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Abstract:
This study incorporates aerosol effects into satellite radiance calculations within the Global .- '(Deleted: time-varying aerosols
Data Assimilation System (GDAS) to investigate its jmpact on the analyses and forecasts of .- ( Formatted: Font color: Text 1
African easterly waves (AEWSs). A comparison of analysis fields from the aerosol-aware . .- '(Deleted:)and their environment. Comparison
assimilation experiment and an aerosol-blind control during August 2017 resulted in a warmer ..~ Deleted: showed that the acrosol-affected radiances accelerated
the African easterly jet and West African monsoon flow; warmed the
Saharan boundary layer; a faster African easterly jet; and AEWs with enhanced northern fracks .- '(Deleted: and modified the AEW vorticity structure,
= ”(Deleted:increases in the
and yeduced southern fracks. The changes to the tracks are qualitatively consistent with arguments (Deleted: circulation
‘ ‘(Deleted: decreases in the
of baroclinic and barotropic inStabilitV' During the lmC CrlOd We cxamlncdtwo Mthat ’ "[Deleted: circulation. Analysis fields from each experiment were
used in

developed Hurricane Gert (2017) and Harvey (2017) over the Atlantic, but were structurally "’[Deleted:Global Forecast System (GFS) to examine differences in

forecasting

(Deleted: AEW cases
\“(Deleted: hurricanes
. (Deleted: North

different over Africa; the AEW for Gert consisted of a southern circulation, while the AEW for

Harvey consisted of a northern and southern circulation. Analysis differences of the cases showed

| Deleted: . The aerosol-aware experiment reduced errors in
forecasting

stronger vorticity changes for,the AEW that developed Harvey, which we attribute to the aerosol-
- o (Formatted: Font color: Text 1

h (Deleted: case whose northern circulation interacted with
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interacted with the AEW’s northern circulation. Forecasts from the Global Forecast System (GFS, "(Formamd: Font color: Text 1

aware assimilation capturing dust radiative effects involving a large-scale Saharan, dust plume that
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v14) initialized by the different GDAS analyses for the AEW cases showed that the aerosol-aware

experiment reduced errors in the downstream vorticity for the AEW that developed Harvey; neutral

Deleted: other AEW, which did not contain a northern circulation
" | nor interacted with a dust plume.
improvement was found for the AEW that develop Gert. Thus, aerosol-affected radiances in the .~  { The changesto the

y (Deleted: by

(Deleted: aerosol-aware assimilation are reminiscent of

(Deleted: that operate

assimilation system have the ability to correct analysis fields fo account for the dust radiative .
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effects on AEWs, which jn turn can improve forecasts of the AEWs as they travel downstream,, Deleted: and their environment. That is, the acrosol-affected
radiances produce corrections to the brightness temperatures that
modify the analysis fields like dust aerosols that are radiatively
coupled to the atmospheric variables in the forecast model. We show
qualitatively that dust radiative effects are captured by the aerosol-
affected radiances for the AEW case that interacted with a dust
plume
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n regions around the world

, aerosols can have a profound impact on weather, This is .

especially the case gver North Africa as it houses the Saharan Desert, which is the largest emitter

of mineral dust aerosols,_and African Easterly Waves (AEWSs). which are synoptic-scale
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¥ n"(DeIeted: loadings for

circulation systems.

AEWSs are the dominant synoptic-scale disturbance over North Africa from March to

October (Carlson 1969: Burpee 1972). The waves develop along the African easterly jet (AEJ)

NN

[ Deleted: in the world. On average, approximately 1000

Teragrams of dust are emitted from the Saharan Desert each year
(Huneeus et al. 2011). The emissions are driven by enhanced surface
winds over extremely dry and erodible regions (Knippertz and Todd
2012). Once emitted, the dust mixes within the deep Saharan
boundary layer (up to 500 hPa) and can form plumes that span
thousands of kilometers. ¢

In summer, Saharan dust plumes are transported westward toward
the Atlantic by the African easterly jet (AEJ) and African easterly

| waves (

which is a tropospheric jet (~650 hPa) whose axis is centered jn the Sahel (~15°N). The AEWs are

also maintained by the AEJ through barotropic and baroclinic energy conversions. (Norquist et al.

1977). Consequently, the AEWs can have two cyclonic circulations, that reside on either side of

(Deleted: on the southern edge of the Saharan Desert
"[Deleted: ), while AEWs are synoptic-scale waves that develop

(Deleted: ). The AE is a mid-

along the AEJ.

the AEJ axis (Reed et al. 1988; Pytharilous and Thorncroft 1999). The circulation south of the AEJ
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peaks at ~650 hPa and is frequently coupled to moist convection, (Kiladis et al. 2006; Berry and
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Thorncroft 2005), while the northern circulation peaks at ~850 hPa, is dry, and can be immersed

in Saharan dust,(Knippertz and Todd 2010; Grogan and Thorneroft 2019). Over the East Atlantic, -

the two circulation centers often merge into a single circulation, which can produce a favorable

environment for tropical cyclogenesis (Schwendike and Jones 2010; Ross and Krishnamurti 2007)., .-

During summer, Saharan dust emissions are most active over the western Sahel (16°N-

24°N, 0°-15°W) (Cowie et al. 2014), the same region the AEW northern track resides. The

emissions are driven by enhanced surface winds that blow over dry and erodible regions (Tegan

and Fun 1994; Webb and Strong 2011). Once lifted, the dust mixes within the deep Saharan

boundary layer (Cuesta et al. 2009: Knippertz and Todd 2012) and can form plumes that span

thousands of kilometers. The transport of these large-scale dust plumes has been connected to

African easterly waves (Westphal et al. 1988: Jones et al. 2003; Knippertz and Todd 2010; Nathan

etal. 2019: Grogan and Thorncroft 2019). The dust can also be carried westward over the Atlantic
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within the Saharan air layer (SAL) (Karyampudi et al. 1999: Chen et al. 2010), which is an elevated

layer of dry air that originates from the Saharan boundary layer.

Dust directly affects the scattering and absorption of incoming and outgoing radiation of
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circulation, which suppresses convection and thus tropical cyclone
development (Dunion and Velden 2004; Reale et al. 2009; Braun et

The dust-laden SAL can infiltrate the AEW’s oceanic

al. 2016; Brammer et al. 2018).

the atmosphere, which produces, heating rates that can influence AEWs through two distinct

pathways (Bercos-Hickey et al. 2017). The first pathway is through the background (time;

averaged) dust fields, which produce heating rates that modify the packground temperature and

wind fields (i.e., the AEIl), which in turn affects AEW structure and development (Jones et al 2004,

Wilcox et al. 2010; Jury and Santiago 2010). The second pathway is through the formation of

large-scale episodic dust plumes, which produces heating rates that correlate with the wind and
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To incorporate the above-mentioned dust radiative effects on AEWs within a numerical _..(Deleted: into
weather prediction (NWP) system, it is important to represent the episodic nature of the aerosols. - (Deleted: realistic
These radiative effects have been included into NWP systems through two approaches: (i) p "[Deleted: Studies have done this by including prognostic acrosol

fields
radiatively coupling aerosols in the forecast model, and (ii) incorporating aerosols in satellite _..(Deleted: which has
radiance calculations during data assimilation (DA).

For the first approach, aerosol attenuation modifies the heating rates within the radiation
schemes of the forecast model of the NWP system. Studies have shown ghat this improves the ..-(Deleted: to improve
forecast skill of several features in dust-affected regions, over North Africa and the East Atlantic, . -(Deleted: affect
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including sea-level pressure and atmospheric temperature (Perez et al. 2006; Mulcahy et al. 2014),  (Deleted: (c.c.
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the AEJ (Reale et al. 2014). Major efforts are also ongoing to improve aerosol prediction models

including the particle’s emission and removal processes, assimilating observations such as aerosol
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optical depth (AOD), and model verification and evaluation (see Benedetti et al. (2018) for a

comprehensive discussion). Such advances in aerosol prediction models can, in turn, improve

weather prediction. But despite these advances, the radiatively coupling of episodic aerosols in the . ..(Deleted: simulating prognostic acrosols

NWP system is often not feasible in an operational setting due to computational costs. Thus, most
operational NWP systems use prescribed aerosol climatologies, such as the NCEP operational

Global Forecast System (GFS; Hou et al. 2002) and the ECMWF integrated forecast system (IFS;

Bozzo et al. 2017). Consequently, the NWP system sacrifices the ability to represent episodic .- ( Deleted: e

aerosol signals.
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approach by including 3-hourly aerosol fields from the Goddard Chemistry Aerosol Radiation and
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{‘(Deleted: heating of the

warmed analyzed sea-surface temperatures and low-level air temperatures over the transatlantic . (Deleted: temperature
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Incorporating aerosol transmittance effects into the radiance calculation of DA is excluded

from all NWP centers, despite its relatively low computation costs and its potential to leverage

aerosol-affected radiances in a physical and consistent way. But more studies investigating this

approach are needed. For example, no study has used this approach to examine the impacts of dust

radiative effects on AEWs in the NWP system. Motivated by the results in Kim et. al. (2018) and

Wei et al. (2020, 2021). along with the physical understanding of dust radiative effects on AEWSs /

identified in the literature, this study seeks to examine how, and to what extent, episodic aerosols ;

in the satellite radiance calculations can affect analyses and forecasts of AEWs over North Africa /

and the East Atlantic. We focus our analysis on two AEWs during August 2017 that are structurally
different over North Africa but later developed hurricanes over the Atlantic.
In Section 2, we describe the model experiments and the methods used to track the AEWs.

Section 3 presents the analysis differences and forecast performances from each experiment, and

examines the analysis results from the aerosol-aware experiment jn the context of dust radiative

effects on AEWs. Section 4 provides conclusions and a short discussion.

2. Experiments and Methods

2.1 Model Experiments
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the assimilation of satellite radiances, this study employs version 14

‘/| (v14) of NCEP’s GFS forecast model and the corresponding GDAS.

Briefly, the GFS v14 is a global spectral model that accounts for
aerosol direct radiative effects using prescribed monthly aerosol
climatologies from the Optical Properties of Atmospheric
Composition (OPAC) software package (Hess et al. 1998).
Meanwhile, the GDAS is a Gridpoint Statistical Interpolation (GSI)
based four-dimensional ensemble-variational (4DEnVar)
assimilation system that excludes any explicit treatment of aerosols.
For our study, the NWP system is run at coarser resolution than
NCEP’s operational settings: we use T670 (~30km) resolution for
the GFS forecast model and 80 ensemble members running at T254
(~80km) resolution for GDAS.

Jhe schematic in Fig. 1 illustrates the workflow of the experiments jn this study, which

were conducted, from July 25th — August 28th, 2017, The first experiment is an aerosol blind run .

(CTL), where aerosols are not considered in the assimilation system, The second experiment is an ‘

aerosol-aware run (AER), which constrains aerosol fransmittance effects, into the radiance

calculations of the assimilation system (i.e., aerosol-affected radiances). For our experiments, we

employ version 14 of the National Centers for Environmental Prediction (NCEP) Global Forecast
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level 1 product of IR and microwave sensors, which are pre-processed by NOAA’s National

Environmental Satellite, Data, and Information Service (NESDIS). For a complete list of the

thermal IR sensors, see Table 1 of Wei et al. (2021).

For AER, aerosol transmittance effects can be constrained in CRTM by ingesting three-

dimensional aerosol mixing ratios into GDAS. CRTM contains look-up tables for aerosol optical

properties—absorption coefficient, single scattering albedo, and asymmetric factor— to compute

the aerosol affected radiances (Lu et al. 2021). The optical properties are based on the Optical

Properties of Atmospheric Composition (OPAC) software package (Hess et al. 1998).

The aerosol mixing ratios are provided by the NEMS GFS Aerosol Component model

(NGAC., v2) (Fig. 1: gold), which is based on GOCART (Colarco et al. 2010). NGAC simulates

the emission, mixing, transport and removal (wet and dry) for 15 externally mixed aerosols
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B56 including dust, sea salt, sulfate, organic carbon, and black carbon. (Lu et al. 2016; Wang et al.,

B57 2018). The NGAC forecasts are used to predict the aerosols mixing ratios during the analysis

B58  window of each cycle. Like the meteorological fields, the aerosol mixing ratios are interpolated to
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B63  source regions over summertime in North Africa (Engelstader and Washington, 2007). The AOD,
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B65  from the Modern-Era Retrospective analysis for Research and applications (MERRA, v2) (Randles

B66 et al. 2016). Nonetheless, the use of NGAC does not affect our qualitative interpretation of the

B67  aerosol-affected radiances on the analyses and forecasts.
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B70  resolution, which are initialized on 00 UTC of each day (Fig. 1: green). The forecast model does

B71  account for aerosol radiative effects using prescribed monthly aerosol climatologies from OPAC

B72  (Hess et al. 1998). But for both experiments, we use the same configuration in the forecast model,

B73  which means that changes to the forecasts arise solely by the model’s response to the analysis

B74  differences, rather than the physics driving the forecast model.
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OMFs, which are averaged over North Africa and the East Atlantic, have a similar root-mean-

square (RMS) (Fig. 3a) and negative, or cold, bias (Fig. 3b) during the period of interest. But for

the cold bias, the AER run (red) is slightly more positive than the CTL run (blue). This difference

is due to the incorporation of aerosol transmittance effects on the forecast (simulated) BT (via

scattering), which in turn reduces the cold bias in the OMFs. The average impacts are small

(~1.7K) over the region, but the bias differences can be substantial (up to ~10K) in localized

regions during strong Saharan dust events (Sokolik et al. 2001). When the aerosol-affected OMFs

are assimilated, this produces warmer analyzed temperatures at low-levels in the atmosphere

(Weaver et al. 2003; Kim et al. 2018; Wei et al. 2021).

2.2 Wave tracking,

. CFormatted: Header

e (Formatted: Font: Not Italic, Font color: Text 1

To identify the synoptic wave patterns during the period of interest, we used an objective
tracking algorithm similar to that in Brammer and Thorncroft (2015). Briefly, the tracking
algorithm involves analyzing mass-weighted centers of vorticity at multiple levels (i.e., curvature
vorticity at 850, 700, and 500 hPa; relative vorticity at 850 and 700 hPa). The wave center is then
determined from a weighted average of the centers within a specified radius (500 km). For each

experiment, the wave centers were extracted using the 6-hourly analysis fields, which identified

downstream implications.
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that later developed hurricanes, which we focus on in this study given their long lifetimes and

For our time period of interest, two hurricanes developed from AEWs: Gert (2017) and
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northwestward over North Africa and reaches the East Atlantic,on August 4th. In contrast, Harvey .--(Deleted: .
(dotted line) originates from two circulations over North Africa, at 25 — 29°N and 8 — 12°N, that : '(Deleted= Fig. 2b
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develop on August 8" and merge into one circulation near the coast, on August 12"; the storm (Deleted: that
then moves west/southwest over the East Atlantic. Both waves then developed hurricanes while
over the western portion of the Atlantic Ocean.

Comparison of the track locations for CTL and AER show little difference in the storm
positions during their evolution (not shown). After the initial development, the track locations p "(Deleted: over North Africa and the East Atlantic.

among the two cases are less than 250 km. Given the wavelength of the AEWs span 2000 — 5000
km (Burpee 1974), the aerosol-aware assimilation does not appear to have a significant influence
on the wave tracks. Therefore, we use track locations from CTL when investigating the storm

structures in the analyses and forecasts for both cases,
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3. Results
3.1 Analysis Differences: Time-average fields

Before investigating the AEW cases shown in Fig. 4, we first examine the aerosol impacts
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on the time-averaged background temperature, background zonal wind, and AEW meridional wind

variances.

Figure 5 shows cross-sections of the time-averaged background temperature and zonal

wind for CTL (contours) and the AER — CTL difference (colors) averaged over August 15-28™

2017. Consider first the CTL run. The experiment captures the main summertime circulation

features over the region, For temperatures, the warmest air is positioned near the surface over the

cross-sections of the
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Saharan Desert (Fig 5a: 20°N-30°N). This warming sets up a strong meridional temperature

gradient that extends vertically up to ~650 hPa and horizontally across the Sahel and over the East

Atlantic (Fig. 5b: 30°W-20°E). For the zonal wind, there is a well-defined AEJ at 650 hPa (Fig.
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The AER — CTL differences in Fig. 5 indicate how the aerosol-affected radiances impact
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Sahel in the boundary layer by ~0.5 K (reddish colors in Fig. 5a: 10°N — 30°N, 1000 hPa — 650

hPa) and cool the marine boundary layer below the SAL by ~0.5 K (blueish colors in Fig. Sb: 15°N
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assessment of shear difference plots (not shown) show that the aerosol-aware assimilation: (i)

increases the vertical shear below the AEJ (15°N — 22°N, 900 — 700 hPa) and (ii) decreases the

horizontal shear on the flanks of the AEJ axis (8°N — 18°N, 800 — 600 hPa).
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Figure 6 shows a vertical cross-section of the time-averaged, 2-6 day filtered meridional

wind variance, a proxy used to assess AEW amplitudes (Reed et al. 1988; Pytharilous and

Thorncroft 1999). The filtered meridional wind variances capture the two AEW tracks over the

interior of North Africa, (contours show the CTL run). For both experiments, the, wave structures
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The differences in the AEW meridional wind variances shown in Fig. 6 are, in part, due to
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et al. 1977; Hseih and Cook 2005 Bercos-Hickey et al. 2020). In absent of diabatic processes, the .-
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AEW?’s southern structure extracts energy from the background via barotropic conversions, which

are proportional to the horizontal shear of the AEJ, while the northern structure extracts energy via

baroclinic energy conversions, which are inversely proportional to the static stability (Thorncroft

and Hoskins 1994: Paradis et al. 1995 Thorncroft 1995). This means that for AER, the changes to

the background zonal wind and temperature (i) reduce wind variances in the southern circulation

via decreased horizontal shear on the equatorward side of the AEJ (barotropic) and (ii) increase

wind variances in the northern circulation via reduced static stability below the AEJ (baroclinic).

The qualitative explanation of how aerosol-affected radiances impact the waves via the+

background fields aligns with the first of two pathways in which dust can affect AEWs mentioned .-
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worth mentioning that dust radiative effects are coupled to the forecast model (i.e., from the OPAC

aerosol climatology), which also operate on the analysis fields via the first-guess meteorological

fields. Thus in AER, changes to the time-averaged fields in Figs. 5 and 6 are due to the time-
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averaged NGAC aerosols in the assimilation system modifying existing radiative effects imposed
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by the OPAC aerosol climatology in the forecast model. To investigate the impact of episodic dust /

plumes in the assimilation, we turn next to our AEW cases,

3.2 Analysis Differences: AEW cases.

Figure 7 compares the structure of the AEW that developed Gert, for CTL and AER. The

AEW crosses Africa and the East Atlantic from July 31% to August 4. During these times, the

wave remains south of the AEJ and is thus largely away from the dust aerosols. But despite this

separation, the aerosol-aware assimilation affects the evolution of the wave structure (Fig 7a, 7c: !

colors surrounding the X’s). For example, on Aug 2"¢, the AER run decreases the wave, which is _

an open trough (Fig 7a: blueish colors surrounding the X). The vertical structure also shows that .

the vorticity for AER (red) is ~10% less than the for CTL (blue) from 600 — 800 hPa, (Fig. 7b). On

Aug 4%, the wave intensifies as it moves offshore, forming a closed streamline circulation (Fig.

reduce the cyclonic vorticity within the storm center by ~10% (Fig. 7d).

Figure 8 compares the structure of the AEW that developed Harvey, for CTL and AER. The

Jc). But similar to the onshore wave, the aerosol impacts on the vertical structures continue to

AEW develops as two circulations over East Africa on August 8" and travels west. On August 9"

the land-based AEW is broad in structure and covers a large portion of the continent (Fig. 8a). For

AER, there are strong changes within both circulation centers, which include jncreases in the
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northern circulation is, on average, ~20 — 35% larger from 600-850 hPa (Figs. 8b: cf. solid blue »

and solid red). while the southern circulation js ~20 — 35% smaller from 750-850 hPa (Figs. 8b:

cf. dotted blue and dotted red). On August 12", the two circulations merge into a single wave

offshore. Compared to the land-based AEW, the amplitudes of the combined wave are weak and

the aerosol im

with hei

its vertical structure changes Jittle

ht (Fi
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reduced, affecting the vorticity by ~5-15% from 1000-500 hPa (Fig. 8d).

Over Africa, the aerosol impacts on the AEWs for Gert and Harvey were consistent with

the time-averaged AEW meridional wind variances in Fig. 6, but the impacts were stronger for

Harvey. The story is different offshore: the impacts remain moderate for Gert but weaken for

actsare .-

AEW amplitudes are largest, Fig. 8 shows that the vorticity at 600-
850 hPa
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Harvey; the latter may be due to the merging of the circulations and the positioning of the aerosols.

Therefore, we focus on land-based AEWSs and further investigate the aerosol impacts.

To understand how the aerosol-aware assimilation impacts our AEW cases, it is

informative to examine the episodic dust plumes and radiance observations as the waves crosses

West Africa. Thus, Fig. 9 shows a snapshot of the NGAC AOD (brown contours) for times when

the AEW for Gert (a) and Harvey (b) are over Africa; the X’s mark the position of the circulation

centers. Overlaying the AOD are observations from the IASI sensor at the same time; shown are

the AER — CTL differences in the BT at 12.93um (circles), the same sensor and channel shown in

Fi

3. For Gert, the BT differences surrounding t!

near the wave center, the BTs are cooler in the AER run (Fig. 9a), but the values are small (light

blue circles). In contrast, for Harvey, the negative values are large near the northern circulation

(dark blue circles), which is also immersed in a dust plume with AODs over 1.0 (Fig. 9b).
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When aerosol-affected radiances are assimilated, warmer analyzed temperatures are

produced at low-levels over North Africa and the East Atlantic (Kim et al. 2018; Wei et al. 2021).

For the AEW that developed Gert, the warming over Africa is similar to the time-averaged AER-

CTL background temperatures shown in Figs. 5a and 5b. For the AEW that developed Harvey in

AER., however, the temperatures over the wave’s northern circulation (18-22°N) warms as much

as 1.5 K at mid-levels, 900-600 hPa, which is double the average. The implications of this

additional warming on the AEW vorticity is explained below.

Grogan and Thorncroft (2019) showed through energetic arguments that the heating from

an episodic dust signal that interacts with the AEW’s northern circulation generates eddy available

potential energy (APE ~ T°?). Previous idealized studies have also shown that dust-induced eddy

APE amplifies the northern structure of AEWs (Grogan et al. 2016, 2019; Nathan et al. 2017;

Bercos-Hickey et al. 2017). For the Harvey case in the AER run, the scenario is the same as in

Grogan and Thorncroft (2019). but the aerosol-affected radiances capture the heating from the dust

plume, rather than the forecast model, which in turn drives the amplified vorticity in the AEW’s

northern circulation.

The qualitative explanation of how aerosol-affected radiances impact the AEW that

developed Harvey via the episodic dust field aligns with the second pathway in which dust can

affect AEWs mentioned in the introduction. Thus, the combined effects may help to explain why

the aerosol impacts for the AEW with Harvey is stronger than the AEW with Gert.
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3.3 Forecast Differences: AEW cases

To examine the impact of the aerosol-aware assimilation on the forecasts for our AEW

forecasts were verified against their respective analysis. Table 1 shows the RMSE relative
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out values for Gert in Table 1).

In contrast to the AEW that developed Gert, Table 1 shows the AER run produces
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statistically significant improvement in forecasting the AEW that developed Harvey. The largest

improvements are found on the forecasts initialized on August 10™ and 11%, with the forecast on
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the forecast error of the 1000-500 hPa averaged vorticity for the AEW that
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developed Gert are similar among the two experiments, but dramatically reduced, in AER, for the

AEW that developed Harvey. This marked improvement with Harvey is likely associated with the

aerosol-aware assimilation capturing yadiative effects of the large-scale Saharan dust plume, that

interacted with the AEWSs northern circulation. Therefore, jngesting mixing ratios of episodic

aerosols_to constrain radiance calculations within the assimilation system can improve forecasting

the evolution of AEWs.

4. Conclusions_and Discussion

In this study, we examined how incorporating time-varying aerosols into the assimilation
of satellite radiances affected the analyses and forecasts using GFS v14 and the corresponding

GDAS. In particular, we investigated the jmpacts of Saharan dust on the analyses and forecasts of

AEWs and their environment over North Africa and the East Atlantic during August 2017. To do

this, aerosol forecasts from the NGAC, v2 model were ingested into GDAS and constrained to the

radiance calculations to produce analysis fields (aerosol-aware) that were compared to a control

experiment that excluded aerosols (aerosol-blind). The analysis fields from both cases were then
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analysis differences shown in section 3.1 and 3.2 to the impacts of
dust when aerosols are radiatively coupled to the forecast model, as
well as the implications of the analysis differences on the forecasting
of our AEW cases shown in section 3.3.

Consider first the time-averaged results in section 3.1. Analysis
differences showed that the AER run accelerated the AEJ and
WAM, and warmed the Saharan boundary layer. These changes, in
turn, affect the structure of the wind shear and static stability that, in
part, can explain the structural changes in the time-averaged
vorticity amplitudes associated with the AEWs. This can be inferred
from local wave energetics (Norquist et al. 1977; Grogan et al.
2019). For example, enhanced low-level vertical shear and reduced
static stability setup below the AEJ core will increase local
baroclinic energy conversions and thus vorticity in the north
circulation. Additionally, reduced horizontal shear south of the AEJ
axis will decrease local barotropic energy conversions in the
southern circulation. Thus, the aerosol-aware assimilation modifies
the existing dust radiative effects coupled to the forecast model (i.e.,
from the OPAC aerosol climatology) that operate on the analyzed
AE]J, temperature, and AEW structures.’

Consider next the analysis fields for the AEW cases examined in
section 3.2. For the AEW that developed Gert, we found average
values of aerosol optical depth (AOD) over the Sahara during the
wave’s passage over North Africa. In contrast, the AEW that
developed Harvey interacted with a strong Saharan dust plume as it
crossed North Africa. This can be seen in Figure 9, which shows a
snapshot of the AOD (brown contours) surrounding the AEW
northern circulation center (13.5°W, 20°N) on August 10th, at
12:00Z. Figure 9 also shows observations from the Infrared
Atmospheric Sounding Interferometer (IASI) that were assimilated
i over the region at the same time; the observations are AER — CTL
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used to forecast two AEW cases during our time period that were structurally different over Africa.

but later developed Hurricane Gert (2017) and Harvey (2017) over the Atlantic Ocean.
Analysis differences showed that the aerosol-aware assimilation affected several fields
over North Africa and the East Atlantic. For example, the aerosols warmed the Saharan boundary

layer, accelerated the AEJ and the westerlies associated with the WAM, and modified AEW

Jneridional variances, with amplitudes increasing within the northern circulation and decreasing in

the southern circulation. The changes in the AEW meridional variances were also consistent with

the vorticity changes for the individual AEW cases examined,
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The impact of the analysis differences on forecasting the, AEW cases was also examined. .- (Deleted: individual
For the AEW that developed Gert, RMSE differences showed that the aerosol-aware experiment
produced neutral improvement to the vorticity field among the forecasts tracking the wave over
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background temperature and AEJ, which in turn modified the analyzed fime-averaged AEWs (the

first pathway). Additionally, the aerosol-aware assimilation captured the enhanced warming and

vorticity associated with the formation of an episodic plume interacting the northern circulation of

the AEW that developed Harvey (second pathway). This response js similar for dust-coupled

AEWs (Grogan and Thorncroft 2019). In contrast, this effect was absent for the AEW the

developed Gert, which did not have a northern circulation nor interact with a dust plume.

The improvement on forecasting the AEW that developed Harvey suggests the importance
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of the aerosol-aware assimilation capturing dust radiative effects on AEWs involving episodic dust

plumes. The AEW that developed Gert, however, was influenced by the radiative effects involving
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Gert (Formatted Table
Initialization | lday | 2day 3 day 4 day 5 day
July 31% 013 0.21 0.19 0.38 603
August 1% 0.17 0.27 0.25 610 6-08
w 0.24 010 0-08
August 3 0-06 0.20 0.23 669 1.02
(Formatted Table
Harvey
Initialization | 1 day | 2 day | 3 day 4 day 5 day
August 8% 0.23 6-05 0.23 0.32 0.27
August 9 0-08 . 4 0.33 0.32
August 10" 0.35 0.32 0.17 0.31 0.49
August 11" 0.22 0.39 0.49 0.46 0.64

Table 1. RMSE relative differences in the 1000 — 500 hPa relative vorticity between the AER and CTL forecasts for the AEWs
that developed Gert and Harvey. For each forecast day, the relative differences are calculated by taking (AER-CTL)/CTL of the
RMSEs over the region following the AEWs (see text for more details). The green values indicate AER improved the forecast,

while red values indicate AER degraded the forecast; crossed-out values were not significant to the 99% confidence interval. The

staircase border in each case separates times when the waves are located onshore (upper left) and offshore (lower right).
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