Emission Inventory for China (MEIC) 160 

compiled at a spatial resolution of 27 km and an hourly temporal resolution that were suitable for our 

research domain. Biogenic emissions were calculated online by the Model of Emissions of Gases and 

Aerosol from Nature (MEGAN) (Guenther et al., 2006). Biomass burning emissions were extracted from 

the Fire Inventory from NCAR (FINN) version 1.5 datasets (Wiedinmyer et al., 2010). Dust emissions 

were generated online by the Goddard Global Ozone Chemistry Aerosol Radiation and Transport model 165 

(GOCART; Ginoux et al., 2001). Gas-phase chemistry was simulated with second generation Regional 

Acid Deposition Model (RADM2; Stockwell et al., 1990) mechanism, and the Modal Aerosol Dynamics 

Model for Europe (MADE; Ackermann et al., 1998), which is coupled with Secondary Organic Aerosol 

Model (SORGAM; Schell et al., 2001) for aerosol treatment. Detailed physics schemes used in the 

simulations are shown in Table S1. 170 
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2.2 Description of Noah-MP model 

 175 

Noah-MP is a land surface model that uses multiple options for key land-atmosphere interaction 

processes (Niu et al., 2011). Noah-MP contains a separate vegetation canopy defined by a canopy top 

and bottom, crown radius, and leaves with prescribed dimensions, orientation, density, and radiometric 

properties. The canopy employs a two-stream radiation transfer approach along with shading effects 

necessary to achieve proper surface energy and water transfer processes (Dickinson, 1983). Noah-MP is 180 

capable of distinguishing between C3 and C4 photosynthesis pathways and defines vegetation-specific 

parameters for plant photosynthesis and respiration. 

 

Noah-MP is available for prognostic vegetation growth that combines a Ball-Berry photosynthesis-based 

stomatal resistance (Farquhar et al., 1980; Ball et al., 1987) that allocates carbon to various parts of 185 

vegetation (leaf, stem, wood and root) and soil carbon pools (fast and slow). GPP, leaf area index (LAI) 

and canopy height are then predicted downstream from photosynthesis. The dynamic LAI and canopy 

height calculation will further affect surface energy fluxes, which will then affect the boundary-layer 

meteorology when coupling with the atmosphere model in WRF-Chem. 

 190 

In this study, the O3 concentration simulated by the chemical module of the WRF-Chem model was also 

dynamically passed onto the Noah-MP land surface model at every time step to modify the 

photosynthesis and stomatal conductance due to O3 damage. The land surface variables simulated by 

Noah-MP were also dynamically passed back onto the atmospheric components, thus allowing 

immediate, two-way feedback effects onto meteorological fields, O3 and other atmospheric chemical 195 

constituents. In this way, land surface processes, atmospheric dynamics, and atmospheric chemistry in 

the WRF-Chem model were fully coupled. 

 

2.3 O3 damage parameterization 

 200 

In Noah-MP, the Farquhar model (Farquhar et al., 1980) was used to calculate photosynthetic rate, 

whereas Ball-Berry model was used to calculate stomatal conductance (Ball et al., 1987). The 

photosynthesis rate, A (μmol CO2 m−2 s−1), is calculated separately for sunlit and shaded leaves and is 

limited by either one of three limiting factors and can be calculated as 

 205 

𝐴 = min(𝑊𝑐 , 𝑊𝑗, 𝑊𝑒) 𝐼𝑔𝑠       (1) 

 

where Wc is the Rubisco-limited photosynthesis rate, Wj is the light-limited photosynthesis rate, and We 

is the export-limited photosynthesis rate. Igs is the growing season index with values ranging from 0 to 1. 

Stomatal conductance (gs) is computed based on the photosynthesis rate from the Farquhar model as 210 

 

𝑔𝑠 =
1

𝑟𝑠
= 𝑚

𝐴

𝑐𝑠

𝑒𝑠

𝑒𝑖
𝑃𝑎𝑡𝑚 + 𝑏       (2) 

 

where gs is the leaf stomatal conductance (μmol m−2 s−1); rs is the leaf stomatal resistance (s m2 μmol−1); 

m is an empirical parameter that relates stomatal conductance and photosynthesis with values ranging 215 

from 5 to 9; A is the photosynthesis rate as described above; cs is the CO2 partial pressure at the leaf 
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surface (Pa); es is the vapor pressure at the leaf surface (Pa); ei is the saturation vapor pressure inside the 

leaf (Pa); Patm is the atmospheric pressure (Pa); and b is the minimum stomatal conductance. 

 

As mentioned above, following Lombardozzi et al. (2015), an O3 damage scheme was implemented in 220 

Noah-MP embedded in WRF-Chem model version 3.8.1. The photosynthesis rate and stomatal 

conductance are modified independently using two sets of O3 impact factors, 𝐹𝑝𝑂3
and 𝐹𝑐𝑂3

, respectively, 

which are then multiplied to the initial A and gs calculated by the Farquhar-Ball-Berry model, respectively. 

Lombardozzi et al. (2012) found that independently modifying stomatal conductance and photosynthesis 

can improve the model prediction of plant response to O3 damage. The two damage factors are calculated 225 

based on the cumulative uptake of O3 (CUO), which integrates the O3 flux inside leaves through the 

stomata throughout the growing season. The CUO (mmol m−2 ) is calculated as 

 

CUO =  10−6 ∑
[O3]

𝑘𝑂3𝑟𝑠+𝑟𝑎+𝑟𝑏
∆𝑡       (3) 

 230 

Where [O3] is the surface O3 concentration (nmol m-3); 𝑘𝑂3
= 1.61 is the ratio of leaf resistance to O3 to 

leaf resistance to water (Uddling et al., 2012); rs is the stomatal resistance, ra is the aerodynamic 

resistance and rb is the boundary-layer resistance (s m−1); ∆t is the model time step (s). CUO is only 

accumulated when LAI is larger than 0.4 and O3 flux is larger than a threshold value of 0.8 nmol O3 m−2 

s−1 to consider the detoxification effect of plants to O3 damage. 235 

 

The two damage factors have linear relationships with CUO and can be calculated as follows: 

 

𝐹𝑝𝑂3
= 𝑎𝑝 × CUO + 𝑏𝑝        (4) 

𝐹𝑐𝑂3
= 𝑎𝑐 × CUO + 𝑏𝑐        (5) 240 

 

where 𝐹𝑝𝑂3
 is the O3 damage factor for photosynthesis and 𝐹𝑐𝑂3

 is the O3 damage factor for stomatal 

conductance; ap, bp, ac, and bc are empirical slopes and intercepts of three different plant groups 

(broadleaf trees, needleleaf trees, and grasses or crops) from Lombardozzi et al. (2015). The values of 

these slopes and intercepts are shown in Table 1. The original photosynthesis and stomatal conductance 245 

are then multiplied with the two damage factors, respectively to get the modified photosynthesis and 

stomatal conductance under O3 exposure. 

 

Table 1. Slopes (per mmol m−2) and intercepts (unitless) used for O3 damage factors in Eqs. (4) and (5), 

following Lombardozzi et al. (2015).  250 

 

 

 

Photosynthesis Conductance 

Slope (ap) Intercept (bp) Slope (ac) Intercept (bc) 

Broadleaf 0.0000 0.8752 0.0000 0.9125 

Needleleaf 0.0000 0.8390 0.0048 0.7823 

Grasses and crops −0.0009 0.8021 0.0000 0.7511 
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2.3 Model Experiments and Evaluation 255 

 

Two sets of experiments were conducted in this study. We performed a control simulation 

(simu_withoutO3) without O3 damage on vegetation and a production simulation (simu_withO3) with O3 

damage on vegetation. Detailed information of the experiments is shown in Table 2. In the simu_withO3 

experiment, the O3 concentration simulated by the chemical module of the model is dynamically passed 260 

onto the land surface model at every time step to modify the photosynthesis and stomatal conductance. 

The differences between the two sets of experiments including vegetation physiology, meteorological 

fields and O3 concentration can thus be attributed to O3-vegetation interactions. In this work, each 

simulation was conducted from 24 May to 1 September every year from 2014 to 2017 and the days in 

May were discarded as spin-up. The 4-year June-July-August (JJA) averaged results were analyzed and 265 

compared. These years were selected based on the high O3 concentrations that were pointed out in 

previous studies (Li et al., 2018; Lu et al., 2018; Silver et al., 2018). JJA was selected because of the 

most severe O3 pollution in this season and because it is the active growing season of plants.  

 

Table 2.  Description of the two sets of model experiments. 270 

Experiment name Year Anthropogenic 

Emission 

Meteorological ICs 

and BCs 

simu_withoutO3 2014–2017 JJA Year 2014 FNL 

simu_withO3 2014–2017 JJA Year 2014 FNL 

 

The simulated meteorological variables and air pollutant concentrations were evaluated using available 

in-situ observations in China. The daily meteorological observations including temperature at 2 meter 

(T2m), relative humidity at 2 meter (RH2m), and wind speed at 10 meter (WS10m) above displacement 

height were from the National Meteorological Information Center. There are 698 stations in the study 275 

domain. The air pollutant observations were provided by the China National Environmental Monitoring 

Center (CNEMC) network, which offers hourly concentrations of particulate matter with an aerodynamic 

diameter of less than 2.5 μm (PM2.5) and 10 μm (PM10), carbon monoxide (CO), O3, sulfur dioxide (SO2) 

and nitrogen dioxide (NO2). The locations of meteorological stations and the sites of CNEMC network 

are shown in Figure 1. The statistical parameters including mean values (Mean) of observations and 280 

simulated variables, their standard deviations (SD), indices of agreement (IOA), mean biases (MB), and 

correlation coefficients (CORR) were computed to evaluate the model performance in this study. 
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Figure 1. Site locations of air quality monitoring sites (blue dots) and the meteorological monitoring 285 

sites (pink dots) with the underlying is the terrain height (m). 

 

3. Results 

 

3.1  Model evaluation  290 

 

Table 3 shows the city-averaged evaluation results of meteorological variables. The information of the 

major cities used for evaluation is shown in Table S2. From Table 3, we can find that T2m is 

underestimated with MB values ranging from −1.00 ℃ in year 2017 to −0.70 ℃ in year 2014. The IOA 

and CORR are generally higher than 0.8, indicating that the model could reasonably simulate the 295 

variations of T2m. Unlike temperature, relative humidity is overestimated by the model simulations with 

MB values ranging from 5.94 in year 2014 to 9.32 in year 2016, but the CORR values with observations 

are still high (CORR > 0.7). Wind speed is also overestimated by more than 0.38 m s−1, which might be 

caused by the underestimation of terrain height as reported in other WRF modeling studies (Brunner et 

al., 2015; Liu et al., 2020). The detailed evaluation results for each city are shown in Table S3-S5. As 300 

shown in these tables, the model can reasonably capture the spatial distribution of these meteorological 

variables. For example, the larger values of T2m and RH2m in cities from southern China comparing with 

the cities in northern China (Table S3 and S4). We also found that the model simulations have better 

performance in northern China than in southern China in terms of IOA and CORR as shown in these 

tables. 305 

 

Table 3. Evaluation results for the temperature at 2 meter (T2m), relative humidity at 2 meter (RH2m) and 

wind speed at 10 meter (WS10m) in China. Mean_obs (Mean_simu) is the mean value of observation 

(model simulation); SD_obs (SD_simu) is the standard deviation of the observation (model simulation); 

IOA is the index of agreement; CORR is the correlation coefficient; MB is the mean bias. 310 

 

 Year Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB 

T2m 

(℃) 

2014 25.41 2.61 24.71 2.27 0.86 0.87 −0.70 

2015 25.41 2.56 24.67 2.24 0.86 0.89 −0.74 

2016 26.35 2.82 25.44 2.61 0.85 0.85 −0.91 

2017 26.29 3.17 25.28 3.16 0.81 0.78 −1.00 

RH2m 

（%） 

2014 74.77 10.22 80.71 8.44 0.67 0.71 5.94 

2015 73.34 10.75 82.16 8.16 0.65 0.74 8.82 

2016 74.14 10.81 83.46 9.20 0.67 0.73 9.32 

2017 73.24 11.65 81.56 9.18 0.67 0.69 8.32 

WS10m 

（m s−1） 

2014 1.84 0.66 2.22 1.16 0.54 0.40 0.38 

2015 2.00 0.74 2.48 1.35 0.55 0.44 0.48 

2016 1.99 0.70 2.47 1.32 0.54 0.45 0.48 

2017 2.02 0.72 2.51 1.42 0.53 0.45 0.50 
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Table 4 shows the city-averaged evaluation results of six air pollutants. The information of the major 315 

cities used for air pollutant evaluation is shown in Table S6. Form Table 4, positive MB values for O3, 

PM2.5, SO2, NO2, and negative MB values for CO are found. The overestimations of O3 by WRF-Chem 

are also reported by Hu et al. (2016) and Gao et al (2020). For PM10, both positive and negative MB 

values are found for different years. The results indicate general overestimation by the model of most air 

pollutants except for CO. The IOA of air pollutant concentration ranges from 0.36 (SO2) to 0.63 (O3). 320 

The correlation coefficient of air pollutants ranges from 0.14 (PM10) to 0.66 (O3). Detailed evaluation 

results for each city are shown in Table S7-S12. Our results are generally consistent with the evaluation 

results of CMAQ simulation over China by Liu et al. (2020). MBs of SO2, NO2 and CO are consistent in 

both magnitude and sign with Liu et al. (2020), while the MBs of PM and O3 are larger than Liu et al. 

(2020). Correlation coefficients of air pollutants are also at similar magnitude with Liu et al. (2020), 325 

showing that our model results can well capture the temporal variations of air pollutants. Overall, there 

are systematic biases in simulated variables especially the air pollutant concentrations, but the spatial 

distribution of both meteorological variables and air pollutant concentrations are reasonably simulated 

by the model, lending credence to the use of the model for sensitivity studies to examine the effects of 

O3-vegetation interactions on the atmospheric environment. 330 

 

Table 4. Evaluation results for the air pollutants in China. Mean_obs (Mean_simu) is the mean value of 

observation (model simulation); SD_obs (SD_simu) is the standard deviation of the observation (model 

simulation); IOA is the index of agreement; CORR is the correlation coefficient; MB is the mean bias. 

 335 

 Year Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB 

O3 

(ppb) 

2014 29.79  9.95  51.49  18.60  0.48  0.57  22.13  

2015 32.04  10.16  48.98  18.27  0.54  0.55  16.95  

2016 33.28  10.59  48.47  18.18  0.56  0.58  15.14  

2017 35.74  11.71  49.50  19.61  0.63  0.66  13.82  

PM2.5 

(μg m−3) 

2014 46.30  21.52  63.28  27.15  0.52  0.33  18.61  

2015 38.52  17.30  55.56  24.85  0.55  0.42  16.66  

2016 31.86  13.96  56.70  25.69  0.47  0.40  24.54  

2017 28.82  12.23  56.34  25.70  0.40  0.30  27.65  

PM10 

(μg m−3) 

2014 80.79  31.62  71.74  28.65  0.47  0.22  −7.51  

2015 72.03  29.74  63.83  26.29  0.50  0.26  −8.93  

2016 59.68  22.21  65.01  27.29  0.49  0.24  4.65  

2017 57.83  22.18  64.78  27.25  0.41  0.14  6.95  

SO2 

(ppb) 

2014 6.11  2.36  8.41  3.22  0.48  0.41  2.36  

2015 4.78  1.89  8.39  3.26  0.44  0.45  3.64  

2016 4.17  1.57  8.08  3.16  0.41  0.36  3.92  

2017 3.83  1.33  8.58  3.52  0.36  0.42  4.78  

NO2 

(ppb) 

2014 17.20  4.51  17.23  4.63  0.41  0.26  0.06  

2015 16.01  4.47  17.37  4.98  0.43  0.31  1.43  

2016 15.29  4.29  17.35  5.11  0.43  0.31  2.06  

2017 15.83  4.37  17.84  5.12  0.43  0.32  2.02  

CO 

(ppm) 

2014 0.76  0.19 0.44  0.11  0.48  0.42  −0.32  

2015 0.67 0.15  0.45  0.11  0.49  0.42  −0.22  
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2016 0.65  0.14  0.45  0.11  0.50  0.45  −0.2  

2017 0.64  0.12  0.46  0.11  0.47  0.38  −0.18  

 

3.2  Responses of vegetation to O3 damage 

 

O3 can adversely affect photosynthesis rate and stomatal conductance and therefore interfere with 

vegetation growth, productivity and transpiration. To understand the O3-induced damage on vegetation 340 

physiology, the spatial distribution and changes in stomatal resistance (RS), photosynthesis rate (PSN), 

LAI, GPP, and transpiration rate (TR) during 2014–2017 summer (June-July-August) were analyzed. 

 

Figure 2a and 2d display the spatial distribution of sunlit stomatal resistance (RSSUN) and shaded 

stomatal resistance (RSSHA) from the simu_withoutO3 experiment, respectively. The absolute and 345 

relative changes in RSSUN (RSSHA) between simu_withO3 and simu_withoutO3 experiments are shown 

in the middle and the right panel of Figure 2, separately. In general, simulated stomatal resistance in 

eastern China is larger than that in western China. Both RSSUN and the RSSHA are enhanced in response 

to O3 damage to vegetation. The maximum increases in RSSUN and RSSHA can be up to 1.0103 s m–

1, which is equivalent to a ~16% increase compared to the simu_withoutO3 simulation. Comparing the 350 

changes in RSSUN vs. RSSHA, the changes in RSSHA are larger than that in RSSUN, reflecting the 

larger sensitivity of shaded leaves to O3 damage. Northern China experiences larger changes in stomatal 

resistance generally, especially in Henan, Hebei, and Shandong provinces, where the changes in stomatal 

resistance are twice as much as the changes in stomatal resistance over other regions. 

 355 

 

Figure 2. Spatial distribution of mean stomatal resistance in JJA of 2014–2017 for (a) sunlit leaves 

(RSSUN) and (d) shaded leaves (RSSHA) from the simu_withoutO3 experiment. Absolute changes in 

(b) RSSUN and (e) RSSHA caused by O3 damage. Relative changes in (c) RSSUN and (f) RSSHA 

caused by O3 damage. Absolute changes are the RSSUN (RSSHA) from simu_withO3 minus RSSUN 360 

(RSSHA) from simu_withoutO3. Relative changes are calculated by absolute changes over the RSSUN 

(RSSHA) from simu_withoutO3. 
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The spatial distribution of 2014–2017 JJA mean PSN, LAI and GPP from the simu_withoutO3 

simulations and their changes induced by O3 damage are presented in Figure 3. From Figure 3a, we find 365 

that the PSN values are generally higher in eastern China compared with western China with the largest 

values of up to ~7 μmol CO2
−1 m−2 s−1. Similar spatial distribution and hotspot areas can also be observed 

for LAI (Figure 3d) and GPP (Figure 3g), with LAI and GPP values in hotspot areas up to 3.6 and 10 g 

C m−2 day−1, respectively. We also find that Henan, Hebei, Shanxi and Shandong provinces have smaller 

values in PSN, LAI and GPP when compared with other provinces in eastern China. 370 

 

With O3 damage, PSN decreases in general, with absolute changes in PSN ranging from 0.6 to 3.6 μmol 

CO2 m−2 s−1 (Figure 3b), representing 20–40% reductions in PSN. For northeastern and southern China, 

where the original PSN values are large, ~20% reductions in PSN are found (Figure 3c). While for regions 

where original PSN values are small, more than 40% of PSN is reduced due to O3 damage (Figure 3c). 375 

In response to the PSN reductions, LAI and GPP also decrease. More than 0.4 reductions in LAI are 

found in central and northern China (Figure 3e), corresponding to more than 20% reductions in LAI; in 

other regions, 5–15% reductions in LAI are observed. More than 0.8 g C m−2 day−1 reductions in GPP 

are found generally in China. Similar to Figure 3c, we find that GPP decreases by ~20% in northeastern 

and southern China and decreases by more than 40% in other regions (Figure 3i). Based on offline models 380 

without considering atmosphere-biosphere coupling, O3 damage was found to decrease GPP at most by 

11–17% in the East Coast hotspots of the US (Yue and Unger, 2014). Using the offline CLM model, 

Lombardozzi et al. (2015) estimated that the present O3 exposure reduces GPP globally by 8–12%. Based 

on RegCM-CHEM4 regional climate model coupled with YIBs terrestrial biosphere model, Xie et al. 

(2019) revealed that O3 damage induces a significant reduction (12.1±4.4%) in the GPP, up to 35% in 385 

summer over China (Table S13). Comparing our results with previous studies, our results are broadly 

consistent with Xie et al. (2019) but the magnitude is larger than the studies conducted by Yue and Unger 

(2014) and Lombardozzi et al. (2015). Differences or uncertainties may arise from the different model 

settings. It appears that offline models as used by Yue and Unger (2014) and Lombardozzi et al. (2015) 

generally found smaller damage than studies with two-way coupling between the atmosphere and 390 

biosphere as used by Xie et al. (2019) and our work; this could be due to the existence of positive 

biosphere-atmosphere feedbacks that potentially worsen O3 damage, as will be discussed in subsequent 

sections. Different O3 damage schemes employed in the models may also be a source of differences, 

although we note that both this work and Lombardozzi et al. (2015) used the same scheme, so the 

differences appear to arise more likely from the effect of coupling and other model settings than from the 395 

schemes alone. 

 

The spatial distribution of dominant vegetation types in China are shown in Figure 4, where we can see 

that the croplands dominant in eastern China and especially in southern China suffer the greatest GPP 

reductions, indicating that crop yields in China would also be heavily affected by O3 damage. 400 
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Figure 3. Spatial distribution of 2014–2017 JJA mean (a) photosynthesis rate (PSN), (d) leaf area index 

(LAI), and (g) gross primary productivity (GPP) from the simu_withoutO3 experiment; absolute changes 

in (b) PSN, (e) LAI and (h) GPP caused by O3 damage; and relative changes in (c) PSN, (f) LAI and (i) 405 

GPP caused by O3 damage. Absolute changes are the results from simu_withO3 minus results from 

simu_withoutO3. Relative changes are calculated from the absolute changes over the results from 

simu_withoutO3. 
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 410 
Figure 4. The vegetation fraction of the dominant vegetation types in China: (a) broadleaf, (b) needleleaf, 

(c) cropland, (d) grass, and (e) others (other vegetated types and non-vegetated areas). 

 

Figure 5 depicts the spatial distribution of transpiration rate (TR) of vegetation and the changes in 

transpiration rate induced by O3 damage. TR values are higher in eastern China where there is larger 415 

vegetation coverage (Figure 5a). As shown in Figure 5b, TR deceases by 0.2–1.0 mm day
−1

 generally in 

eastern China with large reductions in northern China, especially in Henan, Shandong, Anhui and Jiangsu 

provinces. In terms of relative changes, TR decreases by ~12% in northeastern and southern China, while 

more than 24% reductions are found in other regions. Transpiration is affected by the changes in both 

RS and LAI. With O3 damage, both the increases in RS (Figure 2c and Figure 2f) and decreases in LAI 420 

(Figure 3f) cause TR to decrease, as shown in Figure 5b and 5c. Comparing the changes in RS (Figure 

2c and Figure 2f), LAI (Figure 3f) and TR (Figure 5c), we can find that the distribution of changes in TR 

is more consistent with that of RS, reflecting the dominance of RS in controlling TR. 

  

 425 
Figure 5. Spatial distribution of 2014–2017 JJA mean (a) transpiration rate (TR), and (b) absolute 

changes and (c) relative changes in TR caused by O3 damage. 

 

 

 430 
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3.3  Changes in meteorology due to O3-vegetation coupling 

 

Through interacting with vegetation, O3 has the potential to further affect the meteorological environment 

in China via modifying, e.g., surface heat fluxes, temperature, humidity, and boundary layer height. The 435 

distribution of meteorological variables from simulations with and without O3 damage is thus compared 

and analyzed in this section. 

 

Figure 6 shows the spatial distribution of latent heat (LH) flux and sensible heat (SH) flux, and the 

changes in LH and SH due to O3-vegetation coupling. With O3 included in the model simulations, the 440 

LH flux decreases by more than 4 W m−2 (Figure 6b) on average following the decreases in transpiration 

rate. Hotspot areas are found in Henan, Shandong, Anhui and Jiangsu provinces, where reductions in LH 

can be up to 30 W m−2. Meanwhile, 5–30 W m−2 increases in SH flux are observed in central and northern 

China (Figure 6d). With O3-vegetation coupling, more than 20% reductions in LH flux are found in 

central and northern China (Figure 6c), 20% increment in SH flux are found in similar regions (Figure 445 

6f), indicating that O3 damage shifts the energy balance toward more net radiation being dissipated by 

SH flux than LH flux, with ramifications for surface temperature.  

 

  

Figure 6. Spatial distribution of mean (a) latent heat flux (LH) and (d) sensitive heat flux (SH) from the 450 

simu_withoutO3 experiment; absolute changes in (b) LH flux and (e) SH flux in JJA of 2014–2017 

caused by O3 damage; and relative changes in (c) LH flux and (f) SH flux caused by O3 damage. Absolute 

changes are the LH (SH) flux from simu_withO3 minus LH (SH) flux simu_withoutO3. Relative changes 

are calculated by absolute changes over LH (SH) flux from simu_withoutO3. 

 455 

Figure 7 shows the distribution and the changes in surface relative humidity, temperature and planetary 

boundary layer height (PBLH) in response to O3 damage. Reductions in transpiration rate can directly 

cause reductions in relative humidity. As shown in Figure 7b, relative humidity has at least 3% absolute 

reductions. Values of relative humidity decrease more in northern China than in southern China. Similar 

to the changes in TR (Figure 5b), larger reductions in relative humidity (3–9%) are found over Henan, 460 
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Hebei, Shandong, Anhui provinces. The decreases in LH flux and increases in SH flux following the 

changes in transpiration rate drive the increases in temperature and contribute to PBLH growth. As 

presented in Figure 7e and Figure 7h, the distribution and hotspot areas of the changes in temperature 

and PBLH are similar to those in relative humidity. Generally, northern China has larger increases of 

temperature and PBLH compared with other regions. Generally, temperature increases by 0.2–0.8 K and 465 

PBLH increases by 40–120 m for northern China. The hotspot areas experience at least 0.6 K increases 

in temperature, and 80 m increases in PBLH.  

 

As shown in Table S13, our results are comparable with results from a regional simulation conducted by 

Li et al. (2016), which showed that O3 damage decreases LH flux by 10–27 W m−2 and O3 damage 470 

increases temperature by 0.6 C–2.0 C in the US. However, in their study, Li et al. (2016) assumed that 

O3 damage to plants happens when O3 concentration is over a threshold of 20 ppb to imitate a weaker 

detoxifying effect of plants, instead of the 40 ppb threshold that was commonly used in other previous 

studies using the same ozone damage scheme (e.g., Lombardozzi et al., 2015; this study). Considering 

the severe O3 air pollution in China, we resorted to use the more universal O3 threshold of 40 ppb used 475 

by other studies to represent a more conventional detoxifying effect, instead of lowering the threshold 

value that would cause much larger changes in the surface fluxes and meteorological fields. Using a two-

way coupling model and the same O3 damage scheme, Arnold et al. (2018) revealed that O3 causes less 

than 8 W m−2 changes in surface heat fluxes regionally, which is smaller than the changes of surface heat 

fluxes in our study. One possible reason is that the simulated changes in O3 and aerosol in Arnold et al. 480 

(2018) did not feedback onto radiation and climate simulation or affect LAI.  
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Figure 7. Spatial distribution of mean (a) 2-m relative humidity, (d) 2-m temperature at, and (g) planetary 

boundary layer height (PBLH) in JJA of 2014–2017 from the simu_withoutO3 experiment; absolute 485 

changes in (b) RH2m, (e) T2m and (h) PBLH caused by O3 damage; and relative changes in (c) RH2m, (f) 

T2m and (i) PBLH caused by O3 damage. Absolute changes are the results from simu_withO3 minus 

results from simu_withoutO3. Relative changes are calculated by absolute changes over the results from 

simu_withoutO3. 

 490 

3.4  O3-vegetation feedbacks on O3 concentrations 

 

O3-induced changes in vegetation, surface fluxes and the overlying meteorology can also constitute 

important feedback effects onto O3 concentration itself. Figure 8 shows the spatial distribution of surface 

O3 concentration. As shown in Figure 8a, surface O3 concentration is higher in central and northern China 495 

during summer. In terms of the feedbacks on O3 concentration, we found generally enhancements in O3 

concentration when O3-vegetation interactions are accounted for, thus representing a positive feedback 

that worsens O3 air quality (Figure 8b). O3 concentration increases the most (by up to 6 %) in Hebei, 

Shanxi and Henan provinces, with the maximum increment of 6 ppb. The enhancement in surface O3 

concentration from our study is at the similar magnitude with that from the study conducted by Sadiq et 500 

al. (2017), in which both biogeochemical and meteorological feedbacks from O3-vegetation interactions 

to O3 are considered. Without considering the meteorological feedbacks following the changes in 
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transpiration to O3 concentrations, smaller feedbacks on surface O3 concentrations are found by the 

following studies. For instance, by incorporating O3-LAI coupling in chemical transport model, Zhou et 

al. (2018) found an O3 feedback of −1.8 to +3 ppb globally. Another similar work conducted by Gong et 505 

al. (2020) showed that O3-induced inhibition in stomatal conductance increases surface O3 by 2.1 ppb in 

eastern China, while considering the addition effects of O3 on isoprene emission slightly reduces surface 

O3 concentrations by influencing the precursors. Together with previous findings, it is increasingly clear 

that meteorological feedback could be an important pathway whereby O3-vegetation interactions can 

further worsen O3 air quality, almost doubling the effect of biogeochemical feedback alone (i.e., via 510 

changes in O3-relevant chemical fluxes alone). 

 

Reduced dry deposition due to stomatal closure and reduced LAI, as well as increased isoprene emission, 

are all found to be the drivers for the overall positive O3 feedback. Reductions in dry deposition velocity, 

following closely the corresponding reductions in transpiration rate as both processes are modulated by 515 

stomatal regulation, contribute in part to the O3 enhancement. Figure 9 shows the spatial distribution of 

isoprene emission and its changes due to O3 damage. We observe general increases in isoprene emission 

in eastern China, mainly due to increased surface temperature (Figs. 7e and 7f) that is more than enough 

to offset reduced isoprene caused by reduced LAI (Figs 4e and 4f). All in all, O3 damage on vegetation 

can further enhance O3 levels via an overall positive effect, due to not only the associated reductions in 520 

dry deposition velocity, but also the reductions in transpiration, LH flux and the resulting rise in surface 

temperature. 

 

  

 525 
Figure 8. Same as Figure 5 but for surface O3 concentration. 

 

  

 

Figure 9. Same as Figure 5 but for isoprene emission. 530 
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4 Conclusions 

 535 

Tropospheric O3 is one of the most concerning air pollutants due to its global warming effects and its 

ability to affect human health, vegetation and crops. O3 and vegetation closely interact with each other 

and such interactions may not only affect plant physiology (e.g., stomatal conductance and 

photosynthesis) but also influence the overlying meteorology and air quality through modifying leaf 

stomatal behavior, plant structure (e.g., LAI) and subsequently land-atmosphere fluxes. According to 540 

previous field experiments and modeling works, China has been recognized as one of the hotspot areas 

suffering from severe O3 pollution and the resulting damage on vegetation and crops, but the feedback 

effects onto air quality and climate have not been fully characterized. Therefore, in this study, we 

examined the effects of O3-vegetation interactions on O3 air quality and meteorology in China during 

2014–2017 based on the two-way coupled WRF-Chem model simulations whereby O3, meteorology and 545 

vegetation physiology and structure can co-evolve with each other in real time.  

 

We found that in China stomatal resistance is enhanced by up to 16%, which is the direct response to O3 

damage. Northern China, especially Henan, Hebei, and Shandong provinces, is identified as a hotspot 

area. For photosynthesis, more than 20% reductions are observed in China. Large reductions (>2.4 μmol 550 

CO2 m−2 s−1) are found in northeastern and southern China. Following reduced photosynthesis, LAI 

shows relatively small reductions (5–15%), while GPP shows more than 20% reductions (1.6 g C m−2 

day−1). Changes in transpiration rate are due to both changes in stomatal resistance and changes in LAI. 

With the increases in stomatal resistance and decreases in LAI, transpiration deceases from 0.2 to 1.0 

mm day-1 in eastern China with the largest reductions occur in northern China. We also found that the 555 

distribution of changes in transpiration is consistent more with the distribution of stomatal resistance than 

with those of LAI, indicating the dominance of the former in contributing to the overall transpiration rate. 

 

With O3 damage, the LH fluxes decrease by more than 4 W m−2 on average, with hotspot areas appearing 

in Shandong, Anhui and Jiangsu provinces, in which the decreases can be up to 30 W m−2 following 560 

mostly the decreases in transpiration rate. SH fluxes increase in similar areas at comparable magnitudes 

(10–25 W m−2). The decreases in LH and the increases in SH cause the increases in temperature and 

PBLH. We found that northern China has larger decreases in relative humidity, temperature and PBLH 

compared with other regions. Generally, relative humidity shows at least 4% relative reductions, 

temperature increases by 0.2–0.8 K, and PBLH increases by 40–120 m for northern China. This indicates 565 

that O3-vegetation interactions will cause a shift in the energy balance toward a state where available net 

radiation is dissipated more by SH flux than LH flux, with ramifications for surface temperature. This 

represents an additional pathway whereby anthropogenic O3 pollution can worsen warming, in addition 

to O3 being a greenhouse gas itself and O3-induced plant damage diminishing the global net carbon sink 

(e.g., Sitch et al., 2007; Lombardozzi et al., 2015). 570 

 

O3 induces changes in vegetation, surface fluxes and meteorology, and in turn affects its own 

concentration. In this study, we found in China reduced dry deposition velocity mostly due to enhanced 

stomatal conductance, enhanced isoprene emissions mostly due to enhanced surface temperature, and the 

corresponding increases in O3 concentration. O3 concentration increases the most (up to 6%) in Hebei, 575 

Shanxi and Henan provinces, with the maximum value of 6 ppb. Our results demonstrate that O3-
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vegetation interactions can lead to a strong positive feedback that can amplify O3 pollution in China, in 

agreement with the suggestions by previous studies focusing on a global scale (Sadiq et al., 2017; Zhou 

et al., 2018; Gong et al., 2020). We also found that fully considering the positive O3-vegetation feedbacks, 

especially when meteorological changes are also accounted for, generates greater damage on vegetation 580 

productivity than found by studies that only considered “offline” O3 damage on plants without feedbacks 

(Yue and Unger, 2014; Lombardozzi et al., 2015). 

 

Uncertainty may arise from the O3 scheme employed in this study even through this scheme has 

considered the decoupling between photosynthesis and stomatal conductance. Because our method 585 

following Lombardozzi et al. (2015) groups all the vegetation types into only three groups, which is 

maybe rough to investigate O3 damage effect on local scale. Moreover, the value of CUO is heavily rely 

on the O3 threshold, which may affect the calculation of O3 damage. We employed the universal threshold 

(40 ppb) in our study instead of the smaller threshold (20 ppb) used by Li et al. (2016) considering the 

severe O3 pollution and the overestimation of O3 by WRF-Chem in our study. However, for different 590 

plant types, their detoxify to O3 may varied. Zhou et al. (2018) pointed out that the work of  

Lombardozzi et al. (2015) treat tropical and temperate plants equivalently, which may lead to possible 

biases. Detailed studies of investigating the plants responses to O3 and regional based CUO threshold 

should be conducted for more accurate simulation results for high resolution regional studies. Another 

uncertainty may from the ignorance of the direct effect of O3 on isoprene emission, which may slightly 595 

weaken the positive O3 feedback mechanism as pointed out by Gong et al., 2020. But the feedback of 

isoprene emission is quite uncertain, which needs a lot of further studies. Drought stress that may affect 

the O3-vegetation coupling is also a major uncertainty in this study and a future direction for scholars to 

work on. Previous studies also indicate the importance of aerosol on O3 concentration in China recently 

(Li et al., 2019), the O3, aerosol and vegetation interactions on climate and air quality therefore should 600 

also be investigated in the future. Despite these uncertainties, our study provides detailed and 

comprehensive results that the O3-vegetation impacts will adversely affect plant growth and crop 

production, contribute to global warming, worsen the severe O3 air pollution in China, and identifies the 

hotspot areas in the country. Our findings clearly pinpoint the need to consider the O3 damage effects in 

both air quality studies and climate change studies.  605 
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