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Abstract. Tropospheric ozone (O3) is one of the most important air pollutants in China and is projected 

to continue to increase in the near future. O3 and vegetation closely interact with each other and such 

interactions may not only affect plant physiology (e.g., stomatal conductance and photosynthesis) but 

also influence the overlying meteorology and air quality through modifying leaf stomatal behaviors. 20 

Previous studies have highlighted China as a hotspot in terms of O3 pollution and O3 damage to vegetation. 

Yet, few studies have investigated the effects of O3-vegetation interactions on meteorology and air 

quality in China, especially in the light of recent severe O3 pollution. In this study, a two-way coupled 

land-atmosphere model was applied to simulate O3 damage to vegetation and the subsequent effects on 

meteorology and air quality in China. Our results reveal that O3 causes up to 16% enhancement in 25 

stomatal resistance, whereby large increases are found in Henan, Hebei and Shandong provinces. O3 

damage causes more than 0.6 μmol CO2 m−2 s−1 reductions in photosynthesis rate, and at least 0.4 and 

0.8 g C m-2 day-1 decrease in leaf area index (LAI) and gross primary production (GPP), respectively, 

and hotspot areas appear in the northeastern and southern China. The associated reduction in transpiration 

causes a 5–30 W m−2 decrease (increase) in latent heat (sensible heat) flux, which induces a 3% reduction 30 

in surface relative humidity, 0.2–0.8 K increase in surface air temperature, and 40–120 m increase in 

boundary layer height in China. We also found that the meteorological changes further induce a 2–6 ppb 

increase in O3 concentration in northern and south-central China mainly due to enhanced isoprene 

emission following increased air temperature, demonstrating that O3-vegetation interactions can lead to 

strong positive feedback that can amplify O3 pollution in China. Our findings emphasize the importance 35 

of considering the effects of O3 damage and O3-vegetation interactions in air quality simulations, with 

ramifications for both air quality and forest management. 

 

 

 40 

1. Introduction 
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Tropospheric ozone (O3) is a secondary air pollutant, which is mainly formed from the photochemical 

oxidation of carbon monoxide (CO), methane (CH4) and non-methane volatile organic compounds 

(VOCs) by hydroxyl radicals (OH) in the presence of nitrogen oxides (NOx = NO + NO2). O3 is known 45 

as the third most important greenhouse gas with an estimated radiative forcing of 0.41 W m−2
 for the 

period of 1750–2010 (IPCC, 2013; Stevenson et al., 2013). As an air pollutant, O3 is also shown to be 

harmful to not only human health but also vegetation and crop health (Anenberg et al., 2010; Cohen et 

al., 2017). Various field experiments and numerical modeling studies have already demonstrated that O3 

can not only reduce gross primary production (GPP) of natural vegetation as well as crop yields 50 

(Ainsworth et al., 2012; Lombardozzi et al., 2012; Tai e al., 2014; Feng et al., 2015; Yue et al., 2017; Li 

et al., 2018), but also decrease transpiration (Arnold et al., 2018), decrease runoff (Li et al., 2016) on 

larger scales and therefore affect the global carbon and water cycle (Lombardozzi et al., 2015). 

 

Vegetation can in turn modulate O3 concentration through influencing the sources and sinks of O3. Dry 55 

deposition of O3 onto vegetation is a major sink for O3, mainly via stomatal uptake. Stomata are the pores 

on plant leaves; they control water exiting and carbon entering the leaf interior and hence influence the 

water and carbon exchange between the land and atmosphere. When vegetation is exposed to enhanced 

O3 levels, cellular and tissue damage can result in a decrease in photosynthesis rate, thus altering CO2 

assimilation. Stomata conductance may decrease subsequently in response to O3 exposure, thus reducing 60 

the dry-depositional sink of O3 (Sadiq et al., 2017; Zhou et al., 2018), but some studies also suggest that 

O3 exposure can cause stomata to respond more sluggishly to changing environmental conditions, such 

as drought, with complex overall effects on stomatal behaviors and dry deposition (e.g., Huntingford et 

al., 2018). Moreover, recent studies showed reduced dry deposition velocities of O3 by drought-stressed 

vegetation, which affects surface O3 trends and extremes (Huang et al., 2016; Lin et al., 2019; Lin et al., 65 

2020). Vegetation also affects the sources of O3; the most abundant biogenic VOC (BVOC) species 

emitted by vegetation is isoprene (C5H8), which is a major precursor for O3 formation in polluted, high-

NOx environments, but removes O3 by ozonolysis or by sequestering NOx in more pristine, low-NOx 

regions (Hollaway et al., 2017). Isoprene production is known to be highly coupled with photosynthesis 

and by extension to stomatal conductance (Arneth et al., 2007). Moreover, transpiration, which is 70 

modulated by stomatal behaviors, significantly regulates surface meteorology including water vapor 

content and air temperature, which further influence the production and loss of O3. Therefore, through 

influencing plant ecophysiology (e.g., photosynthesis and stomata behaviors), O3-vegetation interactions 

can modulate boundary-layer meteorology, climate, and may further affect O3 air quality via a series of 

feedback mechanisms. It is therefore essential to fully understand the O3-vegetation interactions and the 75 

following climatic and biospheric impacts especially in areas with high O3 concentrations and vegetation 

density. 

 

In many land surface and biospheric models, such as Noah-Multi Parameterization (Noah-MP) or 

Community Land Model (CLM), the Farquhar-Ball-Berry model (FBB, Farquhar et al., 1980; Ball et al., 80 

1987) is commonly used to simulate stomatal conductance and photosynthetic rate. In the FBB model, 

the calculation of stomata conductance is based on the calculation of photosynthesis, which makes them 

tightly coupled with each other. Therefore, in several land surface models that consider O3 damage effect 

on vegetation, the photosynthetic rate is modified first and the stomatal conductance is modified 

subsequently, which means stomata conductance and photosynthesis will change collinearly under 85 
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chronic O3 exposure (Sitch et al., 2007; Yue and Unger, 2014). However, field experiments have shown 

that, under chronic O3 exposure, stomata conductance decreases with a smaller magnitude than 

photosynthetic rate does, which makes the simulations of stomata conductance and photosynthetic rate 

as well as the following water and carbon cycles in the above models less accurate (Lombardozzi et al., 

2012). Modifying stomata conductance and photosynthesis separately in land surface models is therefore 90 

more reasonable. Lombardozzi et al (2012) modified the stomata conductance and photosynthetic rate 

separately based on the cumulative uptake of O3 into leaves and has shown a better representation of 

plant responses to O3 exposure. Efforts have been made to investigate the effects of O3 exposure on land 

biosphere based on the above O3 damage schemes. For example, based on an off-line process-based 

vegetation model, Yue and Unger (2014) found that O3 damage decrease GPP by 4–8% on average in the 95 

eastern US and leads to significant decreases of 11–17% in east coast hot spots. Using the offline CLM 

model, Lombardozzi et al. (2015) estimated that the present O3 exposure reduces GPP and transpiration 

globally by 8–12% and 2.0–2.4%, respectively.  

 

Several modeling studies conducted so far have demonstrated the importance of considering the 100 

interactions and feedbacks between atmosphere and biosphere. By dynamically coupling O3 and LAI but 

without considering the meteorological feedbacks of O3-vegetation interactions to O3, Zhou et al. (2018) 

found that O3-induced damage on LAI can lead to changes in O3 concentrations by −1.8 to +3 ppb in 

boreal summer. By considering the interactions between atmospheric chemistry with biosphere in a two-

way coupling model, Lei et al. (2020) quantified the damaging effects of O3 on vegetation and found a 105 

global reduction of annual GPP by 1.5–3.6 %, with regional extremes of 10.9–14.1 % in the eastern US 

and eastern China. Based on the CESM model with fully interactive atmospheric chemistry, 

biogeochemical and biogeophysical cycles, Sadiq et al. (2017) estimated that surface O3 is 4–6 ppb higher 

in Europe, North America and China in simulations with O3-vegetation coupling comparing the surface 

O3 concentrations without O3-vegetation coupling. Based on modified WRF-Chem model, Li et al (2016, 110 

2018) investigated the effect of O3 exposure on hydroclimate and crop productivity in the US, and 

highlighted O3 damage effects on meteorological fields and surface energy balance as well as the crop 

yields, but the feedbacks of changing meteorology onto surface O3 were not investigated. Arnold et al 

(2018) examined the global climate response to O3 exposure and found O3 damage on vegetation can 

induce widespread surface warming and changes in clouds, which could be critical on regional scales. 115 

Although the interactions between O3 and vegetation are critical to our environment, adequate 

representation of O3-vegetation interactions is still missing in most atmospheric models used for climate 

and atmospheric chemistry simulations, at least in part due to incomplete coupling capacities with land 

surface or biospheric model components at high resolutions, and in part due to limited observations to 

optimize O3 damage schemes for wider regional applicability.  120 

 

With the rapid urbanization and industrialization in the recent decades, China has experienced 

increasingly severe O3 pollution, which is expected to continue to worsen in the near future. O3 

concentration in China has been observed to exceed ambient air quality standard by 100–200% (Wang 

et al., 2017) with the maximum 8-hour mean concentration of O3 (MDA8 O3) increasing by 4.6% per 125 

year from 2015 to 2017 (Silver et al., 2018). Lu et al. (2018) showed that urban surface O3 in China 

during 2013–2017 was significantly higher than that in other regions around the world, and thus 

vegetation exposure to O3 is also higher in China. Li et al. (2018) also revealed the increasing trend of 

O3 in megacity clusters of China during 2013–2017, which is closely related with meteorology, 



4 

 

anthropogenic emissions and PM2.5 concentrations. Global-scale studies have highlighted China as a 130 

hotspot of O3 pollution and damage to vegetation compared with other regions (Sadiq et al., 2017; Arnold 

et al., 2018; Lei et al., 2020). However, a comprehensive study of how O3 affects meteorology and air 

quality through O3-vegetation interactions in China at high spatial resolutions, especially under severe 

O3 pollution, is still limited but highly needed. Moreover, there have been limited studies focusing on the 

feedbacks of O3-vegetation coupling on O3 concentration itself, especially in China, which is one of the 135 

main scopes of our study. 

 

This study, therefore, first adopted and implemented a semi-mechanistic O3 damage scheme in a widely 

used regional atmosphere-land modeling framework and hence used it to simulate and assess the impacts 

of O3-vegetation interactions on boundary-layer meteorology and air quality in China at a high spatial 140 

resolution. Specifically, O3-induced damage to vegetation, changes in meteorology in China due to O3-

vegetation coupling, and the subsequent feedback effects onto O3 concentration itself are examined, 

which is crucial to fully understand the O3-vegetation interactions and the following impacts on climate, 

biosphere, and air quality in areas with both high O3 concentrations and high vegetation coverage. 

 145 
2. Methods 

2.1 WRF-Chem Model Setup 

    

The Weather Research and Forecasting (WRF) model is a state-of-the-art mesoscale nonhydrostatic 

meteorological model. An atmospheric chemistry module that includes various gas-phase chemistry and 150 

aerosol mechanisms has been implemented into and fully coupled with WRF to create the WRF-Chem 

model (Grell et al., 2005; Fast et al., 2006). In WRF-Chem, both the air quality and meteorological 

components use the same transport scheme, model grid, subgrid-scale transport physics and time step. 

WRF-Chem has been widely used in previous air quality studies (e.g., Li et al., 2016; Li et al., 2018; Liu 

et al., 2018; Liu et al., 2020). In this study, we applied our revised WRF-Chem model based on version 155 

3.8.1 to simulate meteorological fields and O3 concentration over China. Simulations are conducted from 

24 May to 1 September every year from 2014 to 2017 and the days in May were discarded as spin-up. 

For the land surface component within WRF, we used Noah-MP, which will be described in the next 

subsection.  

 160 

The model domain was configured at a horizontal resolution of 27 km on the Lambert Conformal 

projection, centered at 37N, 108.1E and covering the whole China. The model has 26 vertical layers, 

with the lowest layer at 0.17 km and the highest layer at 17.67 km. The meteorological initial and 

boundary conditions are provided by the 6-hourly Final Operational Global Analysis (FNL) dataset at a 

horizontal resolution of 11. The chemical initial and boundary conditions were generated from the 165 

Model for Ozone and Related Chemical Tracer version 4 (MOZART-4), which is available at a horizontal 

resolution of 1.92.5 with 56 vertical layers (Emmons et al., 2010). 

 

Anthropogenic emissions were from the Multi-resolution Emission Inventory for China (MEIC) 

compiled at a spatial resolution of 27 km and a 1-hourly temporal resolution suitable for our research 170 

domain. Biogenic emissions were calculated online by the Model of Emissions of Gases and Aerosol 

from Nature (MEGAN) (Guenther et al., 2006). Biomass burning emissions were extracted from the Fire 

Inventory from NCAR (FINN) version 1.5 datasets (Wiedinmyer et al., 2010). Dust emissions were 
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generated online by the Goddard Global Ozone Chemistry Aerosol Radiation and Transport model 

(GOCART; Ginoux et al., 2001). Gas-phase chemistry was simulated with second generation Regional 175 

Acid Deposition Model (RADM2; Stockwell et al., 1990) mechanism, and the Modal Aerosol Dynamics 

Model for Europe (MADE; Ackermann et al., 1998), which is coupled with the Secondary Organic 

Aerosol Model (SORGAM; Schell et al., 2001) for aerosol treatment. Detailed physics schemes used in 

the simulations are shown in Table S1. 

 180 

2.2 Description of Noah-MP model 

 

Noah-MP is a land surface model that uses multiple options for key land-atmosphere interaction 

processes (Niu et al., 2011). Noah-MP contains a separate vegetation canopy defined by a canopy top 

and bottom, crown radius, and leaves with prescribed dimensions, orientation, density, and radiometric 185 

properties. The canopy employs a two-stream radiation transfer approach along with shading effects 

necessary to achieve proper surface energy and water transfer processes (Dickinson, 1983). Noah-MP is 

capable of distinguishing between C3 and C4 photosynthesis pathways and defines vegetation-specific 

parameters for plant photosynthesis and respiration. 

 190 

Noah-MP is available for prognostic vegetation growth that combines a Ball-Berry photosynthesis-based 

stomatal resistance (Farquhar et al., 1980; Ball et al., 1987) that allocates carbon to various parts of 

vegetation (leaf, stem, wood and root) and soil carbon pools (fast and slow). GPP, leaf area index (LAI) 

and canopy height are then predicted downstream from photosynthesis. Noah-MP also considers the 

photosynthesis of sunlit and shaded leaves separately, whereby sunlit leaves are more limited by CO2 195 

concentration while shaded leaves are more constrained by insolation, which may thus have different 

responses to O3 damage. The dynamic LAI and canopy height calculation will further affect surface 

energy fluxes, which will then affect the boundary-layer meteorology when coupling with the atmosphere 

model in WRF-Chem. The land use types and the vegetation parameters are based on the U.S. Geological 

Survey (USGS) embedded in Noah-MP. Fig. 1 shows the spatial distribution of vegetation fraction of 200 

dominant vegetation types in China. The distribution of main vegetation groups (broadleaf, needleleaf, 

crop and grass) that have different sensitivities to O3 damage following Lombardozzi et al. (2015) are 

shown in Fig. 1. 

 

In this study, the O3 concentration simulated by the chemical module of the WRF-Chem model was also 205 

dynamically passed onto the Noah-MP land surface model at every time step to modify the 

photosynthesis and stomatal conductance due to O3 damage. The land surface variables simulated by 

Noah-MP were also dynamically passed back onto the atmospheric components, thus allowing 

immediate, two-way feedback effects onto meteorological fields, O3 and other atmospheric chemical 

constituents. In this way, land surface processes, atmospheric dynamics, and atmospheric chemistry in 210 

the WRF-Chem model were fully coupled. 

 

2.3 O3 damage parameterization 

 

In Noah-MP, the Farquhar model (Farquhar et al., 1980) was used to calculate photosynthetic rate, 215 

whereas Ball-Berry model was used to calculate stomatal conductance (Ball et al., 1987). The 
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photosynthesis rate, A (μmol CO2 m−2 s−1), is calculated separately for sunlit and shaded leaves and is 

limited by either one of three limiting factors and can be calculated as 

 

𝐴 = min(𝑊𝑐 , 𝑊𝑗, 𝑊𝑒) 𝐼𝑔𝑠       (1) 220 

 

where Wc is the Rubisco-limited photosynthesis rate, Wj is the light-limited photosynthesis rate, and We 

is the export-limited photosynthesis rate. Igs is the growing season index with values ranging from 0 to 1. 

Stomatal conductance (gs) is computed based on the photosynthesis rate from the Farquhar model as 

 225 

𝑔𝑠 =
1

𝑟𝑠
= 𝑚

𝐴

𝑐𝑠

𝑒𝑠

𝑒𝑖
𝑃𝑎𝑡𝑚 + 𝑏       (2) 

 

where gs is the leaf stomatal conductance (μmol m−2 s−1); rs is the leaf stomatal resistance (s m2 μmol−1); 

m is an empirical parameter that relates stomatal conductance and photosynthesis with values ranging 

from 5 to 9; A is the photosynthesis rate as described above; cs is the CO2 partial pressure at the leaf 230 

surface (Pa); es is the vapor pressure at the leaf surface (Pa); ei is the saturation vapor pressure inside the 

leaf (Pa); Patm is the atmospheric pressure (Pa); and b is the minimum stomatal conductance. 

 

As mentioned above, following Lombardozzi et al. (2015), an O3 damage scheme was implemented in 

Noah-MP embedded in WRF-Chem model version 3.8.1. The photosynthesis rate and stomatal 235 
conductance are modified independently using two sets of O3 impact factors, 𝐹𝑝𝑂3

and 𝐹𝑐𝑂3
, respectively, 

which are then multiplied to the initial A and gs calculated by the Farquhar-Ball-Berry model, respectively. 

Lombardozzi et al. (2012) found that independently modifying stomatal conductance and photosynthesis 

can improve the model prediction of plant response to O3 damage. The two damage factors are calculated 

based on the cumulative uptake of O3 (CUO), which integrates the O3 flux inside leaves through the 240 

stomata throughout the growing season. The CUO (mmol m−2 ) is calculated as 

 

CUO =  10−6 ∑
[O3]

𝑘𝑂3𝑟𝑠+𝑟𝑎+𝑟𝑏
∆𝑡       (3) 

 

Where [O3] is the surface O3 concentration (nmol m−3); 𝑘𝑂3
= 1.61 is the ratio of leaf resistance to O3 245 

to leaf resistance to water (Uddling et al., 2012); rs is the stomatal resistance, ra is the aerodynamic 

resistance and rb is the boundary-layer resistance (s m−1); ∆t is the model time step (s). CUO is only 

accumulated when LAI is larger than 0.4 and O3 flux is larger than a threshold value of 0.8 nmol O3 m−2 

s−1 to consider the detoxification effect of plants to O3 damage. 

 250 

The two damage factors have linear relationships with CUO and can be calculated as follows: 

 

𝐹𝑝𝑂3
= 𝑎𝑝 × CUO + 𝑏𝑝        (4) 

𝐹𝑐𝑂3
= 𝑎𝑐 × CUO + 𝑏𝑐        (5) 

 255 

where 𝐹𝑝𝑂3
 is the O3 damage factor for photosynthesis and 𝐹𝑐𝑂3

 is the O3 damage factor for stomatal 

conductance; ap, bp, ac, and bc are empirical slopes and intercepts of three different plant groups 

(broadleaf trees, needleleaf trees, and grasses or crops) from Lombardozzi et al. (2015). The values of 
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these slopes and intercepts are shown in Table 1. The original photosynthesis and stomatal conductance 

are then multiplied with the two damage factors, respectively to get the modified photosynthesis and 260 

stomatal conductance under O3 exposure. 

 

2.3 Model Experiments and Evaluation 

 

Two sets of experiments were conducted in this study. We performed a control simulation 265 

(simu_withoutO3) without O3 damage on vegetation and a production simulation (simu_withO3) with O3 

damage on vegetation. Detailed information of the experiments is shown in Table 2. In the simu_withO3 

experiment, the O3 concentration simulated by the chemical module of the model is dynamically passed 

onto the land surface model at every time step to modify the photosynthesis and stomatal conductance. 

The differences between the two sets of experiments including vegetation physiology, meteorological 270 

fields and O3 concentration can thus be attributed to O3-vegetation interactions. In this work, each 

simulation was conducted from 24 May to 1 September every year from 2014 to 2017 and the days in 

May were discarded as spin-up. For each simulation in the four years, anthropogenic emissions were kept 

at 2014 levels, while meteorological fields were changing every year. The 4-year June-July-August (JJA) 

averaged results were analyzed and compared. JJA was selected because of the most severe O3 pollution 275 

in this season and because it is within the active growing season of the plants. 

 

The simulated meteorological variables and air pollutant concentrations were evaluated using available 

in-situ observations in China. The daily meteorological observations including temperature at 2 meter 

(T2m), relative humidity at 2 meter (RH2m), and wind speed at 10 meter (WS10m) above displacement 280 

height were from the National Meteorological Information Center. There are 698 stations in the study 

domain. The air pollutant observations were provided by the China National Environmental Monitoring 

Center (CNEMC) network, which offers hourly concentrations of particulate matter with an aerodynamic 

diameter of less than 2.5 μm (PM2.5) and 10 μm (PM10), carbon monoxide (CO), O3, sulfur dioxide (SO2) 

and nitrogen dioxide (NO2). The locations of meteorological stations and the sites of CNEMC network 285 

are shown in Figure 2. The statistical parameters including mean values (Mean) of observations and 

simulated variables, their standard deviations (SD), indices of agreement (IOA), mean biases (MB), and 

correlation coefficients (CORR) were computed to evaluate the model performance in this study. 

 

3. Results 290 

 

3.1  Model evaluation  

 

Table 3 shows the city-averaged evaluation results of meteorological variables from the modified model. 

The information of the major cities used for evaluation is shown in Table S4. From Table 3, we can find 295 

that T2m is underestimated with MB values ranging from −1.00 ℃ in 2017 to −0.70 ℃ in 2014. The IOA 

and CORR are generally higher than 0.8, indicating that the model could reasonably simulate the 

variations of T2m. Unlike temperature, relative humidity is overestimated by the model simulations with 

MB values ranging from 4.38 in year 2014 to 7.33 in year 2016, but the CORR values with observations 

are still high (CORR > 0.7). Wind speed is also overestimated by more than 0.38 m s−1, which might be 300 

caused by the underestimation of terrain height as reported in other WRF modeling studies (Brunner et 

al., 2015; Liu et al., 2020). The detailed evaluation results for each city and for seven major geographic 
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regions of China are shown in Table S5-S10. The classification of the geographic regions is shown in 

Fig. S2. As shown in these tables, the model can reasonably capture the spatial distribution of these 

meteorological variables. For example, the larger values of T2m and RH2m in cities from southern China 305 

compared with the cities in northern China (Table 4) can be reasonably simulated. We also found that 

the model simulations have better performance in northeastern China, central China and southern China 

in terms of IOA and CORR as shown in these tables (Table 4). 

 

Table 5 shows the city-averaged evaluation results of six air pollutants simulated from the modified 310 

model. The information of the major cities used for air pollutant evaluation is shown in Table S11. Form 

Table 5, positive MB values for O3, PM2.5, SO2, NO2, and negative MB values for CO are found. The 

overestimation of O3 by WRF-Chem was also reported by Hu et al. (2016) and Gao et al (2020). For 

PM10, both positive and negative MB values are found for different years. The results indicate general 

overestimation by the model of most air pollutants except for CO. The underestimation of CO can be 315 

explained by either O3 chemistry, which points to the problem related to low titration, or in the 

underestimation of dry deposition by the model, which is also affected by the modification of the model. 

The IOA of air pollutant concentration ranges from 0.36 (SO2) to 0.63 (O3). The correlation coefficient 

of air pollutants ranges from 0.14 (PM10) to 0.66 (O3). Detailed evaluation results for each city and major 

geographic regions of China are shown in Tables S9–S14 and Table 6. In terms of the evaluation for O3, 320 

the model has better performance in northeastern China, eastern and southern China, which may suffer 

the most severe O3 damage. Our results are generally consistent with the evaluation results of CMAQ 

simulation over China by Liu et al. (2020). MBs of SO2, NO2 and CO are consistent in both magnitude 

and sign with Liu et al. (2020), while the MBs of PM and O3 are larger than Liu et al. (2020). Correlation 

coefficients of air pollutants are also of similar magnitude with Liu et al. (2020), showing that our model 325 

results can well capture the temporal variations of air pollutants. We also compared the evaluation results 

between the original model and the modified model, as shown in Table S2 and Table S3 in the supplement 

and Table 3 and Table 5 here. We found no obvious differences in the evaluation results between the 

original model results and the revised model results. It should be noted that this study might not be able 

to and was not meant to improve model accuracy, but our modified model is able to capture O3-vegetation 330 

interactions without worsening model performance. Overall, there are systematic biases in simulated 

variables especially the air pollutant concentrations, but the spatial distribution of both meteorological 

variables and air pollutant concentrations are reasonably simulated by the model, lending trust to the use 

of the model for sensitivity studies to examine the effects of O3-vegetation interactions on the 

atmospheric environment. 335 

 

3.2  Responses of vegetation to O3 damage 

 

O3 can adversely affect photosynthesis rate and stomatal conductance and therefore interfere with 

vegetation growth, productivity and transpiration. To understand the O3-induced damage on vegetation 340 

physiology, the spatial distribution and changes in stomatal resistance (RS), photosynthesis rate (PSN), 

LAI, GPP, and transpiration rate (TR) during 2014–2017 summer (June-July-August) were analyzed. 

 

Figure 3a and 3d display the spatial distribution of sunlit stomatal resistance (RSSUN) and shaded 

stomatal resistance (RSSHA) from the simu_withoutO3 experiment, respectively. The absolute and 345 

relative changes in RSSUN (RSSHA) between simu_withO3 and simu_withoutO3 experiments are shown 
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in the middle and the right panel of Fig. 3, separately. In general, simulated stomatal resistance in eastern 

China is larger than that in western China. Both RSSUN and the RSSHA are enhanced in response to O3 

damage to vegetation. The maximum increases in RSSUN and RSSHA can be up to 1.0103 s m–1, which 

is equivalent to a ~16% increase compared to the simu_withoutO3 simulation. Comparing the changes in 350 

RSSUN vs. RSSHA, the changes in RSSHA are larger than that in RSSUN, reflecting the larger 

sensitivity of shaded leaves to O3 damage (Kinose et al., 2017). Northern China experiences larger 

changes in stomatal resistance generally, especially in Henan, Hebei, and Shandong provinces, where the 

changes in stomatal resistance are twice as much as the changes in stomatal resistance over other regions. 

 355 

The spatial distribution of 2014–2017 JJA mean PSN, LAI and GPP from the simu_withoutO3 

simulations and their changes induced by O3 damage are presented in Fig. 4. From Fig. 4a, we find that 

the PSN values are generally higher in eastern China compared with western China with the largest 

values of up to ~7 μmol CO2
−1 m−2 s−1. Similar spatial distribution and hotspot areas can also be observed 

for LAI (Fig. 4d) and GPP (Fig. 4g), with LAI and GPP values in hotspot areas up to 3.6 and 10 g C m−2 360 

day−1, respectively. We also find that Henan, Hebei, Shanxi and Shandong provinces have smaller values 

in PSN, LAI and GPP when compared with other provinces in eastern China. 

 

With O3 damage, PSN decreases in general, with absolute changes in PSN ranging from 0.6 to 3.6 μmol 

CO2 m−2 s−1 (Fig. 4b), representing 20–40% reductions in PSN. For northeastern and southern China, 365 

where the original PSN values are large, ~20% reductions in PSN are found (Fig. 4c). In western China 

where the dominant vegetation type is grassland and the original PSN values are small, more than 40% 

of PSN is reduced due to O3 damage (Fig. 4c). In response to the PSN reductions, LAI and GPP also 

decrease. More than 0.4 reductions in LAI are found in central and northern China (Fig. 4e), 

corresponding to more than 20% reductions in LAI; in other regions, 5–15% reductions in LAI are 370 

observed. More than 0.8 g C m−2 day−1 reductions in GPP are found generally in China. Similar to Fig. 

3c, we find that GPP decreases by ~20% in northeastern and southern China and decreases by more than 

40% in other regions (Fig. 4i). Based on offline models without considering atmosphere-biosphere 

coupling, O3 damage was found to decrease GPP at most by 11–17% in the East Coast hotspots of the 

US (Yue and Unger, 2014). Using the offline CLM model, Lombardozzi et al. (2015) estimated that the 375 

present O3 exposure reduces GPP globally by 8–12%. Based on RegCM-CHEM4 regional climate model 

coupled with YIBs terrestrial biosphere model, Xie et al. (2019) revealed that O3 damage induces a 

significant reduction (12.1±4.4%) in the GPP, up to 35% in summer over China (Table S15). Comparing 

our results with previous studies, our results are broadly consistent with Xie et al. (2019) but the 

magnitude is larger than the studies conducted by Yue and Unger (2014) and Lombardozzi et al. (2015). 380 

Differences or uncertainties may arise from the different model settings. It appears that offline models as 

used by Yue and Unger (2014) and Lombardozzi et al. (2015) generally found smaller damage than 

studies with two-way coupling between the atmosphere and biosphere as used by Xie et al. (2019) and 

our work; this could be due to the existence of positive biosphere-atmosphere feedbacks that potentially  

worsen O3 damage, as will be discussed in subsequent sections. Different O3 damage schemes employed 385 

in the models may also be a source of differences, although we note that both this work and Lombardozzi 

et al. (2015) used the same scheme, so the differences appear to arise more likely from the effect of 

coupling and other model settings than from the schemes alone. 
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The spatial distribution of dominant vegetation types in China are shown in Fig. 1, where we can see that 390 

the croplands dominant in eastern China and especially in southern China suffer the greatest GPP 

reductions, indicating that crop yields in China would also be heavily affected by O3 damage.  

 

Figure 5 depicts the spatial distribution of transpiration rate (TR) of vegetation and the changes in 

transpiration rate induced by O3 damage. TR values are higher in eastern China where there is larger 395 

vegetation coverage (Fig. 5a). As shown in Fig. 5b, TR deceases by 0.2–1.0 mm day
−1

 generally in 

eastern China with large reductions in northern China, especially in Henan, Shandong, Anhui and Jiangsu 

provinces. In terms of relative changes, TR decreases by ~12% in northeastern and southern China, while 

more than 24% reductions are found in other regions. Transpiration is affected by the changes in both 

RS and LAI. With O3 damage, both the increases in RS (Fig. 3c and Fig. 3f) and decreases in LAI (Fig. 400 

4f) cause TR to decrease, as shown in Fig. 5b and 5c. Comparing the changes in RS (Fig. 3c and Fig. 3f), 

LAI (Fig. 4f) and TR (Fig. 5c), we can find that the distribution of changes in TR is more consistent with 

that of RS, reflecting the dominance of RS in controlling TR. 

 

3.3  Changes in meteorology due to O3-vegetation coupling 405 

 

Through interacting with vegetation, O3 has the potential to further affect the meteorological environment 

in China via modifying, e.g., surface heat fluxes, temperature, humidity, and boundary layer height. The 

distribution of meteorological variables from simulations with and without O3 damage is thus compared 

and analyzed in this section. 410 

 

Figure 6 shows the spatial distribution of latent heat (LH) flux and sensible heat (SH) flux, and the 

changes in LH and SH due to O3-vegetation coupling. With O3 included in the model simulations, the 

LH flux decreases by more than 4 W m−2 (Fig. 6b) on average following the decreases in transpiration 

rate. Hotspot areas are found in Henan, Shandong, Anhui and Jiangsu provinces, where reductions in LH 415 

can be up to 30 W m−2. Meanwhile, 5–30 W m−2 increases in SH flux are observed in central and northern 

China (Fig. 6d). With O3-vegetation coupling, more than 20% reductions in LH flux are found in central 

and northern China (Fig. 6c), 20% increment in SH flux are found in similar regions (Fig. 6f), indicating 

that O3 damage shifts the energy balance toward more net radiation being dissipated by SH flux than LH 

flux, with ramifications for surface temperature.  420 
 

Figure 7 shows the distribution and the changes in surface relative humidity, temperature and planetary 

boundary layer height (PBLH) in response to O3 damage. Reductions in transpiration rate can directly 

cause reductions in relative humidity. As shown in Fig. 7b, relative humidity has at least 3% absolute 

reductions. Values of relative humidity decrease more in northern China than in southern China. Similar 425 

to the changes in TR (Fig. 5b), larger reductions in relative humidity (3–9%) are found over Henan, 

Hebei, Shandong, Anhui provinces. The decreases in LH flux and increases in SH flux following the 

changes in transpiration rate drive the increases in temperature and contribute to PBLH growth. As 

presented in Fig. 7e and Fig. 7h, the distribution and hotspot areas of the changes in temperature and 

PBLH are similar to those in relative humidity. Generally, northern China has larger increases of 430 

temperature and PBLH compared with other regions. Generally, temperature increases by 0.2–0.8 K and 

PBLH increases by 40–120 m for northern China. The hotspot areas experience at least 0.6 K increases 

in temperature, and 80 m increases in PBLH.  



11 

 

 

As shown in Table S15, our results are comparable with results from a regional simulation conducted by 435 

Li et al. (2016), which showed that O3 damage decreases LH flux by 10–27 W m−2 and O3 damage 

increases temperature by 0.6 C–2.0 C in the US. However, in their study, Li et al. (2016) assumed that 

O3 damage to plants happens when O3 concentration is over a threshold of 20 ppb to imitate a weaker 

detoxifying effect of plants, instead of the 40 ppb threshold that was commonly used in previous studies. 

Considering the severe O3 air pollution in China, we resorted to use the more universal O3 threshold used 440 

by previous studies (Lombardozzi et al., 2015; Sadiq et al., 2017; Zhou et al., 2018) to represent a more 

conventional detoxifying effect, instead of lowering the threshold value that would cause much larger 

changes in the surface fluxes and meteorological fields. Using a two-way coupling model and the same 

O3 damage scheme, Arnold et al. (2018) revealed that O3 causes less than 8 W m−2 changes in surface 

heat fluxes regionally, which is smaller than the changes of surface heat fluxes in our study. One possible 445 

reason is that the simulated changes in O3 and aerosol in Arnold et al. (2018) did not feedback onto 

radiation and climate simulation or affect LAI.  

   

3.4  O3-vegetation feedbacks on O3 concentrations 

 450 

O3-induced changes in vegetation, surface fluxes and the overlying meteorology can also constitute 

important feedback effects onto O3 concentration itself. Figure 8 shows the spatial distribution of surface 

O3 concentration. The change in surface O3 concentration during daytime is also shown in Fig. S2. As 

shown in Fig. 8a (Fig. S2), surface O3 concentration is higher in central and northern China during 

summer. In terms of the feedbacks on O3 concentration, we found generally enhancements in O3 455 

concentration when O3-vegetation interactions are accounted for, thus representing a positive feedback 

that worsens O3 air quality (Fig. 8b). O3 concentration increases the most (by up to 6 %) in Hebei, Shanxi 

and Henan provinces, with the maximum increment of 6 ppb. The enhancement in surface O3 

concentration from our study is at the similar magnitude with that from the study conducted by Sadiq et 

al. (2017), in which both biogeochemical and meteorological feedbacks from O3-vegetation interactions 460 

to O3 are considered. Without considering the meteorological feedbacks following the changes in 

transpiration to O3 concentrations, smaller feedbacks on surface O3 concentrations are found by the 

following studies. For instance, by incorporating O3-LAI coupling in chemical transport model, Zhou et 

al. (2018) found an O3 feedback of −1.8 to +3 ppb globally. Another similar work conducted by Gong et 

al. (2020) showed that O3-induced inhibition in stomatal conductance increases surface O3 by 2.1 ppb in 465 

eastern China, while considering the addition effects of O3 on isoprene emission slightly reduces surface 

O3 concentrations by influencing the precursors. Soil moisture deficit, which has been shown to reduce 

stomatal uptake, if considered, will also contribute to the enhancement in O3 concentration (Rydsaa et 

al., 2016). Together with previous findings, it is increasingly clear that meteorological feedback could 

be an important pathway whereby O3-vegetation interactions can further worsen O3 air quality, almost 470 

doubling the effect of biogeochemical feedback alone (i.e., via changes in O3-relevant chemical fluxes 

alone). It should be cautiously noted that in terms of magnitude alone the model biases in O3 are 

comparable and sometimes larger than the up to 6 ppb systematic enhancement caused by O3 damage, 

which represents be one major source of uncertainties in our study. 

 475 

Reduced dry deposition due to stomatal closure and reduced LAI, as well as increased isoprene emission, 

are all found to be the drivers for the overall positive O3 feedback. Reductions in dry deposition velocity, 
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following closely the corresponding reductions in transpiration rate as both processes are modulated by 

stomatal regulation, contribute in part to the O3 enhancement. Figure 9 shows the spatial distribution of 

isoprene emission and its changes due to O3 damage. We observe general increases in isoprene emission 480 

in eastern China, mainly due to increased surface temperature (Figs. 7e and 7f) that is more than enough 

to offset reduced isoprene caused by reduced LAI (Figs 4e and 4f). All in all, O3 damage on vegetation 

can further enhance O3 levels via an overall positive effect, due to not only the associated reductions in 

dry deposition velocity, but also the reductions in transpiration, LH flux and the resulting rise in surface 

temperature. 485 

 

4 Conclusions 

 

Tropospheric O3 is one of the most concerning air pollutants due to its global warming effects and its 

ability to affect human health, vegetation and crops. O3 and vegetation closely interact with each other 490 

and such interactions may not only affect plant physiology (e.g., stomatal conductance and 

photosynthesis) but also influence the overlying meteorology and air quality through modifying leaf 

stomatal behavior, plant structure (e.g., LAI) and subsequently land-atmosphere fluxes. According to 

previous field experiments and modeling works, China has been recognized as one of the hotspot areas 

suffering from severe O3 pollution and the resulting damage on vegetation and crops, but the feedback 495 

effects onto air quality and climate have not been fully characterized. Previous studies mainly focused 

on the global scale with coarse spatial resolutions, which did not fully capture the spatial distribution of 

O3 damage on vegetation in China. Based on the results from global studies pointing out that China is a 

hotspot in terms of O3 pollution and O3 damage on vegetation, our model simulations performed at high 

spatial resolutions were capable of investigating O3 damage effects on regional and provincial scales in 500 

China. In this study, we examined the effects of O3-vegetation interactions on O3 air quality and 

meteorology in China during 2014–2017 based on the two-way coupled WRF-Chem model simulations 

whereby O3, meteorology and vegetation physiology and structure can co-evolve with each other in real 

time.  

 505 

We found that in China stomatal resistance is enhanced by up to 16%, which is the direct response to O3 

damage. Northern China, especially Henan, Hebei, and Shandong provinces, is identified as a hotspot 

area. For photosynthesis, more than 20% reductions are observed in China. Large reductions (>2.4 μmol 

CO2 m−2 s−1) are found in northeastern and southern China. Following reduced photosynthesis, LAI 

shows relatively small reductions (5–15%), while GPP shows more than 20% reductions (1.6 g C m−2 510 

day−1). Changes in transpiration rate are due to both changes in stomatal resistance and changes in LAI. 

With the increases in stomatal resistance and decreases in LAI, transpiration deceases from 0.2 to 1.0 

mm day-1 in eastern China with the largest reductions occur in northern China. We also found that the 

distribution of changes in transpiration is consistent more with the distribution of stomatal resistance than 

with those of LAI, indicating the dominance of the former in contributing to the overall transpiration rate. 515 

 

With O3 damage, the LH fluxes decrease by more than 4 W m−2 on average, with hotspot areas appearing 

in Shandong, Anhui and Jiangsu provinces, in which the decreases can be up to 30 W m−2 following 

mostly the decreases in transpiration rate. SH fluxes increase in similar areas at comparable magnitudes 

(10–25 W m−2). The decreases in LH and the increases in SH cause the increases in temperature and 520 

PBLH. We found that northern China has larger decreases in relative humidity, temperature and PBLH 
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compared with other regions. Generally, relative humidity shows at least 4% relative reductions, 

temperature increases by 0.2–0.8 K, and PBLH increases by 40–120 m for northern China. This indicates 

that O3-vegetation interactions will cause a shift in the energy balance toward a state where available net 

radiation is dissipated more by SH flux than LH flux, with ramifications for surface temperature. This 525 

represents an additional pathway whereby anthropogenic O3 pollution can worsen warming, in addition 

to O3 being a greenhouse gas itself and O3-induced plant damage diminishing the global net carbon sink 

(e.g., Sitch et al., 2007; Lombardozzi et al., 2015). 

 

O3 induces changes in vegetation, surface fluxes and meteorology, and in turn affects its own 530 

concentration. In this study, we found that reduced dry deposition in China is mainly due to enhanced 

stomatal conductance, while enhanced isoprene emission is mainly due to enhanced surface temperature 

and the corresponding increase in O3 concentration. O3 concentration increases the most (up to 6%) in 

Hebei, Shanxi and Henan provinces, with the maximum value of 6 ppb. Our results demonstrate that O3-

vegetation interactions can lead to strong positive feedback that can amplify O3 pollution in China, in 535 

agreement with the suggestions by previous studies focusing on a global scale (Sadiq et al., 2017; Zhou 

et al., 2018; Gong et al., 2020). We also found that fully considering the positive O3-vegetation feedbacks, 

especially when meteorological changes are also accounted for, generates greater damage on vegetation 

productivity than found by studies that only considered “offline” O3 damage on plants without feedbacks 

(Yue and Unger, 2014; Lombardozzi et al., 2015). 540 

 

In this study, the summertime simulation period of JJA was selected due to the high O3 pollution in this 

season and the overlapping with vegetation growing season to capture the severe O3 damage on 

vegetation. Nevertheless, uncertainty may still arise from that our simulation period may not cover the 

growing season of all vegetation types and may not cover all periods that O3 damage happens, which 545 

may represent an underestimation of the full scale of O3 damage. Future work should be conducted for 

longer time periods and for all seasons, which will help us better understand O3-vegetation interactions 

in China. Uncertainty may also arise from the O3 scheme employed in this study in terms of the CUO 

calculation and the consideration of O3 detoxification mechanism of different vegetation types. The 

calculation of CUO heavily relies on the O3 threshold. Considering the sensitivities of different 550 

vegetation types to O3 damage, CUO threshold should be varied with different vegetation types. However, 

a constant O3 threshold was employed in our study for the whole simulation domain and for all vegetation 

types, which may either underestimate or overestimate the actual O3 damage. Moreover, following the 

work of Lombardozzi et al. (2015), we classified all the vegetation types into only three groups, which 

may be too coarse to investigate O3 damage effects on regional or local scales. For example, Zhou et al. 555 

(2018) pointed out that Lombardozzi et al. (2015) treated tropical and temperate plants equivalently, 

which might lead to possible biases. More studies should be conducted to derive more appropriate O3 

thresholds for CUO calculation and make them available for regional scales or for different vegetation 

types. Another source of uncertainty may arise from the lack of representation of the direct effect of O3 

on isoprene emission. As pointed out by Gong et al. (2020), including the effect of O3 damage on isoprene 560 

emission may reduce O3 concentration by influencing precursors, but increase O3 concentration at the 

same time through weakening the shortwave radiative forcing of secondary organic aerosols, which 

would help constitute a more complete feedback mechanism between O3 and vegetation. Moreover, 

uncertainties may also come from that the effect of soil moisture deficit was not considered in this study, 

which may underestimate the reduction in dry deposition sink of O3. It should also be noted that keeping 565 
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the anthropogenic emission inventory fixed in 2014 levels may be another limitation because of the 

nonlinear chemistry involving biogenic and anthropogenic precursors. Despite these uncertainties and 

limitations, our study provides detailed and comprehensive results whereby O3-vegetation impacts will 

adversely affect plant growth and crop production, contribute to global warming, worsen the severe O3 

air pollution in China via feedbacks, and identifies the hotspot areas in the country. Our findings clearly 570 

pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.  
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Table 1. Slopes (per mmol m−2) and intercepts (unitless) used for O3 damage factors in Eqs. (4) and (5), 

following Lombardozzi et al. (2015).  
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Photosynthesis Conductance 

Slope (ap) Intercept (bp) Slope (ac) Intercept (bc) 

Broadleaf 0.0000 0.8752 0.0000 0.9125 

Needleleaf 0.0000 0.8390 0.0048 0.7823 

Grasses and crops −0.0009 0.8021 0.0000 0.7511 

 
 

 

Table 2. Description of the two sets of model experiments. 

Experiment name Year Anthropogenic 

Emission 

Meteorological ICs 

and BCs 

simu_withoutO3 2014–2017 JJA Year 2014 FNL 

simu_withO3 2014–2017 JJA Year 2014 FNL 
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Table 3. Evaluation results for the temperature at 2 meter (T2m), relative humidity at 2 meter (RH2m) and 

wind speed at 10 meter (WS10m) for different years in China. Mean_obs (Mean_simu) is the mean value 

of observation (model simulation); SD_obs (SD_simu) is the standard deviation of the observation 800 

(model simulation); IOA is the index of agreement; CORR is the correlation coefficient; MB is the mean 

bias. 

 Year Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB 

T2m 

(℃) 

2014 25.41 2.61 24.71 2.27 0.86 0.87 −0.70 

2015 25.41 2.56 24.67 2.24 0.86 0.89 −0.74 

2016 26.35 2.82 25.44 2.61 0.85 0.85 −0.91 

2017 26.29 3.17 25.28 3.16 0.81 0.78 −1.00 

RH2m 

（%） 

2014 74.77 10.22 79.14 8.96 0.67 0.71 4.38 

2015 73.34 10.75 80.50 8.73 0.68 0.75 7.16 

2016 74.14 10.81 81.47 10.10 0.70 0.73 7.33 

2017 73.24 11.65 79.89 9.62 0.68 0.69 6.63 

WS10m 

（m s−1） 

2014 1.84 0.66 2.22 1.16 0.54 0.40 0.38 

2015 2.00 0.74 2.48 1.35 0.55 0.44 0.48 

2016 1.99 0.70 2.47 1.32 0.54 0.45 0.48 

2017 2.02 0.72 2.51 1.42 0.53 0.45 0.50 
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Table 4. Evaluation results of temperature at 2 meter (T2m), relative humidity at 2 meter (RH2m) and wind 

speed at 10 meter (WS10m) in 7 major geographic regions from the implemented model. NE is northeast 

China, NC is north China, CC is central China, EC is east China, SC is south China, SW indicates 

southwest China, and NW is northwest China. Mean_obs (Mean_simu) is the mean value of observations 810 

(model simulations); SD_obs (SD_simu) is the standard deviation of the observations (model 

simulations); IOA is the index of agreement; CORR is the correlation coefficient; MB is the mean bias. 

 Region Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB 

T2m 

(℃) 

NEC 23.01 3.05 22.73 3.01 0.94 0.91 -0.28 

NC 24.94 2.76 25.84 2.84 0.86 0.88 0.88 

CC 27.62 3.05 26.87 2.75 0.92 0.88 -0.75 

EC 27.33 2.99 26.46 2.58 0.90 0.89 -0.87 

SC 28.60 1.49 28.61 1.30 0.75 0.64 0.01 

SWC 23.20 2.32 21.61 2.14 0.77 0.80 -1.58 

NWC 20.20 2.87 18.55 3.01 0.77 0.89 -1.65 

RH2m 

（%） 

NEC 71.7 11.49 71.98 14.00 0.85 0.79 0.93 

NC 63.25 13.94 57.01 14.08 0.79 0.75 -6.24 

CC 79.23 10.11 88.29 8.61 0.70 0.71 9.06 

EC 78.93 9.99 88.80 8.31 0.69 0.79 9.87 

SC 81.26 6.54 88.41 5.66 0.62 0.60 7.14 

SWC 78.92 9.11 93.34 5.13 0.52 0.64 13.40 

NWC 57.93 13.34 58.48 14.10 0.75 0.76 0.55 

WS10m 

（m s−1） 

NEC 2.22 0.93 3.08 1.80 0.62 0.62 0.86 

NC 2.06 0.72 2.45 1.29 0.57 0.48 0.38 

CC 2.06 0.81 2.38 1.41 0.61 0.51 0.33 

EC 2.18 0.76 2.85 1.54 0.59 0.55 0.67 

 SC 2.02 0.76 2.81 1.51 0.52 0.43 0.80 

 SWC 2.16 0.76 2.54 1.40 0.57 0.51 0.37 

 NWC 1.46 0.50 2.91 1.38 0.30 0.23 1.45 

 

 

 815 

 

 

 

 

 820 

 

 

 

 

 825 

 



21 

 

Table 5. Evaluation results for the air pollutants in China. Mean_obs (Mean_simu) is the mean value of 

observation (model simulation); SD_obs (SD_simu) is the standard deviation of the observation (model 

simulation); IOA is the index of agreement; CORR is the correlation coefficient; MB is the mean bias. 

 Year Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB 

O3 

(ppb) 

2014 29.79 9.95 51.49 18.60 0.48 0.57 22.13 

2015 32.04 10.16 48.98 18.27 0.54 0.55 16.95 

2016 33.28 10.59 48.47 18.18 0.56 0.58 15.14 

2017 35.74 11.71 49.50 19.61 0.63 0.66 13.82 

PM2.5 

(μg m−3) 

2014 46.30 21.52 63.28 27.15 0.52 0.33 18.61 

2015 38.52 17.30 55.56 24.85 0.55 0.42 16.66 

2016 31.86 13.96 56.70 25.69 0.47 0.40 24.54 

2017 28.82 12.23 56.34 25.70 0.40 0.30 27.65 

PM10 

(μg m−3) 

2014 80.79 31.62 71.74 28.65 0.47 0.22 −7.51 

2015 72.03 29.74 63.83 26.29 0.50 0.26 −8.93 

2016 59.68 22.21 65.01 27.29 0.49 0.24 4.65 

2017 57.83 22.18 64.78 27.25 0.41 0.14 6.95 

SO2 

(ppb) 

2014 6.11 2.36 8.41 3.22 0.48 0.41 2.36 

2015 4.78 1.89 8.39 3.26 0.44 0.45 3.64 

2016 4.17 1.57 8.08 3.16 0.41 0.36 3.92 

2017 3.83 1.33 8.58 3.52 0.36 0.42 4.78 

NO2 

(ppb) 

2014 17.20 4.51 17.23 4.63 0.41 0.26 0.06 

2015 16.01 4.47 17.37 4.98 0.43 0.31 1.43 

2016 15.29 4.29 17.35 5.11 0.43 0.31 2.06 

2017 15.83 4.37 17.84 5.12 0.43 0.32 2.02 

CO 

(ppm) 

2014 0.76 0.19 0.44 0.11 0.48 0.42 −0.32 

2015 0.67 0.15 0.45 0.11 0.49 0.42 −0.22 

2016 0.65 0.14 0.45 0.11 0.50 0.45 −0.20 

2017 0.64 0.12 0.46 0.11 0.47 0.38 −0.18 
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Table 6. Evaluation results of air pollutants in 7 major geographic regions simulated by the implemented 840 

model. NE is northeast China, NC is north China, CC is central China, EC is east China, SC is south 

China, SW indicates southwest China, and NW is northwest China. Mean_obs (Mean_simu) is the mean 

value of observations (model simulations); SD_obs (SD_simu) is the standard deviation of the 

observations (model simulations); IOA is the index of agreement; CORR is the correlation coefficient; 

MB is the mean bias. 845 
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 Region Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB 

O3 

(ppb) 

NEC 32.49 10.54 44.54 15.70 0.64 0.64 11.47 

NC 38.56 10.81 70.59 25.11 0.40 0.55 32.02 

CC 31.68 11.20 57.13 18.17 0.47 0.60 26.82 

EC 29.67 10.82 40.53 18.99 0.60 0.61 11.21 

SC 19.90 8.40 34.21 14.68 0.53 0.64 14.90 

SWC 24.27 9.12 42.07 13.19 0.47 0.50 18.80 

NWC 26.63 8.12 51.65 13.70 0.34 0.42 25.58 

PM2.5 

(μg m−3) 

NEC 42.66 25.15 43.33 19.28 0.57 0.39 −0.83 

NC 61.60 28.28 66.83 27.81 0.68 0.52 7.03 

CC 52.11 30.55 94.27 39.40 0.35 0.11 45.50 

EC 52.87 25.71 87.37 38.97 0.50 0.39 36.63 

SC 22.58 10.16 28.62 15.17 0.67 0.57 6.92 

SWC 32.82 12.22 76.69 33.49 0.27 0.08 47.55 

NWC 45.27 14.54 42.80 14.07 0.39 0.03 −1.45 

PM10 

(μg m−3) 

NEC 79.68 36.48 48.99 20.64 0.49 0.32 −32.25 

NC 111.17 39.69 74.29 29.33 0.54 0.38 −35.90 

CC 84.80 41.01 107.65 41.51 0.37 0.05 26.30 

EC 78.16 35.64 99.51 40.90 0.54 0.34 23.64 

SC 43.64 15.72 34.11 16.14 0.58 0.47 −8.54 

SWC 58.84 20.15 87.07 35.49 0.31 −0.07 32.17 

NWC 88.54 28.17 47.77 14.72 0.35 −0.13 −39.68 

SO2 

(ppb) 

NEC 4.91 1.95 5.10 2.55 0.60 0.42 0.27 

NC 8.69 3.52 8.12 3.20 0.54 0.40 −0.57 

CC 7.34 2.09 14.56 5.45 0.36 0.47 7.23 

EC 5.39 2.24 7.86 3.19 0.57 0.53 2.40 

SC 3.50 0.89 4.15 1.52 0.42 0.50 0.71 

SWC 4.74 1.93 15.71 5.12 0.31 0.13 11.42 

NWC 6.65 2.90 4.31 1.50 0.46 0.34 −2.28 

NO2 

(ppb) 

NEC 19.51 4.84 14.07 5.27 0.41 0.11 −5.66 

NC 19.57 5.13 14.05 4.14 0.48 0.27 −5.61 

CC 16.75 4.32 19.70 5.57 0.38 0.32 2.83 

EC 16.24 4.78 28.83 6.88 0.40 0.39 12.65 

SC 13.23 3.48 14.02 3.96 0.38 0.29 1.01 

SWC 17.30 3.70 20.02 4.58 0.34 0.12 3.11 

NWC 16.93 4.77 8.92 2.11 0.41 0.19 −7.98 

CO 

(ppm) 

NEC 0.64 0.17 0.38 0.12 0.48 0.61 −0.27 

NC 0.90 0.25 0.47 0.13 0.47 0.41 −0.42 

CC 0.81 0.17 0.58 0.14 0.49 0.45 −0.22 

EC 0.66 0.16 0.56 0.14 0.63 0.54 −0.09 

SC 0.66 0.11 0.32 0.08 0.36 0.41 −0.34 

SWC 0.69 0.14 0.49 0.11 0.49 0.29 −0.19 

NWC 0.89 0.25 0.25 0.04 0.35 0.18 −0.63 
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Figure 1. The vegetation fraction of (a) broadleaf, (b) needleleaf, (c) cropland, (d) grass, (e) others, and 

(f) dominant vegetation types. 
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Figure 2. Site locations of air quality monitoring sites (blue dots) and the meteorological monitoring 

sites (pink dots) with the underlying is the terrain height (m). 
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Figure 3. Spatial distribution of mean stomatal resistance in JJA of 2014–2017 for (a) sunlit leaves 

(RSSUN) and (d) shaded leaves (RSSHA) from the simu_withoutO3 experiment. Absolute changes in 860 

(b) RSSUN and (e) RSSHA caused by O3 damage. Relative changes in (c) RSSUN and (f) RSSHA 

caused by O3 damage. Absolute changes are the RSSUN (RSSHA) from simu_withO3 minus RSSUN 

(RSSHA) from simu_withoutO3. Relative changes are calculated by absolute changes over the RSSUN 

(RSSHA) from simu_withoutO3. 
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Figure 4. Spatial distribution of 2014–2017 JJA mean (a) photosynthesis rate (PSN), (d) leaf area index 

(LAI), and (g) gross primary productivity (GPP) from the simu_withoutO3 experiment; absolute changes 

in (b) PSN, (e) LAI and (h) GPP caused by O3 damage; and relative changes in (c) PSN, (f) LAI and (i) 870 

GPP caused by O3 damage. Absolute changes are the results from simu_withO3 minus results from 

simu_withoutO3. Relative changes are calculated from the absolute changes over the results from 

simu_withoutO3. 
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Figure 5. Spatial distribution of 2014–2017 JJA mean (a) transpiration rate (TR), and (b) absolute 885 

changes and (c) relative changes in TR caused by O3 damage. 

 

 

 

Figure 6. Spatial distribution of mean (a) latent heat flux (LH) and (d) sensitive heat flux (SH) from the 890 

simu_withoutO3 experiment; absolute changes in (b) LH flux and (e) SH flux in JJA of 2014–2017 

caused by O3 damage; and relative changes in (c) LH flux and (f) SH flux caused by O3 damage. Absolute 

changes are the LH (SH) flux from simu_withO3 minus LH (SH) flux simu_withoutO3. Relative changes 

are calculated by absolute changes over LH (SH) flux from simu_withoutO3. 
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Figure 7. Spatial distribution of mean (a) 2-m relative humidity, (d) 2-m temperature at, and (g) planetary 

boundary layer height (PBLH) in JJA of 2014–2017 from the simu_withoutO3 experiment; absolute 

changes in (b) RH2m, (e) T2m and (h) PBLH caused by O3 damage; and relative changes in (c) RH2m, (f) 900 

T2m and (i) PBLH caused by O3 damage. Absolute changes are the results from simu_withO3 minus 

results from simu_withoutO3. Relative changes are calculated by absolute changes over the results from 

simu_withoutO3. 
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Figure 8. Same as Fig 5 but for surface O3 concentration. 
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Figure 9. Same as Fig 5 but for isoprene emission. 
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