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Abstract. Mineral dust aerosols cool and warm the atmosphere by scattering and absorbing solar (short-wave: SW) 8 

and thermal (long-wave: LW) radiation. However, significant uncertainties remain in dust radiative effects, largely 9 

due to differences in the dust size distribution and spectral optical properties simulated in Earth system models. Dust 10 

models typically underestimate the coarse dust load (more than 2.5 µm in a diameter) and assume a spherical shape, 11 

which leads to an overestimate of the fine dust load (less than 2.5 µm) after the dust emissions in the models are scaled 12 

to match observed dust aerosol optical depth at 550 nm (DAOD550). Here, we improve the simulated dust properties 13 

with datasets that leverage measurements of size-resolved dust concentration, asphericity factor, and refractive index 14 

in a coupled global chemical transport model with a radiative transfer module. After the adjustment of size-resolved 15 

dust concentration and spectral optical properties, the global and annual average of DAOD550 from the simulation 16 

increases from 0.023 to 0.029 and falls within the range of a semi-observationally-based estimate (0.030 ± 0.005). 17 

The reduction of fine dust load after the adjustment leads to a reduction of the SW cooling at the Top Of the 18 

Atmosphere (TOA). To improve agreement against a semi-observationally-based estimate of the radiative effect 19 

efficiency at TOA, we find that a less absorptive SW dust refractive index is required for coarser aspherical dust. Thus, 20 

only a minor difference is estimated for the net global dust radiative effect at TOA (–0.08 vs. –0.00 W·m−2 on a global 21 

scale). Conversely, our sensitivity simulations reveal that the surface warming is substantially enhanced near the 22 

strong dust source regions (less cooling to –0.23 from –0.60 W·m−2 on a global scale). Thus, less atmospheric radiative 23 

heating is estimated near the major source regions (less heating to 0.15 from 0.59 W·m−2 on a global scale), because 24 

of enhanced LW warming at the surface by the synergy of coarser size and aspherical shape.  25 

1 Introduction 26 

Mineral dust aerosols can both cool and warm the climate, but how much dust aerosols net influence global 27 

climate is highly uncertain (Penner, 2019). Global dust modeling studies have suggested that mineral dust exerts  28 

global and annual mean aerosol radiative effect (RE) between –0.6 and +0.2 W m−2 at the Top Of the Atmosphere 29 

(TOA) and between −0.2 and −2.7 W m−2 at the surface (Miller and Tegen, 1998; Balkanski et al., 2007; Tanaka et 30 

al., 2007; Takemura et al., 2009; Räisänen et al., 2013; Zhao et al., 2013; Albani et al., 2014; Colarco et al., 2014; 31 

Heald et al., 2014; Di Biagio et al., 2020; Tuccella et al., 2020). Whereas a negative RE corresponds to the cooling of 32 

the global system when the sunlight is reflected to space, a positive RE corresponds to an overall warming of the 33 

Earth-atmosphere system by trapping incident short-wave (SW) and outgoing long-wave (LW) radiation. Radiative 34 

effect by dust aerosols perturbs surface temperature, wind speed, rainfall, and vegetation cover, which may induce 35 
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feedback on dust emissions (Perlwitz et al. 2001; Miller et al., 2004a; Colarco et al., 2014). The climate feedback does 36 

not only depend on RE at TOA or the surface alone but also on the difference to the value at TOA and surface, which 37 

represents radiative heating within the atmosphere (Miller et al., 2004b; Yoshioka et al., 2007; Lau et al., 2009). The 38 

large uncertainties in quantifying the dust RE in the models are mainly propagated from the large spatial heterogeneity 39 

and temporal variability of mineral dust abundance and the physicochemical properties (e.g., size distribution, mineral 40 

composition, and shape), as well as the ground surface characteristics and atmospheric properties (e.g., surface 41 

reflectance, temperature, and atmospheric absorption) (Sicard et al., 2014; Lacagnina et al., 2015; Li and Sokolik, 42 

2018). The model errors in dust size distribution and particle shape can lead to an overestimate of fine dust load after 43 

the dust emissions in the models are scaled to match observed dust aerosol optical depth at 550 nm (DAOD550). The 44 

corresponding overestimate of SW cooling might be compensated for in models by using a refractive index that is too 45 

absorbing (Di Biagio et al., 2019, 2020), which depends on the mineral composition of the dust. We regard “fine” and 46 

“coarse” dust as dust particles with a diameter less than 2.5 µm (i.e., PM2.5) and between 2.5 and 20 µm, respectively. 47 

Below, we provide a brief discussion of the effects of the dust size distribution, particle shape, and mineral 48 

composition on dust radiative effects. 49 

First, there has been increased attention paid to the importance of accurately predicting the abundance of coarse 50 

dust for the global energy balance (Kok et al., 2017; Song et al., 2018; Di Biagio et al., 2020; Adebiyi and Kok, 2020). 51 

The coarser particles are expected to be more prevalent closer to the source regions, as they fall much faster than finer 52 

particles (Mahowald et al., 2014). For instance, the lifetime of dust aerosols larger than 30 µm in diameter is less than 53 

12 h in most cases except in large haboobs (Ryder et al., 2013). Current models, however, cannot accurately simulate 54 

observed transport of coarse dust particles across the Atlantic (Weinzierl et al., 2017; Ansmann et al., 2017), although 55 

several hypotheses have been proposed to explain measurements of giant dust particles (larger than 63 µm in diameter) 56 

relatively far from source regions (van der Does et al., 2018). The potential mechanism for long-range transport of 57 

giant dust particles is that the uplift events of coarse dust can be induced by a nocturnal low-level jet or cold pool 58 

outflow from mesoscale convective systems (i.e., haboobs) (Rosenberg et al., 2014; Ryder et al., 2019). At higher 59 

elevation, electrostatic forces might retard the settling of coarse and giant dust particles and thus may facilitate the 60 

transport of these particles over longer distances (Harrison et al., 2018; Toth et al., 2019). Other missing processes 61 

that affect the transport and deposition of giant particles would also need to be incorporated into the models to 62 

reproduce the measurements of the size distribution over the open ocean (van der Does et al., 2018). The coarse dust 63 

particles scatter and absorb both the solar and thermal radiation, causing a net warming effect at TOA. In contrast, the 64 

fine dust particles principally scatter SW radiation, causing a net cooling effect. Since coarse dust tends to warm the 65 
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climate, the underestimation of the abundance of coarse dust causes Earth system models to underestimate the 66 

warming near the dust source regions.  67 

Second, previous studies have shown that the SW radiative effect of dust asphericity on climate simulations is 68 

minor on a global scale, partly because the larger DAOD is compensated for by the larger asymmetry parameter of 69 

aspherical dust, which reduces the amount of radiation scattered backward to space (Räisänen et al., 2013; Colarco et 70 

al., 2014). Moreover, non-spherical calcium-rich dust particles can be converted to spherical particles, due to 71 

heterogeneous reactions with nitrate and sulfate on these particles, especially over polluted regions (Laskin et al., 72 

2005; Matsuki et al., 2005). As the plumes move downwind to the oceans, the dust aerosols can be aggregated with 73 

sea salt in the marine boundary layer, which leads to more spherical shapes and larger sizes (Zhang and Iwasaka, 74 

2004). However, the assumption of spherical shape in models leads to a substantial underestimation of the extinction 75 

efficiency and thus DAOD near the strong source regions, mainly because the assumption of sphericity causes an 76 

underestimation of the surface-to-volume ratio compared to aspherical dust (Kok et al., 2017, 2021; Hoshyaripour et 77 

al., 2019; Tuccella et al., 2020). Radiative effect efficiency is often used for the evaluation of the models and is defined 78 

as the gradient of a linear least squares fit applied to AOD and dust radiative effect at each two-dimensional (2-D) 79 

grid box (W·m−2 AOD−1). Thus, the estimates of the dust radiative effect efficiency could be biased, in part, due to 80 

large uncertainties associated with the spherical assumption on AOD retrieval (Zhou et al., 2020). 81 

Third, the dust refractive index is often derived from measurements based on dust or individual mineral particles 82 

(Bedidi and Cervelle, 1993; Long et al., 1993; Di Biagio et al., 2017, 2019; Stegmann & Yang, 2017). Indeed, most 83 

dust particles are internal mixtures of various mineral compositions and irregular shapes (Reid, 2003; Wiegner et al., 84 

2009; Wagner et al., 2012). In desert soils, iron (Fe) oxides are generally hematite (α-Fe2O3) and goethite (FeOOH), 85 

which cause soil-derived dust absorption at ultraviolet (UV) and visible wavelengths (Sokolik and Toon, 1999; 86 

Balkanski et al., 2007). These two minerals have distinct optical properties, which might cause various intensities of 87 

SW absorption and thus RE of dust aerosols (Lafon et al., 2016). The dust complex refractive index in the LW also 88 

depends on the particle mineralogical composition (Sokolik et al., 1998). Di Biagio et al. (2017) found a linear 89 

relationship between the magnitude of the imaginary refractive index at 7.0, 9.2, and 11.4 μm and the mass 90 

concentration of calcite and quartz absorbing at these wavelengths. However, the speciation of dust into its mineral 91 

components inherently comprises uncertainties on soil mineralogy, mineral content in size-segregated dust particles, 92 

and refractive index of mineral, partly due to the differences in prescribed parameters such as the particle size. The 93 

atmospheric aging of Fe-containing aerosols can further modulate the optical properties of Fe oxides (Ito et al., 2018) 94 

and organic carbon (Al-Abadleh, 2021), while the photochemical transformation of Fe oxides from lithogenic sources 95 

due to atmospheric processing is relatively limited (< 10%), compared to pyrogenic sources (Ito et al., 2019). 96 
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Here, we focus on the influence of the size-resolved abundance of aspherical dust on the aerosol radiative effects 97 

in a coupled global chemical transport model (IMPACT) (Ito et al., 2020 and references therein) with a radiative 98 

transfer module (RRTMG) (Iacono et al., 2008). We improve the accuracy of these simulations by correcting the bias 99 

in size-resolved dust concentration with the Dust Constraints from joint Observational-Modelling-Experimental 100 

analysis (DustCOMM) data set (Adebiyi et al., 2020), as well as by considering the aspherical shape (Huang et al., 101 

2020, 2021). We then explore the sensitivity to dust refractive index.  102 

2 Methods 103 

We examined the dust radiative effects using ten combinations of different numerical experiments that varied 104 

(1) the simulated dust concentration and their size distribution, (2) particle shape, and (3) mineralogical composition 105 

(Tables 1 and 2). Two RRTMG calculations used the hourly averaged aerosol concentrations calculated from one 106 

IMPACT model simulation (E1 and E3) (denoted as “IMPACT”). The two sensitivity experiments were handled in 107 

the RRTMG calculations performed with the distinction between spherical and non-spherical dust and different 108 

refractive indices. We denoted “Sphere” when the RRTMG calculations used the spherical assumption on the particle 109 

shape, while the IMPACT model considered asphericity in calculation of gravitational settling velocities. On the other 110 

hand, we denoted “Asphere” when the dust asphericity was also considered in the RRTMG calculations. Subsequently, 111 

the simulated dust concentration and the size distribution were adjusted to the semi-observationally-based 112 

concentrations (Adebiyi and Kok, 2020) in another chemical transport model simulation, which was performed with 113 

the five RRTMG calculations (E4, E5, E6, E8, and E9) (denoted as “DustCOMM”). The term “semi-observationally-114 

based” is used for DustCOMM, DAOD550, and dust radiative effect efficiency when the estimates are based on the 115 

combination of observations and models. We examined different refractive indices for the dust mineralogy to represent 116 

the regional variations in refractive indices (denoted as “Mineral”, “DB17”, “DB19”, “V83”, “Less SW”, “More LW”, 117 

“More SW”, and “Less LW”). Thus, the other three experiments (E2, E7, and E10) were calculated from the model 118 

output with a post-processor. DustCOMM-Asphere-DB19-V83 (E2) was obtained from combination of DustCOMM-119 

Asphere-DB19-DB17 (E4) for SW and DustCOMM-Asphere-Mineral-V83 (E6) for LW. DustCOMM-Asphere-Less-120 

More (E7) was obtained from combination of DustCOMM-Asphere-Less-Less (E8) for SW and DustCOMM-121 

Asphere-More-More (E9) for LW. DustCOMM-Asphere-More-Less (E10) was obtained from combination of 122 

DustCOMM-Asphere-More-More (E9) for SW and DustCOMM-Asphere-Less-Less (E8) for LW. These sensitivity 123 

simulations and their radiative effects are summarized in Tables 1 and 2, respectively, with more details below. In 124 

section 2.3, we describe the DustCOMM data set used to adjust (1) size-resolved abundance of dust concentration. In 125 

section 2.4, we describe the adjustment factor of (2) particle shape for spectral optical properties. In section 2.5, we 126 



5 
 
 

describe differences in spectral refractive indices due to (3) different mineralogical compositions for the radiative flux 127 

calculation. 128 

2.1 Aerosol chemistry transport model 129 

This study used the Integrated Massively Parallel Atmospheric Chemical Transport (IMPACT) model (Ito et 130 

al., 2020 and references therein). Simulations were performed for the year 2016, using a horizontal resolution of 131 

2.0°×2.5° for latitude by longitude and 47 vertical layers. The chemical transport model was driven by the Modern 132 

Era Retrospective analysis for Research and Applications 2 (MERRA-2) reanalysis meteorological data from the 133 

National Aeronautics and Space Administration (NASA) Global Modeling and Assimilation Office (GMAO) (Gelaro 134 

et al., 2017). Thus, the radiative feedback of the dust aerosol on the climate was not considered in this study. 135 

The model simulated the emissions, chemistry, transport, radiation, and deposition of major aerosol species, 136 

including mineral dust, black carbon (BC), particulate organic matter (POM), sulfate, nitrate, ammonium, and sea 137 

spray aerosols, and their precursor gases. Dust emissions were dynamically simulated using a physically-based 138 

emission scheme (Kok et al., 2014; Ito and Kok, 2017) with the soil mineralogical map (Journet et al., 2014; Ito and 139 

Shi, 2016). Atmospheric processing of mineral dust aerosols, during transport, were projected for four distinct aerosol 140 

size bins (<1.26 µm, 1.26–2.5 µm, 2.5–5 µm, and 5–20 µm of diameter). In this version of the IMPACT model, two 141 

modes were used for sulfate aerosol (nuclei and accumulation mode), and two moments were predicted within each 142 

mode (sulfate aerosol number and mass concentration) (Liu et al., 2005). The surface coating of sulfate on dust 143 

aerosols occurred because of the condensation of sulfuric acid gas on their surfaces, coagulation with sulfate aerosol, 144 

and formation in aqueous reactions within cloudy regions of the atmosphere (Liu et al., 2005). The heterogeneous 145 

uptake of nitrate, ammonium, and water vapor by each aerosol for each size bin was interactively simulated in the 146 

model following a hybrid dynamical approach (Feng and Penner, 2007). Five types of aerosols (i.e., dust, nucleated 147 

sulfate, carbonaceous aerosols from fossil fuel combustion, carbonaceous aerosols from biomass burning, and sea salt) 148 

were assumed to be externally mixed in each size bin for the computation of spectral optical properties (Xu and Penner, 149 

2012). To derive atmospheric concentration of mineral composition for dust aerosol, “tagged” tracer was used for 150 

each size-resolved mineral source. The direct emissions of dust were evenly distributed in mixing ratio throughout the 151 

planetary boundary layer. The global scaling factor of dust emission was determined from the comparison of the model 152 

results with ground-based AOD measurements near the dust source regions prior to the adjustment to the DustCOMM 153 

(Kok et al., 2014; Ito and Kok, 2017). In recent review papers, multi-model evaluations of aerosol iron concentrations 154 

and their solubilities have been comprehensively summarized on global and regional scales (Myriokefalitakis et al., 155 

2018; Ito et al., 2021). 156 
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To improve the accuracy of our simulations of mineral dust, we made several upgrades to the on-line emission 157 

and gravitational settling schemes used in Ito et al. (2020). The dust emissions were extremely sensitive to soil 158 

moisture, and thus the bias was adjusted with satellite observations (Ito and Kok, 2017). However, the satellite 159 

measurements were only available every other day, depending on location. The Soil Moisture Active Passive (SMAP) 160 

Level-4 Soil Moisture data product addressed these limitations by merging the satellite observations into a numerical 161 

model of the land surface water and energy balance while considering the uncertainty of the observations and model 162 

estimates (Reichle et al., 2019). In this work, we utilized the 3-hourly data of soil moisture derived from the SMAP 163 

for barren and open shrublands separately (Reichle et al., 2018). To achieve this, we used the MODerate resolution 164 

Imaging Spectroradiometer (MODIS) land cover map at 500 m resolution to calculate the fraction of barren and open 165 

shrublands in each grand surface layer (Friedl et al., 2019) 166 

Compared to the assumption on spherical shapes of aerosols, the dust asphericity increased aerodynamic drag 167 

at a given volume and mass, and thus increased gravitational settling lifetime by about 20% (Huang et al., 2020). Here, 168 

we implemented a globally averaged asphericity factor of 0.87 (Huang et al., 2020) to the gravitational settling scheme 169 

for mineral dust. Nevertheless, the lifetime of the dust aerosol for the largest-size bin in the IMPACT model, even 170 

after accounting for asphericity (1.4 days for 5–20 µm of diameter), was significantly shorter than an ensemble of 171 

model results (2.1 ± 0.3 days for the mass mean diameter of 8.3 µm) (Kok et al., 2017). The impact of this 172 

underestimate of atmospheric lifetime is explored using the DustCOMM data set, as was summarized in Table 2 (E3 173 

– E4). 174 

2.2 Integration of IMPACT and RRTMG 175 

To improve the accuracy of our simulations of dust RE, we made upgrades to the radiative transfer calculations 176 

(Ito et al., 2018 and references therein). In this study, we integrated the Rapid Radiative Transfer Model for GCMs 177 

(RRTMG) online within the IMPACT model to calculate the radiative fluxes associated with atmospheric aerosols. 178 

RRTMG is a radiative transfer code that calculates the SW and LW atmospheric fluxes (Iacono et al., 2008). Given 179 

the size range of dust particles, scattering and absorption in the on-line model were described in terms of Mie theory. 180 

Assuming homogeneous spherical particles, the spectral optical properties such as the mass extinction coefficient, 181 

single scattering albedo, and asymmetry parameter were calculated using a look-up table as a function of refractive 182 

index and size parameter (Xu and Penner, 2012). The impact of this spherical assumption is explored using aspherical 183 

factor, as was summarized in Table 2 (E5 – E4). 184 

The mineral dust particles were assumed to follow prescribed size distributions within each size bin (Liu et al., 185 

2005). In applying the look-up table, the size spectrum for mineral dust was divided into 30 sub bins (Wang and 186 
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Penner, 2009). As for the SW, the particle size increased with the uptake of sulfate, nitrate, ammonium, and water by 187 

the aerosols (Xu and Penner, 2012). These coating materials on aerosol cores were treated as internally mixed with 188 

each aerosol core in each size bin. Thus, the coating materials on dust only can reduce solar absorption of mineral 189 

dust. Subsequently, these optical properties were used by the RRTMG to calculate RE based on dust mixing ratio 190 

distributions in the IMPACT model. The dust RE was estimated as the difference in the calculated radiative fluxes 191 

with all aerosols and with all aerosols except the dust aerosols coated with sulfate, nitrate, ammonium, and water for 192 

each bin. As the LW scattering was not accounted for in the RRTMG, we multiplied the LW radiative fluxes by the 193 

adjustment factors of 1.18 ± 0.01 and 2.04 ± 0.18 for the dry particles at the surface and TOA (Dufresne et al., 2002), 194 

following Di Biagio et al. (2020). The larger adjustment factor at TOA reflects the fact that the upward LW radiation 195 

emitted from the ground surface can be trapped through scattering and absorption compared to the surface. 196 

The broadband direct and diffuse albedos for both the UV visible and visible IR were specified from the hourly 197 

MERRA-2. The surface emissivity was based on the hourly MERRA-2. Long-lived greenhouse gas concentrations 198 

were obtained from historical greenhouse gas concentrations for climate models (Meinshausen et al., 2017). Water 199 

vapor concentrations were specified according to the MERRA-2. Cloud optical properties were calculated based on 200 

the liquid and ice visible optical depths from the MERRA-2, prescribing effective radii of 10 μm for water droplets 201 

and 25 μm for ice particles, respectively (Gettelman et al., 2010; Heald et al., 2014).  202 

2.3 DustCOMM dataset and sensitivity experiments to size-resolved dust concentration 203 

Dust Constraints from joint Observational-Modelling-experiMental analysis (DustCOMM) is a dataset of 204 

three-dimensional (3-D) dust properties obtained by combining observational, experimental, and modeling constraints 205 

on dust properties. While details can be found in Adebiyi et al. (2020) and Adebiyi and Kok (2020), we provide a 206 

brief overview here. First, DustCOMM’s constraint on the 3-D dust size distribution combines dozens of previously 207 

published in-situ measurements of dust size distributions taken during several field campaigns, with an ensemble of 208 

climate model simulations. The framework used those in-situ measurements first to constrain the globally averaged 209 

size distribution (Adebiyi and Kok, 2020), which is used subsequently to adjust the bias in an ensemble of six global 210 

model simulations (Adebiyi et al., 2020). The constraints on dust size distribution range from 0.2 µm to 20 µm in 211 

diameter, where a generalized analytical function describes the sub-bin distribution based on brittle fragmentation 212 

theory (Kok, 2011). The second DustCOMM product – atmospheric dust mass loading – combines the constraints on 213 

dust size distribution with constraints on dust extinction efficiency and dust aerosol optical depth (Adebiyi et al., 2020). 214 

The constraints on dust extinction efficiency used the single-scattering database of Meng et al. (2010) and leveraged 215 

measurements of the dust index of refraction as well as accounts for the non-spherical shape of dust particles (Kok et 216 
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al., 2017). For this, we approximate dust as tri-axial ellipsoidal particles described by the globally representative 217 

values of measured dust aspect ratio (the length-to-width ratio), and the height-to-width ratio (HWR) obtained from 218 

Huang et al. (2020). Furthermore, the dust aerosol optical depth used to obtain the dust mass loading combines the 219 

semi-observationally-based dataset from Ridley et al. (2016) with information from four reanalysis products. This 220 

includes the MERRA-2, Navy Aerosol Analysis and Prediction System (NAAPS), Japanese Reanalysis for Aerosol 221 

(JRAero), and Copernicus Atmosphere Monitoring Service interim ReAnalysis (CAMSiRA) (Adebiyi et al., 2020). 222 

The aerosol RE of mineral dust strongly depends on both the magnitude of dust load and the dust size distribution 223 

(Tegen and Lacis, 1996; Liao and Seinfeld, 1998). The DustCOMM data set contains total column loading (X, Y) and 224 

concentration of mineral dust resolved by season (T) and particle size (S) (Adebiyi et al., 2020). To correct the bias in 225 

the seasonally averaged size-resolved dust emission in the IMPACT model, 𝐸𝐸IMPACT(X, Y, T, S), the sum of bin 1, bin 226 

2, and bin 3 dust emission flux was scaled by the seasonal mean of the ratio of the sum of bin 1, bin 2, and bin 3 dust 227 

column loading between the model, 𝐿𝐿IMPACT(X, Y, T, S), and DustCOMM, 𝐿𝐿DustCOMM(X, Y, T, S), at each 2-D grid 228 

box. The bias correction factor, 𝐿𝐿bias(𝑋𝑋,𝑌𝑌,𝑇𝑇), between the IMPACT model and DustCOMM data set is given by: 229 

𝐿𝐿bias(𝑋𝑋,𝑌𝑌,𝑇𝑇) = �𝐿𝐿DustCOMM(𝑋𝑋,𝑌𝑌,𝑇𝑇, 𝑆𝑆) ÷ �𝐿𝐿IMPACT(𝑋𝑋,𝑌𝑌,𝑇𝑇, 𝑆𝑆)
3

𝑆𝑆=1

3

𝑆𝑆=1

(1). 230 

 When the source function was used for high-latitude dust in the Northern Hemisphere, this led to substantially high 231 

emissions and thus RE over there, likely due to the influences from long-range transported dust. Therefore, the direct 232 

emissions of dust from the nine major source regions only (Kok et al., 2021) were adjusted using the DustCOMM 233 

data (Fig. 1). To adjust the size bias in dust emissions, the mass fraction of emitted dust for each bin was prescribed 234 

according to the size-resolved total column loading of DustCOMM at each 2-D grid box. The mass fraction for each 235 

size bin, 𝑆𝑆DustCOMM(X, Y, T, 𝑆𝑆) is given by: 236 

𝑆𝑆DustCOMM(𝑋𝑋,𝑌𝑌,𝑇𝑇, 𝑆𝑆) = 𝐿𝐿DustCOMM(𝑋𝑋,𝑌𝑌,𝑇𝑇, 𝑆𝑆) ÷  �𝐿𝐿DustCOMM(𝑋𝑋,𝑌𝑌,𝑇𝑇, 𝑆𝑆)
4

𝑆𝑆=1

(2). 237 

Thus, the dust emission flux after the adjustment, 𝐸𝐸DustCOMM(X, Y, T, S) is given by: 238 

𝐸𝐸DustCOMM(𝑋𝑋,𝑌𝑌,𝑇𝑇, 𝑆𝑆) =  𝐿𝐿bias(𝑋𝑋,𝑌𝑌,𝑇𝑇) × 𝑆𝑆DustCOMM(𝑋𝑋,𝑌𝑌,𝑇𝑇, 𝑆𝑆) × 𝐸𝐸IMPACT(𝑋𝑋,𝑌𝑌,𝑇𝑇) (3). 239 

Overall, the IMPACT-simulated lifetime of the dust aerosol for the second-size bin (7.8 days 1.26–2.5 µm of diameter) 240 

was in good agreement with the ensemble of model results (8.5 ± 1.1 days for the mass mean diameter of 1.8 µm) 241 

(Kok et al., 2017). To correct the bias in the seasonally averaged 3-D dust size distribution after the transport, the mass 242 

fraction of dust concentration for each bin between 0.2 and 20.0 µm of diameter was scaled at each 3-D grid box prior 243 

to calculating the radiative fluxes using the RRTMG by the ratio of mass concentration of PM2.5 (i.e., the sum of bin 244 

1 and bin 2) to each bin (Table 3).  245 
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2.4 Asphericity factor for optical properties and sensitivity experiments to particle shape 246 

To account for the dust asphericity, an adjustment factor was applied to the spherical optical properties at each 247 

dust size parameter and refractive index. The adjustment factors for the spectral optical properties of non-spherical 248 

particles were calculated after Huang et al. (2021). The atmospheric aging of mineral dust can form a uniform coating 249 

around the mineral core and therefore decrease particle asphericity during transport. This is implicitly considered in 250 

the globally averaged shape distribution of dust (Huang et al., 2019). Specifically, Huang et al. (2021) combined 251 

globally representative dust shape distributions (Huang et al., 2020) with a shape-resolved single-scattering database 252 

(Meng et al., 2010). This database combines four computational methods (Mie theory, T-matrix method, discrete 253 

dipole approximation, and an improved geometric optics method) to compute the single-scattering properties of non-254 

spherical dust for a wide range of shape descriptors. Huang et al. (2021) provided the look-up table containing optical 255 

properties of non-spherical dust as functions of size parameter and refractive index. 256 

The approximation of particles to spheres is evaluated by applying aspherical factors to the optical properties 257 

of the mass extinction coefficient, single scattering albedo, and asymmetry parameter for SW, as well as absorption 258 

fraction of extinction for the LW. At the same time, we maintained the consideration of asphericity on the gravitational 259 

velocity and kept the dust concentrations unaltered between the spherical (denoted as “Sphere”) and aspherical 260 

(denoted as “Asphere”) cases. 261 

2.5 Spectral refractive index and sensitivity experiments to mineralogical compositions 262 

The aerosol RE of mineral dust depends on mineralogical composition. For the sensitivity simulation to the 263 

SW and LW refractive indices, we used the global mean of laboratory measurements of the refractive index from 19 264 

natural soils from various source regions around the world in Di Biagio et al. (2019) (denoted as “DB19”) and in Di 265 

Biagio et al. (2017) (denoted as “DB17”), respectively. To illustrate the regional heterogeneity of refractive index, the 266 

refractive index obtained from 19 samples was aggregated into 9 main source regions, and the arithmetic mean was 267 

calculated for each source region (Di Biagio et al., 2017, 2019). The regionally averaged imaginary parts of the 268 

refractive indices at the wavelength of 0.52 μm and 9.7 μm showed large differences in SW and LW absorptivity, 269 

respectively, between different samples collected at various geographical locations (Fig. 1).  270 

The optical properties from the measurements for dust samples generated from 19 natural soils suggested a 271 

considerable role of Fe oxides in determining the SW absorption (Di Biagio et al., 2019). The refractive indices for 272 

mineral components were used for hematite, goethite (Bedidi and Cervelle, 1993), silicate particle group, quarts, 273 

gypsum (CaSO4) (Stegmann & Yang, 2017), and calcite (CaCO3) (Long et al., 1993) in the simulations denoted as 274 

“Mineral”. The hematite and goethite were treated separately according to the mineralogical map (Journet et al., 2014). 275 
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Consequently, hematite mass content averaged in the dust at emission (0.79% for fine and 0.50% for coarse from the 276 

IMPACT simulation) was lower than goethite content (1.8% and 1.3%, respectively) on a global scale. In addition to 277 

the primary emission of gypsum, CaSO4 is secondarily formed due to the dissolution/precipitation of CaCO3 in 278 

thermodynamic equilibrium condition (Ito and Feng, 2010). To illustrate the difference in refractive index, the global 279 

mean of the mineral composition was used for the comparison with DB19 (Fig. 1). The imaginary parts of the 280 

refractive indices from mineralogical map were higher than DB19, resulting in a stronger absorption over the SW 281 

spectrum. 282 

The mineral dust LW refractive index also depends on its mineralogical composition (Sokolik et al., 1998; Di 283 

Biagio et al., 2017). The LW refractive index of Volz (1983) has been widely used in climate models and satellite 284 

remote sensing algorithms and thus was examined here (denoted as “V83”) (Song et al., 2018). The imaginary parts 285 

of the refractive indices from V83 were higher than DB17, resulting in a stronger absorption over most of the LW 286 

spectrum. To analyze the dependence of the results on less (more) absorptive SW and less (more) absorptive LW 287 

refractive indices, we made further sensitivity simulations by varying the values of imaginary parts of the refractive 288 

index within the range of values from Di Biagio et al. (2017, 2019) (10% or 90% percentiles for SW or LW, 289 

respectively) (denoted as “Less” or “More”). The associated real parts with 10% or 90% percentile imaginary parts 290 

for LW were calculated to account for the Kramers-Kronig relation (Lucarini et al., 2005). 291 

2.6 Semi-observationally-based dust SW and LW radiative effect efficiency 292 

To estimate dust radiative effect efficiency, aerosol and radiation remote sensing products have been used with 293 

various methods (Table 4) (Zhang and Christopher 2003; Li et al. 2004; Christopher and Jones 2007; Brindley and 294 

Russell 2009; Yang et al. 2009; Di Biagio et al. 2010; Hansell et al. 2010; Hansell et al. 2012; Song et al. 2018). 295 

The instantaneous SW radiative effect efficiency at TOA is obtained from the linear regression of TOA 296 

radiation flux versus AOD observations, although the values in low-dust periods can be substantially influenced by 297 

other types of aerosols such as biomass burning (Li et al. 2004). This radiative effect efficiency corresponds to the 298 

instantaneous value derived under the limited condition at the measurements (e.g., solar position, atmospheric 299 

condition). From the extrapolation of the instantaneous value, the diurnal mean dust SW radiative effect efficiency at 300 

the surface and TOA can be derived based on model calculations.  301 

The LW radiative effect efficiency at TOA can be obtained from the linear regression of TOA radiation flux 302 

versus AOD observations over the source regions (Brindley and Russell 2009). However, the observed outgoing LW 303 

radiation is not only dependent on DAOD but also on other factors such as dust layer height, water vapor content, and 304 

other types of aerosols. Thus, the LW radiative effect efficiency is estimated from the difference between observed 305 
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outgoing LW radiation and the dust-free outgoing LW radiation, which can be estimated using radiative transfer model 306 

(Song et al., 2018).  307 

Consequently, the semi-observationally-based estimates of the dust radiative effect efficiency could be biased, 308 

in part, due to large uncertainties associated with the estimation method, the selection of cloud-free and dust-dominant 309 

data, and dust physicochemical properties. To understand the sensitivity of the dust radiative effect efficiency to the 310 

particle size distribution, asphericity, and refractive index of dust, radiative transfer computations have been carried 311 

out in previous studies (Li et al., 2004; Song et al., 2018). Song et al. (2018) found that the combination of the coarser 312 

dust particle size distribution and the more absorptive LW refractive index (V83) yielded the best simulation of the 313 

dust LW radiative effect in comparison with the satellite flux observations (i.e., Clouds and the Earth’s Radiant Energy 314 

System (CERES)), compared to the less absorptive LW refractive index (DB17). 315 

3. Results and Discussions 316 

We evaluate our results from the sensitivity simulations against semi-observationally-based estimates of 317 

DAOD550 in section 3.1 and radiative effect efficiency for SW and LW in section 3.2 and section 3.3, respectively. 318 

We focus this evaluation on the North Africa and the North Atlantic in boreal summer (June, July, and August) partly 319 

because that is the region and season for which most observational constraints on dust radiative effects are available. 320 

The better agreement is obtained for the less absorptive SW (Di Biagio et al., 2019) and the more absorptive LW 321 

(Volz, 1983) dust refractive indices with adjustments of size-resolved dust concentration and particle shape. Our 322 

improved simulation from IMPACT-Sphere-Mineral-V83 (E1) to DustCOMM-Asphere-DB19-V83 (E2) 323 

substantially reduces the model estimates of atmospheric radiative heating by mineral dust near the major source 324 

regions even though it induces only a minor difference in RE at TOA on a global scale (section 3.4). To elucidate the 325 

differences in dust radiative effects between different simulations, the results from the sensitivity simulations in 326 

conjunction with previous modeling studies are analyzed in section 3.5. 327 

3.1 Dust load and aerosol optical depth 328 

We compared our model estimates of DAOD550 against semi-observationally-based data in box plots and 329 

Taylor diagrams (Taylor, 2001) for the evaluation of the various model experiments against semi-observationally-330 

based estimates (Ridley et al., 2016; Adebiyi et al., 2020) to provide a concise statistical summary of the bias, 331 

correlation coefficient, root mean square errors, and the ratio of standard deviation (Fig. 2, Tables S1 and S2). 332 

IMPACT-Sphere-Mineral-V83 (E1) simulations resulted in a significant underestimation of the global and annual 333 

mean of DAOD550 (0.023) (Fig. 2 and Table 3). After considering the dust asphericity for spectral optical properties, 334 

we adjusted IMPACT-simulated dust loads against the constraints on dust load from the DustCOMM data set. This 335 
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adjustment led the simulated total dust load to increase from 25 Tg (E1) to 32 Tg (E2), which addressed the issue of 336 

coarse dust underestimation and fine dust overestimation by the model (Fig. 3, Table 3). Consequently, the global and 337 

annual mean of DAOD550 from DustCOMM-Asphere-DB19-V83 (E2) simulation (0.029) fell within the range in the 338 

semi-observationally-based estimate (0.030 ± 0.005) (Ridley et al., 2016) (Table 3). We found that the agreement in 339 

the median with the semi-observationally-based estimate (0.127) was improved from IMPACT-Sphere-Mineral-DB17 340 

(0.049) to DustCOMM-Asphere-DB19-V83 (0.117) (solid line within the box mark in Fig. 2d). We also found higher 341 

DAOD550 from E2 than E1 over East Asia and Bodele/Sudan in winter (Fig. 2, Table S2). The better agreement 342 

suggested that DustCOMM-Asphere-DB19-V83 (E2) simulation was reasonably constrained by the DAOD550 (Ridley 343 

et al., 2016; Adebiyi et al., 2020). 344 

3.2 Dust SW radiative effect efficiency 345 

Modeled estimates of clear-sky dust SW radiative effect efficiencies (W·m−2 DAOD550
−1) at the surface (Table 346 

S3) and TOA (Table S4) were compared with estimates reported by regional studies based on satellite observations 347 

over the North Africa and the North Atlantic (Fig. 4). Sensitivity simulations demonstrated that the radiative effect 348 

efficiency strongly depended on the particle size, refractive index, and particle shape (Fig. 4). The adjustment of size-349 

resolved dust concentration and shape with the same refractive index led to overestimates of the SW radiative effect 350 

efficiencies against semi-observationally-based data at TOA (from E1 to E6 in Fig. 4h), because coarser dust absorbs 351 

more SW radiation efficiently than finer particles. Subsequently, the use of less absorptive SW refractive index with 352 

DustCOMM-Asphere-DB19-V83 (E2) simulations led to a better agreement (from E6 to E2 in Fig. 4). On the other 353 

hand, the use of much less (10% percentile) absorptive SW refractive index from DustCOMM-Asphere-Less-More 354 

(E7) simulation deteriorated the agreement due to the underestimate of cooling at the surface (Fig. 4g). In contrast, 355 

the use of a more absorptive SW refractive index from DustCOMM-Asphere-Mineral-V83 (E6) improved the 356 

agreement at the surface. However, the semi-observationally-based estimates of diurnally averaged radiative effect 357 

efficiency at the surface were derived from extrapolation of the instantaneous values, which would affect the 358 

comparison due to differences in the methodologies between dust models (section 2.6). The differences in the model-359 

based estimates of radiative effect efficiency might arise from different data sets of the refractive index, size 360 

distribution, and particle shape (Song et al., 2018).  361 

3.3 Dust LW radiative effect efficiency 362 

Modeled estimates of clear-sky dust LW (Fig. 5) radiative effect efficiencies (W·m−2 DAOD550
−1) at the surface 363 

(Table S5) and TOA (Table S6) were compared with estimates reported by regional studies based on satellite 364 
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observations over North Africa and the North Atlantic. Sensitivity simulations demonstrated that the radiative effect 365 

efficiency strongly depended on the particle size, refractive index, and particle shape (Fig. 5). Both the IMPACT-366 

Sphere-Mineral-V83 (E1) and DustCOMM-Asphere-DB19-V83 (E2) simulations yielded better agreement with semi-367 

observationally-based data at the surface and TOA, compared to the less absorptive LW dust refractive indices (E3, 368 

E4, E5, and E7) (Fig. 5). The relatively high LW radiative effect efficiencies over western Africa were also consistent 369 

with the semi-observationally-based data. On the other hand, the relatively low LW radiative effect efficiencies were 370 

found over eastern Africa. Moving toward the northeastern side of the region, however, the associated uncertainties 371 

in the semi-observationally-based values increased (Brindley and Russell 2009). The dust LW radiative effect 372 

efficiency depends strongly on the vertical profile of dust concentration, temperature, and water vapor, which would 373 

affect the comparison due to a high variability in these factors (section 2.6). 374 

3.4 Less atmospheric radiative heating by dust due to the synergy of coarser size and aspherical shape 375 

The Saharan dust cools the ground surface by reducing the solar radiation reaching the surface and warms the 376 

atmosphere by absorbing solar radiation (Fig. 6). On the other hand, thermal emission by dust warms the surface and 377 

cools the atmosphere (Fig. 7). Our sensitivity simulations showed that the annually averaged net instantaneous 378 

radiative effect due to mineral aerosol (NET) ranged from –0.48 (DustCOMM-Asphere-Less-Less) to +0.25 379 

(DustCOMM-Asphere-Mineral-V83) W·m−2 at TOA (Table 5). The net RE from both the IMPACT-Sphere-Mineral-380 

V83 (–0.00 W·m−2) and DustCOMM-Asphere-DB19-V83 (–0.08 W·m−2) simulations resulted within 98% 381 

confidential interval of DustCOMM data set (–0.27 to 0.14 W·m−2).  382 

The SW RE by dust outweighs the LW warming effect at the surface in the IMPACT-Sphere-Mineral-V83 383 

(E1) simulation (Fig. 8). Consequently, the highly absorbing dust could play an important role in the aerosol radiative 384 

forcing for the climate models to alter the West African monsoon, with the radiative heating concentrated in the dust 385 

layer (Miller et al., 2004b; Lau et al., 2009). Our model results of dust RE from DustCOMM-Asphere-DB19-V83 386 

(E2) simulation, however, suggested that the surface warming was substantially enhanced near the strong dust source 387 

regions (−0.23 W·m−2 on a global scale) (Fig. 8), compared to the IMPACT-Sphere-Mineral-V83 simulation (−0.60 388 

W·m−2 on a global scale). Thus, our results demonstrated that the atmospheric radiative heating by mineral dust was 389 

substantially reduced for DustCOMM-Asphere-DB19-V83 (E2) simulation (0.15 W·m−2), compared to the IMPACT-390 

Sphere-Mineral-V83 (E1) simulation (0.59 W·m−2). 391 
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3.5 Variability of dust radiative effect in different simulations 392 

To elucidate the differences in dust radiative effects between the IMPACT-Sphere-Mineral-V83 (E1) and 393 

DustCOMM-Asphere-DB19-V83 (E2) simulations and to explore the variability in different previous model estimates 394 

(Fig. 9), the differences in annually averaged radiative effects of mineral dust from DustCOMM-Asphere-DB19-395 

DB17 (E4) simulation were shown in Fig. 10. A slope of one in Fig. 10 represented an identical change in both the 396 

surface and TOA and thus corresponded to no change in radiative heating within the atmosphere. The distances from 397 

the DustCOMM-Asphere-DB19-DB17 (E4) simulation demonstrated that large uncertainties existed for the size 398 

distribution and spectral optical properties. Our sensitivity simulations revealed that the DustCOMM-Asphere-DB19-399 

V83 (E2) simulation led to a similar net RE at TOA to the IMPACT-Sphere-Mineral-V83 (E1) simulation but resulted 400 

in less cooling at the surface (Fig. 9). This revision can be divided into (1) the size-resolved abundance (black 401 

hexagons, E3 – E4, in Fig. 10), (2) SW refractive index (red diamonds, E6 – E4, in Fig. 10), and (3) particle shape 402 

(red circles, E5– E4, in Fig. 10). Additionally, we show the sensitivity of dust RE to LW refractive index (DB17), 403 

which was used by both Di Biagio et al. (2020) and Balkanski et al. (2021). 404 

First, at TOA, the SW RE was more sensitive to the size-resolved abundance (–0.17 W·m−2 at the vertical axis 405 

of black hexagon in Fig. 10a), compared to LW (0.00 W·m−2 at the vertical axis of black hexagon in Fig. 10b). Second, 406 

this less SW cooling effect with coarser dust (E3 – E4) was partially compensated for by more SW cooling with the 407 

use of the less absorptive SW refractive index (E4: –0.32 W·m−2) than E6 (0.02 W·m−2). Thirdly, the sensitivity of 408 

SW RE to dust asphericity was rather minor (0.04 W·m−2 at the vertical axis of red circle in Fig. 10a), partly because 409 

the lower DAOD was compensated for by the lower asymmetry parameter of spherical dust, which enhanced the 410 

amount of radiation scattered backward to space (Räisänen et al., 2013; Colarco et al., 2014). The partial compensation 411 

led to a small enhancement of SW RE for the IMPACT-Sphere-Mineral-V83 (E1) simulation and thus the resulting 412 

similar net RE to DustCOMM-Asphere-DB19-V83 (E2) at TOA (Fig. 9).  413 

In contrast, at the surface, our sensitivity simulations demonstrated substantially different responses in the RE, 414 

mostly because of LW warming effects (Fig. 9). The enhanced LW warming by coarser dust (–0.08 W·m−2 at the 415 

horizontal axis of black hexagon in Fig. 10b) was accompanied by the asphericity (–0.15 W·m−2 at the horizontal axis 416 

of red circle in Fig. 10b), because the enhancement of the absorption fraction of extinction due to asphericity was 417 

larger at coarser size. The enhanced LW warming effects of each as well as the synergy was further amplified using 418 

the more absorptive LW dust refractive index (Volz, 1983) (at the horizontal axis of red diamond in Fig. 10b). As a 419 

result, our sensitivity simulations revealed that substantially less dust absorption at LW due to the underestimation of 420 

the coarse dust load and the assumption of the spherical shape (IMPACT-Sphere-Mineral-V83) contributed to the less 421 

surface warming, compared to DustCOMM-Asphere-DB19-V83 (Fig. 9).  422 
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A relatively good agreement of net RE by dust at TOA with both Di Biagio et al. (2020) (–0.06 W·m−2) and 423 

Balkanski et al. (2021) (–0.02 W·m−2) could be obtained from both the IMPACT-Sphere-Mineral-V83 (E1: –0.00 424 

W·m−2) and DustCOMM-Asphere-DB19-V83 (E2: –0.08 W·m−2) simulations (Fig. 9 and Table 5). On the other hand, 425 

our modeled dust net RE at the surface from DustCOMM-Asphere-DB19-V83 (E2: –0.23 W·m−2) indicated much 426 

less cooling than Di Biagio et al. (2020) (–0.63 W·m−2), Balkanski et al. (2021) (–1.01 W·m−2), and IMPACT-Sphere-427 

Mineral-V83 (E1: –0.60 W·m−2). The synergy of coarser size and aspherical dust could contribute to the less surface 428 

cooling of the DustCOMM-Asphere-DB19-V83 (E2), because of enhanced LW warming. At the same time, both Di 429 

Biagio et al. (2020) and Balkanski et al. (2021) used DB17 and considered dust with diameters more than 20 μm. 430 

Thus, the more absorptive LW dust refractive index (V83, E6 for LW: 1.00 W·m−2) than DB17 (E4 for LW: 0.58 431 

W·m−2) (E6 – E4 for LW: 0.42 W·m−2 at the horizontal axis of red diamond in Fig. 10b) could also contribute to the 432 

less surface cooling, which might be partially compensated for in our model by the omission of dust with diameters 433 

more than 20 μm. Consequently, our estimate of atmospheric radiative heating by dust from DustCOMM-Asphere-434 

DB19-V83 (E2: 0.15 W·m−2) was lower than Di Biagio et al. (2020) (0.63 W·m−2), Balkanski et al. (2021) (0.98 435 

W·m−2), and IMPACT-Sphere-Mineral-V83 (E1: 0.59 W·m−2). Additionally, the hot and dry climate over brighter 436 

desert surface exaggerates differences in RE at the surface between the models (Miller et al., 2014). The low humidity 437 

allows dust particles to absorb LW radiation with reduced competition from water vapor, while high temperatures 438 

within the boundary layer increase downward thermal emission by dust (Liao and Seinfeld, 1998). The reduction of 439 

fine dust load after the adjustment leads to underestimates of the SW cooling at TOA. To improve agreement against 440 

semi-observationally-based estimate of the radiative effect efficiency at TOA, the less absorptive SW dust refractive 441 

index is required for coarser aspherical dust. Thus, uncertainties in the size-resolved dust concentration, particle shape, 442 

and refractive index contribute to the diversity in the simulated dust RE at the surface.  443 

4. Conclusions 444 

Accurate estimates of the size-resolved dust abundance, their spectral optical properties, and their seasonality 445 

in regional and vertical scales provide a step towards a more reliable projection of the climatic feedback of mineral 446 

aerosols. The radiative effect efficiency depends on numerous variables in model simulations, including the spatial 447 

distribution and temporal variation of size-resolved dust concentrations, the mass extinction coefficient, single 448 

scattering albedo, and asymmetry parameter of dust. Since the models typically underestimate the coarse dust load 449 

and overestimate the fine dust load, the sensitivity to the aerosol absorptivity might be considerably different from 450 

previous studies. Thus, the model results should be re-evaluated against semi-observationally-based estimate of the 451 

DAOD550 and dust radiative effect efficiency. 452 
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We improved the accuracy of the simulations by adjusting the bias in size-resolved aspherical dust 453 

concentration with the DustCOMM data set. Alternatively, dust mineralogy might contribute to the underestimation 454 

of modeled aerosol absorption compared to satellite observations (Lacagnina et al., 2015). This enhanced aerosol 455 

absorption was examined by specifying the mineralogy with varying amounts of light-absorbing Fe oxides for SW. 456 

The better agreement with the semi-observationally-based data of dust radiative effect efficiency was obtained using 457 

the less absorptive SW dust refractive indices after the adjustments of dust sizes and shapes. 458 

The diversity of modeled dust net RE at the surface (–1.64 W·m−2 to –0.20 W·m−2) is much larger than at TOA 459 

(–0.01 W·m−2 to –0.60 W·m−2), partly because the refractive index is optimized to obtain reasonable agreement against 460 

satellite observations of TOA radiation flux (e.g., CERES). The uncertainties in the size-resolved dust concentration, 461 

particle shape, and refractive index contribute to the model diversity at the surface. DustCOMM-Asphere-DB19-V83 462 

(E2) simulation resulted in less cooling at the surface by the synergy of coarser size and aspherical shape, compared 463 

to IMPACT-Sphere-Mineral-V83 (E1) simulation (–0.23 vs. –0.60 W·m−2 on a global scale). Consequently, the 464 

atmospheric heating due to mineral dust was substantially reduced for the DustCOMM-Asphere-DB19-V83 (E2) 465 

simulation (0.15 W·m−2), compared to the intensified atmospheric heating from the IMPACT-Sphere-Mineral-V83 466 

(E1) simulation (0.59 W·m−2). The less intensified atmospheric heating due to mineral dust could substantially modify 467 

the vertical temperature profile in Earth system models and thus has important implications for the projection of dust 468 

feedback near the major source regions in the past and future climate changes (Kok et al., 2018). More accurate 469 

estimates of semi-observationally-based dust SW and LW radiative effect efficiencies over strong dust source regions 470 

are needed to narrow the uncertainty in the RE. 471 

Currently, the model did not include dust particles above 20 µm, but a substantial fraction of airborne dust near 472 

source regions may be above this threshold (Ryder et al., 2019). Moreover, such large particles can be transported to 473 

higher altitudes and longer distances than the model prediction. The higher the dust layer resides, the larger the dust 474 

LW RE at TOA is estimated under the clear-sky conditions (Liao and Seinfeld, 1998). Marine sediment traps, which 475 

are located underneath the main Saharan dust plume in the Atlantic Ocean, suggest that giant particles are dominated 476 

by platy mica and rounded quartz particles (van der Does et al., 2016). Thus, mineral composition of the giant particles 477 

could be different from the aerosol samples generated from soils in the laboratory by Di Biagio et al. (2017), which 478 

may reflect less absorbing LW refractive index of DB17 than V83. Indeed, the dust sample was collected for V83 479 

from rainwater after strong wind. On the other hand, the contribution of the LW scattering might be underestimated 480 

in the models, as Di Biagio et al. (2020) noted that the adjustment factor was estimated for dust of diameter less than 481 

10 μm and thus might be a lower approximation of the LW scattering by coarse dust. Therefore, a better understanding 482 

of the effect of such large particles beyond 20 µm and mineralogical composition on radiation balance remains a topic 483 



17 
 
 

of active research, given their potential to amplify the warming of the climate system.  In such an extreme case as the 484 

“Godzilla” dust storm over the North Africa and the tropical Atlantic in June 2020 (Francis et al., 2020), the dust 485 

loading could be larger than that examined for this study, and our estimates of the warming effects might be 486 

conservative during such events. However, to keep the giant particles in the atmosphere, the modeled deposition fluxes 487 

should be reduced from the current model. Therefore, models should improve their ability to capture the evolution of 488 

the dust size distribution as the plumes move downwind of the source regions. 489 
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Figure captions 810 

Figure 1. Imaginary part of the refractive index at (a) 0.52 µm, (b) SW, (c) 9.7 µm, and (d) LW. The refractive 811 

index obtained from 19 samples was aggregated into 9 main source regions and the arithmetic mean was 812 

calculated for each source region (Di Biagio et al., 2017, 2019). The global mean is used for others. The 813 

coordinates of the nine source regions were: (S1) western North Africa (20°W – 7.5°E; 18°N – 37.5°N), (S2) 814 

eastern North Africa (7.5°E – 35°E; 18°N – 37.5°N), (S3) the Sahel (20°W – 35°E; 0°N – 18°N), (S4) Middle 815 

East / Central Asia (30°E – 70°E for 0°N – 35°N, and 30°E – 75°E for 35°N – 50°N), (S5) East Asia (70°E 816 

– 120°E; 35°N – 50°N), (S6) North America (130°W – 80°W; 20°N – 45°N), (S7) Australia (110°E – 160°E; 817 

10°S – 40°S), (S8) South America (80°W – 20°W; 0°S – 60°S), and (S9) Southern Africa (0°E – 40°E; 0°S 818 

– 40°S). 819 

Figure 2. The model better reproduced semi-observationally-based data of DAOD550 after adjusting the size-820 

resolved dust load with DustCOMM and considering the dust asphericity. (a) semi-observationally-based 821 

estimates of the DAOD550 were averaged over 2004–2008 (Ridley et al., 2016; Adebiyi et al., 2020). The 822 

annually averaged model results were shown for (b) DustCOMM-Asphere-DB19-V83 (E2) and (c) the 823 

differences between IMPACT-Sphere-Mineral-V83 (E1) and E2 simulations. (d) Comparison of seasonally 824 

averaged DAOD550 for semi-observationally-based (SOB) data, E1, E2, IMPACT-Asphere-DB19-DB17 825 

(E3), and DustCOMM-Sphere-DB19-DB17 (E5). The square symbol represents the mean. The solid line 826 

within the box mark shows the median. The boundaries of the box mark the 25th and 75th percentiles. The 827 

whiskers above and below the box indicate the 1.5 × interquartile range, and the points indicate the outside 828 

of the range. (e) Taylor diagram summarizing the statistics of the comparison against the seasonally averaged 829 

regional DAOD550 for the different experiments. The horizontal axis shows the standard deviation of the data 830 

set or model prediction, the curved axis shows the correlation, and the green dashed lines denote the root-831 

mean-squared errors between the semi-observationally-based data and the model predictions. As such, the 832 

distance between the semi-observationally-based data and the model predictions is a measure of the model’s 833 

ability to reproduce the spatiotemporal variability in the semi-observationally-based data. The coordinates 834 

and the values of DAOD550 at the 15 regions (marked in Fig. 3a) in summer were listed in Table S1. The 835 

comparison for other seasons was presented in Table S2. 836 

Figure 3. Model-simulated dust loads at fine (smaller than 2.5 µm of diameter) and coarse size ranges (larger 837 

than 2.5 µm of diameter) before and after adjusting the size-resolved dust load with DustCOMM. Results 838 

were shown for (a) fine dust from DustCOMM, (b) fine dust from IMPACT-Sphere-Mineral-V83 (E1), (c) 839 

fine dust from DustCOMM-Asphere-DB19-V83 (E2), (d) coarse dust from DustCOMM, (e) coarse dust from 840 
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E1, and (f) coarse dust from E2 simulations. The parentheses represented the global dust burden (Tg). The 841 

values of dust load at each bin were listed in Table 3. 842 

Figure 4. Dust clear-sky SW radiative effect efficiency (W·m−2 DAOD−1). Semi-observationally-based data 843 

at (a) the surface and (b) TOA were based on satellite observations (Yang et al. 2009; Li et al., 2004: Song 844 

et al., 2018; Christopher and Jones, 2007). The model results were shown for (c) and (d) IMPACT-Sphere-845 

Mineral-V83 (E1), and (e) and (f) DustCOMM-Asphere-DB19-V83 (E2) simulations at the surface and TOA, 846 

respectively. Comparison of seasonally averaged SW radiative effect efficiency for semi-observationally-847 

based (SOB) data and the different experiments at (g) the surface and (h) TOA. The square symbol represents 848 

the mean. The solid line within the box mark shows the median. The boundaries of the box mark the 25th 849 

and 75th percentiles. The whiskers above and below the box indicate the 1.5 × interquartile range, and the 850 

points indicate the outside of the range. Taylor diagram summarizing the statistics of the comparison against 851 

the seasonally averaged regional SW radiative effect efficiency for the different experiments at (i) the surface 852 

and (j) TOA. The horizontal axis shows the standard deviation of the data set or model prediction, the curved 853 

axis shows the correlation, and the green dashed lines denote the root-mean-squared errors between the semi-854 

observationally-based data and the model predictions. As such, the distance between the semi-855 

observationally-based data and the model predictions is a measure of the model’s ability to reproduce the 856 

spatiotemporal variability in the semi-observationally-based data. The regionally averaged values were listed 857 

in Tables S3 and S4 at the surface and TOA, respectively.  858 

Figure 5. Dust clear-sky LW radiative effect efficiency (W·m−2 DAOD−1). Semi-observationally-based 859 

estimates at (a) surface and (b) TOA were based on satellite observations (Song et al., 2018; Christopher and 860 

Jones, 2007; Zhang and Christopher, 2003; Brindley and Russell, 2009; Yang et al., 2009). The model results 861 

were shown for (c) and (d) IMPACT-Sphere-Mineral-V83 (E1), and (e) and (f) DustCOMM-Asphere-DB19-862 

V83 (E2) simulations at the surface and TOA, respectively. Comparison of seasonally averaged LW radiative 863 

effect efficiency for semi-observationally-based (SOB) data and the different experiments at (g) the surface 864 

and (h) TOA. The square symbol represents the mean. The solid line within the box mark shows the median. 865 

The boundaries of the box mark the 25th and 75th percentiles. The whiskers above and below the box indicate 866 

the 1.5 × interquartile range, and the points indicate the outside of the range. Taylor diagram summarizing 867 

the statistics of the comparison against the seasonally averaged regional SW radiative effect efficiency for 868 

the different experiments at (i) the surface and (j) TOA. The horizontal axis shows the standard deviation of 869 

the data set or model prediction, the curved axis shows the correlation, and the green dashed lines denote the 870 

root-mean-squared errors between the semi-observationally-based data and the model predictions. As such, 871 
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the distance between the semi-observationally-based data and the model predictions is a measure of the 872 

model’s ability to reproduce the spatiotemporal variability in the semi-observationally-based data. The 873 

regionally averaged values were listed in Tables S5 and S6 at the surface and TOA, respectively. 874 

Figure 6. Dust SW radiative effect (W·m−2) and radiative heating of the atmosphere (i.e., the subtraction of 875 

radiative effects from TOA to the surface in unit of W·m−2). The model results were shown for the simulations 876 

for (a) IMPACT-Sphere-Mineral-V83 (E1) at the surface, (b) DustCOMM-Asphere-DB19-V83 (E2) at the 877 

surface, (c) E1 in atmospheric column, (d) E2 in atmospheric column, (e) E1 at TOA, and (f) E2 simulations 878 

at TOA. The numbers in parentheses represented the global mean. 879 

Figure 7. Dust LW radiative effect (W·m−2) and radiative heating of the atmosphere (i.e., the subtraction of 880 

radiative effects from TOA to the surface in unit of W·m−2). The model results were shown for the simulations 881 

for (a) IMPACT-Sphere-Mineral-V83 (E1) at the surface, (b) DustCOMM-Asphere-DB19-V83 (E2) at the 882 

surface, (c) E1 in atmospheric column, (d) E2 in atmospheric column, (e) E1 at TOA, and (f) E2 simulations 883 

at TOA. The numbers in parentheses represented the global mean. 884 

Figure 8. Dust net radiative effect (W·m−2) and radiative heating of the atmosphere (i.e., the subtraction of 885 

radiative effects from TOA to the surface in unit of W·m−2). The model results were shown for the simulations 886 

for (a) IMPACT-Sphere-Mineral-V83 (E1) at the surface, (b) DustCOMM-Asphere-DB19-V83 (E2) at the 887 

surface, (c) E1 in atmospheric column, (d) E2 in atmospheric column, (e) E1 at TOA, and (f) E2 simulations 888 

at TOA. The numbers in parentheses represented the global mean. 889 

Figure 9. Variability of dust radiative effect (W·m−2) in different model simulations at the surface and TOA 890 

for (a) total dust SW, (b) total dust LW, and (c) total dust NET. The annually averaged values were listed in 891 

Table 5. 892 

Figure 10. Radiative effect (W·m−2) of mineral dust due to various aerosol absorptivity at the surface and TOA 893 

for (a) total dust SW, (b) total dust LW, and (c) total dust NET. The annually averaged values were listed in 894 

Table 5. The dashed line represented a 1 : 1 correspondence and corresponded to no change in radiative 895 

heating within the atmosphere. 896 
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Table 1. Summary of ten combinations of different numerical experiments compared in this study. 

Number Experiment Size-resolved dust Sphericity SW refractive index LW refractive index 

E1 IMPACT-Sphere-Mineral-V83 IMPACT  Sphere Mineralogical mapd Volz (1983) 

E2a DustCOMM-Asphere-DB19-V83 DustCOMMb Aspherec Di Biagio et al. (2019) Volz (1983) 

E3 IMPACT-Asphere-DB19-DB17 IMPACT  Aspherec Di Biagio et al. (2019) Di Biagio et al. (2017) 

E4 DustCOMM-Asphere-DB19-DB17 DustCOMMb Aspherec Di Biagio et al. (2019) Di Biagio et al. (2017) 

E5 DustCOMM-Sphere-DB19-DB17 DustCOMMb Sphere Di Biagio et al. (2019) Di Biagio et al. (2017) 

E6 DustCOMM-Asphere-Mineral-V83 DustCOMMb Aspherec Mineralogical mapd Volz (1983) 

E7 DustCOMM-Asphere-Less-More DustCOMMb Aspherec Less SWe More LWg 

E8 DustCOMM-Asphere-Less-Less DustCOMMb Aspherec Less SWe Less LWh 

E9 DustCOMM-Asphere-More-More DustCOMMb Aspherec More SWf More LWg 

E10 DustCOMM-Asphere-More-Less DustCOMMb Aspherec More SWf Less LWh 
aCombination of DustCOMM-Asphere-DB19-DB17 (E4) for SW and DustCOMM-Asphere-Mineral-V83 (E6) for LW. 
bSize-resolved dust concentration was adjusted with semi-observationally-based estimate (Adebiyi & Kok, 2020). 
cDust asphericity was considered in calculating the optical properties, which further assumed internal mixing of minerals (Huang et al., 2021) using a volume-weighted mixture for 

each size bin. 
dMineralogical composition of dust aerosol for each size was prescribed at emission by mineralogical map (Journet et al., 2014; Ito and Shi 2016). The more absorptive SW refractive 

indices (Bedidi and Cervelle, 1993; Stegmann & Yang, 2017; Long et al., 1993) were used for mineral dust, compared to the less absorptive global mean data set (Di Biagio et al., 

2019). 
eLess absorptive SW refractive indies were calculated by varying the values of the imaginary parts of the refractive index within the range of values from Di Biagio et al. (2019) (10% 

percentile). 
fMore absorptive SW refractive indies were calculated by varying the values of the imaginary parts of the refractive index within the range of values from Di Biagio et al. (2019) (90% 

percentile). 
gMore absorptive LW refractive indices were calculated by varying the values of the imaginary parts of the refractive index within the range of values from Di Biagio et al. (2017) 

(90% percentile). 
hLess absorptive LW refractive indices were calculated by varying the values of the imaginary parts of the refractive index within the range of values from Di Biagio et al. (2017) (10% 

percentile).  
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Table 2. Summary of radiative effects estimated in this study. 

SW radiative effect LW radiative effect Difference 

Less absorptive SW, coarser particle size, & aspherical shape Coarser particle size & aspherical shape E2 – E1 

Less absorptive SW & aspherical shape Less absorptive LW & aspherical shape E3 – E1 

Size-resolved dust abundance Size-resolved dust abundance E3 – E4 

Aspherical shape Aspherical shape E5 – E4 

Mineralogical variability in refractive index (more absorptive SW) Mineralogical variability in refractive index (more absorptive LW) E6 – E4 

Less absorptive SW (10% percentile) More absorptive LW (90% percentile) E7 – E4 

Less absorptive SW (10% percentile) Less absorptive LW (10% percentile) E8 – E4 

More absorptive SW (90% percentile) More absorptive LW (90% percentile) E9 – E4 

More absorptive SW (90% percentile) Less absorptive LW (10% percentile) E10 – E4 
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Table 3. Annually averages of dust load (Tg), mass extinction efficiency (m2·g−1), and DAOD550 at each bin on a global scale. The size-resolved dust concentration and shape in 
IMPACT-Sphere-Mineral-V83 (E1) simulation was adjusted to DustCOMM in DustCOMM-Asphere-DB19-V83 (E2) simulation. At the same time, we maintained the consideration 
of asphericity on the gravitational velocity and kept the dust concentrations unaltered between IMPACT-Sphere-Mineral-V83 (E1) and IMPACT-Asphere-DB19-DB17 simulations 
(E3). 

 Dust load Mass extinction efficiency DAOD550 

Dust size bin E1 E2 DustCOMM E1 E2 E3 DustCOMM E1 E2 E3 DustCOMM 

Bin 1a 1.2  0.8  1.2 ± 0.7 2.11 3.41 3.33 3.06 0.0050 0.0055 0.0078  0.0070 

Bin 2 (1.26–2.5 µm) 4.7  2.6  3.5 ± 2.1 0.73 1.25 1.21 1.22 0.0067 0.0064 0.0111  0.0084  

Bin 3 (2.5–5 µm) 8.2  6.2  6.8 ± 3.8 0.37 0.59 0.57 0.57 0.0060 0.0071 0.0092  0.0077 

Bin 4 (5–20 µm) 10.9  22.2  16.8 ± 9.0  0.23 0.24 0.29 0.19 0.0050 0.0104 0.0063  0.0063 

Sum of 4 bins 25.0  31.8  28.4 ± 15.5 0.46 0.47 0.70 0.53 0.0227 0.0295 0.0345 0.0294 
aBin 1 in IMPACT-Sphere-Mineral-V83 (E1) is 0.1–1.26 µm, whereas bin1 in DustCOMM-Asphere-DB19-V83 (E2) and DustCOMM is 0.2–1.26 µm.  
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Table 4. Semi-observationally-based data set of clear-sky dust radiative effect efficiency at the surface and TOA. 

 Number  Region name Season Region coordinates Aerosol type selection AOD data 

R1a Sahara Desert Summer 15°–30°N, 10°W–30°E No selection OMI-MISR 

R2b Tropical Atlantic Summer 15°–25°N, 45°–15°W MODIS effective radius peaks 0.8–0.9 μm MODIS 

R3c Tropical Atlantic Summer 10°–30°N, 45°–20°W CALIOP dust and polluted dust CERES-CALIPSO-CloudSat-MODIS 

R4d Atlantic Ocean Summer 0°–30°N, 60°–10°W Dust detection based on DAOD550 and fraction MODIS 

R5e,f North Africa Summer 15°–35°N, 18°W–40°E No selection MISRe or SEVIRIf 

R6e,f West Africa Summer 16°–28°N, 16°–4°W No selection MISRe or SEVIRIf 

R7e,f Niger-Chad Summer 15°–20°N, 15°–22°E No selection MISRe or SEVIRIf 

R8e,f Sudan Summer 15°–22°N, 22°–36°E No selection MISRe or SEVIRIf 

R9e,f Egypt-Israel Summer 23°–32°N, 23°–35°E No selection MISRe or SEVIRIf 

R10e,f North Libya Summer 27°–33°N, 15°–25°E No selection MISRe or SEVIRIf 

R11e,f South Libya Summer 23°–27°N, 15°–25°E No selection MISRe or SEVIRIf 

R12g Mediterranean  Summer 35.5°N, 12.6°E Dust detection based on optical property Ground-based measurements 

R13h Cape Verde Summer 16.7°N, 22.9°E Dust detection based on brightness temperature Ground-based measurements 

R14i China Spring 39°N, 101°E Dust detection based on brightness temperature Ground-based measurements 
aYang et al. (2009). bLi et al. (2004). cSong et al. (2018). dChristopher and Jones (2007). eZhang and Christopher (2003). fBrindley and Russell (2009). gDi Biagio et al. (2010). hHansell 

et al. (2010). iHansell et al. (2012).
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Table 5. Annually averages of short-wave (SW) (W·m−2), long-wave (LW) (W·m−2), and net radiative effect (NET) (W·m−2) at the surface, TOA, and atmospheric radiative heating 
on a global scale. 

Number Data Total dust SW Total dust LW Total dust NET 

  TOA (surface)a Atmosphere TOA (surface)a Atmosphere TOA (surface)a Atmosphere 

E1 IMPACT-Sphere-Mineral-V83 –0.18 (–1.26) 1.07 +0.18 (0.66) –0.48 –0.00 (–0.60) 0.59 

E2 DustCOMM-Asphere-DB19-V83 –0.32 (–1.23)b 0.91b +0.23 (1.00)b –0.77b –0.08 (–0.23)b 0.15b 

E3 IMPACT-Asphere-DB19-DB17 –0.49 (–1.35) 0.86 +0.12 (0.50) –0.38 –0.37 (–0.84) 0.48 

E4 DustCOMM-Asphere-DB19-DB17 –0.32 (–1.23)b 0.91b +0.12 (0.58) –0.46 –0.20 (–0.65) 0.45 

E5 DustCOMM-Sphere-DB19-DV17 –0.28 (–0.90) 0.62 +0.08 (0.43) –0.34 –0.20 (–0.47) 0.28 

E6 DustCOMM-Asphere-Mineral-V83 +0.02 (–1.61) 1.63 +0.23 (1.00)b –0.77b +0.25 (–0.62) 0.87 

E7 DustCOMM-Asphere-Less-More –0.54 (–0.98) 0.43 +0.16 (0.76) –0.60 –0.38 (–0.22) –0.16 

E8 DustCOMM-Asphere-Less-Less –0.54 (–0.98) 0.43 +0.06 (0.35) –0.29 –0.48 (–0.36) 0.15 

E9 DustCOMM-Asphere-More-More –0.08 (–1.51) 1.43 +0.16 (0.76) –0.60 +0.09 (–0.75) 0.84 

E10 DustCOMM-Asphere-More-Less –0.08 (–1.51) 1.43 +0.06 (0.35) –0.29 –0.01 (–1.16) 1.15 

 DustCOMM (Adebiyi & Kok, 2020) –0.59 to 0.17c  +0.25 to 0.41c   –0.27 to 0.14c   

M1 Miller et al. (2004b) –0.33 (–1.82) 1.49 +0.15 (0.18) –0.03 –0.18 (–1.64) 1.46 

M2 Tanaka et al. (2007) –0.38 (–1.22) 0.84 +0.16 (0.57) –0.41 –0.22 (–0.65) 0.43 

M3 Yoshioka et al. (2007) –0.92 (–1.59) 0.67 +0.31 (1.13) –0.81 –0.60 (–0.46) –0.14 

M4 Takemura et al. (2009) –0.10 (–0.38) 0.28 +0.09 (0.18) –0.09 –0.01 (–0.20) 0.19 

M5 Albani et al. (2014) –0.38 (–1.20) 0.81 +0.15 (0.64) –0.49 –0.23 (–0.56) 0.33 

M6 Colarco et al. (2014) –0.32 (–1.25) 0.93 +0.05 (0.30) –0.25 –0.27 (–0.95) 0.68 

M7 Di Biagio et al. (2020) –0.29 (–1.17)d 0.88d +0.23 (0.48)d –0.26d –0.06 (–0.69)d 0.63d 

M8 Balkanski et al. (2021) –0.14 (–1.42) 1.28 +0.12 (0.41) –0.29 –0.02 (–1.01) 0.98 
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aThe parentheses represent the RE at the surface. bThe bold represents the combination of DB19 for SW and V83 for LW (i.e., DustCOMM-Asphere-DB19-V83). c98% confidential 

interval of DustCOMM data set is listed. dFor a comparison with our estimates, sum of single mode simulations from Di Biagio et al. (2019) is listed.   
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Figure 1. Imaginary part of the refractive index at (a) 0.52 µm, (b) SW, (c) 9.7 µm, and (d) LW. The refractive index 

obtained from 19 samples was aggregated into 9 main source regions and the arithmetic mean was calculated for each source 

region (Di Biagio et al., 2017, 2019). The global mean is used for others. The coordinates of the nine source regions were: (S1) 

western North Africa (20°W – 7.5°E; 18°N – 37.5°N), (S2) eastern North Africa (7.5°E – 35°E; 18°N – 37.5°N), (S3) the 5 

Sahel (20°W – 35°E; 0°N – 18°N), (S4) Middle East / Central Asia (30°E – 70°E for 0°N – 35°N, and 30°E – 75°E for 35°N 

– 50°N), (S5) East Asia (70°E – 120°E; 35°N – 50°N), (S6) North America (130°W – 80°W; 20°N – 45°N), (S7) Australia 

(110°E – 160°E; 10°S – 40°S), (S8) South America (80°W – 20°W; 0°S – 60°S), and (S9) Southern Africa (0°E – 40°E; 0°S 

– 40°S).  

  10 
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Figure 2. The model better reproduced semi-observationally-based data of DAOD550 after adjusting the size-resolved dust 

load with DustCOMM and considering the dust asphericity. (a) semi-observationally-based estimates of the DAOD550 were 

averaged over 2004–2008 (Ridley et al., 2016; Adebiyi et al., 2020). The annually averaged model results were shown for (b) 

DustCOMM-Asphere-DB19-V83 (E2) and (c) the differences between IMPACT-Sphere-Mineral-V83 (E1) and E2 15 

simulations. (d) Comparison of seasonally averaged DAOD550 for semi-observationally-based (SOB) data, E1, E2, IMPACT-

Asphere-DB19-DB17 (E3), and DustCOMM-Sphere-DB19-DB17 (E5). The square symbol represents the mean. The solid 

line within the box mark shows the median. The boundaries of the box mark the 25th and 75th percentiles. The whiskers above 

and below the box indicate the 1.5 × interquartile range, and the points indicate the outside of the range. (e) Taylor diagram 

summarizing the statistics of the comparison against the seasonally averaged regional DAOD550 for the different experiments. 20 

The horizontal axis shows the standard deviation of the data set or model prediction, the curved axis shows the correlation, 

and the green dashed lines denote the root-mean-squared errors between the semi-observationally-based data and the model 

predictions. As such, the distance between the semi-observationally-based data and the model predictions is a measure of the 

model’s ability to reproduce the spatiotemporal variability in the semi-observationally-based data. The coordinates and the 

values of DAOD550 at the 15 regions (marked in Fig. 2a) in summer were listed in Table S1. The comparison for other seasons 25 

was presented in Table S2.   
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Figure 3. Model-simulated dust loads at fine (smaller than 2.5 µm of diameter) and coarse size ranges (larger than 2.5 µm 

of diameter) before and after adjusting the size-resolved dust load with DustCOMM. Results were shown for (a) fine dust from 

DustCOMM, (b) fine dust from IMPACT-Sphere-Mineral-V83 (E1), (c) fine dust from DustCOMM-Asphere-DB19-V83 (E2), 30 

(d) coarse dust from DustCOMM, (e) coarse dust from E1, and (f) coarse dust from E2 simulations. The parentheses 

represented the global dust burden (Tg). The values of dust load at each bin were listed in Table 3. 
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Figure 4. Dust clear-sky SW radiative effect efficiency (W·m−2 DAOD−1). Semi-observationally-based data at (a) the 

surface and (b) TOA were based on satellite observations (Yang et al. 2009; Li et al., 2004: Song et al., 2018; Christopher and 35 

Jones, 2007). The model results were shown for (c) and (d) IMPACT-Sphere-Mineral-V83 (E1), and (e) and (f) DustCOMM-

Asphere-DB19-V83 (E2) simulations at the surface and TOA, respectively. Comparison of seasonally averaged SW radiative 

effect efficiency for semi-observationally-based (SOB) data and the different experiments at (g) the surface and (h) TOA. The 

square symbol represents the mean. The solid line within the box mark shows the median. The boundaries of the box mark the 

25th and 75th percentiles. The whiskers above and below the box indicate the 1.5 × interquartile range, and the points indicate 40 

the outside of the range. Taylor diagram summarizing the statistics of the comparison against the seasonally averaged regional 

SW radiative effect efficiency for the different experiments at (i) the surface and (j) TOA. The horizontal axis shows the 

standard deviation of the data set or model prediction, the curved axis shows the correlation, and the green dashed lines denote 

the root-mean-squared errors between the semi-observationally-based data and the model predictions. As such, the distance 

between the semi-observationally-based data and the model predictions is a measure of the model’s ability to reproduce the 45 

spatiotemporal variability in the semi-observationally-based data. The regionally averaged values were listed in Tables S3 and 

S4 at the surface and TOA, respectively.  
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Figure 5. Dust clear-sky LW radiative effect efficiency (W·m−2 DAOD−1). Semi-observationally-based estimates at (a) 

surface and (b) TOA were based on satellite observations (Song et al., 2018; Christopher and Jones, 2007; Zhang and 50 

Christopher, 2003; Brindley and Russell, 2009; Yang et al., 2009). The model results were shown for (c) and (d) IMPACT-

Sphere-Mineral-V83 (E1), and (e) and (f) DustCOMM-Asphere-DB19-V83 (E2) simulations at the surface and TOA, 

respectively. Comparison of seasonally averaged LW radiative effect efficiency for semi-observationally-based (SOB) data 

and the different experiments at (g) the surface and (h) TOA. The square symbol represents the mean. The solid line within 

the box mark shows the median. The boundaries of the box mark the 25th and 75th percentiles. The whiskers above and below 55 

the box indicate the 1.5 × interquartile range, and the points indicate the outside of the range. Taylor diagram summarizing the 

statistics of the comparison against the seasonally averaged regional SW radiative effect efficiency for the different 

experiments at (i) the surface and (j) TOA. The horizontal axis shows the standard deviation of the data set or model prediction, 

the curved axis shows the correlation, and the green dashed lines denote the root-mean-squared errors between the semi-

observationally-based data and the model predictions. As such, the distance between the semi-observationally-based data and 60 

the model predictions is a measure of the model’s ability to reproduce the spatiotemporal variability in the semi-

observationally-based data. The regionally averaged values were listed in Tables S5 and S6 at the surface and TOA, 

respectively. 
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Figure 6. Dust SW radiative effect (W·m−2) and radiative heating of the atmosphere (i.e., the subtraction of radiative 

effects from TOA to the surface in unit of W·m−2). The model results were shown for the simulations for (a) IMPACT-Sphere-

Mineral-V83 (E1) at the surface, (b) DustCOMM-Asphere-DB19-V83 (E2) at the surface, (c) E1 in atmospheric column, (d) 

E2 in atmospheric column, (e) E1 at TOA, and (f) E2 simulations at TOA. The numbers in parentheses represented the global 

mean.  70 
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Figure 7. Dust LW radiative effect (W·m−2) and radiative heating of the atmosphere (i.e., the subtraction of radiative 

effects from TOA to the surface in unit of W·m−2). The model results were shown for the simulations for (a) IMPACT-Sphere-

Mineral-V83 (E1) at the surface, (b) DustCOMM-Asphere-DB19-V83 (E2) at the surface, (c) E1 in atmospheric column, (d) 75 

E2 in atmospheric column, (e) E1 at TOA, and (f) E2 simulations at TOA. The numbers in parentheses represented the global 

mean.  
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Figure 8. Dust net radiative effect (W·m−2) and radiative heating of the atmosphere (i.e., the subtraction of radiative effects 

from TOA to the surface in unit of W·m−2). The model results were shown for the simulations for (a) IMPACT-Sphere-80 

Mineral-V83 (E1) at the surface, (b) DustCOMM-Asphere-DB19-V83 (E2) at the surface, (c) E1 in atmospheric column, (d) 

E2 in atmospheric column, (e) E1 at TOA, and (f) E2 simulations at TOA. The numbers in parentheses represented the global 

mean. 
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Figure 9. Variability of dust radiative effect (W·m−2) in different model simulations at the surface and TOA for (a) 85 
total dust SW, (b) total dust LW, and (c) total dust NET. The annually averaged values were listed in Table 5. 
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Figure 10. Radiative effect (W·m−2) of mineral dust due to various aerosol absorptivity at the surface and TOA for (a) total 

dust SW, (b) total dust LW, and (c) total dust NET. The annually averaged values were listed in Table 5. The dashed line 

represented a 1 : 1 correspondence and corresponded to no change in radiative heating within the atmosphere. 90 
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