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Abstract. Secondary organic aerosols (SOA) play a significant role in atmospheric chemistry. However, little is known 

about the vertical profiles of SOA in the urban boundary layer (UBL). This knowledge gap constrains the SOA simulation in 15 

chemical transport models. Here, the aerosol samples were synchronously collected at 8 m, 120 m, and 260 m based on a 

325-m meteorological tower in Beijing from August 15th to September 10th, 2015. Strict emission controls were implemented 

during this period for the 2015 China Victory Day Parade. Here, we observed that the total concentration of biogenic SOA 

tracers increased with height. The fraction of SOA from isoprene oxidation increased with height, whereas the fractions of 

SOA from monoterpenes and sesquiterpenes decreased. 2,3-Dihydroxy-4-oxopentanoic acid (DHOPA), a tracer of 20 

anthropogenic SOA from toluene oxidation, also increased with height. The complicated vertical profiles of SOA tracers 

highlighted the need to characterize SOA within the UBL. The mass concentration of estimated secondary organic carbon 

(SOC) ranged from 341 to 673 ngC m–3. The increase in the estimated SOC fractions from isoprene and toluene with height 

was found to be more related to regional transport whereas the decrease in the estimated SOC from monoterpenes and 

sesquiterpene with height was more subject to local emissions. Emission controls during the parade reduced SOC by 4–35% 25 

with toluene SOC decreasing more than the other SOC. This study demonstrates that vertical distributions of SOA within the 

UBL are complex, and the vertical profiles of SOA concentrations and sources should be considered in field and modeling 

studies in the future. 

1 Introduction 

In the middle of the 20th century, atmosphere pollution events began to be frequently reported in different regions worldwide 30 

(Barrie, 1986; Went, 1960; White and Roberts, 1976). Many studies on atmospheric aerosols have been undertaking to 
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understand the sources and evolution mechanisms of aerosols and discuss their effects on climate and human health. It is 

well known that atmospheric aerosols can impact radiation force, the hydrological cycle, regional and global climate, and 

human health (Kanakidou et al., 2005; Su et al., 2020), and these impacts were all shown in the IPCC report 

(https://www.ipcc.cn). Generally, 20–90% of the mass concentration of particulate matter (PM) is contributed by organic 

aerosols (OA) in which ca. 30–70% are secondary organic aerosols (SOA) (Ervens et al., 2011; Huang et al., 2014). SOA is 5 

generally formed through the photooxidation of volatile organic compounds (VOCs), including biogenic VOCs (BVOCs, e.g. 

isoprene, monoterpenes, sesquiterpenes, and oxygenated hydrocarbons) from terrestrial vegetation and marine phytoplankton 

and anthropogenic VOCs (AVOCs, e.g. toluene and naphthalene) from biomass burning, coal combustion, vehicle exhausts, 

and solvent use.  

Anthropogenic SOA (ASOA) and biogenic SOA (BSOA) are important contributors to OA and air pollution in the 10 

atmosphere (Huang et al., 2014; Volkamer et al., 2006). BSOA and ASOA fractions are potentially underestimated in 

models according to the previous studies (Shrivastava et al., 2017; Volkamer et al., 2006). In recent years, a large number of 

studies based on field observations suggest that the formation of BSOA can be enhanced by anthropogenic precursors, an 

effect which is known as anthropogenic-biogenic interactions (Goldstein et al., 2009; Shilling et al., 2012; Zelenyuk et al., 

2017). Simultaneously, SOA can be transported on a regional or global scale, changing cloud condensation nuclei (CCN) 15 

size, influencing the climate, and damaging human health (Pöschl, 2005; Russell and Brunekreef, 2009; Shrivastava et al., 

2017). 

In the last decade, severe air pollution in China has attracted worldwide attention (An et al., 2019; Huang et al., 2020a). The 

haze episodes in China are suggested to result from a complex interplay of anthropogenic emissions, atmospheric processes, 

regional transport, meteorological conditions, and climatic conditions (An et al., 2019; Du et al., 2021; Huang et al., 2020b; 20 

Sun et al., 2016; Zheng et al., 2015). The high contribution of secondary aerosols to the PM pollution during haze events in 

China highlights the urgent need to understand the compositions and processes of SOA formation in the atmosphere (An et 

al., 2019; Huang et al., 2014). Previous studies have reported the chemical characteristics of OA in many regions in China 

(Li et al., 2018; Simoneit et al., 1991; Wang et al., 2006; Xie et al., 2020). However, studies characterizing the vertical 

properties of SOA in the urban boundary layer are lacking, which constrains research on the interactions of aerosols and 25 

regional transport, local emissions, atmospheric processes, and meteorological conditions in urban areas. 

Vertical profiles of atmospheric dynamic structures, gaseous species, bulk chemical compositions, and nitrogen isotopes in 

the urban boundary layer (UBL) have been investigated over Beijing (Chan et al., 2005; Guinot et al., 2006; Sun et al., 2015; 

Wu et al., 2019; Zhao et al., 2017). Several field studies at the rainforest Amazon Tall Tower Observatory (ATTO) also 

measured the vertical gradients of VOCs. (Andreae et al., 2015; Yáñez-Serrano et al., 2018). However, vertical SOA profiles 30 

were still lacking. A previous study reported that the loading of SOA is high above the surface layer during the summer over 

the southeastern United States, which was potentially related to the heterogeneous chemical and gas-to-particle reactions of 

BVOCs oxidation products (Goldstein et al., 2009). This highlights the pressing need to obtain the vertical SOA profiles in 
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the cities, especially in a Chinese megacity frequently enduring severe air pollution. It is meaningful in learning the SOA 

properties and probing its behaviors in the atmosphere. This information also has regulatory implications for decision makers. 

Beijing, one of the super megacities of China, held the 2015 China Victory Day parade in the late summer of 2015. The 

government had implemented strict emission controls in Beijing and its seven surrounding provinces to improve the air 

quality. This provided a unique chance to study atmospheric aerosols under government interventions. Daily PM2.5 samples 5 

were synchronously collected at three heights (8 m, 120 m, and 260 m, above ground level, respectively) based on a 325-m 

meteorological tower in urban Beijing during the period August 15th to September 10th, 2015. Observations at 8 m are more 

subject to local emissions whereas those at 120 m and 260 m are more representative of mixing and/or regional scale 

influences (Sun et al., 2015; Zhao et al., 2020). BSOA and ASOA tracers in PM2.5 were quantified by gas 

chromatography/mass spectrometry (GC/MS); organic carbon (OC), elemental carbon (EC), and water-soluble organic 10 

carbon (WSOC) in PM2.5 were also determined. In addition, the tracer-based method (Kleindienst et al., 2007) was used to 

estimate the contributions of biogenic SOC (BSOC) and anthropogenic SOC (ASOC). The influences of emission controls 

during the Parade period on the characteristics of SOC were also investigated. To the best of our knowledge, this was the 

first time that vertical profiles of SOA tracers were measured at a molecular level in a Chinese megacity. This campaign 

provided new insights into the formation mechanisms of SOA in haze episodes and the feedback on SOA influenced of local 15 

emissions, regional transport, and mixing of heights over the North China Plain (NCP). Furthermore, this study provided a 

scientific basis for China’s initiatives to guarantee air quality in Beijing and contributed to improving the simulations of 

SOA in the chemical transport models. 

2 Materials and methods 

2.1 Sampling 20 

Daily PM2.5 samples were collected at three heights: 8 m (at the rooftop of a two-story building about 10 m away from the 

325-m meteorological tower), 120 m, and 260 m (at the platforms of the tower) in Beijing during the China Victory Day 

parade period (local time 08:00–6:00; August 15th–September 10th, 2015). The sampling site is at the Institute of 

Atmospheric Physics (IAP), Chinese Academy of Sciences (39°58.53′N, 116°22.69′E), which is in an urban site (between 3- 

and 4-ring) of Beijing and surrounded by street road (~50 m), highway (~300 m), a public park (~500 m to the southwest), 25 

restaurants (~100 m), residential housing and a gas station (~200 m). The predominant vegetation types surrounding the 

sampling site are deciduous broadleaf vegetation (acacia and juglandaceae), shrub, and lawn. The vegetation cover of the 

public park is more than 50%. The predominant vegetation is also deciduous broadleaf. Filter samples were collected onto 

pre-combusted (450 oC combusted for 6 h) quartz fiber filters (Pallflex, 8×10 in) using high-volume air samplers (TISCH, 

USA) at a flow rate of 1.1 m3 min–1. The filter samples were enveloped in aluminum foils and stored at –20 oC in darkness 30 

until analysis. Meteorological parameters including wind speed (WS), wind direction (WD), temperature (T), and relative 

humidity (RH) at the heights of 8 m, 120 m, and 260 m were measured by the meteorological system on the tower. Three 
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periods are classified according to the phases of emission controls by the government: before the parade (Before-P): August 

15th–19th; during the parade (During-Parade): August 20th–September 3rd; and after the parade (After-P): September 4th–10th. 

2.2 Carbonaceous component Analyses 

OC and EC in aerosols were directly analyzed by an OC/EC Carbon Aerosol Analyzer (Sunset Laboratory Inc., USA) 

following a NIOSH protocol (Mkoma et al., 2013). A portion of each filter of 3.14 cm2 was extracted with 15 ml ultrapure 5 

water under ultrasonication with ice water for 20 min. WSOC in this water extract was measured by a total organic carbon 

(TOC) analyzer (Model NPOC, Shimadzu, Japan). The concentrations of OC, EC, and WSOC were calibrated with field 

blank filters. 

2.3 Measurement of OA molecular compositions using GC/MS 

A filter was extracted three times with dichloromethane/methanol (2:1, v/v) under ultrasonication. The extracts were then 10 

filtered, concentrated by a rotary evaporator, and blown down to dryness. After that, the dried extracts were reacted with 60 

μl of N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylsilyl chloride and 10 μl of pyridine at 70 oC for 

3 h. After sufficient reaction, 40 μl internal standard solvent (C13 n-alkane, 1.43 ng μl–1) was added to the derivatives before 

GC/MS analyses. Three field blank filters were treated as real samples and used for quality calibration. GC/MS is performed 

on a Hewlett-Packard model Agilent 7890A GC coupled to Hewlett-Packard model Agilent 5975C mass selective detector 15 

(MSD). GC separation is equipped with a spitless injection and a fused silica capillary column (DB-5MS, 30 m×0.25 mm i.d., 

0.25 μm film thickness). The GC oven temperature program was set as follows: hold at 50 oC 2 min, then increased to 120 
oC at a rate of 15 oC min–1, heated up to 300 oC at a rate of 5 oC min–1, and finally hold at 300 oC for 16 min. The Mass 

Spectrometer was operated on the electron impact (IE) mode at 70 eV and scanned from 50 to 650 Da. Organic marker 

measurements were determined by comparing with references, library, and authentic standards, and were quantified with 20 

GC/MS response factors acquired using authentic standards or surrogates (Fu et al., 2009). The data reported in this work 

was corrected for the field blank but not for recoveries. 

2.4 Air mass backward trajectory 

To investigate the influences of air mass on urban aerosols of Beijing, 3-day backward trajectories starting at 300 m (a.g.l.) 

of every 6 hours were calculated for each sample using the HYSPLIT4 model (http://ready.arl.noaa.gov/HYSPLIT.php). 25 

Cluster analyses were applied to estimate the influence of air mass. As shown in Figure S1, seven clusters were determined. 

Air mass from south, southeast, and northeast of Beijing accounted for >70%. Especially, for pollution days, retroplumes of 

air masses were calculated by the FLEXPART (FLEXible PARTicle dispersion) model (Figure S2). Detailed information 

about the model was described in a previous study (Wei et al., 2018a). The model was set with a height of 300 m (a.g.l.) and 

three-day backward trajectories. 30 
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2.5 Ancillary parameters 

The ground surface concentrations of PM2.5, CO, SO2, NO2, and O3 were obtained from the monitor station of the Olympic 

center (39.98°N, 116.40°E) about 3 kilometers away from our sampling site, which is available on the National urban air 

quality and real-time publishing platforms (http://106.37.208.233:20035/). The hourly levels of these parameters were shown 

in figure S4. 5 

3 Results and discussion 

Meteorological parameters (wind speed, wind direction, temperature, and relative humidity) at the sampling site during the 

observation period are shown in Figure 1. These meteorological parameters have been reported in the previous study (Zhao 

et al., 2017). The prevailing winds at 8 m were either easterly or westerly, while at 120 m and 260 m the wind directions 

were dominated by northerlies. Winds at the ground surface (8 m) were weaker than that at upper layers, which was likely 10 

related to the influences of surrounding buildings near the sampling site. Some high buildings are about half to several 

hundred meters away from the sampling site. Vertical differences of wind speeds and directions suggest that samples 

collected at 8 m are more related to local source emissions whereas samples collected at upper layers are more influenced by 

the regional scale. Air temperature decreased slightly with the height, while relative humidity (RH) increased. This feature 

possibly plays a role in the vertical profile of the gas-to-particle partitioning of organic aerosols (Sun et al., 2015). 15 

Three pollution episodes (marked as E1, E2, and E3) were recorded during the sampling period. The pollution episodes were 

defined according to a previous study (Zhao et al., 2017) and the air quality index (AQI) from the Chinese national 

environmental monitoring center (http://www.cnemc.cn). The prevailing winds during these pollution episodes varied with 

heights between 8 m and 260 m (Figure S3). The wind in the upper layers (120 m and 260 m) was mainly from the south, 

whereas at the ground surface layer (8 m) it was from the north. Similar to the air mass footprints (Figure S2), these results 20 

suggest that the air masses from the southern region significantly contributed to the haze pollution in Beijing (Tian et al., 

2019; Zheng et al., 2015). 

The concentrations of WSOC and OC were 2.73 ± 1.31 µgC m-3 and 5.03 ± 2.28 µgC m-3 at 260 m, 2.69 ± 1.55 µg m-3 and 

5.32 ± 2.88 µg m-3 at 120 m, and 2.03 ± 0.99 µg m-3 and 4.37 ± 1.69 µg m-3 at 8 m, respectively (Figure S4 and Table S1). 

There were no significant differences between the average concentrations of WSOC and OC at the three layers (Table S2), 25 

indicating that aerosols were well mixed within the boundary layer. However, the fractions of WSOC to OC at the upper 

layers (120 m and 260 m: 51.1%% and 54.0%, respectively) were higher than that at 8 m (46.9%) (Table S1). The 

correlation coefficient values (R2) between WSOC and OC were also higher at upper layers: 0.96, 0.93, and 0.47 at 260 m, 

120 m, and 8 m, respectively (Figure S5). These results reveal a predominant contribution of secondary sources to OA at the 

upper layers, indicating that organic aerosols in the upper layers were more oxidized than in the ground surface layer. This 30 

highlights the importance of investigating the vertical profiles of SOA in the UBL. In addition, primary sources from local 
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dust and soil resuspension, such as primary biological aerosols which contain a high abundance of water-insoluble organic 

compounds (Wang et al., 2019), potentially caused the lower fractions of WSOC to OC at the ground surface than at the 

upper layers. 

Concentrations of identified secondary organic compounds are shown in Table S1, including BSOA tracers (isoprene, 

monoterpene, and sesquiterpene oxidation products), ASOA tracers (DHOPA and phthalic acid for toluene and naphthalene 5 

oxidation products, respectively), poly acids and aromatic acids in the aerosols at three heights. Most of these molecular 

tracers showed higher abundance at high layers (≥ 120 m) than at 8 m, except for pinic acid, pinonic acid, 3-acetuldipic acid 

and β-caryophyllinic acid. Table S2 shows significant differences in the average concentrations of these SOA tracers with 

height, except for monoterpene SOA tracers. Many factors can regulate the vertical profiles of SOA: (1) lower temperature 

and higher RH at the upper layers than the ground surface layer is potentially favourable to the condensation of semi-volatile 10 

organic compounds onto particles (Carlton et al., 2009; Hallquist et al., 2009); (2) local emission, regional transport, and 

vertical mixing can influence the relative loading and fraction of SOA in aerosols (Brown et al., 2013); (3) atmosphere 

oxidation capacity can also play a role in the formation of SOA (Wang et al., 2018a). Thus, vertical distributions of SOA can 

be useful for investigating the atmospheric behavior of aerosols in the UBL. 

3.1 Vertical characteristics of SOA tracers 15 

3.1.1 Emissions of BVOCs 

Vegetation species, plant growth stage, and environmental conditions can impact the release of BVOCs (Benjamin et al., 

1997; Wang et al., 2003), which contribute to the vertical profiles of BSOA tracers. Northwest China is mainly grasslands or 

barren lands, while other areas of China, especially the south of China, are rich in terrestrial plants (Ran et al., 2012). The 

emission inventory showed that in summer a large amount of BVOCs was mainly emitted from northeast, north, southeast 20 

regions with only a small amount from southwest China (Yan et al., 2005). Isoprene is one of the most abundant non-

methane VOCs, mostly emitted by broadleaf plants (deciduous or evergreen trees) and marine phytoplankton (Sharkey et al., 

2008). Back trajectories showed that 70% of the air masses originated from south or northeast regions of Beijing (Figure S1), 

suggesting isoprene oxidation products were potentially influenced by the regional scale emissions of BVOCs from these 

regions. Monoterpenes are mainly emitted from needle leaf trees (e.g. coniferous plants), and the emissions from soil and 25 

litter in local places may be larger than those from vegetation (Faiola et al., 2014). Sesquiterpenes are mainly emitted from 

plants and trees, which are controlled by many factors, such as temperature and stage of plant growth (Duhl et al., 2008; 

Faiola et al., 2019). The different contributions from various BVOCs emissions are one possible factor that influences the 

observed vertical profiles of BSOA tracers. Terrestrial plantations can emit a broad spectrum of BVOCs. Ambient 

temperature, solar radiation, soil moisture, and pollution situation can also affect their formation processes and 30 

concentrations in the atmosphere. In addition, oxidation processes (such as reaction rates and lifetime) simultaneously 

control the properties of BSOA in the atmosphere (Jaoui et al., 2007; Tarvainen et al., 2005). 



7 
 

3.1.2 Vertical distribution of BSOA tracers 

The total concentrations of BSOA tracers were 31.5 ± 16.8 ng m-3, 36.4 ± 26.1 ng m-3, and 50.2 ± 27.0 ng m-3 at 8 m, 120 m, 

and 260 m, respectively (Table S1). The increase of their concentration with height is potentially linked to the regional 

transport and gas-to-particle processes of semi-volatile VOCs due to lower temperatures at the upper layers (Goldstein et al., 

2009). Moreover, vertical convection transport and BVOCs emission sources cannot be ignored (Ran et al., 2012; Wei et al., 5 

2018b). The total concentrations of isoprene SOA tracers were 19.7 ± 12.0 ng m-3, 27.1 ± 22.4 ng m-3 and 38.7 ± 24.1  ng m-3 

at 8 m, 120 m, and 260 m, respectively, among which C5-alkene triols (the sum of cis-2-methyl-1,3,4-trihydroxy-1-butene, 3-

methyl-2,3,4-trihydroxy-1-butene, and trans-2-methyl-1,3,4-trihydroxy-1-butene) were the most abundant compounds, 

followed by 2-methylerythritol (2-MT_eryth), 2-methylthreitol (2-MT_ threi) and 2-methylglyceric acid (2-MGA) (Table 

S1). The total of monoterpene SOA tracers were 10.5 ± 5.18 ng m-3 (8 m), 8.45 ± 3.68 ng m-3 (120 m) and 10.5 ± 3.86  ng m-10 
3 (260 m). Pinonic acid (PNA) was the most abundant species at 8 m, whereas 3-methyl-1,2,3-butanetricarboxylic acid 

(MBTCA) was the dominant compound at 120 and 260 m. The concentrations of sesquiterpene SOA tracer (β-caryophyllinic 

acid) concentrations were 1.32 ± 0.63 ng m-3, 0.89 ± 0.89 ng m-3 and 1.02 ± 0.69 ng m-3 at 8 m, 120 m and 260 m, 

respectively. The abundance of isoprene SOA tracers increased with height, while there was no significant variation of the 

concentrations of the monoterpenes and sesquiterpene SOA tracers. 15 

The time series of the concentrations BSOA from isoprene, monoterpenes, and sesquiterpene at the three layers and their 

relative contributions are shown in Figure 2 and Figure S6. Their vertical patterns are also shown in Figure 3 and Figure 4. 

Generally, isoprene SOA tracers increased with height, while the other two kinds of SOA tracers varied slightly with height. 

From 8 m to 260 m, the contributions of total BSOA tracers by isoprene SOA tracers increased from 63% to 77%, while the 

fractions from monoterpene SOA tracers and sesquiterpene SOA tracer decreased from 33% to 21% and 4% to 2%, 20 

respectively (Figure 2d and Figure S7). It indicates that oxidized products from isoprene are more important contributors to 

SOA in Beijing over the late summer than other BVOCs products. It suggests that regional transport potentially contributes 

more to isoprene SOA, while SOA from monoterpenes and sesquiterpene is likely more influenced by local sources. In 

addition, some other factors (such as transformation and condensation processes) can also lead to these patterns. Our results 

are in agreement with the field observations over the United States and the modeled vertical distributions of isoprene-derived 25 

SOA, that is, high loadings of SOA from isoprene oxidation occurred above the surface layer (Goldstein et al., 2009; Zhang 

et al., 2007). In particular, each kind of BSOA tracer displayed different temporal and vertical distributions (Figure S6 and 

Figure 4). These features are potentially influenced by multi-factors. The predominant reason is likely related to local 

emission and regional transport (Du et al., 2017). Secondly, the mixing of heights (Wang et al., 2018b) and meteorological 

conditions of the atmosphere (Ding et al., 2011) is potentially another important factor. Moreover, oxidation processes 30 

(Claeys et al., 2004; Szmigielski et al., 2007) and emissions (Faiola et al., 2014; Wang et al., 2008) of BVOCs can also cause 

this complex vertical profiles of SOA. 
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3.1.3 Vertical variations in the photo-oxidation of BSOA tracers 

Isoprene SOA tracers are the photo-oxidation products of isoprene with atmospheric oxidants (e.g. OH, O3, and NOx). The 

isoprene oxidation mechanisms are dependent on atmospheric conditions (Bates and Jacob, 2019; Wennberg et al., 2018). 

These processes are influenced by many factors, such as atmospheric conditions (humidity, temperature, and solar radiation) 

and the acidity of aerosols (Claeys et al., 2004; Kleindienst et al., 2009; Nguyen et al., 2015; Surratt et al., 2010). 5 

Specifically, 2-MGA is mainly formed under a high NOx level, while 2-MTs (the sum of 2-MT_eryth and 2-MT_threi) are 

formed under a low NOx level. The ratio of 2-MTs to 2-MGA can reflect the impacts of NOx loading on the isoprene 

oxidation processes (Surratt et al., 2010). In this study, the average ratio of 2-MTs to 2-MGA was 5.20 ± 2.24 at 8 m, higher 

than that at 120 m (3.80 ± 1.95) and 260 m (3.15 ± 1.83) (Figure 5a). The aloft lower ratio suggested aerosols transported 

from other polluted regions with higher NOx levels contributed to the isoprene oxidation products in the upper layer aerosols 10 

of Beijing. The impacts of other factors (e.g. relative humidity, temperature, and oxidizing capacity) on the heterogeneous 

oxidations of isoprene cannot be ignored (Wang et al., 2018a). The higher values of 2-MTs / 2-MGA in this study than that 

in a previous study in Beijing at the ground level (average 1.7) (Ding et al., 2014) suggests an efficient reduction of NOx by 

the strict emission controls. 

The average ratios of 2-MTs to C5-alkene triols were 0.97±1.17, 1.33±1.24, and 3.97±3.08 at 8 m, 120 m, and 260 m, 15 

respectively (Figure 5b). C5-alkene triols have been suggested to convert into 2-MTs (Wang et al., 2005). Some studies also 

suggested that the loading of 2-MTs increased with the enhancement of aerosol acidity (Surratt et al., 2007), and the relative 

humidity can affect the ratio of 2-MTs to C5-alkene triols (Surratt et al., 2010). Recent studies suggested the ratio of 2-MTs / 

C5-alkene triols decreased with aerosol acidity (Yee et al., 2020), and C5-alkene triols were likely formed from thermal 

degradation of 2-methyltetrol sulfates for GC/MS artifacts (Cui et al., 2018). Hence, it is still not clear the meaning of the 20 

ratio 2-MTs to C5-alkene triols. However, the large differences of 2-MTs / C5-alkene triols values at three heights highlight 

the significance of studying vertical profiles of SOA, and more field investigations are needed. 

Eight monoterpene SOA tracers have been identified here, with pinonic acid (PNA), pinic acid (PA), and MBTCA being the 

dominant compounds (Table S1). The different temporal and vertical patterns of these tracers are displayed in Figure S6 and 

Figure 4. MBTCA can be produced by further oxidations of PNA and PA by OH radical (Ding et al., 2016; Szmigielski et al., 25 

2007). Thus, the ratio of MBTCA to (PNA+PA) can represent the aging extent of monoterpene-derived SOA. The ratio of 

MBTCA to (PNA+PA) at 8 m (0.24±0.10) was lower than those at 120 m (0.84±0.44) and 280 m (1.49±0.77) (Figure 5d and 

S7), indicating that SOA from monoterpenes was much fresher at the surface than the upper layers. These results suggested 

that the lower height (8 m) was more relevant to local fresh aerosols whereas the higher layer (260 m) was more subject to 

regional aged aerosols, and the middle layer (120) was likely the mixed influence of local and regional aerosols. This 30 

conclusion can also be supported by the more significant correlation between PNA and MBTCA at 8 m than those at 120 m 

and 260 m (Figure S8). 
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β-Caryophyllinic acid is produced by the oxidation of β-caryophyllene emitted from trees and plants (Jaoui et al., 2007). The 

average concentration of β-caryophyllinic acid decreased and then increased slightly with height (Figure 4). This could be 

associated with relatively high ambient temperature (Duhl et al., 2008) or β-caryophyllene released from the soil or litter 

around the ground surface (Zhu et al., 2016). It is noteworthy that the correlations (r) of β-caryophyllinic acid with other 

SOA tracers (poly acids, aromatic acids, 2-MGA, C5-alkene triols, and 3-hydroxyglutaric acid) were stronger at 120 m and 5 

260 m than those at 8 m (Figure S7), implying that these tracers had the same origins and were potentially associated with 

regional transport of aerosols at upper layers. 

3.1.4 Vertical profiles of BSOA tracers during pollution events  

The winds during the pollution episodes were mostly from the south of Beijing (Figure S2), which contributed to the 

formation of air pollution in the city. It was also found that the variations of RH were different for E1 and E3. The southwest 10 

winds, which potentially carried high RH and pollutant air masses to the urban of Beijing (Wang et al., 2018b), likely 

leading to the vertical variation of RH during E1. These results suggest that the formation of E1 is likely related to regional 

transport. However, minor vertical variation of RH during E3 suggests complex pollution. The concentrations of EC and the 

ratio of EC / OC (Figure S4) showed extremely low values and vertical varies during E2 when compared with other pollution 

events, suggesting that the formation of E2 is largely influenced by regional transport. In addition, the increasing levels of 15 

pollution parameters (such as O3, SO2, and NO2) also contributed to the pollution episodes. 

Total concentrations of BSOA tracers increased with height during the August 17th and 19th episodes (E1) and the August 

29th episode (E2), and complex vertical distributions were recorded in other pollution days. The lower concentration of 

BSOA tracers (13.2 ng m-3) at 120 m on August 18th (E1) than average values (27.1 ng m-3) during the whole sampling 

period was likely related to the removal by a short-lived rain event. High abundance and increasing fractions of isoprene 20 

SOA tracers with height were recorded on August 17th and 19th of E1 and E2 (Figure 6), likely associated with the regional 

transport from southern areas of Beijing (Figure S2 and Figure S3). The aloft lower abundance of isoprene oxidation 

products than at the surface layer on August 16th (E1) was likely influenced by the air masses from the northwest. The same 

difference on September 7th to 8th (E3) was likely influenced by the air masses from the northeast. Monoterpene SOA tracers 

during the pollution events showed vertical patterns similar to the average values, that is, the higher concentrations and 25 

fractions were recorded at the ground surface layer than at the upper layers due to local emissions. However, their 

concentrations increased with height on August 19th (E1) (Figure 3b), likely influenced by regional transport. Sesquiterpene 

SOA tracer showed unusually vertical distribution patterns during the episodes, that is, higher concentrations were recorded 

at the upper layers than at the ground surface layer (Figure 3c), which was also associated with the regional transport. 

The vertical patterns of BSOA tracers during the pollution events highlighted the significant roles of air masses origins, 30 

regional transport, local emissions, and oxidation processes on urban aerosols of Beijing. More field measurements are 

needed to address the interactions between SOA formation and the urban boundary layer. In addition, it is important to 
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investigate the vertical profiles of ASOA and its interactions with BSOA. ASOA is a larger contributor to the loading of 

SOA and the formation of air pollution in urban areas. 

3.2 Vertical profiles of DHOPA 

DHOPA is an anthropogenic secondary organic compound, which is often used as a tracer for toluene (aromatic hydrocarbon) 

derived SOA and can only be detected in the particulate phase (Al-Naiema and Stone, 2017; Kleindienst et al., 2007). 5 

DHOPA concentrations were 0.90 ± 0.53 ng m-3, 1.50 ± 1.09 ng m-3, and 2.03 ± 1.69 ng m-3 at 8 m, 120 m, and 260 m, 

respectively. The average concentrations at 8 m and 260 m differed significantly. This vertical pattern was more obvious 

during pollution episodes, except for August 16th and September 7th when air masses were from the northwest and northeast 

(Figure S2). Thus, the increasing abundance of DHOPA at the upper layers during the pollution episodes was most likely 

related to the pollutants from the southern region of Beijing. 10 

In addition, DHOPA correlated well (r > 0.7) with aromatic acids and polyacids at all of the three heights, suggesting that 

they had similar origins such as anthropogenic aromatic VOCs (Al-Naiema and Stone, 2017; Ding et al., 2017). DHOPA 

also showed moderate correlations (r > 0.5) with 2-MGA, C5-alkene triols, 3-HGA, and β-caryophyllene acid (Figure S7). 

Previous studies have reported that urban pollution can enhance the formation of natural aerosols (Shrivastava et al., 2019); 

the existence of aromatic compounds can lead to high loading of α-pinene-derived SOA (Shilling et al., 2012; Zelenyuk et al., 15 

2017); and traffic transport can simultaneously release isoprene and toluene (Borbon et al., 2001). These results suggest that 

anthropogenic sources can impact the formation of biogenic oxidation products. 

3.3 SOC estimation by the tracer-based method 

The tracer-based method is used to estimate the contributions of different sources to SOC along vertical gradients. The 

fraction factors for SOC from isoprene, monoterpenes, and sesquiterpene (Iso_SOC, Mon_SOC, and Sesq_SOC) are set as 20 

0.155 ± 0.039, 0.231 ± 0.111 and 0.0230 ± 0.0046, respectively, and those for toluene SOC (DHOPA as a tracer) and 

naphthalene SOC (phthalic acid as a surrogate) are 0.0079 ± 0.0026 and 0.0199, respectively (Kleindienst et al., 2012; 

Kleindienst et al., 2007). It should be noted that estimations of fraction factors in chamber processes deviate from the real 

atmospheric environment (Ding et al., 2014). Quantitative uncertainties, system errors, volatility of BSOA tracers, and other 

factors could also increase the challenge in getting a more accurate estimation of SOC. 25 

Temporal variations in the estimated SOC and their percentages in OC at the three heights are shown in Figure 7 and Table 

S3. The total concentrations of these estimated SOC were 341 ± 150 ngC m-3 (average percentages in OC: 8.05 ± 3.17%), 

444 ± 283 ngC m-3 (8.60 ± 3.66%) and 673 ± 385 ngC m-3 (13.4 ± 4.81%) at 8 m, 120 m and 260 m, respectively. Toluene 

SOC was the dominant contributor to SOC (32%, 41% and 35 % at 8 m, 120 m and 260 m, respectively), followed by 

naphthalene SOC and BSOC. The sum of ASOC (toluene and naphthalene SOC) contributed more than 50% of these SOC at 30 

three heights, and their concentrations and fractions increased with height (Figure 7c), suggesting a significant impact of 

anthropogenic sources from regional transport on urban aerosols of Beijing. The average concentrations of BSOC ranged 



11 
 

from 157 to 272 ngC m-3 and accounted for 3.80 ± 1.46% (8 m), 3.09 ± 0.97% (120 m) and 5.63 ± 2.32% (260 m) in OC 

(Table S3). 

BSOC showed different fractions at the three layers. Iso_SOC fractions at the upper layers were higher than that at the 

ground surface, while Mon_SOC and Sesq_SOC fractions at the ground surface were the highest (Figure S8). These features 

illustrate the large contribution of regional transport to isoprene-derived SOC above the surface layer, while monoterpenes 5 

and sesquiterpene were likely influenced by local emissions. Consequently, the fractions of toluene SOC and Iso_SOC 

increased with height, Mon_SOC and Sesq_SOC fractions decreased with height and naphthalene SOC fractions were 

similar at the three heights, suggesting that the regional transport are rich in toluene SOC and Iso_SOC. In addition to the 

influence of local emission and regional transport, meteorological conditions, atmosphere turbulence, and UBL structure also 

cannot be ignored. 10 

3.4 Impacts of emission controls on estimated SOC loadings 

The average concentrations of estimated SOC before, during, and after the Parade (marked as Before-P, During-Parade, and 

After-P, respectively) are shown in Figure 8. The estimated SOC concentrations during the Parade (320±111 ngC m-3, 

370±163 ngC m-3 and 594±264 ngC m-3 at 8 m, 120 m and 260 m, respectively) decreased by ~12% (364±199 ngC m-3) and 

10% (356±177 ngC m-3) at 8 m, 35% (571±419 ngC m-3) and 16% (441±279 ngC m-3) at 120 m; decreased 31% (864±585 15 

ngC m-3) and increased 4% (570±229 ngC m-3) at 260 m when compared to the Before-P and After-P, respectively. The SOC 

at the upper layers decreased more than at the ground surface layer, suggesting the efficient mitigation of SOC on a regional 

scale. The previous studies during the same period (Wu et al., 2019; Zhao et al., 2017) showed a high frequency of southerly 

winds before the Parade and north winds during the Parade at the high layers. It suggests that the north winds were also an 

important reason for the reduction of SOC during the Parade.  20 

We found that the fractions of ASOC decreased and Iso_SOC increased for the emission controls. The ASOC fractions at 8 

m were 59±8% (Before-P), 47±5% (During-Parade), and 57±8% (After-P), and Iso_SOC were 18±5%, 18±2%, and 12±2%, 

respectively. The ASOC fractions at 120 m were 64±5% (Before-P), 61±10% (During-Parade) and 65±8% (After-P), and 

Iso_SOC were 17±5%, 23±6%, and 16±6%, respectively. The ASOC fractions at 260 m were 63±10% (Before-P), 53±9% 

(During-Parade) and 64±9% (After-P), and Iso_SOC were 24±8%, 34±9%, and 21±9%, respectively. The decreased 25 

contributions of ASOC during the control period indicated the emission controls were effective in mitigating anthropogenic 

sources, with the control on toluene SOC being particularly effective. However, emission mitigation was not so efficient to 

control BSOC, especially for Iso_SOC, implying that SOA from isoprene oxidation was potentially a more stable contributor 

than other VOCs in Beijing during the late summer. 

Consequently, these results indicate that regional emission controls changed the aerosol SOC composition. Moreover, 30 

meteorological conditions and other factors (e.g., atmospheric oxidation state) could also impact the variations in SOC 

during different sampling periods, such as the wind shift before and after the Parade and the complex vertical distributions of 

particulate nitrate (Wang et al., 2018a; Wu et al., 2019; Zhao et al., 2017). 
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4 Conclusions 

The vertical properties of SOA tracers in aerosols were investigated over the late summer in Beijing. The sum of BSOA 

tracers were 31.5 ± 16.8 ng m-3 (8 m), 36.4 ± 26.1 ng m-3 (120 m), and 50.2 ± 27.0 ng m-3 (260 m). BSOA tracers from 

isoprene were the dominant compound, followed by monoterpenes and sesquiterpene. The fractions of isoprene SOA tracers 

showed an aloft increasing vertical pattern, whereas monoterpene and sesquiterpene SOA tracers showed opposite variations. 5 

These vertical characteristics of BSOA tracers were influenced by multiple factors, such as their photo-oxidation processes, 

local sources, and regional transport of their precursors. The isoprene oxidation products were largely influenced by air 

masses from regional transport, while monoterpene oxidation products were mainly influenced by local emission sources. 

The specific vertical distributions of BSOA tracers during pollution episodes suggest a significant contribution of regional 

transport of aerosols from the southern regions of Beijing. The average concentrations of the toluene tracer (DHOPA) were 10 

0.90 ± 0.53 ng m-3 (8 m), 1.50 ± 1.09 ng m-3 (120 m) and 2.03 ± 1.69 ng m-3 (260 m). DHOPA showed an aloft increasing 

pattern with larger variations during the episodes, also suggesting the regional transport from the southern regions. 

Estimated by the tracer-based method, the sum concentrations of estimated SOC were 341 ± 150 ngC m-3 (8 m), 444 ± 283 

ngC m-3 (120 m) and 673 ± 385 ngC m-3 (260 m), with toluene SOC being the dominant compound, followed by naphthalene 

SOC, Iso_SOC and other SOC. The aloft increasing SOC suggests a contribution of the regional transport. The increase in 15 

toluene SOC and Iso_SOC fraction with the height indicates that the air masses subject to the regional transport were 

potentially rich in toluene- and isoprene-derived SOC. The implementation of joint regional prevention and control by the 

government can significantly reduce the amount of SOC. However, they are likely more efficient on reducing toluene SOC, 

but not isoprene-derived SOC. Our study demonstrates the variability of SOA within the urban boundary layer and highlights 

that vertical profiles of SOA are critical to improving the simulation of SOA in chemical transport models. 20 
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Figure 1. Temporal series of vertical meteorological parameters including (a) relative humidity (RH) and temperature (T), (b) 
wind direction (WD) and wind speed (WS), and (c) wind roses. Three pollution events (including E1 to E3) are indicated by grey 
shading (E1: August 16th to 19th, E2: August 29th, and E3: September 7th to 8th, respectively). The light grey shading during E1 is a 5 
short rain event that reduced the loading of OA in aerosols. N represents the northern wind. 
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Figure 2. Vertical and temporal variations in BSOA tracers from (a) isoprene, (b) monoterpenes, and (c) sesquiterpene. 
Measurement heights were at 8 m (solid circles), 120 m (grey circles), and 260 m (open circles). Relative mass fractions are shown 
in (d). 5 
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Figure 3. Vertical profiles in the concentrations of SOA tracers from (a) isoprene, (b) monoterpenes (c) sesquiterpene, and (d) 
DHOP in daily samples collected at three heights. The samples collected during E1, E2, and E3 periods are marked with blue, 
black, and red bold lines, respectively. The sampling date during the pollution days was also marked. 5 
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Figure 4. Vertical distributions of the average concentrations of SOA tracers from (a–d) isoprene, (e–i) monoterpenes, (m) β-
caryophyllinic acid, (n) dihydroxy-4-oxopentanoic acid (DHOPA), and (o) phthalic acid in PM2.5. Figures (a-m) and (n-o) are 
tracers of BSOA and ASOA, respectively (HDCCA is the abbreviation of 3-(2-hydroxyethyl)-2,2-dimethyl-cyclobutane carboxylic 5 
acid). 
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Figure 5. Temporal variations in the mass concentration ratios among different biogenic SOA tracers in PM2.5: (a) 2-MTs / 2-
MGA; (b) 2-MTs / C5-alkene triols and (c) MBTCA / (PA+PNA). 
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Figure 6. Relative mass contributions of three kinds of BSOA tracers during the pollution days at three heights. The sum 
concentrations of BSOA tracers (ng m-3) are shown in the center of each pie. 
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Figure 7. Temporal variations in the estimated SOC and other OC at three heights: (a) the concentrations of estimated SOC (right 
axis) and other OC (left axis), (b) the fraction of estimated SOC and other OC in OC. Relative mass fractions of OC and estimated 
SOC is shown in (c) and (d). Other OC is not captured by the source apportionment. Iso_SOC, Mon_SOC, and Sesq_SOC 5 
represent BSOC estimated from isoprene, monoterpenes, and sesquiterpene, respectively. Toluene SOC and naphthalene SOC 
represent anthropogenic SOC (ASOC) that were estimated by DHOPA and phthalic acid, respectively. 
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Figure 8. Temporal variation in mass fractions of estimated SOC in PM2.5 and its relative contributions during three periods 
(Before-P means before Parade; During-P means during Parade, and After-P means after Parade) at three heights. The values in 
the center of the pies represent the average concentrations of estimated SOC and the sizes of the pie are related to the 5 
concentrations. 
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