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Abstract:  41 
This study incorporates aerosol effects into satellite radiance calculations within the Global 42 

Data Assimilation System (GDAS) to investigate its impact on the analyses and forecasts of 43 

African easterly waves (AEWs). A comparison of analysis fields from the aerosol-aware 44 

assimilation experiment and an aerosol-blind control during August 2017 resulted in a warmer 45 

Saharan boundary layer; a faster African easterly jet; and AEWs with enhanced northern tracks 46 

and reduced southern tracks. The changes to the tracks are qualitatively consistent with arguments 47 

of baroclinic and barotropic instability. During the time period, we examined two AEWs that 48 

developed Hurricane Gert (2017) and Harvey (2017) over the Atlantic, but were structurally 49 

different over Africa; the AEW for Gert consisted of a southern circulation, while the AEW for 50 

Harvey consisted of a northern and southern circulation. Analysis differences of the cases showed 51 

stronger vorticity changes for the AEW that developed Harvey, which we attribute to the aerosol-52 

aware assimilation capturing dust radiative effects involving a large-scale Saharan dust plume that 53 

interacted with the AEW’s northern circulation. Forecasts from the Global Forecast System (GFS, 54 

v14) initialized by the different GDAS analyses for the AEW cases showed that the aerosol-aware 55 

experiment reduced errors in the downstream vorticity for the AEW that developed Harvey; neutral 56 

improvement was found for the AEW that develop Gert. Thus, aerosol-affected radiances in the 57 

assimilation system have the ability to correct analysis fields to account for the dust radiative 58 

effects on AEWs, which in turn can improve forecasts of the AEWs as they travel downstream. 59 

 60 

 61 

 62 

 63 
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In regions around the world, aerosols can have a profound impact on weather. This is 99 

especially the case over North Africa as it houses the Saharan Desert, which is the largest emitter 100 

of mineral dust aerosols, and African Easterly Waves (AEWs), which are synoptic-scale 101 

circulation systems. 102 

AEWs are the dominant synoptic-scale disturbance over North Africa from March to 103 

October (Carlson 1969; Burpee 1972). The waves develop along the African easterly jet (AEJ), 104 

which is a tropospheric jet (~650 hPa) whose axis is centered in the Sahel (~15°N). The AEWs are 105 

also maintained by the AEJ through barotropic and baroclinic energy conversions. (Norquist et al. 106 

1977).  Consequently, the AEWs can have two cyclonic circulations that reside on either side of 107 

the AEJ axis (Reed et al. 1988; Pytharilous and Thorncroft 1999). The circulation south of the AEJ 108 

peaks at ~650 hPa and is frequently coupled to moist convection (Kiladis et al. 2006; Berry and 109 

Thorncroft 2005), while the northern circulation peaks at ~850 hPa, is dry, and can be immersed 110 

in Saharan dust (Knippertz and Todd 2010; Grogan and Thorncroft 2019). Over the East Atlantic, 111 

the two circulation centers often merge into a single circulation, which can produce a favorable 112 

environment for tropical cyclogenesis (Schwendike and Jones 2010; Ross and Krishnamurti 2007).  113 

During summer, Saharan dust emissions are most active over the western Sahel (16°N-114 

24°N, 0°-15°W) (Cowie et al. 2014), the same region the AEW northern track resides. The 115 

emissions are driven by enhanced surface winds that blow over dry and erodible regions (Tegan 116 

and Fun 1994; Webb and Strong 2011). Once lifted, the dust mixes within the deep Saharan 117 

boundary layer (Cuesta et al. 2009; Knippertz and Todd 2012) and can form plumes that span 118 

thousands of kilometers. The transport of these large-scale dust plumes has been connected to 119 

African easterly waves (Westphal et al. 1988; Jones et al. 2003; Knippertz and Todd 2010; Nathan 120 

et al. 2019; Grogan and Thorncroft 2019). The dust can also be carried westward over the Atlantic 121 
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within the Saharan air layer (SAL) (Karyampudi et al. 1999; Chen et al. 2010), which is an elevated 147 

layer of dry air that originates from the Saharan boundary layer.  148 

Dust directly affects the scattering and absorption of incoming and outgoing radiation of 149 

the atmosphere, which produces heating rates that can influence AEWs through two distinct 150 

pathways (Bercos-Hickey et al. 2017). The first pathway is through the background (time-151 

averaged) dust fields, which produce heating rates that modify the background temperature and 152 

wind fields (i.e., the AEJ), which in turn affects AEW structure and development (Jones et al 2004; 153 

Wilcox et al. 2010; Jury and Santiago 2010). The second pathway is through the formation of 154 

large-scale episodic dust plumes, which produces heating rates that correlate with the wind and 155 

temperature of the AEW to directly affect its growth rates, phase speeds, energetics, and spatial 156 

structures (Grogan et al. 2016, 2017, 2019; Nathan et al. 2017).  157 

To incorporate the above-mentioned dust radiative effects on AEWs within a numerical 158 

weather prediction (NWP) system, it is important to represent the episodic nature of the aerosols. 159 

These radiative effects have been included into NWP systems through two approaches: (i) 160 

radiatively coupling aerosols in the forecast model, and (ii) incorporating aerosols in satellite 161 

radiance calculations during data assimilation (DA). 162 

For the first approach, aerosol attenuation modifies the heating rates within the radiation 163 

schemes of the forecast model of the NWP system. Studies have shown that this improves the 164 

forecast skill of several features in dust-affected regions over North Africa and the East Atlantic, 165 

including sea-level pressure and atmospheric temperature (Perez et al. 2006; Mulcahy et al. 2014), 166 

AEWs linked to tropical cyclogenesis (Reale et al. 2009; Reale et al. 2011; Chen et al. 2015), and 167 

the AEJ (Reale et al. 2014). Major efforts are also ongoing to improve aerosol prediction models, 168 

including the particle’s emission and removal processes, assimilating observations such as aerosol 169 
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optical depth (AOD), and model verification and evaluation (see Benedetti et al. (2018) for a 197 

comprehensive discussion). Such advances in aerosol prediction models can, in turn, improve 198 

weather prediction. But despite these advances, the radiatively coupling of episodic aerosols in the 199 

NWP system is often not feasible in an operational setting due to computational costs. Thus, most 200 

operational NWP systems use prescribed aerosol climatologies, such as the NCEP operational 201 

Global Forecast System (GFS; Hou et al. 2002) and the ECMWF integrated forecast system (IFS; 202 

Bozzo et al. 2017). Consequently, the NWP system sacrifices the ability to represent episodic 203 

aerosol signals.  204 

For the second approach, aerosol transmittance effects are considered during radiance DA, 205 

which modifies the analysis fields of the NWP system. Kim et al. (2018) demonstrated this 206 

approach by including 3-hourly aerosol fields from the Goddard Chemistry Aerosol Radiation and 207 

Transport (GOCART) model into the radiance calculations within the Goddard Earth Observing 208 

System (GEOS)-atmospheric data assimilation system (ADAS). Kim et al. (2018) showed that 209 

when aerosols were considered, they found the fit to observations improved for satellite infrared 210 

(IR) sounders due to accounting for the aerosol transmittance effects in the form of cooling 211 

brightness temperatures (BT), which has been observed in previous studies (e.g., Sokolik 2002). 212 

As a result, the cooling of BTs led to warmer analyzed surface temperatures in the Tropical 213 

Atlantic. Similarly, Wei et al. (2020, 2021) showed that considering aerosol transmittance effects 214 

warmed analyzed sea-surface temperatures and low-level air temperatures over the transatlantic 215 

region and Africa when including aerosols from NOAA’s Environmental Modeling System 216 

(NEMS) GFS Aerosol Component (NGAC) into NCEP’s global data assimilation system (GDAS). 217 

Wei et al. (2020) also showed that the aerosols improved forecasting of vector winds and 218 

geopotential heights at multiple levels in the tropical region from the GFS model.  219 
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Incorporating aerosol transmittance effects into the radiance calculation of DA is excluded 247 

from all NWP centers, despite its relatively low computation costs and its potential to leverage 248 

aerosol-affected radiances in a physical and consistent way. But more studies investigating this 249 

approach are needed. For example, no study has used this approach to examine the impacts of dust 250 

radiative effects on AEWs in the NWP system. Motivated by the results in Kim et. al. (2018) and 251 

Wei et al. (2020, 2021), along with the physical understanding of dust radiative effects on AEWs 252 

identified in the literature, this study seeks to examine how, and to what extent, episodic aerosols 253 

in the satellite radiance calculations can affect analyses and forecasts of AEWs over North Africa 254 

and the East Atlantic. We focus our analysis on two AEWs during August 2017 that are structurally 255 

different over North Africa but later developed hurricanes over the Atlantic.  256 

In Section 2, we describe the model experiments and the methods used to track the AEWs. 257 

Section 3 presents the analysis differences and forecast performances from each experiment and 258 

examines the analysis results from the aerosol-aware experiment in the context of dust radiative 259 

effects on AEWs. Section 4 provides conclusions and a short discussion. 260 

2. Experiments and Methods 261 

2.1 Model Experiments 262 

The schematic in Fig. 1 illustrates the workflow of the experiments in this study, which 263 

were conducted from July 25th – August 28th, 2017. The first experiment is an aerosol blind run 264 

(CTL), where aerosols are not considered in the assimilation system. The second experiment is an 265 

aerosol-aware run (AER), which constrains aerosol transmittance effects into the radiance 266 

calculations of the assimilation system (i.e., aerosol-affected radiances). For our experiments, we 267 

employ version 14 of the National Centers for Environmental Prediction (NCEP) Global Forecast 268 

System (GFS, v14), which consists of an analysis system, the Global Data Assimilation System 269 
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(GDAS), and a forecast model, the global spectral model (GSM), with GFS physics. The 304 

experiments are fully-cycled, which means that each analysis is constructed from their respective 305 

forecasts of the prior cycle. 306 

The analyses are constructed using GDAS (Fig. 1: blue), which is a Gridpoint Statistical 307 

Interpolation (GSI) based four-dimensional ensemble-variational (4DEnVar) assimilation system. 308 

The assimilation system is run for 80 ensemble members at T254 (~80km) resolution. In GDAS, 309 

the radiance calculations are conducted by the Community Radiance Transfer Model (CRTM) (Lu 310 

et al. 2021). The CRTM generates simulated brightness temperatures (BT) and computes the 311 

radiance sensitivities with respect to the state variables (Han et al. 2006).  312 

For both experiments, various observations are ingested into GDAS, including the 313 

conventional dataset (e.g., radiosondes, ships, buoys, etc.), and satellite observations (e.g., 314 

retrievals and radiances) (Fig. 1: gray). In particular, for the radiance observations, we include the 315 

level 1 product of IR and microwave sensors, which are pre-processed by NOAA’s National 316 

Environmental Satellite, Data, and Information Service (NESDIS). For a complete list of the 317 

thermal IR sensors, see Table 1 of Wei et al. (2021).  318 

For AER, aerosol transmittance effects can be constrained in CRTM by ingesting three-319 

dimensional aerosol mixing ratios into GDAS. CRTM contains look-up tables for aerosol optical 320 

properties¾absorption coefficient, single scattering albedo, and asymmetric factor¾ to compute 321 

the aerosol affected radiances (Lu et al. 2021). The optical properties are based on the Optical 322 

Properties of Atmospheric Composition (OPAC) software package (Hess et al. 1998). 323 

The aerosol mixing ratios are provided by the NEMS GFS Aerosol Component model 324 

(NGAC, v2) (Fig. 1: gold), which is based on GOCART (Colarco et al. 2010). NGAC simulates 325 

the emission, mixing, transport and removal (wet and dry) for 15 externally mixed aerosols, 326 
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including dust, sea salt, sulfate, organic carbon, and black carbon. (Lu et al. 2016; Wang et al., 356 

2018). The NGAC forecasts are used to predict the aerosols mixing ratios during the analysis 357 

window of each cycle. Like the meteorological fields, the aerosol mixing ratios are interpolated to 358 

the observations in space and time using the First Guess at Appropriate Time (FGAT) (Lorenc and 359 

Rawlins 2005). Figure 2 shows the NGAC forecasts total AOD (all aerosols at 550nm) averaged 360 

over August 1-28th, 2017. The AOD peaks over the Western Sahara, near the coast of West Africa, 361 

and in the Bodéléle Depression, within the interior of the continent, which are consistent with 362 

source regions over summertime in North Africa (Engelstader and Washington, 2007). The AOD, 363 

however, overestimates the hotspots by ~25% when compared to the summer AOD climatology 364 

from the Modern-Era Retrospective analysis for Research and applications (MERRA, v2) (Randles 365 

et al. 2016). Nonetheless, the use of NGAC does not affect our qualitative interpretation of the 366 

aerosol-affected radiances on the analyses and forecasts.  367 

We also conducted short-range forecasts in each experiments’ fully cycled system. To do 368 

this, the forecast model within GFS is used to run 120-hr weather forecasts at T670 (~30km) 369 

resolution, which are initialized on 00 UTC of each day (Fig. 1: green). The forecast model does 370 

account for aerosol radiative effects using prescribed monthly aerosol climatologies from OPAC 371 

(Hess et al. 1998). But for both experiments, we use the same configuration in the forecast model, 372 

which means that changes to the forecasts arise solely by the model’s response to the analysis 373 

differences, rather than the physics driving the forecast model. 374 

To demonstrate the aerosol impact on the IR radiances, Fig. 3 shows a timeseries of each 375 

experiment’s observation-minus-forecast (OMF) BT for an IR channel (12.93 um) from the 376 

Infrared Atmospheric Sounding Interferometer (IASI); the channel and sensor are representative 377 

for other IR window channels and thermal IR sensors, respectively. For both experiments, the 378 
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OMFs, which are averaged over North Africa and the East Atlantic, have a similar root-mean-379 

square (RMS) (Fig. 3a) and negative, or cold, bias (Fig. 3b) during the period of interest. But for 380 

the cold bias, the AER run (red) is slightly more positive than the CTL run (blue). This difference 381 

is due to the incorporation of aerosol transmittance effects on the forecast (simulated) BT (via 382 

scattering), which in turn reduces the cold bias in the OMFs. The average impacts are small 383 

(~1.7K) over the region, but the bias differences can be substantial (up to ~10K) in localized 384 

regions during strong Saharan dust events (Sokolik et al. 2001). When the aerosol-affected OMFs 385 

are assimilated, this produces warmer analyzed temperatures at low-levels in the atmosphere 386 

(Weaver et al. 2003; Kim et al. 2018; Wei et al. 2021). 387 

2.2 Wave tracking 388 

To identify the synoptic wave patterns during the period of interest, we used an objective 389 

tracking algorithm similar to that in Brammer and Thorncroft (2015). Briefly, the tracking 390 

algorithm involves analyzing mass-weighted centers of vorticity at multiple levels (i.e., curvature 391 

vorticity at 850, 700, and 500 hPa; relative vorticity at 850 and 700 hPa). The wave center is then 392 

determined from a weighted average of the centers within a specified radius (500 km). For each 393 

experiment, the wave centers were extracted using the 6-hourly analysis fields, which identified 394 

several systems that traversed North Africa and the East Atlantic. The tracking included waves 395 

that later developed hurricanes, which we focus on in this study given their long lifetimes and 396 

downstream implications.  397 

For our time period of interest, two hurricanes developed from AEWs: Gert (2017) and 398 

Harvey (2017). Figure 4 shows the objective track locations for the AEWs that developed 399 

Hurricane Gert and Harvey in the CTL run over North Africa and the East Atlantic. For Gert (solid 400 

line), the storm originates over Northeast Africa, at 5 – 10°N, on July 31st and moves 401 
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northwestward over North Africa and reaches the East Atlantic on August 4th. In contrast, Harvey 408 

(dotted line) originates from two circulations over North Africa, at 25 – 29°N and 8 – 12°N, that 409 

develop on August 8th and merge into one circulation near the coast, on August 12th; the storm 410 

then moves west/southwest over the East Atlantic. Both waves then developed hurricanes while 411 

over the western portion of the Atlantic Ocean.  412 

Comparison of the track locations for CTL and AER show little difference in the storm 413 

positions during their evolution (not shown). After the initial development, the track locations 414 

among the two cases are less than 250 km. Given the wavelength of the AEWs span 2000 – 5000 415 

km (Burpee 1974), the aerosol-aware assimilation does not appear to have a significant influence 416 

on the wave tracks. Therefore, we use track locations from CTL when investigating the storm 417 

structures in the analyses and forecasts for both cases.  418 

3. Results 419 

3.1 Analysis Differences: Time-average fields 420 

Before investigating the AEW cases shown in Fig. 4, we first examine the aerosol impacts 421 

on the time-averaged background temperature, background zonal wind, and AEW meridional wind 422 

variances.  423 

Figure 5 shows cross-sections of the time-averaged background temperature and zonal 424 

wind for CTL (contours) and the AER – CTL difference (colors) averaged over August 1st-28th, 425 

2017. Consider first the CTL run. The experiment captures the main summertime circulation 426 

features over the region. For temperatures, the warmest air is positioned near the surface over the 427 

Saharan Desert (Fig 5a: 20°N-30°N). This warming sets up a strong meridional temperature 428 

gradient that extends vertically up to ~650 hPa and horizontally across the Sahel and over the East 429 

Atlantic (Fig. 5b: 30°W-20°E). For the zonal wind, there is a well-defined AEJ at 650 hPa (Fig. 430 
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5c: 15°N) that extends across North Africa and the East Atlantic (Fig. 5d: 20°W – 15°E, 10°N – 444 

15°N) and low-level westerlies (800-1000 hPa) that are associated with the West African Monsoon 445 

(WAM) flow (Fig 5c: 8°N-18°N).  446 

The AER – CTL differences in Fig. 5 indicate how the aerosol-affected radiances impact 447 

the time-averaged background fields. For temperature, the aerosol impacts warm the Sahara and 448 

Sahel in the boundary layer by ~0.5 K (reddish colors in Fig. 5a: 10°N – 30°N, 1000 hPa – 650 449 

hPa) and cool the marine boundary layer below the SAL by ~0.5 K (blueish colors in Fig. 5b: 15°N 450 

– 25°W, 15°N – 30°N). These temperature changes are qualitatively consistent with enhanced 451 

aerosol heating in the boundary layer over the continent and in the SAL offshore. Over land, the 452 

heating peaks at 800 hPa in the Sahel and the southern Saharan Desert (Fig 5a: 15°N -25°N). The 453 

position of the heating means that the aerosol-aware assimilation (i) increases lapse rates (or 454 

reduced static stability) at low levels in the Sahel and southern Sahara (15°N – 25°N 1000 – 800 455 

hPa) and (ii) enhances the meridional temperature gradient in the Sahel (Fig 5a:  12°N – 20°N, 456 

1000-600 hPa; Fig 5b: 10°W-10°E, 12°N-20°N).  457 

The AER – CTL differences in temperature support the changes to background zonal wind 458 

via adjustments to the thermal wind. For example, along the enhanced meridional temperature 459 

gradient (12°N-20°N), AER accelerates the AEJ by ~0.5 m/s (blueish colors in Fig. 5c: 10°N – 460 

15°N, 700 – 600 hPa, and Fig. 5d: 20°E – 30°W, 10 – 15°N), and accelerates the westerly flow of 461 

the WAM by about ~1.0 m/s (reddish colors in Fig. 5c: 12°N – 19°N, 1000 – 850 hPa). Away from 462 

these features, the structural changes to the zonal wind are more difficult to interpret. But 463 

assessment of shear difference plots (not shown) show that the aerosol-aware assimilation: (i) 464 

increases the vertical shear below the AEJ (15°N – 22°N, 900 – 700 hPa) and (ii) decreases the 465 

horizontal shear on the flanks of the AEJ axis (8°N – 18°N, 800 – 600 hPa).  466 
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Figure 6 shows a vertical cross-section of the time-averaged, 2-6 day filtered meridional 525 

wind variance, a proxy used to assess AEW amplitudes (Reed et al. 1988; Pytharilous and 526 

Thorncroft 1999). The filtered meridional wind variances capture the two AEW tracks over the 527 

interior of North Africa (contours show the CTL run). For both experiments, the wave structures 528 

peak at levels consistent with AEWs examined in previous studies (southern: 8°N – 13°N, 700 – 529 

600; northern: 18°N – 22°N, 950 – 800 hPa). But the AER – CTL differences (colors) show that 530 

for the AER run, the meridional wind variances increase by ~15% in the northern circulation and 531 

decrease by ~10% in the southern circulation. Note that the AER run also increases the wind 532 

variances near the AEJ core by ~25% (15°N, 600 hPa), but this increase does not change the peak 533 

location of the southern circulation. 534 

The differences in the AEW meridional wind variances shown in Fig. 6 are, in part, due to 535 

changes to the background fields, which can be explained by the local wave energetics (Norquist 536 

et al. 1977; Hseih and Cook 2005; Bercos-Hickey et al. 2020). In absent of diabatic processes, the 537 

AEW’s southern structure extracts energy from the background via barotropic conversions, which 538 

are proportional to the horizontal shear of the AEJ, while the northern structure extracts energy via 539 

baroclinic energy conversions, which are inversely proportional to the static stability (Thorncroft 540 

and Hoskins 1994; Paradis et al. 1995; Thorncroft 1995). This means that for AER, the changes to 541 

the background zonal wind and temperature (i) reduce wind variances in the southern circulation 542 

via decreased horizontal shear on the equatorward side of the AEJ (barotropic) and (ii) increase 543 

wind variances in the northern circulation via reduced static stability below the AEJ (baroclinic).  544 

The qualitative explanation of how aerosol-affected radiances impact the waves via the 545 

background fields aligns with the first of two pathways in which dust can affect AEWs mentioned 546 

in the introduction. For AER, the aerosol-aware assimilation captures dust radiative effects that 547 
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operate on the analyzed background temperature, AEJ, and thus the AEW wind variances. But it’s 560 

worth mentioning that dust radiative effects are coupled to the forecast model (i.e., from the OPAC 561 

aerosol climatology), which also operate on the analysis fields via the first-guess meteorological 562 

fields. Thus in AER, changes to the time-averaged fields in Figs. 5 and 6 are due to the time-563 

averaged NGAC aerosols in the assimilation system modifying existing radiative effects imposed 564 

by the OPAC aerosol climatology in the forecast model. To investigate the impact of episodic dust 565 

plumes in the assimilation, we turn next to our AEW cases. 566 

3.2 Analysis Differences: AEW cases  567 

Figure 7 compares the structure of the AEW that developed Gert for CTL and AER. The 568 

AEW crosses Africa and the East Atlantic from July 31st to August 4th. During these times, the 569 

wave remains south of the AEJ and is thus largely away from the dust aerosols. But despite this 570 

separation, the aerosol-aware assimilation affects the evolution of the wave structure (Fig 7a, 7c: 571 

colors surrounding the X’s). For example, on Aug 2nd, the AER run decreases the wave, which is 572 

an open trough (Fig 7a: blueish colors surrounding the X). The vertical structure also shows that 573 

the vorticity for AER (red) is ~10% less than the for CTL (blue) from 600 – 800 hPa (Fig. 7b). On 574 

Aug 4th, the wave intensifies as it moves offshore, forming a closed streamline circulation (Fig. 575 

7c). But similar to the onshore wave, the aerosol impacts on the vertical structures continue to 576 

reduce the cyclonic vorticity within the storm center by ~10% (Fig. 7d).  577 

Figure 8 compares the structure of the AEW that developed Harvey for CTL and AER. The 578 

AEW develops as two circulations over East Africa on August 8th and travels west. On August 9th 579 

the land-based AEW is broad in structure and covers a large portion of the continent (Fig. 8a). For 580 

AER, there are strong changes within both circulation centers, which include increases in the 581 

vorticity around the northern circulation structure (reddish colors at 18°N) and decreases in the 582 
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southern circulation (blueish colors at 14°N). The vertical structures show that vorticity for the 624 

northern circulation is, on average, ~20 – 35% larger from 600-850 hPa (Figs. 8b: cf. solid blue 625 

and solid red), while the southern circulation is ~20 – 35% smaller from 750-850 hPa (Figs. 8b: 626 

cf. dotted blue and dotted red). On August 12th, the two circulations merge into a single wave 627 

offshore. Compared to the land-based AEW, the amplitudes of the combined wave are weak and 628 

its vertical structure changes little with height (Fig 8c, 8d). Consequently, the aerosol impacts are 629 

reduced, affecting the vorticity by ~5-15% from 1000-500 hPa (Fig. 8d).   630 

Over Africa, the aerosol impacts on the AEWs for Gert and Harvey were consistent with 631 

the time-averaged AEW meridional wind variances in Fig. 6, but the impacts were stronger for 632 

Harvey. The story is different offshore: the impacts remain moderate for Gert but weaken for 633 

Harvey; the latter may be due to the merging of the circulations and the positioning of the aerosols. 634 

Therefore, we focus on land-based AEWs and further investigate the aerosol impacts. 635 

To understand how the aerosol-aware assimilation impacts our AEW cases, it is 636 

informative to examine the episodic dust plumes and radiance observations as the waves crosses 637 

West Africa. Thus, Fig. 9 shows a snapshot of the NGAC AOD (brown contours) for times when 638 

the AEW for Gert (a) and Harvey (b) are over Africa; the X’s mark the position of the circulation 639 

centers. Overlaying the AOD are observations from the IASI sensor at the same time; shown are 640 

the AER – CTL differences in the BT at 12.93µm (circles), the same sensor and channel shown in 641 

Fig 3. For Gert, the BT differences surrounding the wave center are negative.  This indicates that 642 

near the wave center, the BTs are cooler in the AER run (Fig. 9a), but the values are small (light 643 

blue circles). In contrast, for Harvey, the negative values are large near the northern circulation 644 

(dark blue circles), which is also immersed in a dust plume with AODs over 1.0 (Fig. 9b).  645 
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When aerosol-affected radiances are assimilated, warmer analyzed temperatures are 661 

produced at low-levels over North Africa and the East Atlantic (Kim et al. 2018; Wei et al. 2021). 662 

For the AEW that developed Gert, the warming over Africa is similar to the time-averaged AER-663 

CTL background temperatures shown in Figs. 5a and 5b. For the AEW that developed Harvey in 664 

AER, however, the temperatures over the wave’s northern circulation (18-22°N) warms as much 665 

as 1.5 K at mid-levels, 900-600 hPa, which is double the average. The implications of this 666 

additional warming on the AEW vorticity is explained below.  667 

Grogan and Thorncroft (2019) showed through energetic arguments that the heating from 668 

an episodic dust signal that interacts with the AEW’s northern circulation generates eddy available 669 

potential energy (APE ~ T’2). Previous idealized studies have also shown that dust-induced eddy 670 

APE amplifies the northern structure of AEWs (Grogan et al. 2016, 2019; Nathan et al. 2017; 671 

Bercos-Hickey et al. 2017). For the Harvey case in the AER run, the scenario is the same as in 672 

Grogan and Thorncroft (2019), but the aerosol-affected radiances capture the heating from the dust 673 

plume, rather than the forecast model, which in turn drives the amplified vorticity in the AEW’s 674 

northern circulation.  675 

The qualitative explanation of how aerosol-affected radiances impact the AEW that 676 

developed Harvey via the episodic dust field aligns with the second pathway in which dust can 677 

affect AEWs mentioned in the introduction. Thus, the combined effects may help to explain why 678 

the aerosol impacts for the AEW with Harvey is stronger than the AEW with Gert. 679 

3.3 Forecast Differences: AEW cases 680 

To examine the impact of the aerosol-aware assimilation on the forecasts for our AEW 681 

cases, we compare the Root-Mean-Square-Error (RMSE) in vorticity for CTL and AER; the 682 

forecasts were verified against their respective analysis. Table 1 shows the RMSE relative 683 
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differences between AER and CTL for the 1000 – 500 hPa vorticity following the AEWs. To 685 

compute the RMSE following the AEW at each forecast time, we use the CTL wave locations 686 

shown in Section 2. For Gert, a 10° latitude by 10° longitude window is centered on the wave. For 687 

Harvey, our window over North Africa has a fixed latitude of 5 – 25°N and a 15° longitude range 688 

that is centered on the two circulations; over the Atlantic Ocean, a 10° latitude by 10° longitude 689 

window is centered on the merged circulation.  690 

Table 1 shows the AER run produces neutral improvement in the forecasting of the AEW 691 

that developed Gert, as evidenced by the mixture of red and green values in the RMSE relative 692 

differences. Inspection of the forecasts show that both AER and CTL underestimate the 693 

intensification of the AEW when initialized onshore, on July 31st – Aug 2nd, and overestimate the 694 

intensification when initialized offshore, on Aug 3rd. As a result, there were several instances 695 

where the RMSE forecast differences did not produce statistically significant results (i.e., crossed 696 

out values for Gert in Table 1).  697 

In contrast to the AEW that developed Gert, Table 1 shows the AER run produces 698 

statistically significant improvement in forecasting the AEW that developed Harvey. The largest 699 

improvements are found on the forecasts initialized on August 10th and 11th, with the forecast on 700 

August 10th showing reductions in RMSE on every forecast day (errors reduced by ~15-49%). For 701 

the initialized times that we examine for Harvey (Aug 8th -11th), both the analyzed amplitudes and 702 

AER – CTL vorticity differences were larger than Gert while onshore (cf. Figs. 6 and 8). Inspection 703 

of the forecasts reveal that the CTL run continues to suppress the wave amplitudes downstream, 704 

while the AER run better maintains the intensity of the wave as the two circulations merge over 705 

the East Atlantic and travel downstream. 706 
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In summary, the forecast error of the 1000-500 hPa averaged vorticity for the AEW that 728 

developed Gert are similar among the two experiments, but dramatically reduced in AER for the 729 

AEW that developed Harvey. This marked improvement with Harvey is likely associated with the 730 

aerosol-aware assimilation capturing radiative effects of the large-scale Saharan dust plume that 731 

interacted with the AEWs northern circulation. Therefore, ingesting mixing ratios of episodic 732 

aerosols to constrain radiance calculations within the assimilation system can improve forecasting 733 

the evolution of AEWs. 734 

4. Conclusions and Discussion 735 

In this study, we examined how incorporating time-varying aerosols into the assimilation 736 

of satellite radiances affected the analyses and forecasts using GFS v14 and the corresponding 737 

GDAS. In particular, we investigated the impacts of Saharan dust on the analyses and forecasts of 738 

AEWs and their environment over North Africa and the East Atlantic during August 2017. To do 739 

this, aerosol forecasts from the NGAC, v2 model were ingested into GDAS and constrained to the 740 

radiance calculations to produce analysis fields (aerosol-aware) that were compared to a control 741 

experiment that excluded aerosols (aerosol-blind). The analysis fields from both cases were then 742 

used to forecast two AEW cases during our time period that were structurally different over Africa, 743 

but later developed Hurricane Gert (2017) and Harvey (2017) over the Atlantic Ocean. 744 

Analysis differences showed that the aerosol-aware assimilation affected several fields 745 

over North Africa and the East Atlantic. For example, the aerosols warmed the Saharan boundary 746 

layer, accelerated the AEJ and the westerlies associated with the WAM, and modified AEW 747 

meridional variances, with amplitudes increasing within the northern circulation and decreasing in 748 

the southern circulation. The changes in the AEW meridional variances were also consistent with 749 

the vorticity changes for the individual AEW cases examined. 750 
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The impact of the analysis differences on forecasting the AEW cases was also examined. 860 

For the AEW that developed Gert, RMSE differences showed that the aerosol-aware experiment 861 

produced neutral improvement to the vorticity field among the forecasts tracking the wave over 862 

North Africa and the Atlantic. In contrast, the aerosol-aware experiment improved the vorticity 863 

field in most forecasts for the AEW that developed Harvey; the largest reductions in RMSE 864 

occurred when analysis differences in the AEW structures were largest.  865 

In exploring the results, we showed qualitatively that the aerosol-aware experiment (via 866 

NGAC aerosols) captured the two pathways involving dust radiative effects on the AEWs that are 867 

mentioned in the introduction. For example, the aerosol-aware experiment modified the analyzed 868 

background temperature and AEJ, which in turn modified the analyzed time-averaged AEWs (the 869 

first pathway). Additionally, the aerosol-aware assimilation captured the enhanced warming and 870 

vorticity associated with the formation of an episodic plume interacting the northern circulation of 871 

the AEW that developed Harvey (second pathway). This response is similar for dust-coupled 872 

AEWs (Grogan and Thorncroft 2019). In contrast, this effect was absent for the AEW the 873 

developed Gert, which did not have a northern circulation nor interact with a dust plume.  874 

The improvement on forecasting the AEW that developed Harvey suggests the importance 875 

of the aerosol-aware assimilation capturing dust radiative effects on AEWs involving episodic dust 876 

plumes. The AEW that developed Gert, however, was influenced by the radiative effects involving 877 

the time-averaged background fields, which were captured by the forecast model (via OPAC) and 878 

the aerosol-aware assimilation (via NGAC), did not improve forecasting the storm. Therefore, 879 

investigating more cases, both of which that interact with episodic dust plumes and those that do 880 

not, would better determine the utility of our approach for forecasting AEWs. Moreover, there are 881 

known variabilities in AEW activity (Brammer and Thorncroft 2017) and dust source regions over 882 
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West Africa (Wagner et al. 2016) that should also be examined.  Nonetheless, forecast 901 

improvements such as those shown for the AEW that developed Harvey are encouraging and could 902 

be critical for determining the timing and location of tropical cyclogenesis that originate from 903 

developing AEWs.  904 

Aerosol radiative effects can be incorporated into the NWP system through the forecast 905 

model and through the assimilation system. Though few studies focus on the assimilation 906 

approach, such as Kim et al. (2018) and Wei et al. (2021), this study has demonstrated the 907 

importance of incorporating time-varying, episodic aerosols into the satellite radiance calculations 908 

to capture dust radiative effects on the analyzed AEWs. More work, however, is needed to better 909 

understand how to optimize the aerosol-aware assimilation, such as adjusting the bias-correction 910 

and quality-control procedures (Wei et al. 2021). Moreover, future work should investigate how 911 

much complexity is needed to represent aerosol processes adequately and accurately, and thus 912 

effectively account for aerosol effects within the NWP system. 913 
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Figure 1. Schematic flow chart of the aerosol-blind (CTL) and aerosol-aware (AER) experiments in this study. See text for details. 1167 
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Figure 2. Total Aerosol Optical Depth (AOD) from the NGAC forecasts, averaged over August 1st-28th, 2017. 1171 
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 1174 

Figure 3. Statistics for the averaged observation-minus-forecast (OMF) infrared brightness temperatures (IR BT) (12.93µm) from 1175 
the IASI hyperspectral sensor from CTL (red) and AER (blue). The timeseries includes all observations over the region (0-40°N, 1176 
20°E-30°W), irrespective of aerosol loading. The numbers in the legend are the mean statistics. 1177 
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 1179 

Figure 4. Daily locations (at 00 UTC) of the AEWs corresponding to Gert (solid) and Harvey (dashed) obtained by the tracking 1180 
algorithm in the CTL run (time period: August, 2017). 1181 
 1182 
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 1186 

Figure 5. Vertical and horizontal cross sections of the CTL analysis (contours) and the AER – CTL analysis difference (colors) for 1187 
(a, b) temperature, T, and (c, d) zonal wind, U. The vertical sections (top) are zonally-averaged from 10°W – 10°E, while horizontal 1188 
sections (bottom) are taken at specified pressure levels. Contour/color units: (a,b) K and (c,d) ms-1. The fields are time-averaged 1189 
from August 1st – August 28th, 2017. 1190 
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 1200 

Figure 6. Time-averaged 2-6 day filtered meridional wind variances, v’2, of the CTL analysis (contours) and the AER – CTL 1201 
analysis difference (colors) zonally-averaged from 10°W – 10°E for August, 2017. Contour/color units: m2s-2.  1202 
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 1216 

Figure 7. The evolution of the AEW associated with Gert on Aug 2nd (left) and Aug 4th (right). The top panels show the 700 hPa 1217 
CTL streamlines (black) and the AER – CTL 700 hPa cyclonic vorticity differences (red/blue); the ‘X’ marks the wave’s location 1218 
from the tracking algorithm. The bottom panels show the circular average vorticity (radius 500 km) taken at the X’s for CTL (blue) 1219 
and AER (red).  1220 
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 1252 
Figure 8. As in Fig. 7, but for the evolution of the AEW associated with Harvey on Aug 9th (left) and Aug 12th (right) The horizontal 1253 
plots (top) show 850 hPa CTL streamlines and 850 hPa AER-CTL cyclonic vorticity differences, instead of 700 hPa, to better 1254 
capture the two-circulation signal. Over Africa (b), we overlay the vertical vorticity structures of the northern (solid) and southern 1255 
(dotted) circulation for CTL (blue) and AER (red).  1256 
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 1281 

Figure 9. AER – CTL differences in simulated BT at 12.93µm from the IASI (colored circles) with the NGAC AOD (brown 1282 
contours) on August 2nd, 12:00 UTC (left) and Aug 10th, 12:00 UTC (right). The X’s mark the location of the wave centers for the 1283 
AEW that developed Gert (left: 8°N,14°W) and Harvey (right: at 12°N,17°W and 20.5°N,13°W). Colorbar units: °K.  1284 
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 1296 

Gert 
Initialization 1 day 2 day 3 day 4 day 5 day 
July 31st 0.13 0.21 0.19 0.38 0.03 
August 1st 0.17 0.27 0.25 0.10 0.08 
August 2nd 0.19 0.04 0.24 0.10 0.08 
August 3rd 0.06 0.20 0.23 0.09 1.02 
 

Harvey 
Initialization 1 day 2 day 3 day 4 day 5 day 
August 8th 0.23 0.05 0.23 0.32 0.27 
August 9th 0.08 0.07 0.06 0.33 0.32 
August 10th 0.35 0.32 0.17 0.31 0.49 
August 11th 0.22 0.39 0.49 0.46 0.64 

 1297 
Table 1. RMSE relative differences in the 1000 – 500 hPa relative vorticity between the AER and CTL forecasts for the AEWs 1298 
that developed Gert and Harvey. For each forecast day, the relative differences are calculated by taking (AER-CTL)/CTL of the 1299 
RMSEs over the region following the AEWs (see text for more details). The green values indicate AER improved the forecast, 1300 
while red values indicate AER degraded the forecast; crossed-out values were not significant to the 99% confidence interval. The 1301 
staircase border in each case separates times when the waves are located onshore (upper left) and offshore (lower right). 1302 
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