

1 **The Response of the Amazon Ecosystem to the Photosynthetically Active**
2 **Radiation Fields: Integrating Impacts of Biomass Burning Aerosol and**
3 **Clouds in the NASA GEOS Earth System Model**

4
5 Huisheng Bian^{1,2}, Eunjee Lee^{3,4}, Randal D. Koster⁴, Donifan Barahona⁴, Mian Chin², Peter R.
6 Colarco², Anton Darmenov², Sarith Mahanama^{5,4}, Michael Manyin^{5,4}, Peter Norris^{3,4}, John
7 Shilling⁶, Hongbin Yu², and Fanwei Zeng^{5,4}

8
9 ¹Joint Center for Environmental Technology UMBC, Baltimore, MD, 21250, USA

10 ²Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA

11 ³Goddard Earth Sciences Technology and Research, Universities Space Research Association,
12 Columbia, MD 21046, USA

13 ⁴Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD
14 20771, USA

15 ⁵Science Systems and Applications, Inc., Lanham, MD 20706, USA

16 ⁶Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory,
17 Richland, WA 99352, USA

18
19 *Correspondence to:* Huisheng Bian (Huisheng.Bian@nasa.gov)

20
21 **Abstract**

22
23 The Amazon experiences fires every year, and the resulting biomass burning aerosols, together
24 with cloud particles, influence the penetration of sunlight through the atmosphere, increasing the
25 ratio of diffuse to direct photosynthetically active radiation (PAR) reaching the vegetation
26 canopy and thereby potentially increasing ecosystem productivity. In this study, we use the
27 NASA Goddard Earth Observing System (GEOS) model with coupled aerosol, cloud, radiation,
28 and ecosystem modules to investigate the impact of Amazon biomass burning aerosols on
29 ecosystem productivity, as well as the role of the Amazon's clouds in tempering this impact. The
30 study focuses on a seven-year period (2010-2016) during which the Amazon experienced a
31 variety of dynamic environments (e.g., La Niña, normal years, and El Niño). The direct radiative
32 impact of biomass burning aerosols on ecosystem productivity—called here the aerosol diffuse
33 radiation fertilization effect—is found to increase Amazonian Gross Primary Production (GPP)
34 by 2.6% via a 3.8% increase in diffuse PAR (DFPAR) despite a 5.4% decrease in direct PAR
35 (DRPAR) on multiyear average during burning seasons. On a monthly basis, this increase in
36 GPP can be as large as 9.9% (occurring in August 2010). Consequently, the net primary
37 production (NPP) in Amazon is increased by 1.5%, or $\sim 92 \text{ TgCyr}^{-1}$ —equivalent to $\sim 37\%$ of the
38 average carbon lost due to Amazon fires over the seven years considered. Clouds, however,
39 strongly regulate the effectiveness of the aerosol diffuse radiation fertilization effect. The
40 efficiency of this fertilization effect is the highest in cloud-free conditions and linearly decreases
41 with increasing cloud amount until the cloud fraction reaches ~ 0.8 , at which point the aerosol-
42 influenced light changes from being a stimulator to an inhibitor of plant growth. Nevertheless,
43 interannual changes in the overall strength of the aerosol diffuse radiation fertilization effect are
44 primarily controlled by the large interannual changes in biomass burning aerosols rather than by
45 changes in cloudiness during the studied period.

46

47

48 **1. Introduction**

49 The Amazon is home to more than 34 million people and hosts a large variety of plants and
 50 animals. The rainforest plays a vital role in the global climate, regulating temperatures and
 51 storing vast quantities of carbon (Laurance 1999; Nepstad et al., 2008). It is matter of intense
 52 research whether light or water is the limiting factor that controls plant growth over Amazonia.
 53 Considerable evidence demonstrates that sunlight indeed drives Amazon forest growth (Doughty
 54 et al., 2019; Huete et al., 2006; Myneni et al., 2007) although water deficit could be a limiting
 55 factor during severe droughts (Doughty et al., 2015; Feldpausch et al., 2016; Saatchi et al.,
 56 2013). Satellite observations show a clear seasonal cycle with a gradual crescendo in both leaf
 57 area and incoming surface sunlight beginning at the onset of the dry season (~August –
 58 November) (Myneni et al., 2007). Vegetation index maps also show that a majority of Amazonia
 59 is greener in the dry season than in the wet season (~mid-December – mid-May) (Huete et al.,
 60 2006). It is in the dry season, when more light reaches the canopy level, that the Amazon forest
 61 thrives.

62

63 Plant photosynthesis requires sunlight to reach the leaves of the canopy. While aerosols and
 64 clouds in the atmosphere decrease the total amount of light that reaches the canopy, they also
 65 increase scattering, thereby increasing the ratio of diffuse radiation to direct radiation. This is
 66 important because the efficiency of plant photosynthesis increases under diffuse sunlight – a
 67 phenomenon both explained theoretically (Rap et al., 2015; Roderick et al., 2001; Zhou et al.,
 68 2020) and observed in the field (Cirino et al., 2014; Doughty et al., 2010; Ezhova et al., 2018; Gu
 69 et al., 2003; Lee et al., 2018; Niyogi et al., 2004; Oliveira et al., 2007). Leaf photosynthesis
 70 increases nonlinearly with solar radiation, becoming saturated on bright days at light levels
 71 above which leaves cannot take more light (Gu et al., 2003; Mercado et al., 2009). Under clear
 72 and clean sky conditions, particularly around midday, sunlight is mainly direct, and while this
 73 allows the sunlit leaves on top to be light saturated, the shaded leaves below them receive
 74 relatively little sunlight and thus participate less in photosynthesis (Rap et al., 2015; Roderick et
 75 al., 2001). In contrast, under cloudy conditions or in the presence of aerosols, much of the
 76 midday light is diffuse, and diffuse light can penetrate deeper into the canopy and illuminate
 77 shaded leaves. Li and Yang (2015) conducted a chamber experiment to explore diffuse light on
 78 light distribution within a canopy and the resulting effects on crop photosynthesis and plant
 79 growth. They concluded that diffusion of the incident light improves spatial light distribution,
 80 lessens the variation of temporal light distribution in the canopy, and allows more light-
 81 stimulated growth of shade-tolerant potted plants.

82

83 The situation is more profound during the Amazon dry season when intensive seasonal fires
 84 release large amounts of primary aerosol particles as well as gas precursors that form secondary
 85 organic and inorganic aerosols. Using stand-alone radiation and vegetation models, Rap et al.
 86 (2015) concluded that fires over the Amazon dry season increase Amazon net primary
 87 production (NPP) by 1.4–2.8% by increasing diffuse radiation. This enhancement of Amazon
 88 basin NPP (78–156 Tg C a⁻¹) is equivalent to 33–65% of the annual regional carbon emissions
 89 from biomass burning and accounts for 8–16% of the observed carbon sink across mature
 90 Amazonian forests. Moreira et al. (2017) advanced this analysis by coupling an ecosystem
 91 module and aerosol model within a Eulerian transport model. Their study indicated that biomass
 92 burning aerosols lead to increases of about 27% in Amazonian Gross Primary Production (GPP)

93 and 10% in plant respiration as well as a decline in soil respiration of 3 %. However, their
94 approach assumes cloud-free conditions through their use of a diffuse irradiance
95 parameterization based on the multiwavelength aerosol optical depth (AOD) measurement.
96 Malavelle et al. (2019) explored the overall net impact of biomass burning aerosol on the
97 Amazon ecosystem using an Earth System Model (ESM) (HadGEM2-ES). They estimated NPP
98 to increase by +80 to +105 TgC yr⁻¹, or 1.9% to 2.7%, ascribing this net change to an increase in
99 diffuse light, a reduction in the total amount of radiation, and feedback from climate adjustments
100 in response to the aerosol forcing. Their study takes into account the dynamic feedback of short
101 lifetime cloud fields. However, the authors have not explicitly quantified the impact of Amazon
102 background clouds and their interannual changes in tempering the aerosol diffuse radiation
103 fertilization effect (DRFE).

104 When clouds and aerosol co-exist, the impact from clouds on the ecosystem typically dominates
105 because clouds are optically thicker. The surface sunlight for cloudy versus cloud-free conditions
106 can differ greatly even if the AOD is the same. (Note that, unless specified otherwise, solar
107 radiation in this study refers to the wavelength range of 400-700 nm, i.e., photosynthetically
108 active radiation, or PAR). Measurements indicate that the desirable range of clearness index (CI)
109 -- the ratio of total (i.e., direct plus diffuse) light at surface to the total incoming light at top of
110 atmosphere -- is around 0.4-0.7 for some forest ecosystems and above 0.3 for peatland (Butt et
111 al., 2010, Letts and Lafleur, 2005). Quite often a low CI occurs during a cloudy day, but on
112 occasion it might result from the presence of a very thick aerosol layer. As suggested above, if
113 CI is high, the diffuse fraction of the total solar radiation is low, and the overall productivity of
114 the canopy is reduced. For example, Cirino et al. (2014) found that the net ecosystem exchange
115 (NEE) of CO₂ is increased by 29% and 20% in two Amazon stations, the Jaru Biological Reserve
116 (RBJ) and the Cuieiras Biological Reserve at the K34 Large-Scale Biosphere-Atmosphere
117 Experiment in Amazonia (LBA) tower, respectively, when AOD is 0.1-1.5 at 550nm under clear
118 conditions. Higher AOD (> 3) leads to a strong reduction in photosynthesis (via reducing PAR)
119 up to the point where NEE approaches zero. Oliveira et al. (2007) found that Amazon forest
120 productivity was enhanced under moderately thick smoke loading because of an increase of
121 diffuse solar radiation, but large aerosol loading (i.e., AOD > 2.7) results in lower net
122 productivity of the Amazon forest.

123
124 Despite its name, the Amazon's "dry season" (June-November) still features significant
125 cloudiness, and the interannual variations in the clouds can be large. Furthermore, rain does fall
126 during the dry season – close to 40% of the total annual precipitation falls therein (Li et al.,
127 2006). Clouds in the dry season are mostly formed by small-scale processes that influence the
128 weather (see an example of a uniform layer of "popcorn" clouds observed by Moderate
129 Resolution Imaging Spectroradiometer (MODIS) on 08/19/2009 in
130 <http://earthobservatory.nasa.gov/IOTD/view.php?id=39936>). It is during this period, when
131 sunlight (particularly diffuse light) shines on the trees due to reduced rain (and fewer clouds)
132 relative to the wet season, that the forest grows the most. Consideration of the joint effects of
133 clouds and biomass burning aerosols on diffuse and direct PAR during the dry season is thus
134 particularly important.

135
136 This study has two objectives. First, we investigate how Amazon biomass burning aerosols
137 (BBaer) affect the land productivity (i.e., GPP and NPP) via their impact on direct and diffuse

139 PAR (DRPAR and DFPAR). Second, we investigate the sensitivity of the BBaer DRFE to the
140 presence of the Amazon dry season cloud fields within the range indicated by the interannual
141 variation of the clouds. We use in our analysis a version of the NASA GEOS ESM that includes
142 coupling between aerosol, cloud, radiation, and ecosystem processes. To our knowledge, only
143 one other study has used an ESM to investigate such fire impacts across Amazonia (Malavelle et
144 al., 2019), and as noted above, that study did not address the ability of Amazon clouds to temper
145 the BBaer impacts. Accordingly, our study is the first ESM-based study to investigate the BBaer
146 DRFE within a range of interannual Amazon cloud levels. Together our objectives provide a full
147 and comprehensive study of BBaer DRFE in a context of potential Amazon dry season
148 atmospheric conditions.

149

150 It is necessary to point out, however, that our study focuses only on the impact of Amazon
151 biomass burning aerosol. We do not consider the radiative impacts of other potentially important
152 aerosols. These other aerosol types have been examined in various observational studies (e.g.,
153 Cirino et al., 2014; Ezhova et al., 2018; Hemes et al., 2020; Wang et al., 2018, Yan et al., 2014)
154 and model investigations that focus, for example, on anthropogenic aerosol (Keppel et al., 2016);
155 O'Sullivan et al., 2016), dust (Xi et al., 2012), biogenic aerosol (Rap et al., 2018; Sporre et al.,
156 2019), volcanic aerosol (Gu et al., 2003), and the general aerosol field (Feng et al., 2019).

157

158 The paper is organized as follows. Section 2 describes the NASA GEOS ESM and its relevant
159 modules (section 2.1), the observational data used for model evaluation and explanation (section
160 2.2), and the experimental setup (section 2.3). Section 3 provides an evaluation of the model
161 (section 3.1), basic theory regarding the impact of aerosol and cloud on the surface downward
162 radiation (section 3.2), results regarding the simulated ecosystem response to BBaer-induced
163 radiation changes (section 3.3), and the impacts of Amazon background clouds on this response
164 (section 3.4). A final summary is provided in section 4.

165

166 **2. Model description, data application, and experiment setup**

167

168 **2.1 Model description**

169 The GEOS modeling system connects state-of-the-art models of the various components of the
170 Earth's climate system together using the Earth System Modeling Framework (ESMF) (Molod et
171 al., 2015; 2012; Rienecker et al., 2011; <https://gmao.gsfc.nasa.gov/>). We discuss here the
172 components of the system that are particularly relevant to our study, including aerosol, cloud
173 microphysics, radiative transfer, and land ecosystem modules.

174

175 GEOS Goddard Chemistry Aerosol Radiation and Transport (GOCART) simulates a number of
176 major atmospheric aerosol species and precursor gases from natural and anthropogenic sources,
177 including sulfate, nitrate, ammonium, black carbon (BC), organic aerosol (OA, including
178 primary and secondary OA), dust, sea salt, dimethyl sulfide (DMS), SO₂, and NH₃ (Bian et al.,
179 2010, 2013, 2017, 2019; Chin et al., 2009, 2014; Colarco et al., 2010, 2017; Murphy et al., 2019;
180 Randles et al., 2013). Monthly emissions from shipping, aircraft, and other anthropogenic
181 sources are obtained from the recent CMIP6 CEDS emission inventory. Daily biomass burning
182 emissions are provided by GFED4s
183 (https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html). Estimates of degassing
184 and eruptive volcanic emissions are derived from Ozone Monitoring Instrument (OMI) satellite

185 (Carn et al., 2017). Emissions of dust, sea salt, and DMS are dynamically calculated online as a
186 function of the model-simulated near-surface winds and other surface properties. A more recent
187 development of GOCART relevant to this study involves the modification of the absorbing
188 properties of “brown carbon” from biomass burning organic aerosols (Colarco et al., 2017) and
189 the inclusion of secondary organic aerosol (SOA) produced via chemical reactions of volatile
190 organic compounds (VOCs) emitted from anthropogenic and biomass burning sources, following
191 the approach developed by Hodzic and Jimenez (2011) and Kim et al. (2015). In addition, the
192 SOA from biogenic sources has been updated with its precursor gases of isoprene and
193 monoterpane emissions calculated online as a function of light and temperature using the Model
194 of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012),
195 assuming SOA yield of 3% from isoprene and 5% from monoterpane oxidations (Kim et al.,
196 2015).
197

198 The GEOS two-moment cloud microphysics module is used in this study. The module includes
199 the implementation of a comprehensive stratiform microphysics module, a new cloud coverage
200 scheme that allows ice supersaturation, and a new microphysics module embedded within the
201 moist convection parameterization (Barahona et al., 2014). At present, aerosol number
202 concentrations are derived from the GEOS/GOCART-calculated aerosol mass mixing ratio and
203 prescribed size distributions and mixing state, which are then used for cloud condensation nuclei
204 (CCN) activation (following the approach of Abdul-Razzak and Ghan, 2000) and ice nucleation
205 (following the approach of Barahona and Nenes, 2009) processes. Aerosol-cloud interactions are
206 thus accounted for in our simulation. The model calculates various cloud properties, including
207 cloud fraction, cloud droplet and ice crystal number concentrations and effective radii, and cloud
208 liquid and ice water paths. These fields have been evaluated against satellite observations and
209 field measurements; the model shows a realistic simulation of cloud characteristics despite a few
210 remaining deficiencies (Barahona et al., 2014, Breen et al., 2020).
211

212 The current default GEOS solar radiation transfer module is the shortwave rapid radiation
213 transfer model for GCMs (RRTMG_SW), a correlated k-distribution model (Iacono et al., 2008).
214 This GCM version utilizes a reduced complement of 112 g-points, which is half of the 224 g-
215 points used in the standard RRTMG_SW, and a two-stream method for radiative transfer. Total
216 fluxes are accurate to within 1-2 W/m² relative to the standard RRTMG_SW (using DISORT)
217 with aerosols in clear sky and within 6 W/m² in overcast sky. RRTMG_SW with DISORT is
218 itself accurate to within 2 W/m² of the data-validated multiple scattering model, CHARTS.
219 RRTMG_SW specifically calculates the direct and diffuse components of PAR (400-700 nm)
220 separately. The GEOS atmospheric radiative transfer calculation is designed in a way that allows
221 users to examine the impact of various combinations of atmospheric aerosol and cloud fields on
222 radiation. In addition to the standard calculation of solar radiation for ambient atmospheric
223 conditions, diagnostic calculations can be carried out by repeating the calculation of the radiation
224 transfer scheme with different combinations of atmospheric conditions: clean air (no aerosols),
225 clear air (no clouds), and clean plus clear air. Using this architecture, for this study we modify
226 the radiation scheme to allow the additional diagnosis of radiation fields under conditions of zero
227 BBAer but retained non-BBAer and ambient clouds.
228

229 The catchment land surface model (LSM) with carbon and nitrogen physics (Catchment-CN) in
230 GEOS is in essence a merger of the C-N physics within the NCAR-DOE Community Land

231 Model (CLM) (Oleson et al. 2010, 2013; Lawrence et al., 2019) version 4.0 and the energy and
232 water balance calculations of the NASA GMAO catchment LSM (Koster et al. 2000). The
233 original NASA catchment LSM used a prescribed representation of phenology (leaf area index,
234 or LAI, and greenness fraction) to compute the canopy conductance, the parameter describing
235 the ease with which the plants transpire water. The light interception by vegetation in the GEOS
236 Catchment-CN utilizes the same parameterization as that in CLM4. The photosynthesis and
237 transpiration depend non-linearly on solar radiation. The canopy is assumed to consist of sunlit
238 leaves and shaded leaves, and the DRPAR and DFPAR absorbed by the vegetation is
239 apportioned to the sunlit and shaded leaves as described by Thornton and Zimmermann (2007).
240 The prognostic carbon storages underlying the phenological variables are computed as a matter
241 of course along with values of canopy conductance that reflect an explicit treatment of
242 photosynthesis physics. These canopy conductances, along with the LAIs diagnosed from the
243 new carbon prognostic variables, are fed into the energy and water balance calculations in the
244 original catchment LSM. The output fluxes from the merged system include carbon fluxes in
245 addition to traditional fluxes of heat and moisture. The merger of the two models allows
246 Catchment-CN to follow 19 distinct vegetation types. Koster and Walker (2015) have used
247 Catchment-CN within an atmospheric global circulation model (AGCM) framework to
248 investigate interactive feedback among vegetation phenology, soil moisture, and temperature. In
249 this study, the modeled atmospheric CO₂ from the AGCM is used to drive the carbon, water, and
250 energy dynamics in the Catchment-CN model.

251 In addition to the GEOS ESM, we use a photolysis scheme, FastJX, in its stand-alone mode to
252 explore how incoming solar radiation penetrates the atmosphere in the presence of aerosols and
253 clouds in order to enhance our basic understanding of the role of atmospheric particles on
254 radiation. FastJX is based on the original Fast-J scheme, which was developed for tropospheric
255 photochemistry with interactive consideration of aerosol and cloud impacts at 291–850 nm (Wild
256 et al., 2000), and Fast-J2, which extended the scheme into the deep UV spectrum range of 177–
257 291 nm (Bian and Prather, 2002).

258

259 **2.2 Observational data**

260 We mostly rely on the GoAmazon (“Green Ocean Amazon”) field campaign
261 (<http://campaign.arm.gov/goamazon2014/>) for in-situ aerosol observations to assess the model-
262 simulated OA concentrations. GoAmazon is an integrated field campaign conducted in the
263 central Amazon Basin (Martin et al., 2016). Specifically, the following datasets are used: a) the
264 surface OA concentration measured in 2014 by the Aerosol Chemical Speciation Monitor
265 (ACSM) operated by the Department of Energy’s (DOE) Atmospheric Radiation Measurement
266 (ARM) Mobile Facility located 70 km downwind of Manaus, Brazil (Ng et al., 2011), b) the
267 surface CO volume mixing ratio in 2014 at Manaus measured by Los Gatos Research (LGR)
268 N₂O/CO Analyzer that uses LGR’s patented Off-axis Integrated Cavity Output Spectroscopy
269 (ICOS) technology, and c) the vertical profile of OA concentration measured by a time-of-Flight
270 Aerosol Mass Spectrometer (ToF-AMS) instrument on the ARM Aerial Facility Gulfstream-1
271 (G-1) aircraft during the dry season of 2014 (Sept 06-Oct 04, 2014) (Shilling et al., 2018). The
272 G-1 aircraft was based out of the Manaus International airport and flew patterns designed to
273 intersect the Manaus urban plume at increasing downwind distance from the city (e.g., 59–61°W
274 and 4–2.5°S). In addition, we evaluate the model with AOD and single scattering albedo (SSA)
275 measurements taken at a central Amazon station (Alta.Floresta) in the ground-based Aerosol
276 Robotic Network (AERONET) sun photometer network (<http://aeronet.gsfc.nasa.gov>). We also

277 use MODIS collection 6.1 level-3 AOD product
278 (<http://modis.gsfc.nasa.gov/data/dataproducts/index.php>), which is characterized by observations
279 with large spatial coverage.
280
281 MODIS cloud products (<https://modis-atmosphere.gsfc.nasa.gov/data/dataproducts/>), specifically
282 total cloud fraction and cloud optical depth in liquid and ice particles, are used to evaluate the
283 model cloud simulation. We use the cloud data from MODIS collection 6.1 MYD08_D3, a level-
284 3 $1^\circ \times 1^\circ$ global gridded monthly joint product derived from the MODIS level-2 pixel level
285 products. MODIS level 2 cloud fraction is produced by the infrared retrieval methods during
286 both day and night at a 5×5 1-km-pixel resolution. Level 2 cloud optical thickness used in this
287 study is derived using the MODIS visible and near-infrared channel radiances from the Aqua
288 platform.
289
290 The satellite-derived Clouds and the Earth's Radiant Energy System product CERES-EBAF is
291 used to evaluate the GEOS simulation of radiation fields. CERES-EBAF retrieves surface
292 downward shortwave radiation (R_{SFC}) using cloud information from more recent satellite data
293 (MODIS, CERES, CloudSat and CALIPSO) and aerosol fields from AERONET/MODIS
294 validation-based estimates (Kato et al., 2013). This global product is provided at a $1^\circ \times 1^\circ$
295 horizontal resolution and covers the years 2000-2015 for both all- and clear-sky conditions. The
296 multiyear R_{SFC} products provide both a spatial and temporal view of radiation over Amazonia.
297
298 Two observation-based GPP products (FluxCom and FluxSat) are used to evaluate ecosystem
299 productivity in the GEOS simulations. The FluxCom GPP product provides globally distributed
300 eddy-covariance-based estimates of carbon fluxes between the biosphere and the atmosphere
301 through upscaling using machine learning methods (Jung et al., 2020). FluxSat GPP is estimated
302 with models that use satellite data (e.g., MODIS reflectances and solar-induced fluorescence
303 (SIF)) within a simplified light-use efficiency framework (Joiner et al., 2018). We use monthly
304 GPP for August through October of 2010-2015 in this study.

304 **2.3 Experiment setup**

305 All experiments were run with the coupled atmosphere and land components of the NASA
306 GEOS ESM system discussed above. The sea surface temperature (SST) for the atmospheric
307 dynamic circulation is provided by the GEOS Atmospheric Data Assimilation System (ADAS)
308 that incorporates satellite and in situ SST observations and assimilates Advanced Very High
309 Resolution Radiometer (AVHRR) brightness temperatures. The experiments were run in replay
310 mode, which means that the model dynamical variables (winds, pressure, temperature, and
311 humidity) were set, every 6 hours, to the values archived by the Modern-Era Retrospective
312 Analysis for Research and Applications version 2 (MERRA-2) meteorological reanalysis (Gelaro
313 et al. 2017); a 6-hourly forecast provided the dynamical and physical fields between the 6-hour
314 resets. In effect, the replay approach forces the atmospheric “weather” simulated in the model to
315 agree with the reanalysis. This nudging of the GEOS dynamic fields toward the MERRA2
316 reanalysis ensures that the atmospheric conditions of our four simulations (see below) remain
317 close to each other, allowing a more focused study of radiative impact on ecosystem. All
318 designed experiments were run over 2010-2016, a period that includes La Niña (2010-2011), El
319 Niño (2015-2016), and neutral years as indicated by the Oceanic Niño Index (ONI,
320 <https://origin.cpc.ncep.noaa.gov/>) (Figure S1). Information regarding long-term BB OA

321 emissions (i.e., 1997-2016) and long-term MERRA2 cloud fraction anomalies (i.e., 1995-2018)
 322 is shown in Figure S2. The selected period of 2010-2016 represents well the long-term period in
 323 terms of the variation of BB emissions and cloud coverage.

324
 325 Our experimental design makes extensive use of GEOS's highly flexible configuration. First, the
 326 GEOS GOCART module includes a tagged aerosol mechanism. Each specific aerosol
 327 component in GOCART is simulated independently from the others, and the contribution of each
 328 emission type to the total aerosol mass is also not interfered by that of other emission types.
 329 Thus, additional aerosol tracers can easily be "tagged" according to emission source types. This
 330 makes it possible for GOCART to calculate and transfer two sets of aerosol fields (e.g., one with
 331 and one without a biomass burning source) to the radiation module. Second, the radiation module
 332 can in turn calculate a set of atmospheric radiation fields corresponding to each set of aerosol
 333 fields, and it can then disseminate both sets of radiation fields to the various components of
 334 interest (i.e., cloud module, land ecosystem module, etc.) according to the needs of our
 335 experiments (see below).

336
 337 Table 1 provides a brief summary of the experiments performed for this study. First, we designed
 338 a pair of experiments (allaer and nobbaer, hereafter referred to as "pair1") to explore the BBaer
 339 DRFE on the land productivity via PAR (objective 1). The allaer and nobbaer experiments are
 340 designed to simulate the same atmospheric dynamics but send different PAR fluxes into the
 341 Catchment-CN model. Specifically, both the allaer and nobbaer experiments used all
 342 atmospheric aerosols including real-time biomass burning emissions over 2010-2016 to calculate
 343 a set of radiation fields (R^1) to drive atmospheric circulation; however, with the help of GEOS's
 344 flexible configuration, the nobbaer experiment also calculated a second set of radiation fields
 345 (R^2) that used non-BB aerosols only. R^1 was sent to Catchment-CN in the allaer experiment
 346 whereas R^2 was sent to Catchment-CN in the nobbaer experiment. In this way, the only
 347 difference between the allaer and nobbaer experiments was the PAR fluxes used to drive the
 348 ecosystem model – only the PAR fluxes used in allaer reflected the presence of biomass burning
 349 aerosols. The atmospheric meteorological fields in the two experiments, including clouds, skin
 350 temperature, and soil moisture, show only minor differences stemming from land feedback
 351 (Figure S3-4, Table 3, Table S1e and Table S2e). A negligible impact on cloud fields has also
 352 been reported in Pedruzo-Bagazgoitia et al. (2017).

353
 354 Table 1. Designed experiments (2010-2016) with their perturbation on aerosol fields and
 355 subsequent impact on radiation and ecosystem

Exp Name		Aerosol	R in RRTMG	R driving Atmosphere	R driving Catchment-CN	Purpose
Pair 1	allaer	Standard all, w/ Realtime AERbb emission	R^1_{top} , R^1_{dir} , R^1_{diff} (all aerosol)	R^1_{top} , R^1_{dir} , R^1_{diff}	R^1_{dir} , R^1_{diff}	Check atmospheric BB aerosol impact on plants via radiation fields during 2010-2016
	nobbaer		R^1_{top} , R^1_{dir} , R^1_{diff} (all aerosol) R^2_{top} , R^2_{dir} , R^2_{diff} (all non-bb aerosol)	R^1_{top} , R^1_{dir} , R^1_{diff}	R^2_{dir} , R^2_{diff}	
Pair 2	callaer	Standard all, w/ AERbb emission fixed at 2010	R^1_{top} , R^1_{dir} , R^1_{diff} (all aerosol)	R^1_{top} , R^1_{dir} , R^1_{diff}	R^1_{dir} , R^1_{diff}	Check how clouds adjust the above impact
	cnobbaer		R^1_{top} , R^1_{dir} , R^1_{diff} (all aerosol) R^2_{top} , R^2_{dir} , R^2_{diff} (all non-bb aerosol)	R^1_{top} , R^1_{dir} , R^1_{diff}	R^2_{dir} , R^2_{diff}	

358 We also designed a pair of experiments (callaer and cnobbaer, hereafter referred to as “pair2”) to
359 address the sensitivity of the BBaer DRFE to the presence of the Amazon dry season cloud fields
360 (objective 2). The pair2 experiments are similar to those in pair1 except that the particular BB
361 emissions of year 2010 were repeated during all seven years. Applying a fixed aerosol emission
362 allows us to attribute the interannual variation of the ecosystem solely to the influence of
363 interannual variations in atmospheric meteorological fields, including clouds. In addition,
364 combining the pair1 and pair2 experiments provides two biomass burning aerosol emissions for
365 each year except 2010, which allows us to compare the impacts of different emissions under
366 similar meteorological environments (Figure S3-4, Table 3, Table S1e and Table S2e). Please
367 note that the experiments in this study were intentionally designed to allow the aerosols to affect
368 the vegetation only through their impact on the direct and diffuse radiation that enters ecosystem
369 and not, for example, through their other potential impacts on the environment. Future study may
370 focus on these other impacts. Given that the experiment period covers strong La Niña and El
371 Niño years, we can examine BBaer impacts on ecosystem productivity under the full range of
372 Amazon background cloud fields.
373

374 **3. Results and Discussion**

375 **3.1 Evaluation of GEOS simulations of aerosol, cloud, radiation, and ecosystem 376 response**

377 The NASA GEOS ESM model, including its aerosol, cloud, radiation, and ecosystem modules as
378 used in the baseline simulation (i.e., experiment allaer), has been evaluated extensively and
379 utilized in a number of scientific studies. However, very few of the past studies with GEOS was
380 concentrated on detailed model evaluation over South America. We provide such an evaluation
381 here.
382

383 The simulated tracer fields are compared with measurements over the Amazon in Figures 1 and
384 2. Figure 1 shows results for surface OA concentration, surface CO concentration, and the OA
385 concentration vertical profile. We focus primarily on the OA evaluation since it is the major
386 component of biomass burning aerosols. Figure 1a shows the comparison of surface daily OA
387 concentration between the model simulation and the GoAmazon measurements at Manaus,
388 Brazil, in 2014 (The location is indicated in Figure 2c with an open-diamond). The simulated OA
389 broadly captures the seasonal trend in OA concentrations measured at Manaus, but it is lower
390 than observed OA values by ~24% during Sept-Oct and ~ 30% annually. For the period of
391 interest, the model simulates a large fire signal in August that is not seen in the measurements.
392 However, this strong August biomass burning signal does show up in the CO measurements
393 (Figure 1b), which should also be from biomass burning. The reasons for such discrepancy from
394 observations are not clear.
395

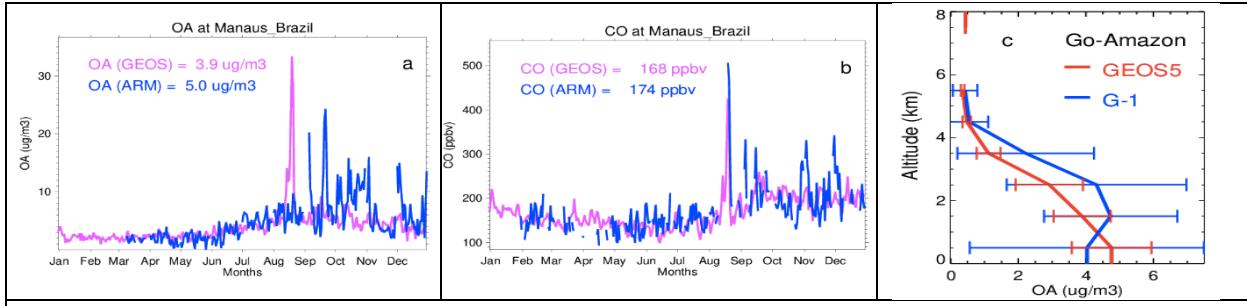
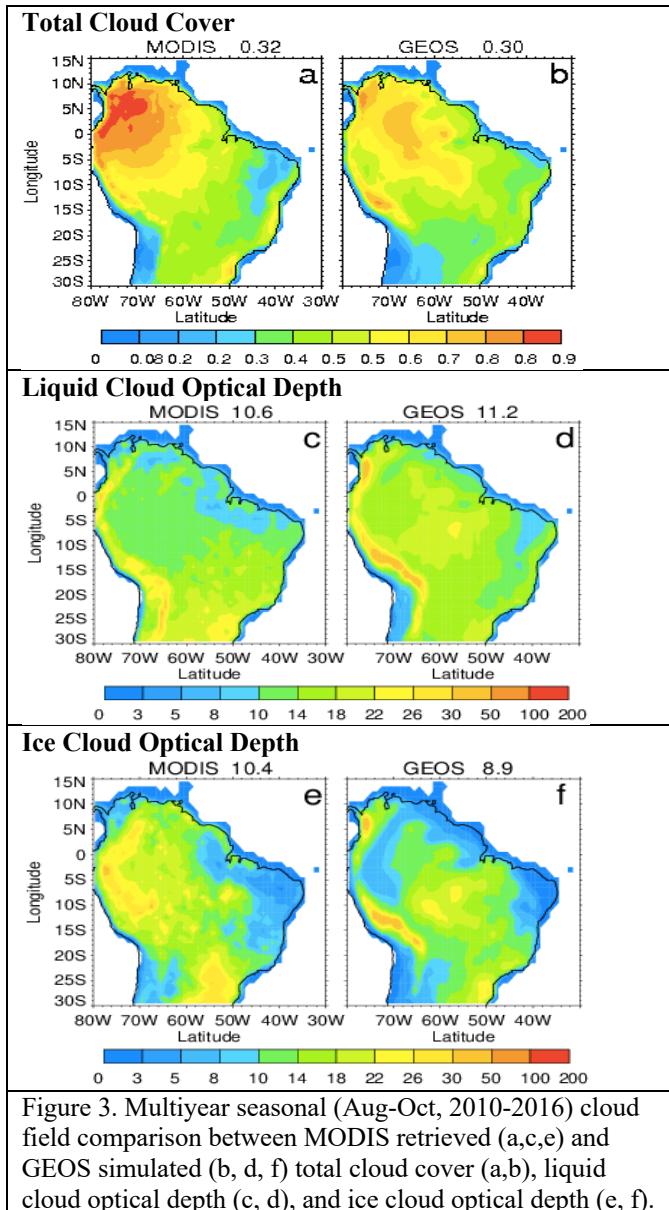


Figure 1. (a) Comparison of the ACMS measured organic aerosol (OA) daily surface mass concentration at the GoAmazon DOE ARM facility in Manaus, Brazil (location marked in Figure 2c as an open-diamond) in 2014 with GEOS simulated values. (b) Similar to (a) but for carbon monoxide (CO) volume mixing ratio. (c) GoAmazon G-1 aircraft measurement of vertical OA mass concentration during Sept 6 -Oct 4, 2014 in the vicinity of Manaus, compared to GEOS simulations. The error bars on 1c indicate one standard deviation of the data within each 1km vertical layer.

397

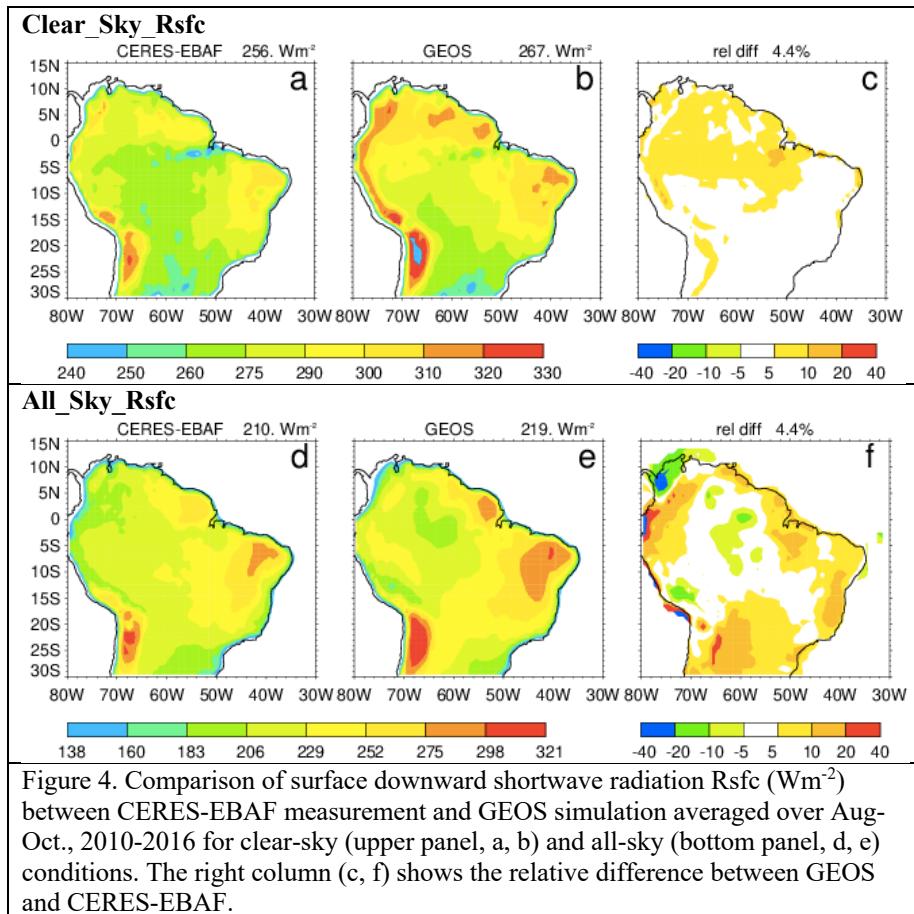
Figure 2. (a) Comparison of GEOS simulated AOD at 550nm with AERONET and MODIS daily measurements at the Alta-Floresta AERONET site for 2014. (b) similar comparison for aerosol single scattering albedo at 440nm during 2014. (c) Mean MODIS collection 6.1 AOD at 550nm during the period Aug-Oct, 2014. (d) GEOS simulated AOD at 550nm for the same period as in (c) with daily model data sampled following MODIS measurements. Note that the mean AOD values shown for (c) and (d) are averaged over the Amazon region (i.e. the shaded land area within 80°W-30°W, 25°S-5°N shown in 2d). Station locations of Alta-Floresta (filled-circle) and Manaus (open diamond) are marked in (c).


398

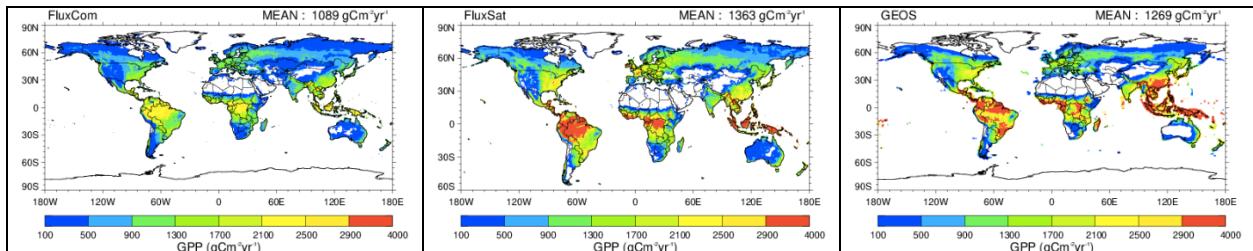
399 When compared with aircraft G-1 measurements over a $\sim 2^\circ \times 2^\circ$ region around the center of
400 Manaus during the biomass burning season (Sept. 6 – Oct. 4, 2014) (Figure 1c), the simulated
401 vertical OA concentrations underestimate the measurements above 1 km altitude but
402 overestimate them under it, although they overlap within their standard deviations for all
403 altitudes. Here the model data have been sampled spatially and temporally along the G-1 flight
404 paths. This surface OA overestimation by the model seems to contradict the model's
405 underestimation seen in Figure 1a, indicating that capturing aerosols at the right times and
406 locations is a challenge.

407

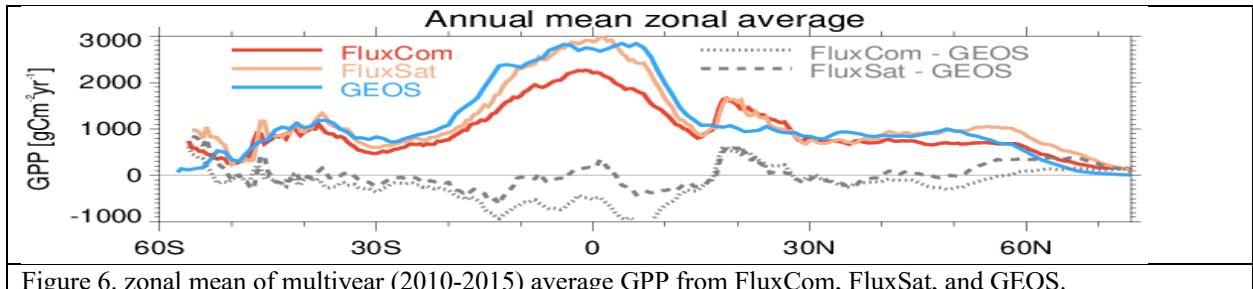
408 Figure 2 shows the AOD (550nm) and SSA (440nm) comparison at the AERONET station of
409 Alta-Floresta, which is located close to the area of the most intensive Amazon fires (location is
410 marked in Figure 2c as a filled-in circle). The model-simulated, AERONET-measured, and
411 MODIS-retrieved AOD at this site agree within 20% (Figure 2a), all showing a peak of AOD
412 during the biomass burning season. SSA during the burning season generally ranges between
413 0.85 – 0.95 (Figure 2b). The model agrees with the measurements with accurate better than 5%
414 except during the first half of August, when the model aerosols are too scattering. However, it is
415 puzzling to observe the extremely low measured SSA in the beginning of August given that the
416 AOD is still low then, as shown in Figure 2a. It could be the quality of AERONET SSA is not


417 “reliable” at low AOD (Chin et al., 2009). Because of the low sensitivity to the absorption when
 418 aerosol loading is low, SSA is retrieved with sufficiently high accuracy only when the
 419 total AOD at 440 nm is equal or higher than 0.4 and solar zenith angle is 50 degree or higher
 420 (Dubovik et al., 2000, 2002). Regionally over the Amazon region, defined throughout the study
 421 as the land area within 80°W-30°W, 25°S-5°N (shaded land area in Figure 2d), the model-
 422 simulated AOD (0.22 in Figure 2d) during the biomass burning season generally agrees with
 423 MODIS satellite retrievals (0.21 in Figure 2c). A simulated high bias is seen over the east
 424 Amazon; however, though this region is in our area of interest, the bias should have only a minor
 425 impact on our study given that the area is relatively bare, with little vegetation coverage.
 426

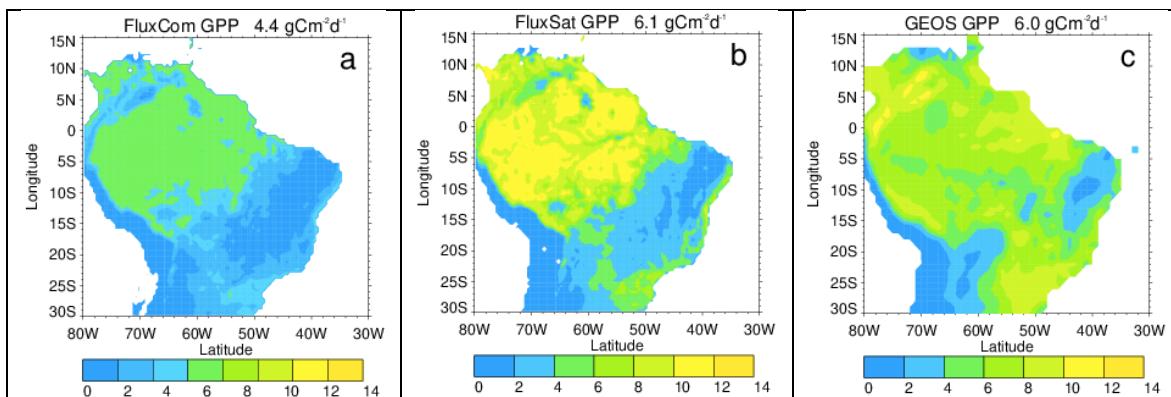
461 The accurate simulation of cloud fields is also important for our study. In Figure 3 we evaluate
 462 the GEOS-simulated cloud cover fraction and cloud optical depth with MODIS satellite


463 products. Here the GEOS data have been sampled with MODIS overpass time and location.
 464 GEOS generally captures the magnitude and main features of the cloud fields observed in
 465 MODIS, though with some differences; the model overestimates the cloud quantities over the
 466 central Amazon and underestimates them in northwest South America. The overall difference
 467 over the Amazon region between simulated and MODIS-based estimates is less than 7% for
 468 cloud cover fraction, 10% for liquid water cloud optical depth, and 15% for ice cloud optical
 469 depth. The seasonality of these cloud quantities is shown in Figure S5a-c to further evaluate the
 470 model performance. The model has a better cloud simulation during the period of Aug-Oct,
 471 which is the focus period of this study since Amazon fires occur periodically every year in this
 472 season.

473
 474 Figure 4 shows a comparison between the simulated downward shortwave radiation at the
 475 surface and CERES-EBAF measurements averaged over Aug-Oct., 2010-2016 for both clear-sky
 476 and all-sky conditions. The comparison of the time series of monthly mean shortwave radiation
 477 during 2010-2016 over the Amazon region is shown in Figure S6. GEOS captures the observed
 478 spatial patterns with ~4% high bias for both clear and all sky conditions over the Amazon region.
 479

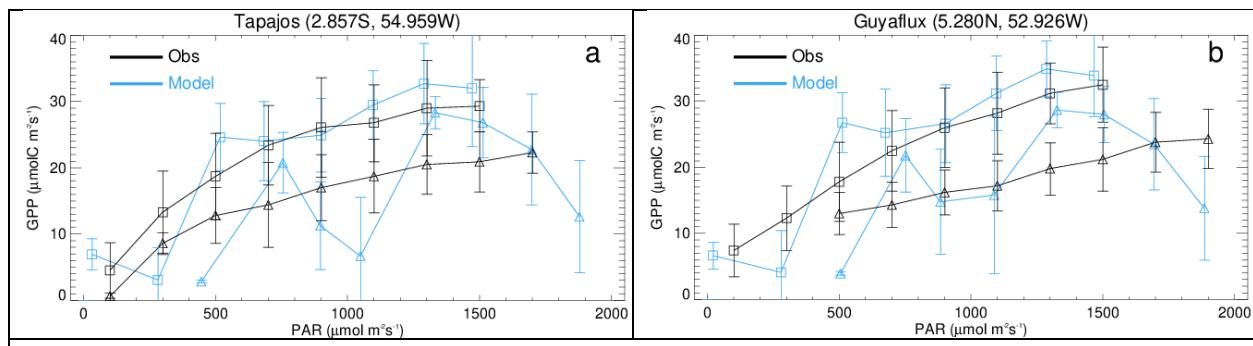


480
 481 Following the evaluation approach in Malavelle et al. (2019), we evaluate our model's ability to
 482 simulate GPP on the global scale against FluxCom and FluxSat. As mentioned in section 2.2,
 483 FluxCom GPP is derived from surface measurements of carbon fluxes whereas FluxSat GPP is
 484 derived from satellite data. The comparison of global distribution of multiyear average GPP


485 (Figure 5) and zonal mean multiyear average GPP (Figure 6) show that GEOS captures the GPP
 486 global distribution seen in the observations, with a GPP peak in tropics. The model does show a
 487 second peak in middle latitudes of the Southern Hemisphere but misses the observed peak in the
 488 Northern Hemisphere subtropics.
 489

490 Figure 5. 2010-2015 multiyear average global GPP from FluxCom, FluxSat, and GEOS. The global average value
 491 is shown in the top.

492 Figure 6. zonal mean of multiyear (2010-2015) average GPP from FluxCom, FluxSat, and GEOS.
 493



494 Figure 7. The multi-year (2010 – 2015) August – October mean Amazon GPP from (a) FluxCom (Jung et
 495 al., 2020), (b) FluxSat (Joiner et al., 2018) and (c) the GEOS ecosystem simulation with unit of gC m^{-2}
 496 day^{-1} . The Amazon regional average value is shown in the top.

497 Figure 7 shows GPP averaged over August to October of 2010-2015 from the two observations-
 498 based products and the GEOS simulation. The overall spatial distributions of GEOS GPP (Figure
 499 7c) over South America show similar spatial pattern to both of the observations-based datasets
 500 (Figures 7a and 7b) with higher values over the eastern part of the domain but lying between the
 two datasets in other areas. Over the studied period and the Amazon region, the GEOS GPP is
 comparable to the FluxSat GPP and is about 35% higher than the FluxCom GPP.

501 The seasonality of GPP over the Amazon region from FluxCOM, FluxSat and GEOS during
 502 2010-2015 is shown in Figure S7, and the corresponding time series of monthly means is shown
 503 in Figure S8. During all four seasons, regional FluxCom GPP is the lowest and FluxSat GPP is
 504 the highest. All datasets show higher GPP during Nov-Apr than during May-Oct. GEOS
 505 multiyear annual average GPP is close to that of FluxSat but is higher than that of FluxCom.
 506 Although there are few of observation sites available in FLUXNET 2015 Tier 1
 507 (<https://fluxnet.org/data/fluxnet2015-dataset/>), Joiner et al. (2018) evaluated FluxSat GPP
 508 performance around Amazonia using the flux tower measurements, which showed that the high
 509 GPP values produced by FluxSat were supported by the flux tower values (Joiner et al., 2018).

510

511 Figure 8. Observed (black) and GEOS modeled (blue) response of GPP to direct (triangles) and diffuse (squares)
 512 photosynthetically active radiation (PAR) averaged over bins of $200 \mu\text{mol quanta m}^{-2} \text{s}^{-1}$ at (a) Tapajos and (b)
 513 Guyaflux. Error bars show 1 standard deviation of all values within a bin. The observation data, representing the
 514 period 2002-2005 for Tapajos and 2006-2007 for Guyaflux, are taken from Figure 2 of Rap et al. (2015), whereas
 515 the model period is 2010-2016 for both sites.

516 Although the evaluations of global and regional multiyear average GPP conducted above
 517 (Figures 5-7) are needed for the examination of the model's fundamental mechanisms including
 518 photosynthesis, a more direct evaluation to address the model's accuracy in simulating observed
 519 GPP response to changes in diffuse and direct surface radiation is shown in Figure 8. Following
 520 the evaluation approach of Rap et al., (2015), we compared the GPP response to direct and
 521 diffuse light at two Amazon sites, Tapajos and Guyaflux. The figure clearly demonstrates that in
 522 the model, as in observations, diffuse light is more efficient in stimulating GPP.

523

524 **3.2 Principle of aerosol and cloud impact on surface downward radiation**

525 Radiative responses to aerosols and cloud fields are nonlinear. To better explain the phenomenon
 526 examined here – that plant growth increases at low-to-intermediate AOD but decreases at high
 527 AOD – we ran the column version of a radiation model, fast-JX (Wild et al., 2000; Bian and
 528 Prather, 2002). Fast-JX solves the 8-stream multiple scattering in atmospheric solar radiation
 529 transfer for direct and diffuse beams, using the exact scattering phase function and optical depths
 530 of atmospheric molecules, aerosols, and clouds, and provides photolytic intensities accurate
 531 typically to better than 3%, with worst case errors of no more 10% over a wide range of
 532 atmospheric conditions (Wild et al., 2000). No special approximations are needed to treat
 533 strongly forward-peaked phase functions. The model has also been evaluated against various
 534 other models that participated in an international multi-model comparison for solar fluxes and
 535 photolysis calculation (PhotoChem-2008 in Chipperfield et al., 2010) and against the
 536 measurements from actinic flux spectroradiometers during the Atmospheric Tomography

(ATom) mission (Hair et al., 2018). In the aforementioned evaluations, the fast-JX model is among the models with good performance. The model calculations provide three ratios: (i) $CIdir$, the ratio of direct downward solar radiation at the surface ($Rdir@srf$) to the incoming total solar radiation flux at the top of the atmosphere ($Rtot@toa$), (ii) $CIdiff$, the ratio of the downward diffuse solar radiation flux ($Rdiff@srf$) to $Rtot@toa$, and (iii) CI , the ratio of total solar radiation at the surface to $Rtot@toa$. Note that all Rs are for the 400-700 nm spectral band. Results for different biomass burning AODs (including the clean air condition, where $AOD = 0$) for cloud-free conditions are shown in Figure 9a. When the sky is clear and clean (both cloud-free and without aerosols), roughly 90% of the incoming solar radiation at the top of the atmosphere can reach the plant canopy (i.e., $CIdir + CIdiff \approx 0.9$ at $BBAOD = 0$). The direct solar flux decreases rapidly as the atmosphere becomes polluted (i.e., as $BBAOD$ increases), but for $BBAOD$ levels less than ~ 0.75 , the diffuse solar flux increases. The two are equivalent at $AOD \sim 0.5$. This light redistribution from direct to diffuse can significantly stimulate plant photosynthesis given that plants use diffuse light more efficiently. Ecosystems could still respond positively to the increase of $BBAOD$ even if the incident diffuse radiation decreases below its peak value, though for some value of $BBAOD$, the reduction in total radiation will be large enough to overwhelm the impact of increased diffuse radiation, and plant photosynthesis will be lower than that for clean sky conditions.

551

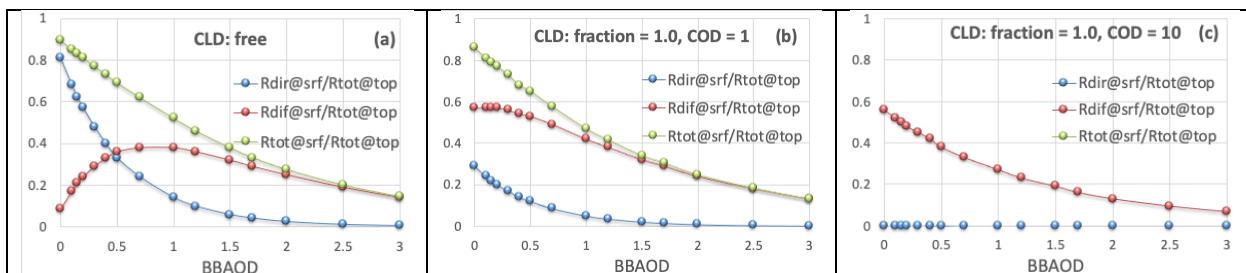
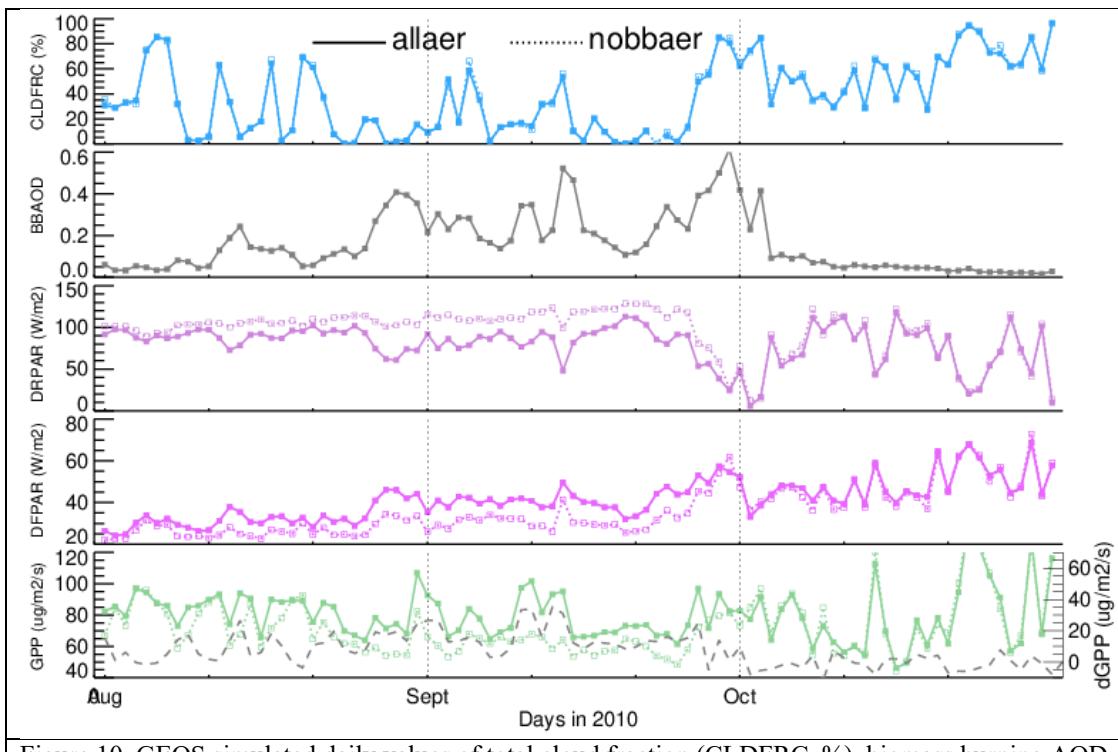


Figure 9. The ratio of $Rdir@srf$ to $Rtot@toa$ (blue), which presents the clearness index for the direct radiation portion ($CIdir$), the ratio of $Rdiff@srf$ to $Rtot@toa$ (red) for the diffuse radiation portion ($CIdiff$), and the ratio of $Rtot@srf$ to $Rtot@toa$ (green). Here, $Rtot@toa$ is incoming total solar flux at the top of atmosphere (TOA), $Rdir@srf$ is surface downward direct solar flux, $Rdiff@srf$ is surface downward diffuse solar flux, and $Rtot@srf$ is sum of $Rdir@srf$ and $Rdiff@srf$. All Rs are over 400-700 nm. 9a) the change of the radiative flux ratios in $BBAOD = 0-3$ under clear sky condition. 9b) same as left panel but under cloudy conditions (cloud fraction = 1) with COD=1. 9c) same as middle panel but for COD=10. Calculations use fast-JX radiation model column version adopting a standard atmospheric condition of typical tropics at ozone column = 260 Dobson Units, SZA = 15° , and surface albedo = 0.1.

552
553 The Amazon dry season is characterized by high biomass burning aerosol loading combined with
554 low cloud cover, a good match to obtain more diffuse radiation without the loss of too much total
555 radiation. However, as we have pointed out, cloud impacts on radiation typically dominate those
556 of aerosols. To examine this, we repeated the radiation model calculations after adding, at the top
557 of the aerosol layer (~ 3.5 km), a cloud layer with a cloud fraction of 1.0 and a cloud optical depth
558 (COD) of 1 (Figure 9b) and 10 (Figure 9c). The latter COD is close to the mean liquid cloud
559 COD over the Amazon dry season (Figure 3). The impact on $Rdir@srf$ and $Rdiff@srf$ is quite
560 large even with a very thin overhead cloud (Figure 9b). Without $BBAOD$, the clouds already
561 produce abundant diffuse light that can reach the surface (i.e., $CIdiff > 50\%$, as seen in both
562 Figure 9b-c), while almost shutting down the direct light (i.e., $CIdir < 1\%$ in Figure 9c).
563 Accordingly, for full cloud coverage, a clean sky (i.e., no aerosols) would provide the best
564 conditions for plant growth. When fires start, the diffuse light declines rapidly, reducing the


565 potential for plant growth. At BBAOD ~ 3 the ratios among Figure 9a-c look similar, that is,
 566 essentially very little radiation reaches the surface.

567 The simple examples in Figure 9 illustrate the complicated responses of direct and diffuse light
 568 to the presence of aerosol and cloud. Measurements indicate that plant growth peaks for a
 569 clearness index (CI, defined as $CI_{dir}+CI_{diff}$) of about 0.4-0.7 for some forest ecosystems (Butt
 570 et al., 2010, Letts and Lafleur, 2005). This CI range translates, based on Figure 9, to a BBAOD
 571 range of about 0.3~1.5 in clear sky and 0~0.5 in cloudy-sky conditions.

572

573 3.3 How the ecosystem responds to the BBAer diffuse radiation fertilization effect

574

575
 576 Figure 10. GEOS simulated daily values of total cloud fraction (CLDFRC, %), biomass burning AOD
 577 (BBAOD), direct PAR (DRPAR, W m^{-2}), diffuse PAR (DFPAR, W m^{-2}), and gross primary growth
 578 (GPP, $\mu\text{g m}^{-2}\text{s}^{-1}$) from the two experiments of pair1 at a selected site (54°W , 15°S ; marked with a
 579 diamond in Figure 11) during Aug-Oct 2010. The grey dashed line in the bottom panel shows the
 580 absolute GPP difference (dGPP) between allaer and nobbaer.

581 We first examine the two experiments in pair1 by taking a close look at the time series of
 582 aerosol, cloud, radiation, and ecosystem responses generated at a selected site (54°W , 15°S)
 583 during Aug-Oct 2010 (Figure 10) (site location marked in Figure 11), with the aim of extending
 584 the general understanding gained in section 3.2 to a real case study at a single site in the
 585 Amazon. This is an interesting site and period, showing a large DFPAR change (Figure 11f) and
 586 providing a wide variety of conditions for study – the sky alternates between clear and cloudy
 587 conditions in August, is relatively clear in September but relatively cloudy in October, and the
 588 biomass burning aerosols increase in August, peak in September, and diminish greatly in early
 589 October (Figure 10). During August-September, when the atmosphere experiences biomass
 590 burning pollution, the allaer (with BBAOD light fertilizer) and nobbaer (without BBAOD light
 591 fertilizer) results differ significantly: DRPAR for allaer (solid line) lies below that for nobbaer

587 (dotted-line), while DFPAR and GPP for allaer are generally higher than those for nobbaer. In
588 October, the sky is almost clean (i.e., low BBaer), leading to very similar results for DRPAR,
589 DFPAR, and GPP between the two experiments. Looking closer, we see that the changes of
590 DRPAR, DFPAR, and GPP between allaer and nobbaer are more prominent when the
591 atmosphere has low cloudiness and high aerosol (e.g., at the end of August), confirming both that
592 BBaer does transform some of the direct light at the surface into diffuse light and that plants are
593 more efficient in their use of diffuse light. When both cloudiness and aerosols are high (e.g., at
594 the end of September), the influence of aerosols is overwhelmed by clouds, and the impact of the
595 aerosols on radiation and the ecosystem becomes secondary.

596

597 We now evaluate BB aerosol impacts on radiation and ecosystem fields over the Amazon during
598 August 2010, when the aerosol has its largest impact. Figure 11 shows the simulated Amazon
599 DRPAR, DFPAR, and GPP fields from the two experiments comprising pair1 (nobbaer and
600 allaer). The distribution of DRPAR shows a clear spatial gradient, with low values in the
601 northwest and high values in the southeast, and the spatial pattern of DFPAR shows the reverse
602 pattern. These features are primarily controlled by the cloud distribution (Figure 3). Comparing
603 the nobbaer and allaer results by calculating field relative change (i.e., $(allaer-nobbaer)/allaer$),
604 we find that BBaer decreases DRPAR by 16% and increases DFPAR by 10% over the Amazon
605 region, with maximum local changes of up to -50% for DRPAR and 25% for DFPAR.
606 Interestingly, these maxima are not co-located, though the spatial patterns of perturbations do
607 agree with each other. The mismatch in the locations of the maxima in the difference fields
608 implies a nonlinear response of direct and diffuse light to aerosol and cloud particles (see section
609 3.2). In response to the inclusion of BBaer, the Amazon GPP increases by 10%. That is, the
610 increase in GPP stemming from the increase in the diffuse light fraction overwhelms a potential
611 reduction in GPP from a reduction of total PAR. When we consider all burning seasons over the
612 7-year studied period, the biomass burning aerosol increases DFPAR by 3.8% and decreases
613 DRPAR by 5.4%, allowing it to increase Amazon GPP by 2.6%. However, the 7-year averaged
614 GPP increases by 0.99% (Table 2), which is much less than the value during burning seasons.
615

616

617 We also examine the multi-year (2010-2016) BBaer impacts on net primary production (NPP),
618 that is, the rate at which carbon is accumulated (GPP) in excess of autotrophic respiration. In
619 essence, NPP can be considered a proxy for the net plant sink of atmospheric carbon. Figure 12
620 shows monthly and long-term averaged NPP over the Amazon Basin from the two experiments
621 comprising pair1. The monthly change of NPP (i.e., $dNPP = NPP(\text{allaer}) - NPP(\text{nobbaer})$) is
622 shown in the figure as a green line. Each year, during the August-September period when BBaer
623 is high and cloudiness is low over the Amazon, BBaer is seen to enhance NPP. The percentage
624 difference of annually-averaged NPP ($dNPP/NPP(\text{nobbaer}) * 100$) in % is 4.2, 0.06, 1.9, 0.5, 1.3,
625 1.9, and 1.0 for the seven studied years. That means the BBaer-induced NPP increases range
626 from 5 TgC yr^{-1} or 0.06% (2011) to 278 TgC yr^{-1} or 4.2% (2010), with a seven-year average of
627 92 TgC or 1.5%. This is equivalent to storing 92 TgC annually within the Amazon ecosystem
628 during the studied period. The CO_2 fire emission data from the GFED4.1s emission inventory
629 indicate that over this area and time period, fires emit $\sim 250 \text{ TgC yr}^{-1}$. The NPP enhancement due
630 to the BBaer-induced diffuse sunlight fertilization thus compensates for about 37% of carbon
loss by fires.

631

632

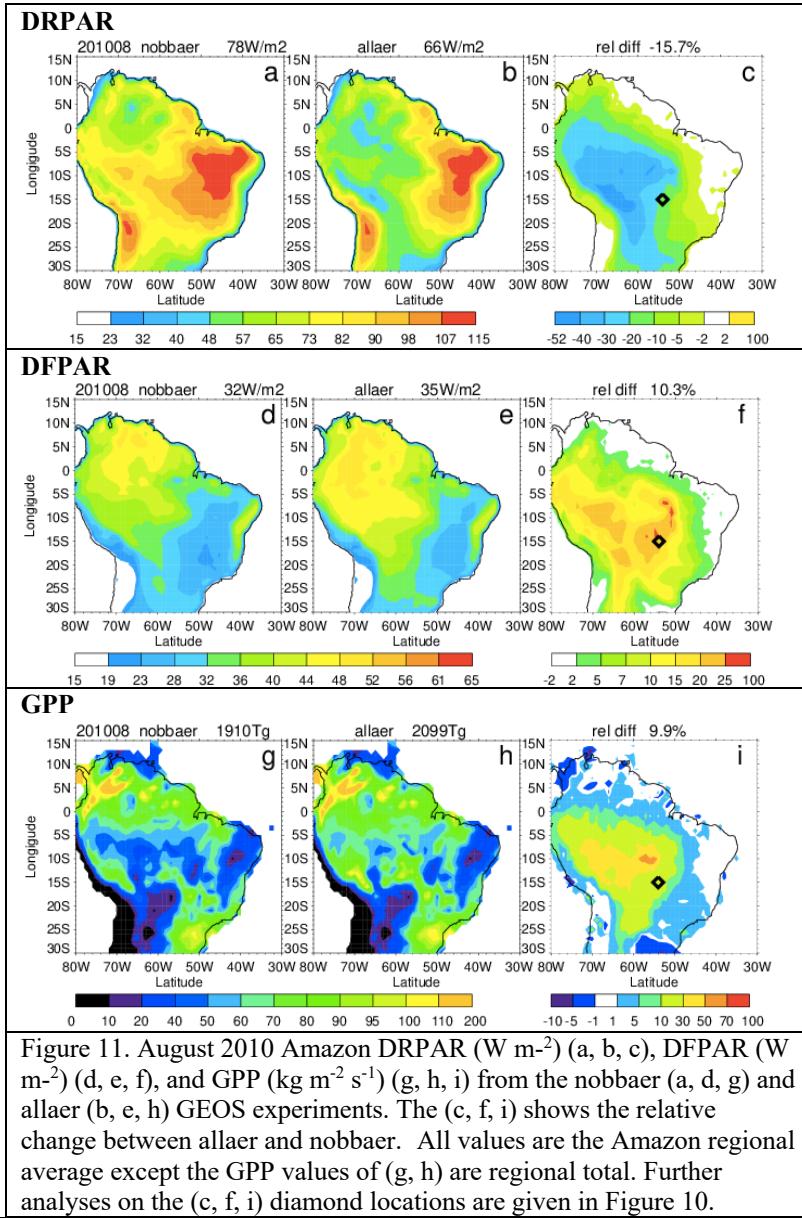


Figure 11. August 2010 Amazon DRPAR (W m^{-2}) (a, b, c), DFPAR (W m^{-2}) (d, e, f), and GPP ($\text{kg m}^{-2} \text{s}^{-1}$) (g, h, i) from the nobbaer (a, d, g) and allaeer (b, e, h) GEOS experiments. The (c, f, i) shows the relative change between allaeer and nobbaer. All values are the Amazon regional average except the GPP values of (g, h) are regional total. Further analyses on the (c, f, i) diamond locations are given in Figure 10.

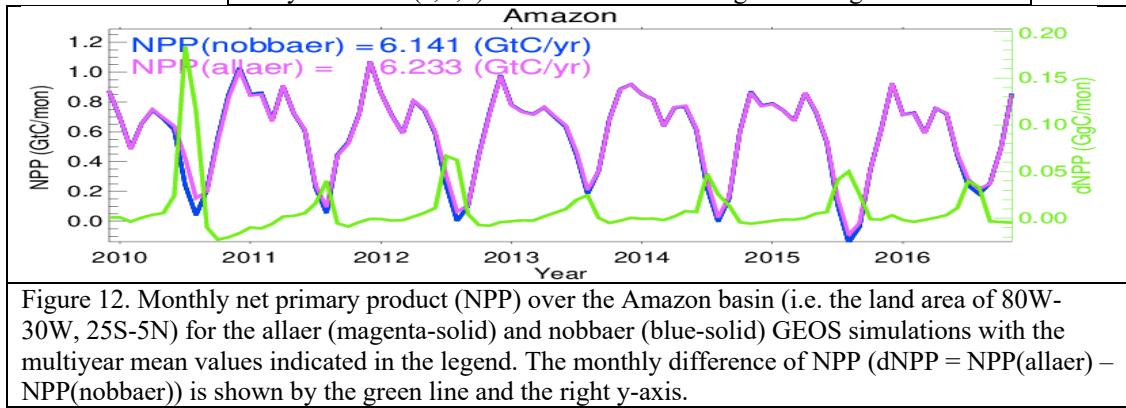


Figure 12. Monthly net primary product (NPP) over the Amazon basin (i.e. the land area of 80W–30W, 25S–5N) for the allaeer (magenta-solid) and nobbaer (blue-solid) GEOS simulations with the multiyear mean values indicated in the legend. The monthly difference of NPP ($d\text{NPP} = \text{NPP}(\text{allaeer}) - \text{NPP}(\text{nobbaer})$) is shown by the green line and the right y-axis.

635 To assess how our simulated GPP/NPP response compares with other existing model estimates,
 636 we summarize all relevant studies in Table 2. In addition to differences in model formulations of
 637 fundamental physical mechanisms, these studies also differ in model simulation configuration
 638 (e.g., online vs offline, freeGCM vs Replay), BB emission inventory, and study period. Although
 639 our estimates of the increases in NPP across the Amazon region have a wide interannual
 640 variation (ranging from 0.5 to 4.2%), our 7-year averaged NPP increase (1.5%) is close to the
 641 value (1.4%) reported by Rap et al. (2015). Both studies considered only aerosol DRFE with
 642 cloud presence. The NPP can be increased up to 52% in the burning season under clear-sky
 643 conditions (Moreira et al., 2017). By accounting for the feedback from aerosol-climate
 644 adjustments, the influence of aerosol on GPP/NPP is further increased (Malavelle et al., 2019;
 645 Strada et al., 2016).

646
 647 Table 2: Summary of model estimation of GPP increase in response to biomass burning aerosol
 648 over Amazon Basin

Study	This work	Malavelle2019	Moreira2017	Rap2015	Strada2016
GPP	1.0% (dir+dif)		27% (dir+dif)	0.7% (dir+dif)	3.4% (dir+dif+clm))
NPP	1.5% (dir+dif)	1.9 to 2.7% (dif+dir+clm) 1.5 to 2.6% (dif) -1.2 to -2.5% (dir) 1.6 to 2.4% (clm)	52% (dir+dif)	1.4% (dir+dif)	
Period	Annual average over 2010-2016	Annual average over 30 model years, 2000 climate,	Sept., 2010 under cloud-free condition	Annual average over 1998-2007	Annual average over 30 model years, 2000 climate
Atmospheric Model	GEOS ESM	HadGEM2-ES	BRAMS		ModelE2 ESM
Running mode	replay	freeGCM	Regional model with ICBC from NCEP	offline	freeGCM
Vegetation model	Catchment-CN (using LSM4 for photosynthesis)	JULES	JULES	JULES	YIBs
Radiation model	RRTMG_SW	SOCRATES	CARMA	A two-stream radiative transfer model (Edwards and Slingo, 1996)	k-distribution approach with various updates (Schmidt et al., 2014)
Cloud model	Cloud microphysics model (Barahona et al., 2014)			Monthly mean clouds from ISCCP-D2	a mass flux cumulus parameterization (Del Genio and Yao, 1993)
Aerosol model	GOCART	CLASSIC	CCATT	GLOMAP	OMA
BB emission	GFED4s	GFEDv2 1997-2006 average	3BEM	GFED3	IPCC AR5

649 dir, dif, and clm represent for direct radiation, diffuse radiation, and climate adjustment, respectively

650 3BEM: the Brazilian Biomass Burning Emission

651 BRAMS: Brazilian developments on the Regional Atmospheric Modeling System

652 CARMA: the Com-munity Aerosol and Radiation Model for Atmospheres

653 CCATT: a Eulerian transport model suitable to simulate trace gases and aerosols

654 CLASSIC: the Coupled Large-scale Aerosol Simulator for Studies In Climate

655 GLOMAP: The 3-D GLObal Model of Aerosol Processes Model

656 HadGEM2-ES: The Hadley Centre Global Environment Model, version 2-Earth System

657 IPCC AR5: The Intergovernmental Panel on Climate Change Fifth Assessment Report

658 ISCCP-D2: the International Satellite Cloud Climatology Project

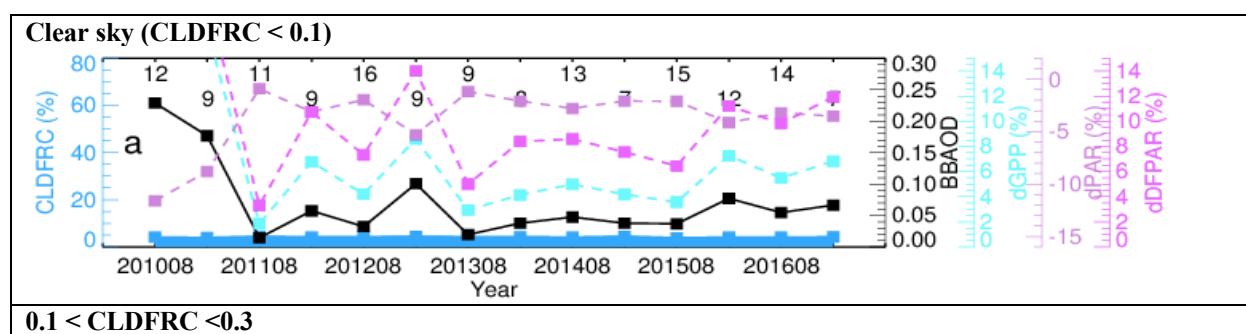
659 JULES: the Joint UK Land Environment Sim-ulator v3.0

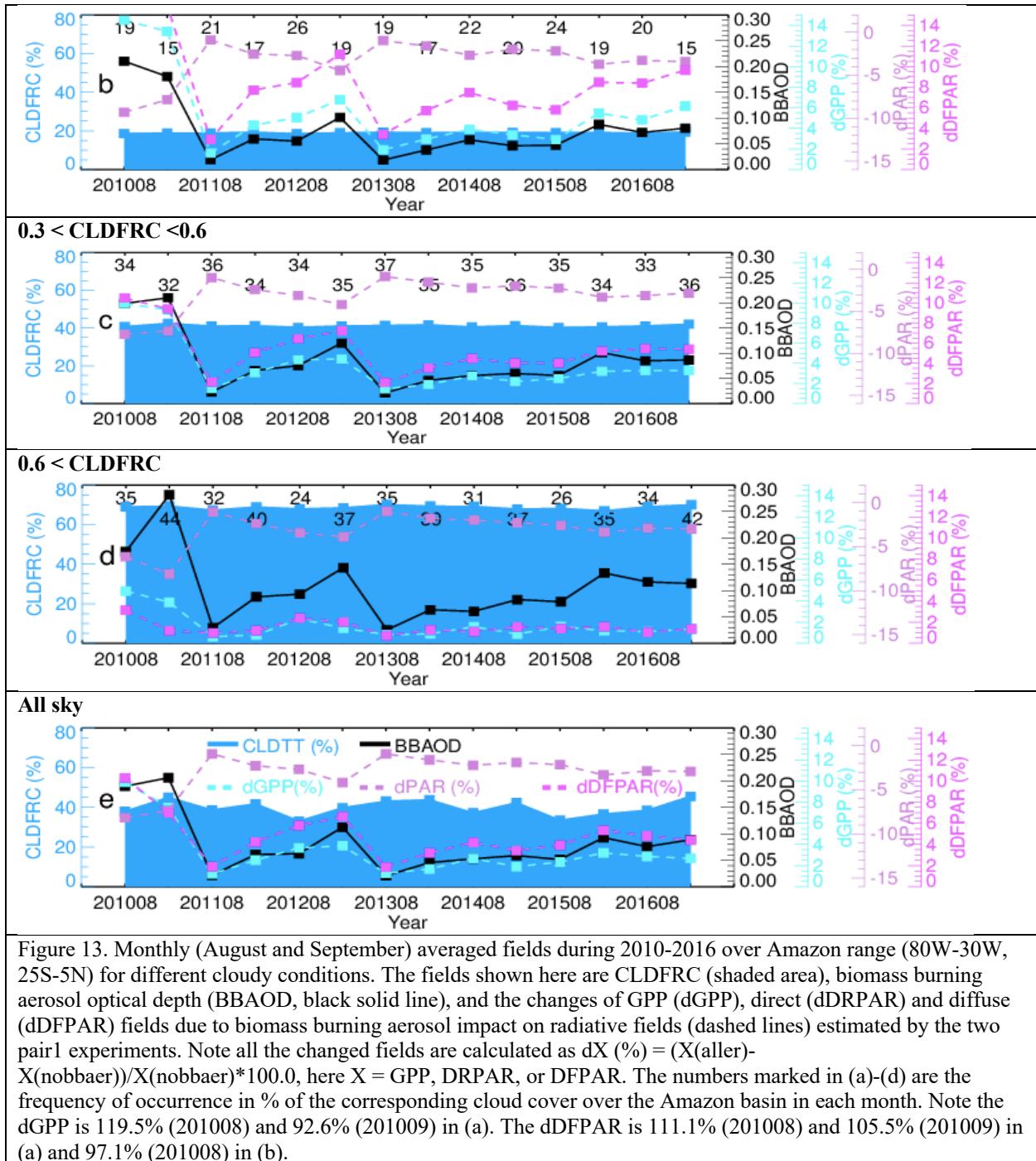
660 OMA: One-Moment Aerosol,

661 SOCRATES: Suite Of Community RADiative Transfer codes based on Edwards and Slingo

662 YIBs: The Yale Interactive Terrestrial Biosphere model

663


664


665

666 3.4 How clouds adjust the BBaer diffuse radiation fertilization effect

667 Our second objective in this study is to investigate how the presence of clouds modulates the
 668 ability of BBaer to affect GPP. We highlight the cloud impact because even at the same biomass
 669 burning aerosol optical depth (BBAOD), the surface downward DRPAR and DFPAR can be
 670 very different between cloudy and cloud-free conditions (see section 3.2). As mentioned above,
 671 the Amazon's so-called "dry season" still features a considerable amount of cloud, and the
 672 cloudiness levels vary significantly from year to year. This raises some questions: How do
 673 clouds affect the aerosol impact on radiation fields during the Amazon biomass burning season?
 674 Could different levels of background clouds have different impacts on the efficacy of the BBaer
 675 DRFE? There are two distinctive features in clouds and aerosols that require us to treat them
 676 differently in their impact on the radiation flux to the ecosystem. First, like our distinction of
 677 natural and anthropogenic aerosols in their impact on air quality and climate, the cloud is a more
 678 natural phenomenon, while biomass burning aerosols (BBaer) can be, at least partially,
 679 controlled by humans. Second, clouds are much more efficient in controlling both direct and
 680 diffuse radiation fields than aerosol (Figure 6). What is the potential range of the variation of
 681 Amazon clouds in burning seasons when the Amazon experiences environments of La Niña,
 682 normal years, and El Niño? To what extent does this range of cloud variation adjust the
 683 efficiency of "diffuse radiation fertilization effect" under the same emission strategy? These
 684 questions were not addressed clearly in previous studies, and we have tried to answer these
 685 questions in this study. Here, to quantify the cloud influence, we examine BBaer impacts during
 686 clear-sky (cloud cover < 0.1), cloudy-sky (cloud cover 0.1-0.3, 0.3-0.6 and >0.6), and all-sky
 687 conditions based on GEOS gridded daily cloud cover over the Amazon region as shown in
 688 Figure 13.

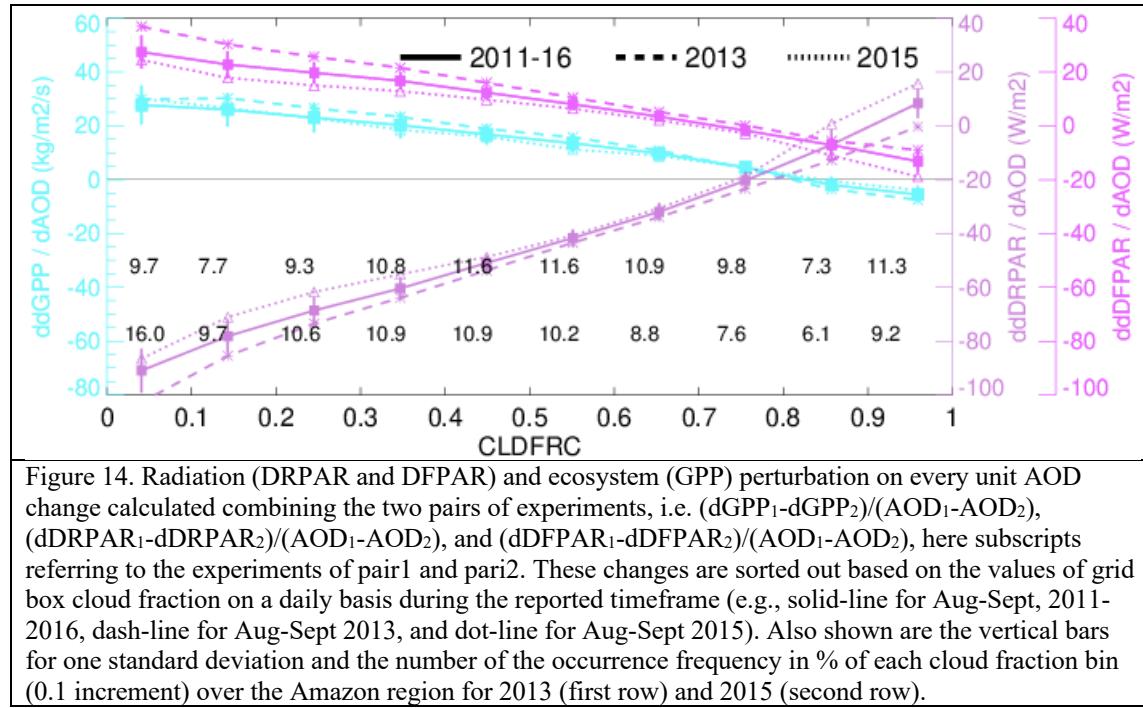
689
 690 Generally, the curves for BBAOD (solid black line) and dGPP (dashed light-blue line) are
 691 strongly and positively correlated, from $R = 77.4\%$ for cloud cover > 0.6 (Figure 13d) to $R >$
 692 94.5% for the four other cloudiness conditions (Figure 13a-c, e). This indicates that interannual
 693 changes in dGPP are primarily controlled by interannual fluctuations of biomass burning
 694 aerosols. The correlation presumably stems from the fact that biomass burning aerosols increase
 695 the diffuse PAR reaching the canopy (dashed pink line) although they decrease the total PAR
 696 (dotted purple line) via decreasing direct PAR (Table 3 and Table S1a). This aerosol-radiation-
 697 GPP relationship is seen to vary with cloud amount with clouds acting to reduce the aerosol
 698 impact; both the diffuse radiation and the GPP show larger changes with BBAOD under clear
 699 sky conditions. The overall (i.e., all-sky) aerosol impact on dGPP is similar to that for a cloud
 700 coverage of 0.3-0.6, simply because the averaged cloud coverage over the Amazon during the
 701 studied period is roughly in that range.

704
705
706
707
708
709
710
711

Figure 13 and Table S1e show that on an interannual (dry season) basis, the aerosol DRFE differed the most between 2010 and 2011 (i.e., the dGPP was 8.7% in 2010 and 1.8% in 2011). During these two years, the average cloud fractions (CLDFRC) are similar, 42% in 2010 and 41% in 2011, but BBAOD decreased significantly, by about 80% from 0.198 in 2010 to 0.042 in 2011. Thus, although cloudiness does temper the impact of aerosols on radiation and the ecosystem, the interannual variation of the aerosol DRFE is primarily controlled by variations in biomass burning aerosols (e.g., > 6 times variation of biomass burning emissions and BBAOD,

712 table S1e). In addition to the detailed information given in Tables S1a-e and S2a-e, we
 713 summarize in Table 3 the averaged GPP, DFPAR, DRPAR, CLDFRC, and BBAOD during Aug-
 714 Sept, 2011-2016 over the Amazon region in all-sky conditions. Also given in Table 3 is the
 715 multi-year (2011-2016) averaged GPP over the Amazon region from all four simulations.
 716

717 Table 3. Summary of mean GPP, DRPAR, DFPAR, CLDFRC and BBAOD over Aug-Sept of
 718 2011-2016, as well as the relative changes of GPP, DRPAR, DFPAR and CLDFRC within a pair
 719 of simulations.


pair	experiment	GPP	DRPAR	DFPAR	CLDFRC	BBAOD
	GtC/Amazon		Wm^{-2}	Wm^{-2}		
Pair1	allaer	1.88	72.5	36.8	0.395	0.062
	nobbaer	1.84	76.5	35.3	0.395	
	Diff (%)	2.5	-5.3	4.1	0	
Pair2	callaer	1.96	64.5	38.0	0.396	0.212
	cnobbaer	1.83	75.4	35.1	0.395	
	Diff (%)	6.9	-14.4	8.2	0	

720
 721 Recall, the pair2 experiments are equivalent to the pair1 experiments except for using the 2010
 722 BB emissions for every year during 2011-2016. By jointly analyzing pair1 and pair 2, we can
 723 quantify the impacts of two different sets of BB emissions during the study period. This is, in
 724 principle, similar to the method of aerosol radiative forcing (RF) estimation (i.e., estimating
 725 aerosol radiative effect (RE) with and without aerosol for present-day (pair1) and pre-industrial
 726 (pair2) conditions and then deriving RF as a difference between the two pair REs). Here we
 727 study the sensitivity of the aerosol DRFE to a unit change of AOD. We call it susceptibility of
 728 the DRFE to BB aerosols. That is, on a daily basis, the sensitivity of a variable X to a change in
 729 the biomass burning AOD is calculated as: $\text{d}dX/\text{dAOD} = ((dX)_1 - (dX)_2) / (AOD_1 - AOD_2)$. Here, the
 730 X represents GPP, DRPAR, and DFPAR, and the subscripts 1 and 2 represent the pair1 or pair2
 731 experiment, respectively.

732
 733 $\text{d}dX/\text{dAOD}$ is computed on a gridded daily basis over August-September of 2011-2016. The
 734 calculations are then catalogued according to daily cloud cover fraction – we combine the results
 735 within each of 10 cloud fraction bins (0-0.1, 0.1-0.2, ..., 0.9-1.0). To examine the maximum
 736 impact of interannual cloud change during our study period, the binned $\text{d}dX/\text{dAOD}$ vs. CLDFRC
 737 relationship is also computed separately from daily (August-September) values in 2013 and from
 738 corresponding daily values in 2015, as these are the years for which monthly cloud cover is
 739 around the maximum (0.44) and minimum (0.35), respectively (Figure 13 and table S1e).

740 Figure 14 shows the results. An almost linear relationship is seen between the $\text{d}dX/\text{dAOD}$ values
 741 and cloud cover fraction. BB aerosols increase GPP in clear sky conditions (e.g., $29.6 \text{ kgm}^{-2}\text{s}^{-1}$)
 742 but decrease it under full cloudiness conditions (e.g., $-5.8 \text{ kgm}^{-2}\text{s}^{-1}$). The cloud fraction at which
 743 BB aerosol switches from stimulating to inhibiting plant growth occurs at ~ 0.8 . Cloud conditions
 744 thus not only affect strongly the strength of the aerosol DRFE but can also change the
 745 fundamental direction of the effect. The lines produced for the three different study periods are
 746 fairly similar, indicating that the relationship of $\text{d}dX/\text{dAOD}$ to CLDFRC is fairly stable within
 747 the range of cloud cover seen over the Amazon during the period of interest. Figure 14 also
 748 indicates that the dGPP can change from 18.5 to 15.5 ($\text{kgm}^{-2}\text{s}^{-1}$) with a unit AOD of burning
 749 particles released to the atmosphere under the range of Amazon interannual cloud variation in
 750 dry season, which is 0.35 to 0.44 in our study period. In other words, there is $\sim 20\%$ dGPP

751 uncertainty adjusted by background Amazon cloud. Our work demonstrates quantitatively the role
 752 of clouds in tempering the aerosol diffuse radiation fertilization effect.
 753
 754

755 4. Conclusions

756 We use the NASA GEOS ESM system with coupled aerosol, cloud, radiation, and ecosystem
 757 modules to investigate the impact of biomass burning aerosols on plant productivity across the
 758 Amazon Basin under the natural background cloud fields experienced during 2010-2016 – a
 759 period containing a broad range of cloudiness conditions. We find that the biomass burning
 760 aerosol DRFE does stimulate plant growth and has a notable impact on Amazon ecosystem
 761 productivity during the biomass burning season (August-September). In the long-term mean, the
 762 aerosol light fertilizer increases DFPAR by 3.8% and decreases DRPAR by 5.4%, allowing it to
 763 increase Amazon GPP by 2.6%. On a monthly basis, the DRFE can increase GPP by up to 9.9%.
 764 Consequently, biomass burning aerosols increase Amazonia yearly NPP by 1.5% on average,
 765 with yearly increases ranging from 0.06% to 4.2% over the seven years studied. This 1.5% NPP
 766 enhancement (or $\sim 92 \text{TgC yr}^{-1}$) is equivalent to $\sim 37\%$ of the carbon loss due to Amazon fires.
 767

768 The aerosol DRFE is strongly dependent on the presence of clouds, much stronger in clear sky
 769 conditions and decreases with the increase of cloudiness. A fairly robust linear relationship is
 770 found between cloud cover fraction and the sensitivity of radiation and GPP change to a change
 771 in biomass burning AOD. BB aerosols stimulate plant growth under clear-sky conditions but
 772 suppress it under full cloudiness conditions. Over the Amazon region within our study period,
 773 the cloud fraction at which a unit AOD switches from stimulating to inhibiting plant growth
 774 occurs at ~ 0.8 . Note, however, that while our results show a clear sensitivity of the aerosol
 775 DRFE to cloudiness, interannual variations in the aerosol light fertilizer's overall effectiveness
 776 are controlled primarily by interannual variations in biomass burning aerosols during our studied
 777

778 period because biomass burning AOD can vary by a factor of 6 from year to year. The associated
779 large variations in BBAOD are inevitably propagated to the radiation and ecosystem fields.
780 Overall, our work indicates that feedbacks between aerosols, radiation, and the ecosystem need
781 to be performed in the context of an atmospheric environment with a cloud presence.
782

783 This study examines the potential for the biomass burning aerosol DRFE to stimulate growth in
784 unburned forest over the Amazon basin. The net feedback of Amazon fires on the Amazon
785 biome is still an open question. Some changes, such as increasing atmospheric CO₂ and aerosols,
786 serve as forest fertilizers, whereas others, such as increasing O₃ pollution levels and the
787 deposition of smoke particles on plant leaves, reduce plant photosynthesis. On top of this, fires
788 also induce changes in meteorological fields (e.g., temperature, precipitation, clouds) that can
789 affect plant growth (Malavelle et al., 2019; Strada and Unger, 2016; Unger et al., 2017). More
790 efforts are needed to investigate the ecosystem effect of Amazon fires by integrating all these
791 potential factors.
792

793 **Acknowledgements:**

794 The authors thank the various observational groups (i.e., AERONET, CERES-EBAF, FluxCom,
795 FluxSat, and GoAmazon). HB and MC was supported by the NASA ACMAP funding (no.
796 NNX17AG31G). PRC was supported by the Chemistry-Climate Modeling workpackage funded
797 by the NASA Modeling, Analysis, and Prediction program (David Considine, program
798 manager). JES was supported by the by the U.S. Department of Energy's Atmospheric System
799 Research, an Office of Science Biological and Environmental Research program; PNNL is
800 operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830.
801 Resources supporting this work were provided by the NASA GMAO SI-Team and the High-End
802 Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at
803 Goddard Space Flight Center (GSFC). FluxSat data were provided by Joanna Joiner group in
804 GSFC. GoAmazon data were obtained from the Atmospheric Radiation Measurement (ARM)
805 user facility, a US Department of Energy (DOE) Office of Science User facility managed by the
806 Biological and Environmental Research program.
807

808 **Data Availability:**

809 All of the observational data used in this study are publicly accessible, e.g., AERONET
810 (<https://aeronet.gsfc.nasa.gov>), CERES-EBAF (<https://ceres.larc.nasa.gov/data/>), FluxCom
811 (<http://www.fluxcom.org>), FluxSat (<https://avdc.gsfc.nasa.gov>), and GoAmazon
812 (<https://www.arm.gov/research/campaigns/amf2014goamazon>). The GEOS model results can be
813 provided by contacting with the corresponding author.
814

815 **Author contributions:**

816 H.B. took an overall responsible for the experiment design, model simulation, and data analysis.
817 E.L., R. D. K., S. P. M., and F. Z. contributed to the ecosystem study, D. O. B. contributed to the
818 cloud study, M. C., P. R. C., A. S. D, M. E. M., and H. Y. contributed to the aerosol study and
819 the model-observation comparison, P. N. contribute to the radiation study, and J. S. provided the
820 GoAmazon results. All authors contributed to the paper writing.
821
822

823 **References:**

824 Abdul-Razzak, H. and Ghan, S.: A parameterisation of aerosol activation 2. Multiple aerosol types, *J.
825 Geophys. Res.*, 105, 6837–6844, 2000.

826 Barahona, D. and Nenes, A.: Parameterizing the competition between homogeneous and heterogeneous
827 freezing in cirrus cloud formation – monodisperse ice nuclei, *Atmos. Chem. Phys.*, 9, 369–381,
828 doi:10.5194/acp-9-369-2009, 2009

829 Barahona, D., Molod, A., Bacmeister, J., Nenes, A., Gettelman, A., Morrison, H., Phillips, V., and
830 Eichmann, A.: Development of two-moment cloud microphysics for liquid and ice within the NASA
831 Goddard Earth Observing System Model (GEOS-5), *Geoscientific Model 10 Development*, 7, 1733–
832 1766, 2014.

833 Bian, H., and M. J. Prather, Accurate simulation of stratospheric photolysis in global chemical model. *J.
834 Atmos. Chem.*, 41, 281–296, 2002.

835 Bian, H., M. Chin, S. R. Kawa, H. Yu, T. Diehl (2010), Multi-scale carbon monoxide and aerosol
836 correlations from MOPITT and MODIS satellite measurements and GOCART model: implication for
837 their emissions and atmospheric evolutions, *J. Geophys. Res.*, 115, D07302,
838 doi:10.1029/2009JD012781.

839 Bian, H., P. Colarco, M. Chin, G. Chen, J. M. Rodriguez, Q. Liang, D. Blake, D. A. Chu, A. da Silva, A.
840 S. Darmenov, G. Diskin, H. E. Fuelberg, G. Huey, Y. Kondo, J. E. Nielsen, X. Pan, and A. Wisthaler
841 (2013), Source attributions of pollution to the western Arctic during the NASA ARCTAS field
842 campaign, *Atmos. Chem. Phys.*, 13, 4707–4721.

843 Bian, H., M. Chin, D. A. Hauglustaine, M. Schulz, G. Myhre, S. E. Bauer, M. T. Lund, V. A. Karydis, T.
844 L. Kucsera, X. Pan, A. Pozzer, R. B. Skeie, S. D. Steenrod, K. Sudo, K. Tsagaridis, A. P. Tsimpidi,
845 and S. G. Tsyro (2017), Investigation of global particulate nitrate from the AeroCom phase III
846 experiment *Atmos. Chem. Phys.*, 17, 12911–12940 ([https://www.atmos-chem-
847 phys.net/17/12911/2017/](https://www.atmos-chem-phys.net/17/12911/2017/)).

848 Bian, H., Froyd, K., Murphy, D. M., Dibb, J., Darmenov, A., Chin, M., Colarco, P. R., da Silva, A.,
849 Kucsera, T. L., Schill, G., Yu, H., Bui, P., Dollner, M., Weinzierl, B., and Smirnov, A.:
850 Observationally constrained analysis of sea salt aerosol in the marine atmosphere, *Atmos. Chem.
851 Phys.*, 19, 10773–10785, <https://doi.org/10.5194/acp-19-10773-2019>, 2019.

852 Breen, K. H., D. Barahona, T. Yuan, H. Bian, and S. C. James, Effect of volcanic emissions on
853 clouds during the 2008 and 2018 Kilauea degassing events, [https://doi.org/10.5194/acp-2020-
854 979](https://doi.org/10.5194/acp-2020-979), 2020.

855 Butt, N., M. New, Y. Malhi, A. C. Lola da Costa, P. Oliveira, and J. E. Silva-Espejo (2010), Diffuse
856 radiation and cloud fraction relationships in two contrasting Amazonian rainforest sites, *Agric. For.
857 Meteorol.*, 150(3), 361–368.

858 Carn, S., Fioletov, V., McLinden, C. *et al.* A decade of global volcanic SO₂ emissions measured from
859 space. *Sci Rep* 7, 44095 (2017). <https://doi.org/10.1038/srep44095>.

860 Chin, M., T. Diehl, O. Dubovik, T. F. Eck, B. N. Holben, A. Sinyuk, and D. G. Streets (2009), Light
861 absorption by pollution, dust and biomass burning aerosols: A global model study and evaluation
862 with AERONET data, *Ann. Geophys.*, 27, 3439–3464.

863 Chin, M., Diehl, T., Tan, Q., Prospero, J. M., Kahn, R. A., Remer, L. A., Yu, H., Sayer, A. M., Bian, H.,
864 Geogdzhayev, I. V., Holben, B. N., Howell, S. G., Huebert, B. J., Hsu, N. C., Kim, D., Kucsera, T. L.,
865 Levy, R. C., Mishchenko, M. I., Pan, X., Quinn, P. K., Schuster, G. L., Streets, D. G., Strode, S. A.,
866 Torres, O., and Zhao, X.-P.: Multi-decadal aerosol variations from 1980 to 2009: a perspective from
867 observations and a global model, *Atmos. Chem. Phys.*, 14, 3657–3690, [https://doi.org/10.5194/acp-
868 14-3657-2014](https://doi.org/10.5194/acp-14-3657-2014), 2014.

869 Chipperfield, M., Kinnison, D., Bekki, S., Bian, H., Brühl, C., Carty, T., *et al.* (2010). Stratospheric
870 Chemistry (Chapter 6). In V. Eyring, T. G. Shepherd, & D. W. Waugh (Eds.), SPARC Report on the
871 Evaluation of Chemistry-Climate Models. WCRP-132, WMO/TD No. 1526, SPARC Report No. 5
872 (pp. 191–252). Toronto: SPARC.

873 Colarco, P. R., A. da Silva, M. Chin, T. Diehl (2010), Online simulations of global aerosol distributions in
874 the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth, *J.
875 Geophys. Res.*, 115, D14207, doi:10.1029/2009JD012820.

876 Colarco, P. R., Gassó., S., Ahn, C., Buchard, V., Dasilva, A. M., & Torres, O. (2017). Simulation of the
877 Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System
878 aerosol reanalysis products. *Atmospheric Measurement Techniques*. <https://doi.org/10.5194/amt-10-4121-2017>.

880 Cirino, G. G., R. A. F. Souza, D. K. Adams, and P. Artaxo, The effect of atmospheric aerosol particles
881 and clouds on net ecosystem exchange in the Amazon, *Atmos. Chem. Phys.*, 14, 6523–6543, 2014,
882 [www.atmos-chemphys](http://www.atmos-chemphys.net/14/6523/2014/).

883 Del Genio, A. D., M.-S. Yao, and J. Jonas (2007), Will moist convection be stronger in a warmer
884 climate?, *Geophys. Res. Lett.*, 34, L16703, doi:10.1029/2007GL030525.

885 Doughty, C. E., M. G. Flanner, and M. L. Goulden (2010), Effect of smoke on subcanopy shaded light,
886 canopy temperature, and carbon dioxide uptake in an Amazon rainforest, *Global Biogeochem.
887 Cycles*, 24, GB3015, doi:10.1029/2009GB003670.

888 Doughty, C.E., Metcalfe, D.B., Girardin, C.A.J., Farfan-Amezquita, F., Galiano Cabrera, D., Huaraca
889 Huasco, W. et al. (2015). Drought impact on forest carbon dynamics and fluxes in Amazonia. *Nature*,
890 519:78–82.

891 Doughty, Russell, Philipp Köhler, Christian Frankenberg, Troy S. Magney, Xiangming Xiao, Yuanwei
892 Qin, Xiaocui Wu, Berrien Moore. TROPOMI reveals dry-season increase of solar-induced
893 chlorophyll fluorescence in the Amazon forest. *Proceedings of the National Academy of Sciences*,
894 2019; 201908157 DOI: 10.1073/pnas.1908157116.

895 Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kauf- man, Y. J., Eck, T. F., and Slutsker, I.:
896 Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky-radiance
897 measurements, *J. Geophys. Res.*, 105, 9791–9806, 2000.

898 Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and
899 Slutsker, I.: Variability of ab- sorption and optical properties of key aerosol types observed in
900 worldwide locations, *J. Atmos. Sci.*, 59, 590–608, 2002.

901 Edwards, J. M., and A. Slingo (1996), Studies with a flexible new radiation code. 1: Choosing a
902 configuration for a large-scale model, *W. J. R. Meteorol. Soc.*, 122(531), 689-719.

903 Ezhova, E., Ylivinkka, I., Kuusk, J., Komsaare, K., Vana, M., Krasnova, A., Noe, S., Arshinov,
904 M., Belan, B., Park, S. B., Lavrič, J. V., Heimann, M., Petäjä, T., Vesala, T., Mammarella, I., Kolari,
905 P., Bäck, J., Rannik, Ü., Kerminen, V. M., & Kulmala, M. (2018). Direct effect of aerosols on solar
906 radiation and gross primary production in boreal and hemiboreal forests. *Atmospheric Chemistry and
907 Physics*, 18(24), 17,863– 17,881. <https://doi.org/10.5194/acp-18-17863-2018>.

908 Feldpausch, T. R., et al. (2016), Amazon forest response to repeated droughts, *Global Biogeochem.
909 Cycles*, 30, 964–982, doi:10.1002/2015GB005133.

910 Feng, Y., Chen, D. & Zhao, X. Estimated long-term variability of direct and diffuse solar
911 radiation in North China during 1959–2016. *Theor Appl Climatol* 137, 153–163 (2019).
912 <https://doi.org/10.1007/s00704-018-2579-1>

913 Fountoukis, C. and Nenes, A.: Continued development of a cloud droplet formation parameterization for
914 global climate models, *J. Geophys. Res.*, 110, D11212, doi:10.1029/2004JD005591, 2005.

915 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The Modern-
916 Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). *Journal of
917 Climate*, 30(14), 5419–5454. <https://doi.org/10.1175/JCLI-D-16-0758.1>

918 Gu, L. H., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Boden
919 (2003), Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis,
920 *Science*, 299(5615), 2035–2038.

921 Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons and X. Wang
922 (2012). "The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an
923

926 extended and updated framework for modeling biogenic emissions." *Geosci. Model Dev.* 5(6): 1471-
 927 1492.

928 Hall, S. R., Ullmann, K., Prather, M. J., Flynn, C. M., Murray, L. T., Fiore, A. M., Correa, G., Strode, S.
 929 A., Steenrod, S. D., Lamarque, J.-F., Guth, J., Josse, B., Flemming, J., Huijnen, V., Abraham, N. L.,
 930 and Archibald, A. T.: Cloud impacts on photochemistry: building a climatology of photolysis rates
 931 from the Atmospheric Tomography mission, *Atmos. Chem. Phys.*, 18, 16809–16828,
 932 <https://doi.org/10.5194/acp-18-16809-2018>, 2018.

933 Hemes, K. S., Verfaillie, J., and Baldocchi, D. D.: Wildfire-Smoke Aerosols Lead to Increased Light Use
 934 Efficiency Among Agricultural and Restored Wetland Land Uses in California's Central Valley, *J.
 935 Geophys. Res.-Biogeosci.*, 125, e2019JG005380, <https://doi.org/10.1029/2019jg005380>, 2020.

936 Hodzic A. and Jimenez J.L. (2011), Modeling anthropogenically controlled secondary organic aerosols in
 937 a megacity: a simplified framework for global and climate models. *Geosci. Model. Dev.*, 4, 901-917,
 938 doi:10.5194/gmd-4-901-2011.

939 Huete, A. R., K. Didan, Y. E. Shimabukuro, P. Ratana, S. R. Saleska, L. R. Hutyra, W. Yang, R. R.
 940 Nemani, and R.

941 Myneni (2006), Amazon rainforests green-up with sunlight in dry season, *Geophys. Res. Lett.*, 33,
 942 L06405, doi:10.1029/2005GL025583.

943 Iacono, M.J., J.S. Delamere, E.J. Mlawer, M.W. Shephard, S.A. Clough, and W.D. Collins, Radiative
 944 forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, *J.
 945 Geophys. Res.*, 113, D13103, doi:10.1029/2008JD009944, 2008.

946 Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lya- pustin, A., Wang, Y., and Tucker, J. C.:
 947 Estimation of Terres- trial Global Gross Primary Production (GPP) with Satellite Data- Driven
 948 Models and Eddy Covariance Flux Data, *Remote Sens.*, 10, 1346,
 949 <https://doi.org/10.3390/rs10091346>, 2018.

950 Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., et al. (2020). Scaling
 951 carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM
 952 approach. *Biogeosciences*, 17(5), 1343–1365. <https://doi.org/10.5194/bg-17-1343-2020>

953 Kato, S., N. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller
 954 (2013), Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and
 955 longwave irradiances. *J. Climate*, 26, 2719–2740, doi:10.1175/JCLI-D-12-00436.1.

956 Keppel-Aleks, G., and Washenfelder, R.A. 2016. "The effect of atmospheric sulfate reductions on diffuse
 957 radiation and photosynthesis in the United States during 1995–2013." *Geophysical Research Letters*,
 958 Vol. 43(No. 18): pp. 9984–9993. doi:10.1002/2016GL070052.

959 Kim, P. S., et al. (2015), Sources, seasonality, and trends of southeast US aerosol: an integrated analysis
 960 of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, *Atmos.
 961 Chem. Phys.*, 15, 10411-10433, doi:10.5194/acp-15-10411-2015.

962 Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach
 963 to modeling land surface processes in a general circulation model: 1. Model structure. *J. Geophys.
 964 Res.*, 105, 24 809–24 822, doi:10.1029/2000JD900327.

965 Koster, R. D., and G. K. Walker (2015), Interactive vegetation phenology, soil moisture, and monthly
 966 temperature forecasts, *J. Hydrometeorol.*, 16, 1456–1465, doi:10.1175/JHM-D-14-0205.1.

967 Laurance, W.F. 1999. Gaia's lungs: Are rainforests inhaling Earth's excess carbon dioxide? *Natural
 968 History* (April), p. 96.

969 Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., et al. (2019).
 970 The Community Land Model version 5: Description of new features, benchmarking, and impact of
 971 forcing uncertainty. *Journal of Advances in Modeling Earth Systems*,
 972 <https://doi.org/10.1029/2018MS001583>.

973 Min S. Lee, David Y. Hollinger, Trevor F. Keenan, Andrew P. Ouimet, Scott V. Ollinger, Andrew D.
 974 Richardson, Model-based analysis of the impact of diffuse radiation on CO₂ exchange in a temperate

deciduous forest, Agricultural and Forest Meteorology, 249, 377-389, <https://doi.org/10.1016/j.agrformet.2017.11.016>, 2018.

Letts, M. G., P.M. Lafleur, and N.T. Roulet, On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem Ecoscience, 12 (1) (2005), pp. 53–59.

Li, T. and Q. Yang, Advantages of diffuse light for horticultural production and perspectives for further research. Front Plant Sci. 2015; 6: 704, published online 2015 Sep 4. doi: 10.3389/fpls.2015.00704.

Li, W., R. Fu, and R. E. Dickinson (2006), Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4, J. Geophys. Res., 111, D02111, doi:10.1029/2005JD006355.

Malavelle, F. F., Haywood, J. M., Mercado, L. M., Folberth, G. A., Bellouin, N., Sitch, S., and Artaxo, P.: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, Atmos. Chem. Phys., 19, 1301–1326, <https://doi.org/10.5194/acp-19-1301-2019>, 2019.

Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H. M. J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Pöschl, U., Silva Dias, M. A., Smith, J. N., and Wendisch, M.: Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5), Atmos. Chem. Phys., 16, 4785–4797, <https://doi.org/10.5194/acp-16-4785-2016>, 2016.

Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox (2009), Impact of changes in diffuse radiation on the global land carbon sink, Nature, 458(7241), 1014–1017.

Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I.-S. Song, and A. Eichmann, 2012. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna. Technical Report Series on Global Modeling and Data Assimilation, 28, 2012 (<http://gmao.gsfc.nasa.gov/pubs/docs/Molod484.pdf>).

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geoscientific Model Development, 8, 1339–1356, <https://doi.org/10.5194/gmd-8-1339-2015>, <https://www.geosci-model-dev.net/8/1339/2015/>, 2015.

Moreira, D. S., Longo, K. M., Freitas, S. R., Yamasoe, M. A., Mer- cado, L. M., Rosário, N. E., Gloor, E., Viana, R. S. M., Miller, J. B., Gatti, L. V., Wiedemann, K. T., Domingues, L. K. G., and Correia, C. C. S.: Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region, Atmos. Chem. Phys., 17, 14785–14810, <https://doi.org/10.5194/acp-17-14785-2017>, 2017.

Murphy, D. M., Froyd, K. D., Bian, H., Brock, C. A., Dibb, J. E., DiGangi, J. P., Diskin, G., Dollner, M., Kupc, A., Scheuer, E. M., Schill, G. P., Weinzierl, B., Williamson, C. J., and Yu, P.: The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093–4104, <https://doi.org/10.5194/acp-19-4093-2019>, Apr., 2019.

Myndeni, R., Knyazikhin, Y., Park, T. (2015). MOD15A2H MODIS Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. <http://doi.org/10.5067/MODIS/MOD15A2H.006> (Terra) and <http://doi.org/10.5067/MODIS/MYD15A2H.006> (Aqua).

Napstad, D., C. M. Stickler, B. Soares-Filho, and F. Merry, Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point, *Philos Trans R Soc Lond B Biol Sci.*; 363(1498): 1737–1746, doi: [10.1098/rstb.2007.0036](https://doi.org/10.1098/rstb.2007.0036), May 27, 2008.

Nepstad DC, Stickler CM, Filho BS, Merry F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. *Philos Trans R Soc Lond B Biol Sci.* 2008;363(1498):1737-1746. doi:10.1098/rstb.2007.0036.

Ng, N. L., S. C. Herndon, A. Trimborn, M. R. Canagaratna, P. L. Croteau, T. B. Onasch, D. Sueper, D. R. Worsnop, Q. Zhang, Y. L. Sun and J. T. Jayne (2011). "An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol." *Aerosol Science and Technology* 45(7): 780-794.

1025 Niyogi, D., et al. (2004), Direct observations of the effects of aerosol loading on net ecosystem CO₂
 1026 exchanges over different landscapes, *Geophys. Res. Lett.*, 31, L20506, doi:10.1029/2004GL020915.

1027 Oliveira, P. H. F., P. Artaxo, C. Pires, S. De Lucca, A. Procopio, B. Holben, J. Schafer, L. F. Cardoso, S.
 1028 C. Wofsy, and H. R. Rocha (2007), The effects of biomass burning aerosols and clouds on the CO₂
 1029 flux in Amazonia, *Tellus, Ser. B*, 59(3), 338–349.

1030 Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model
 1031 (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

1032 Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li,
 1033 F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C.
 1034 L., Kluzeck, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto,
 1035 D. M., Sacks, W., Sun, Y., Tang, J., & Yang, Z.-L. (2013). Technical description of version 4.5 of
 1036 the Community Land Model (CLM), NCAR Tech. Note NCAR/TN-503+STR. National Center for
 1037 Atmospheric Research, Boulder, Colorado, 420 pp.

1038 O'Sullivan, M., A. Rap, C. L. Reddington, D. V. Spracklen, M. Gloor, W. Buermann, Small global
 1039 effect on terrestrial net primary production due to increased fossil fuel aerosol emissions
 1040 from East Asia since the turn of the century, *Geophys Res Lett.* 2016 Aug 16; 43(15): 8060–
 1041 8067. doi: 10.1002/2016GL068965, 2016.

1042 Rap, A., Spracklen, D. V., Mercado, L., Reddington, C. L., Haywood, J. M., Ellis, R. J., Phillips, O. L.,
 1043 Artaxo, P., Bonal, D., Restrepo Coupe, N., and Butt, N.: Fires increase amazon forest productivity
 1044 through increases in diffuse radiation, *Geophys. Res. Lett.*, 42, 4654–4662
 1045 doi:10.1002/2015GL063719, 2015.

1046 Rap, A., Scott, C.E., Reddington, C.L. et al. Enhanced global primary production by biogenic aerosol via
 1047 diffuse radiation fertilization. *Nature Geosci* 11, 640–644 (2018). <https://doi.org/10.1038/s41561-018-0208-3>.

1049 Randles, C. A., Kinne, S., Myhre, G., Schulz, M., Stier, P., Fischer, J., Doppler, L., Highwood, E., Ryder,
 1050 C., Harris, B., Huttunen, J., Ma, Y., Pinker, R. T., Mayer, B., Neubauer, D., Hitzenberger, R.,
 1051 Oreopoulos, L., Lee, D., Pitari, G., Di Genova, G., Quaas, J., Rose, F. G., Kato, S., Rumbold, S. T.,
 1052 Vardavas, I., Hatzianastassiou, N., Matsoukas, C., Yu, H., Zhang, F., Zhang, H., and Lu, P.:
 1053 Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the
 1054 AeroCom Radiative Transfer Experiment, *Atmos. Chem. Phys.*, 13, 2347–2379,
 1055 <https://doi.org/10.5194/acp-13-2347-2013>, 2013.

1056 Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., et al.
 1057 (2017). The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data
 1058 Assimilation Evaluation. *Journal of Climate*. <https://doi.org/10.1175/JCLI-D-16-0609.1>

1059 Rienecker, M. M., M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D.
 1060 Schubert, L. Takacs, G.-K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, A. da Silva, W. Gu, J.
 1061 Joiner, R. D. Koster, R. Lucchesi, A. Molod, T. Owens, S. Pawson, P. Pégion, C. R. Redder, R.
 1062 Reichle, F. R. Robertson, A. G. Ruddick, M. Sienkiewicz, J. Woollen, MERRA - NASA's Modern-
 1063 Era Retrospective Analysis for Research and Applications. *J. Climate*, 24, 3624–3648, 2011.

1064 Roderick, M. L., G. D. Farquhar, S. L. Berry, and I. R. Noble (2001), On the direct effect of clouds and
 1065 atmospheric particles on the productivity and structure of vegetation, *Oecologia*, 129(1), 21–30.

1066 Saatchi S, Asefi-Najafabady S, Malhi Y, Arag~ao LEOC, Anderson LO, Myneni RB, Nemani R (2013)
 1067 Persistent effects of a severe drought on Amazonian forest canopy. *Proceedings of the National
 1068 Academy of Sciences of the United States of America*, 110, 565–570.

1069 Schmidt, G. A., et al. (2014), Configuration and assessment of the GISS Model-E2 contributions to the
 1070 CMIP5 archive, *J. Adv. Model. Earth Syst.*, 6, 141–184, doi:10.1002/2013MS000265.

1071 Shilling, J. E., M. S. Pekour, E. C. Fortner, P. Artaxo, S. de Sá, J. M. Hubbe, K. M. Longo, L. A. T.
 1072 Machado, S. T. Martin, S. R. Springston, J. Tomlinson and J. Wang (2018). "Aircraft Observations of
 1073 Aerosol in the Manaus Urban Plume and Surrounding Tropical Forest during GoAmazon 2014/15."
 1074 *Atmos. Chem. Phys. Discuss.* 2018: 1-37.

1075 Sporre, M. K., Blichner, S. M., Karset, I. H. H., Makkonen, R., and Berntsen, T. K.: BVOC-aerosol-
1076 climate feedbacks investigated using NorESM, *Atmos. Chem. Phys.*, 19, 4763–
1077 4782, <https://doi.org/10.5194/acp-19-4763-2019>, 2019.
1078 Strada, S. and Unger, N.: Potential sensitivity of photosynthesis and isoprene emission to direct radiative
1079 effects of atmospheric aerosol pollution, *Atmos. Chem. Phys.*, 16, 4213–4234,
1080 <https://doi.org/10.5194/acp-16-4213-2016>, 2016.
1081 Thornton, P. E., & Zimmermann, N. E. (2007). An improved canopy integration scheme for a land
1082 surface model with prognostic canopy structure. *Journal Of Climate*, 20, 3902-3923.
1083 doi:10.1175/JCLI4222.1.
1084 Unger, N., Yue, X., and Harper, K. L.: Aerosol climate change effects on land ecosystem services,
1085 Faraday Discuss., 200, 121–142, <https://doi.org/10.1039/c7fd00033b>, 2017.
1086 University of Oklahoma. "Dry season increase in photosynthesis in Amazon rain forest." *ScienceDaily*.
1087 *ScienceDaily*, 22 October 2019. <www.sciencedaily.com/releases/2019/10/191022092804.htm>
1088 Wang, X., Wu, J., Chen, M., Xu, X., Wang, Z., Wang, B., Wang, C., Piao, S., Lin, W., & Miao,
1089 G. (2018). Field evidences for the positive effects of aerosols on tree growth. *Global Change
1090 Biology*, 24, 4983– 4992. <https://doi.org/10.1111/gcb.14339>.
1091 Wild, O., X. Zhu, and M. Prather, Fast-J: Accurate simulation of in- and below-cloud photolysis in
1092 tropospheric chemical models, *J. Atmos. Chem.* 37, 245-282, 2000.
1093 Xi, X., and I. N. Sokolik, 2012: Impact of Asian dust aerosol and surface albedo on photosynthetically
1094 active radiation and surface radiative balance in dryland ecosystems. *Advances in Meteorology*, 2012,
1095 Article ID 276207, doi: 10.1155/2012/276207.
1096 Yan, X., W. Z. Shi, W. J. Zhao, et al., 2014: Impact of aerosols and atmospheric particles on plant leaf
1097 proteins. *Atmos. Environ.*, 88, 115–122, doi: <https://doi.org/10.1016/j.atmosenv.2014.01.044>.
1098 Zhou, Yanlian; Xiaocui Wu; Weimin Ju; Leiming Zhang; Zhi Chen; Wei He; Yibo Liu; Yang Shen,
1099 Modeling the Effects of Global and Diffuse Radiation on Terrestrial Gross Primary Productivity in
1100 China Based on a Two-Leaf Light Use Efficiency Model, *Remote Sens.* 12(20),
1101 3355; <https://doi.org/10.3390/rs12203355>, 2020.