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Abstract.

Observations of aerosol and trace gases in the remote troposphere are vital to quantify background concentrations and

identify long term trends in atmospheric composition on large spatial scales. Measurements made at high altitude are often used

to study free tropospheric air however such high-altitude sites can be influenced by boundary layer air masses. Thus, accurate

information on air mass origin and transport pathways to high altitude sites is required. Here we present a new method, based5

on the source-receptor relationship (SRR) obtained from backwards WRF-FLEXPART simulations and a k-means clustering

approach, to identify source regions of air masses arriving at measurement sites. Our method is tailored to areas of complex

terrain and to stations influenced by both local and long-range sources. We have applied this method to the Chacaltaya (CHC)

GAW station (5240 m a.s.l., 16.35° S, 68.13° W) for the 6-month duration of the “Southern hemisphere high altitude experiment

on particle nucleation and growth” (SALTENA) to identify where sampled air masses originate and to quantify the influence10

of the boundary layer
:::::
surface

:
and the free troposphere. A key aspect of our method is that it is probabilistic and for each

observation time, more than one air mass (cluster) can influence the station and the percentage influence of each air mass

can be quantified. This is in contrast to binary methods, which label each observation time as influenced either by boundary

layer or free troposphere air masses.
:::
Air

:::::::
sampled

::
at

:::::
CHC

::
is

:
a
::::
mix

::
of

::::::::
different

::::::::::
provenance.

:
We find that on average , 9% of

the airsampled at CHC, at any given observation time, has been in contact with the surface within 4 days prior to arriving15

at CHC
:
.
:::::::::::
Furthermore, 24% of the air was located below

::
has

:::::
been

::::::
located

::::::
within

:::
the

::::
first

:
1.5 km above ground level and

consequently
::::::
(surface

:::::::::
included).

::::::::::::
Consequently, 76% of the measured air masses at CHC represent free tropospheric air

::
air
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:::::::
sampled

::
at

::::
CHC

:::::::::
originates

::::
from

:::
the

::::
free

::::::::::
troposphere. However, pure free-tropospheric influences are rare and often samples

are concurrently influenced by both boundary-layer and free-tropospheric air masses. A clear diurnal cycle is present with very

few air masses that have been in contact with the surface being detected at night. The 6-month analysis also shows that the20

most dominant air mass (cluster) originates in the Amazon and is responsible for 29% of the sampled air. Furthermore, short-

range clusters (origins within 100 km of CHC) have high temporal frequency modulated by local meteorology driven by the

diurnal cycle whereas the mid- and long-range clusters’ (>200 km) variability occurs on timescales governed by synoptic-scale

dynamics. To verify the reliability of our method, in-situ sulfate observations from CHC are combined with the SRR clusters

to correctly identify the (pre-known) source of the sulfate: the Sabancaya volcano located 400 km northwest from the station.25

2



1 Introduction

Traditionally, high-altitude measurement sites are used to study the remote atmosphere and the interactions between the free

troposphere (FT) and the planetary boundary layer (PBL). These sites provide the opportunity to have long-term in situ ob-

servations of the free troposphere with high time resolution (Collaud Coen et al., 2018) as opposed to the short duration and

inherent transient nature of airborne measurement campaigns. Observations of aerosol and trace gases in the FT are of great30

scientific value in terms of understanding long-range transport and atmospheric chemistry, quantifying background concentra-

tions, and observing long term changes in the composition of the atmosphere (Laj et al., 2009). Nevertheless, it is well known

that high-altitude mountain sites can be influenced by boundary-layer air.

The planetary boundary layer is the lowest part of the atmosphere and is in direct contact with the Earth’s surface. The

majority of natural, and especially anthropogenic, aerosols and pollutants are emitted at the surface and thus directly released35

in
:::
into

:
the PBL. The concentrations of gases and aerosols and their residence times depends on the structure of the PBL.

Over land the PBL has a pronounced diurnal cycle with deep, well-mixed boundary layers typically observed during the day

and shallow, stable boundary layers occurring at night. In complex terrain, thermally driven winds develop (e.g. slope and

valley winds, De Wekker and Kossmann (2015)
::::::::::::::::::::::::::
De Wekker and Kossmann, 2015) during the day and can transport aerosols

and pollutants from valley bottoms to high-altitude sites. Additionally, complex mountain meteorological processes such as40

orographic lifting can also transport PBL air to high altitude.

Therefore, high-altitude sites can be influenced by local boundary-layer air and free tropospheric air that may ,
:::::
where

:::
the

::::
latter

::::
may

::::
have

:::::::::
undergone

:::::::::
long-range

::::::::
transport

:
due to stronger upper-level winds, have undergone long-range transport. This

means that observations must be carefully screened and analysed in synergy with many parameters to understand the dynamics

and diurnal cycle of individual sites. Consequently, understanding the history of air masses sampled at mountain-top sites and45

related chemical composition is not an easy exercise. Since the chemical and physical composition of the sampled air masses

is, in general, inherently related to its path through the atmosphere (Fleming et al., 2012), having good methods to describe the

history of the sampled air masses increases the value of measurements. Under these circumstances, the observations can then

be treated as samples from different parts of the atmosphere both in the vertical (PBL vs FT) and the horizontal (short-range

vs long-range contributions) domain.50

Much of the analysis of ground-based atmospheric composition observations is accompanied by studies of what is known as

“climatological pathways” with the aim of mapping the probability of certain air masses reaching the station and identifying

the sources and processes influencing certain
::::::
specific

:
types of air masses (Fleming et al., 2012). There are various ways

of identifying air mass source regions. A popular and easy-to-apply approach to identify whether the measured air mass

originates from the PBL or FT is to consider the presence of specific tracers such as Radon-222
:
(Griffiths et al., 2014) or the55

ratio of carbon monoxide to oxidized nitrogen species(CO / NOy)(Herrmann et al., 2015)
:::::::::
(CO/NOy ,

:::::::::::::::::::
Herrmann et al., 2015).

This tracer based approach has the limitation that it cannot easily resolve horizontal source areas and only resolves two layers in

the vertical. Alternative methods to identify source regions, which utilizing meteorological observations or numerical models,

range from simply looking at the local wind direction to single trajectory analysis, Lagrangian dispersion models and even
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chemical transport models. The choice of method to link the atmospheric composition to the air mass history largely depends60

on where the expected sources are.

If the sources are predominately local, using local winds observations as a proxy for air mass history may suffice and this ap-

proach has been taken by e.g. de Foy et al. (2008) and Salisbury et al. (2002).
:::::::::::::::::::
de Foy et al. (2008) and

:::::::::::::::::::
Salisbury et al. (2002).

The major weakness of using in-situ wind measurements as an indicator of air mass history is that we cannot assume that the

local measurements are representative of a larger region or of the synoptic-scale flow. This is particularly important for regions65

with complex topography in which the wind speed and direction at the surface may differ drastically to the wind aloft.

Alternatively, if sources are remote,
:
a low-resolution modelling approach would

::::
may be more appropriate to identify air

mass history(Brattich et al. (2020); Sturm et al. (2013)).
:
.
:::::
Such

:::::::::
approaches

:::::
have

::::
been

::::::
applied

:::
by

:::::::::::::::::::
Brattich et al. (2020) at

::::
Mt.

::::::
Cimone

::
in
:::::
Italy

:::
and

::
by

::::::::::::::::::
Sturm et al. (2013) at

:::::::::::
Jungfraujoch

::
in

:::::::::::
Switzerland.

Single back trajectory models, often driven by low-resolution meteorological input data, have been widely used to gain in-70

sight into the sampled air mass history at high-altitude sites (Keresztesi et al. (2020); Brattich et al. (2020); Ghasemifard et al. (2019); Bolaño-Ortiz et al. (2019); Qie et al. (2018); Ou-Yang et al. (2017); Chauvigné et al. (2016); Brattich et al. (2015); Gratz et al. (2015); Ou-Yang et al. (2014); Putero et al. (2014); Tositti et al. (2013); Cheng et al. (2013),

and Fleming et al. (2012) for earlier
::::::::::::::::::
Keresztesi et al., 2020 [

::::::
Eastern

::::::::::
Carpathians,

::::::::
Romania];

:::::::::::::::::
Brattich et al., 2020 [

::
Mt.

::::::::
Cimone,

::::
Italy]

:
;
::::::::::::::::::::
Ghasemifard et al., 2019 [

:::::::::::::::
Schneefernerhaus,

::::::::
Germany]

:
;
:::::::::::::::::::::
Bolaño-Ortiz et al., 2019 [

::::::
Central

::::::
Andes,

:::::
Chile];

:::::::::::::
Qie et al., 2018 [

:::::
Mount

:::
Tai,

:::::
China];

::::::::::::::::::
Ou-Yang et al., 2017 [

::
Mt.

:::::
Fuji,

:::::
Japan]

:
;
:::::::::::::::::::
Chauvigné et al., 2016 [

:::
Mt.

::::::::::
Chacaltaya,

::::::
Bolivia];

:::::::::::::::::
Brattich et al., 2015 [

:::
Mt.

:::::::
Cimone,

::::
Italy];

:::::::::::::::
Gratz et al., 2015 [

:::
Mt.

::::::::
Bachelor,

::::::
U.S.A.];

::::::::::::::::::
Ou-Yang et al., 2014 [

::
Mt.

::::::
Lulin,

::::::
Taiwan];

::::::::::::::::
Putero et al., 2014 [

::::::
Askole,75

:::::::
Pakistan]

:
;
:::::::::::::::
Tositti et al., 2013 [

:::
Mt.

:::::::
Cimone,

::::
Italy];

::::::::::::::::
Cheng et al., 2013 [

::
Mt.

::::::
Lulin,

::::::
Taiwan];

:::
and

:::::::::::::::::
Fleming et al., 2012 references).

Advantages of this method are that it is computationally efficient, easy to perform, and for individual case studies the output

is simple to interpret. These studies primarily consider the horizontal, large-scale flow obtained by the single trajectory model.

This is particularly problematic in
::::
This

:::::::
becomes

::::::::::
problematic

::
at

:
high-altitude sites where the influence of the complex topog-

raphy is known to have a clear effect on the interaction with the convective boundary layer (Serafin et al., 2018). Another80

disadvantage of single back trajectories, as shown by Stohl et al. (2002), is that they do not account for the filamentation and

backward volume growth of the finite sampled air masses.

Lagrangian dispersion models have also been used to identify source areas at high-altitude sites (Ubl et al., 2017; Cécé et al., 2016; Lopez et al., 2015; Sturm et al., 2013; Brunner et al., 2012; Conen et al., 2012; Hirdman et al., 2010; de Foy et al., 2009).

They differ from single back
:::::::::::::
(Ubl et al., 2017 [

::::::::::::
Zeppelinfjellet,

:::::::
Norway];

:::::::::::::::
Cécé et al., 2016 [

::::::::::
Guadeloupe

::::::::::
archipelago,

:::::::::
Caribbean]

:
;

:::::::::::::::
Lopez et al., 2015 [

:::
Puy

::
de

::::::
Dome,

::::::
France];

:::::::::::::::
Sturm et al., 2013 [

:::::::::::
Jungfraujoch,

::::::::::
Switzerland];

:::::::::::::::::
Brunner et al., 2012 [

:::::::::::
Jungfraujoch,85

::::::::::
Switzerland]

:
;
:::::::::::::::
Conen et al., 2012 [

:::::::::::
Jungfraujoch,

::::::::::
Switzerland];

::::::::::::::::::
Hirdman et al., 2010 [

::::
Alert,

:::::::
Barrow

:::
and

::::::::
Zeppelin;

::::::
Arctic];

::::
and

:::::::::::::::
de Foy et al., 2009 [

::::::
Mexico

::::
City

:::::::::::
Metropolitan

::::
Area,

:::::::
Mexico]

:
). trajectory models by accounting for the deformation and stochas-

tic dispersion of air masses due to turbulent mixing and convection (Stohl et al., 2002). A notable downside of dispersion mod-

els, particularly when applied to studies covering many months, is that they produces a large amount of output which is quite

complicated to understand and interpret. Therefore, additional post-processing and automated, objective analysis methods need90

to be applied to this output to extract the maximum amount of information while ensuring the resulting dataset is user-friendly.

One way of post-processing dispersion model output is to perform a cluster analysis, where statistical methods can be used to

differentiate different source regions.
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Cluster analysis is a multivariate technique used to classify elements into groups in a way that maximizes the similar-

ity (by a predefined metric) within members of a group while also maximizing the dissimilarity across groups. Clustering95

has been extensively used in studies that aim to classify air mass history. In the case of single trajectory studies, the goal

is to group trajectories into ensembles that follow a similar pathway (Kassomenos et al. (2010)
::::::::::::::::::::
Kassomenos et al., 2010 and

references therein). In dispersion models, clustering analysis has been applied both to classify the retroplume of the particles

(e.g. Stohl et al. (2002)
::::::::::::::
Stohl et al., 2002) and also to classify the regional footprint of the particles (e.g. Sturm et al. (2013); Paris et al. (2010)

:::::::::::::::::
Sturm et al., 2013 and

:::::::::::::
Paris et al., 2010). However, these studies mostly assume that high-altitude sites are also background sites, and therefore are100

mostly interested in the contribution of long-range transport sources. This means that the meteorological data used to drive

the dispersion models is only required at
:::
may

:::::
have low spatial resolution since the local sources are assumed to be negligible.

However, there is still a lack of classification in the vertical dimension and accountability for the influence of short- and long-

range transport simultaneously which is of special relevance for locations where short-range sources are equally as relevant as

::::::
relevant

::
to
:
more distant sources.105

One such high-altitude site is the GAW (Global Atmospheric Watch) Chacaltaya (CHC) atmospheric research station (
::::
5240

::
m

:::::
a.s.l., 16.35◦

:
° S, 68.13◦W) located at a.s.l. and

:
°
::::

W)
::::::
located

:
20 km from the metropolitan area of La Paz / El Alto

but ∼1.6 km higher in altitude than the centre of La Paz. For a detailed description of the site see Chauvigné et al. (2019)

and Wiedensohler et al. (2018). Measurements of reactive and greenhouse gases as well as aerosol optical, chemical and

physical properties are routinely monitored at the station following the GAW recommended procedures (Laj et al., 2020).110

At this station, in the context of the SALTENA (Southern hemisphere high altitude experiment on particle nucleation and

growth) campaign (Bianchi et al., 2021a)
::::::::::::::::::
(Bianchi et al., 2021b), state-of-the-art instruments that measure aerosol chemical

and physical properties were deployed to complement on-going long-term observations. The intensive measurements took

place between December 2017 and June 2018 (covering both wet and dry seasons). The unique location of the station in the

under-sampled southern hemisphere enabled us to study a mixture of pristine air masses from the Amazon Basin loaded with115

biogenic emissions, regional background air masses from the Altiplano perturbed by volcanic activity, and, marine air masses

from the Pacific Ocean. In addition, strong anthropogenic influence from the La Paz / El Alto metropolitan area was sampled.

This wide range of potential source areas, along with complex mountain meteorology, and state-of-the-art, highly detailed

observations of the physical and chemical properties of aerosol and trace gases, means that a comprehensive meteorological

analysis, beyond what is the typical performed for aerosol measurement campaigns, is required.120

The overall objective of this study is to develop,
::::
and

:::::
apply

::
to

:::::
CHC, a new method to identify air mass source regions which

is valid for high-altitude stations that are influenced both by local and long-range sources and where the vertical classification

of sources is as relevant as horizontal segregationand then to apply this method to CHC. An .
:::
An

::::::
outline

::::
and overview of the

method is given in Fig. 1. The first aim of this study is , therefore, to use a regional meteorological model (Weather Research

and Forecasting model - WRF
:::::::::::
model—WRF) in combination with a Lagrangian dispersion model (FLEXible PARTicle disper-125

sion model - FLEXPART
:::::::::::::::::
model—FLEXPART) to create a high-resolution data set of source areas for CHC at hourly resolution

(steps 1 and 2 in Fig. 1). The second aim is to develop a new method, based on cluster analysis, to transform the complex, very

large
:::
and

:::::::::::::::
multi-dimensional

:
dataset into a user-friendly dataset of air mass source regions (steps 3 to 7in Fig. 1). The third aim
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is to document the characteristics of the identified source areas (clusters) which will enable the dataset produced here to be

applied in forthcoming studies on the chemical composition measurements made during the unique high-altitude SALTENA130

campaign. The fourth and final aim is to demonstrate the strength and simplicity of the classification results from our method

which we do by using them to confirm a well-known source of sulfate emissions that were measured at the CHC station.

The remainder of this study is structured as follows. In section
:::::
section

::
2, the meteorological model and the Lagrangian

dispersion model are described.
:::::::

(Fig. 1,
:::::

steps
::
1
:::
and

:::
2).

:
The newly developed clustering method is described in section 3

.
::::::
section

::
3

:::::
(steps

::
3

::
to

:
7
:::

in
::::::
Fig. 1).

:
Additional diagnostics are presented in section 4. The

::::::
spatial

:::::::::
distribution

:::
of

:::::::::
dispersion135

:::::
model

::::::
output

:::
are

::::::::
presented

::
in

::::::
section

::::
5.1.

:::
The

:
relative contribution of the

::::::
surface,

:::
the

:
PBL and the FT to CHC are described

in section??
:::
5.2. The characteristics of the identified source regions are discussed in sections

:::::::
sections 5.3 and 5.4. An example

indicating that the method works well is shown in section
:
5.5. A Discussion

::::::::
discussion

:
on the results and recommendations

are presented in section6.
::::::
section

::
6. Finally, the conclusions are presented in section 7.

2 High resolution meteorological modelling and backward dispersion simulations140

2.1
::::

High
:::::::::
resolution

:::::::::::::
meteorological

:::::::::
modelling

::::
(step

::
1)

To generate a high-resolution, gridded dataset of meteorological variables that can be used to drive a Lagrangian dispersion

model, we used the Weather Research and Forecasting (WRF) model version 3.7. WRF is a state-of-the-art, non-hydrostatic,

regional numerical weather prediction model that is used operationally and for research. Here we perform one 6-month

long continuous simulation starting on 2017-12-06 and ending on 2018-05-31.
::
As

:::
the

:::::::::
simulation

::::
and

::::::::::
subsequent

:::::::
analysis145

:
is
::::
only

::
6
:::::::
months

::::
long,

::::
this

:::::
study

:::::::
provides

:::::::
detailed

:::::::
air-mass

::::::::::
information

:::
for

:::
the

:::::::
duration

:::
of

:::
the

:::::::
intensive

::::::
period

:::::
rather

::::
than

::
a

:::::::::::
climatological

::::::::::
description

:::::
which

::::::
would

::::::
require

:
a
:::::::::::
multiple-year

:::::
study.

:
Four nested domains are used

:::::::::
(D01–D04) and their loca-

tions are shown in Fig. 2a and c. The outermost and largest domain
::::
(D01)

:
has a grid spacing of 38 km whereas the innermost

and smallest domain
:::::
(D04) has a grid spacing of 1 km.

:::
Full

::::::
details

::
of

:::
the

:::::::
domains

:::
are

:::::
given

:::
in

::::
Table

::::
S1. One-way nesting is

used: the outer domain provides boundary data for the inner nest but the inner nest does not provide any feedback to the outer150

domain. To ensure the long simulation remains close to reality throughout the 6-month period, the outer domain is nudged (i.e.

analysis nudging) to the reanalysis fields
::::::::
boundary

::::::::
conditions

:
every 6 hours.

The initial and boundary conditions were taken from the NCEP Climate Forecast System reanalysis Version 2 (Saha et al., 2014)
:::::::::::::::::::::
(Saha et al., 2011, 2014) with

a temporal resolution of 6 hours, a nearly 0.5° horizontal resolution and 64 sigma-pressure hybrid layers. The model topogra-

phy was obtained from the Global multi-resolution terrain elevation data model(GMTED2010) (Danielson and Gesch, 2011)155

with a resolution of
::
∼1 km. We use the following parameterizations: microphysics is parameterized by the Goddard Scheme;

cumulus convection is parameterized by the Grell–Freitas Ensemble Scheme in D01 and D02 and no cumulus parameterization

is used for D03 and D04; the short and long-wave radiation is parameterized by the New Goddard Shortwave and Longwave

Schemes; the Planetary Boundary Layer (PBL) Physics are represented by the Mellor–Yamada–Janjić Scheme (MYJ); and the

land surface model is the Unified Noah Land Surface Model.160
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The surface temperature of Lake Titicaca was manually prescribed to monthly means obtained from Pillco Zolá et al. (2019)

since values prescribed by WRF were unrealistically low. This is most likely due to the height of the lake (around 3.8 km a.s.l.)

and the assumptions made by WRF when interpolating surface temperature of lakes from adjacent sea surface temperature
::
(a

::::::
similar

::::::::::::::
lake-temperature

::::
issue

::
is

:::::::
reported

:::
by

::::::::::::::::
Valerio et al., 2017).

There are some limitations to the WRF simulation, primarily related to the complexity of the terrain. The 1-km resolu-165

tion inevitably smooths the topography in comparison to reality which can affect the slope angles and furthermore affect the

simulated thermally-driven winds. However, wind, temperature, and precipitation comparisons with in situ observations at

CHC (not shown) show reasonable agreement.
:::::
Figure

:::
S1

:::::
shows

:::
the

::::::::
6-month

:::::::::
timeseries

::
of

:::
the

::::::::
modelled

:::
and

::::::::
observed

::::::
hourly

::::::::::
temperature,

:::::
daily

::::
mean

::::::::::
temperature

::::
and

::::
daily

:::::::::::
accumulated

:::::::::::
precipitation.

:::::
Using

::::
this

::::
data,

:::::
basic

::::
error

::::::
metrics

:::::
were

:::::::::
computed.

:::
For

:::
the

::::::
hourly

::::::::::
temperature

::::
data,

:::
the

:::::
mean

:::::
bias,

:::::
mean

:::::::
absolute

:::::
error

:::
and

::::
root

:::::
mean

::::::
square

::::
error

::::
are −0.42 °C,

:
1.35 °C

:::
and170

1.73 °C
::::::::::
respectively.

:::
For

::::
the

::::
daily

:::::::::::
accumulated

::::::::::::
precipitation,

:::
we

::::::::
compiled

::::::::::
contingency

::::::
tables

::::
with

::::::::
different

:::::::::::
precipitation

::::::::
thresholds

::::
and

:::::::::
computed

:::
the

::::::::
accuracy

::::
(see

:::
the

::::::::::::
supplementary

::::::::
material,

:::::::
section

:::
A4,

:::
for

::::::
details

:::
of

:::::
these

:::::::::::
calculations).

::::
For

:
a
::::::::
threshold

::
of

::
1
::::
mm,

::::
the

:::::::
accuracy

:::::::::::
(i.e. fraction

::
of

::::::
correct

:::::::::
forecasts)

::
is

:::::
0.65.

:::::::::
Additional

:::::::::
evaluation

:::::
using

::
0

::::
mm

:::
and

::
5
::::
mm

:::::::::
thresholds,

:::::
along

::::
with

:::
the

:::::::
number

::
of

::::
hits,

::::::
misses,

:::::
false

:::::
alarms

::::
and

::::::
correct

::::::::
negatives

:::
are

::::::
shown

::
in

:::::
Table

:::
S2.

:::::::::::
Furthermore,

:::
an

::::::::
evaluation

::
of

:::
the

::::::::::::::
WRF-simulated

:::::::
monthly

::::::::::
accumulated

:::::::::::
precipitation

:::
for

::::::::
December

::::
and

::::
May

::
at

:
a
:::::::
number

::
of

::::::
stations

::::
near

:::::
CHC175

:
is
::::::::
presented

:::
by

::::::::::::::::::
Bianchi et al. (2021b).

:

2.2
::::::::
Backward

::::::::::
dispersion

::::::::::
simulations

::::
(step

:::
2)

The FLEXible PARTicle dispersion model (FLEXPART) is a Lagrangian transport and dispersion model which can be used for

both forward and backward simulations. We used version FLEXPART-WRF_v3.3.2 (Brioude et al., 2013) to perform backward

simulations and thus to determine the source regions of air masses arriving at CHC. The FLEXPART simulations were driven180

using the meteorological output from the 6-month WRF simulation(described in section 2). Output from all four of the WRF

output domains was used and this was available at a temporal resolution of 15 minutes. This high temporal resolution is a clear

advantage over using reanalysis data which at best is only available once per hour.

In the FLEXPART simulations, we continuously release 20000 particles/hour from CHC from 2017-12-06 00 until 2018-06-01

00
:::
until

::::::::::
2018-05-31

:
and compute their back trajectories for 4 days. The particles, passive air tracers, are released in a 10-m185

deep layer which extends from 0 m to 10 m a.g.l. and over a 2 km× 2 km square centred around CHC.
::::
With

:::
the

::::::
choice

::
of

::
4

::::
days

::
as

:::
the

::::::::::
(backwards)

:::::::::
simulation

::::
time,

:::
the

:::::::
average

::::::
median

:::::::
particle

::::::
spends

::::
94%

::
of

::
its

::::::::
residence

::::
time

::::::
within

:::
the

::::::
domain

:::::
D01.

When FLEXPART is run in backward mode, it calculates the emission sensitivity response function, also referred to as

the source-receptor relationship (SRR), on a user-specified three-dimensional longitude-latitude-height grid. The output of190

FLEXPART can be in different units and here we configure the model so that the
:::::
source

::::::::::::::::
(IND_SOURCE=2)

::::
and

:::
the

:::::::
receptor

::::::::::::::::::
(IND_RECEPTOR=2)

:::
are

::
in

:::::
mass

::::::
mixing

::::
ratio

:::::
mode

:::
and

::::::::
therefore

:::
the output (SRR) is in seconds.

::::
units

::
of

:::::::
seconds

::::
(see

:::::
Table

:
1
::
in

::::::::::::::::::
Eckhardt et al., 2017).

::::
We

::::::
choose

::::
mass

:::::::
mixing

:::::
ratios

::
so

::::
that

:::
the SRR

:::::
matrix

::
is
:::
not

:::::::
affected

:::
by

:::::::
pressure

:::::::::
variations

::
in

:::
the

::
3D

:::::::
domain.

:
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FLEXPART also permits the user to specify two
:::
two

:::::::::::
user-specified

:
nested output domains with the inner domain , closest195

to the release site (i.e.
:
the receptor), having a higher resolution than the outer domain. We make use of this functionality and

specify the first FLEXPART output domain to have the same geographic extent as D03 in the WRF simulation but the spatial

resolution (1 km) as D04 in the WRF simulation. Our second, outer FLEXPART output domain covers the same region as

D01 in the WRF simulation and has the same resolution (9.5 km) as D02 in WRF. In the vertical direction, we specify the

FLEXPART output grid to have 30 uniform levels each 500 m deep extending from the surface to 15 km a.g.l.
:::
The

::::::::
rationale200

::
for

:::::
using

:::::::
uniform

:::::::::::
level-spacing

::
is

::::::::
explained

::
in

:::
the

:::::::::
Appendix,

::::::
section

::::
A1.

FLEXPART also contains options , controlled via namelist options, for how turbulence and convection are included in the

simulations. We take the values of the PBL height, surface sensible heat flux, and the friction velocity directly from the WRF

simulation (SCF_OPTION=1). Turbulence is parameterized using the Hanna scheme (Hanna, 1984) as used in FLEXPART-

ECMWF/GFS ( TURB_OPTION=1) and we assume skewed rather than Gaussian turbulence in the convective boundary layer205

(CBL=1). Deep convection is also parameterized (LCONVECTION=1).

3 Dispersion simulation output pre-processing
:::::::::::::
Pre-processing and clustering

::
of

:::
the

:::::::::::
FLEXPART

::::::
output

Here we describe the core of our new method, namely steps 3 to 7 in the methods diagram
:::
the

::::::::
log-polar

:::
grid

:::::::::::::
transformation

(Fig. 1).
::
1,

::::
step

:::
3),

:::
the

::::
grid

::::
cell

::::::::::::
pre-processing

:::::
(step

:::
4),

:::
the

:::::::
iterative

::::::::
k-means

::::::::
clustering

:::::::::
algorithm

::::
(step

:::
5),

:::
the

:::::::::
silhouette

::::::
scoring

::::
(step

:::
6)

:::
and

::::::
finally

:::
the

:::::::
selecting

:::
the

:::::::
optimal

:::::::
number

::
of

:::::::
clusters

::::
(step

:::
7).

:::::::::
Additional

:::::::::::::
complementary

::::::::
technical

::::::
details210

::
are

:::::::::
presented

::
in

::::::::
Appendix

::
A.

:

3.1
::::::::

Log-polar
::::
grid

::::::::::::::
transformation

::::
(step

::
3)

The output from FLEXPART is the source-receptor relationship (SRR) which is related to the particles’ residence time in the

output
::
3D

:
grid cells. The grid

:::::
These

:
cells are defined by a regular longitude (x), latitude (y), and height (z) gridwhere the

:
.
::
In

:::::::
addition

::
to

:::
the

:
3
::::::
spatial

::::::::::
dimensions,

:::
the

:::::
SRR

:::
has

::
2

::::
time

::::::::::
dimensions;

:::
the

::::::::::
release-time

::
(tdimension is related to the particle’s215

release time . The output
:
,
:::
the

::::
time

:::::
when

::
the

::::::::
particles

:::::
arrive

::
at

:::
the

::::::
release

::::::::
location);

:::
and

:::
the

:::::::::::::
backwards-time

:::
(τ ,

:::
the

:::::::
amount

::
of

::::
time

:::::
before

:::
the

::::::
release

::::
time

::::::
which

:::::
varies

:::::
from

:
0
::
to

:::
96

:::::
hours

::
in

:::
our

:::::
case).

:::::
Thus,

:::
the

:::::
SRR

:::
can

::
be

:::::::
written

::
as

:::
the

::::::::::::
5-dimensional

:::::
matrix

::::::::::
SRRxyztτ .

::::
The

::::
SRR

::
is

::::::::
processed

::
to

:::::::
remove

:::
the

:
τ
::::
time

::::::::::
dimension.

::::
This

::
is

:::::::
achieved

:::
by

::::::::
summing

::::
over

::
τ :

SRRxyzt =

96h∑

τ=0

SRRxyztτ

::::::::::::::::::::::

(1)

:::::
where

:::
the

::::::::
outcome

::
of

::::
this

::::
step,

:::::::::
SRRxyzt,::

is
::
a
::::::::::::
4-dimensional

:::::
array.

::::
The

::
τ

:::::::::
dimension

::
is

:::::::
removed

:::
as

::::::::
primarily

:::
we

::::
want

:::
to220

:::::::::
determined

:::::
where

:::
the

::::::::
particles

::::
spent

::::
time

::
in
::
4
::::
days

:::::
prior

::
to

::::::
arriving

::
at
:::::
CHC,

::::
and

:::
not

:::::
when

::::::
(during

:::
the

::::
past

:
4
:::::
days)

::::
they

:::::
spent

:
it
::
in

::::
each

::::::::
location.

::::::::::
Furthermore,

:::
the

::::::
output

::::
SRR

:
is on 2 nested grids

:::::::
(Fig. 3a), which means we obtain high-resolution information for regions

that are near the receptor and lower resolution information for more distant locations. The rationale is that
:
,
::
on

::::
one

:::::
hand, near
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the receptor, the higher resolution provides better detail on potential high-influence sources, for example, in our case, the225

20 km-away nearby metropolitan area of La Paz / El Alto. Furthermore
:::
On

:::
the

::::
other

:::::
hand, far away, a low-resolution grid cell

suffices since localized potential source influences are diffused. However, the interface region between these two domains is

potentially under-sampled on one side and over-sampled on the other side.Also, apriori information on where to locate the

interface between these 2 domains is unlikely to be available.
::::::::
specifying

::::
two

:::::
output

:::::
grids

::::
with

:::::::
different

:::::::::
resolution

:::::::::
introduces

::::::::
challenges

:::::
such

::
as

:::
the

::::
step

::::::
change

:::
in

::::::::
resolution

:::
in

::::::::
SRRxyzt::::::::

(Fig. 3a):
:::
as

:::
the

::::
SRR

::
is
::::::
related

::
to
::::

the
::::::::
residence

::::
time

::::
and

:::
the230

::::::
number

::
of

:::::
each

:::::::
particles

::
in

:
a
::::

grid
::::
cell,

:::::::
smaller

::::
cells

::::
have

:::::
fewer

::::::::
particles

::::
than

:::::
larger

::::
cells,

::::
and

:::::::
typically

::::::::
particles

:::::
move

:::::
faster

::::::
through

:::::::
smaller

:::
grid

::::
cells

::::
than

:::::
larger

::::
grid

::::
cells

::::::::
resulting

::
in

:
a
:::::::
smaller

::::::::
residence

::::
time

:::
and

::::
SRR

::::
and

::::
thus

:
a
:::::
sharp

::::::::
boundary

::
in

:::
the

::::
SRR

::::
field

:::::
exists.

:

To overcome these limitations, in this study
:::
and

::::
more

::::::::::
importantly

::
to

:::::::::::
dramatically

::::::
reduce

:::
the

::::::
number

::
of

::::
grid

::::
cells

::::
and

::::
thus

::
the

::::
data

:::::::
volume,

:
we propose the use of a log-polar transform (Sarvaiya et al., 2012) of the coordinate system (Fig. 1

::
1,

:
step235

3). The new log-polar grid has grid cells which gradually increase in size as the distance from the receptor increases with

no sudden step changes to the resolution. Since we are in the tropics, we can safely use an equirectangular projection to a

Cartesian coordinate system defined by longitude (), latitude () and height above ground level (z).Any point (lat, lon, z) can be

represented in polar cylindrical coordinates and is given by

r =
√

(lon− lonc)2 + (lat− latc)2240

θ = tan−1 lon−lonc
lat−latc

z = z

where r is the radial distance to the receptor location (lonc, latc)and θ is the clockwise angle starting north from the receptor.

Notice that r is the Euclidean distance of and . The relation between r and the geodesic distance d in is given by the

approximation245

d [km] = 108.6
km

°
r (±3%)

and is valid for the whole region covered by the WRF D01 domain. The radial boundaries of the
:::
This

::
is
::::
also

::::
why

::
in

:::::::
Fig. 3b,

::
the

:::::
SRR

::::
does

:::
not

::::::::
decrease

::::::::::
significantly

::
as

:::
the

::::::::
distance

::::
from

:::
the

::::::
station

::
is

::::::::
increased

:::
(as

::
it

::::
does

::
in

:::::::
Fig. 3c).

:::::::::::
Furthermore,

::::
this

:::
also

:::::::
implies

::::
that

:::
the

:::::::::
underlying

::::::::
transport

:::::::
patterns

:::
are

:::::
more

::::::
readily

::::::::::::
distinguished

:::::
using

:::
the

:::::
SRR

::
on

::::
the log-polar grid are

separated by a distance ∆θ = 10°. The radial length ∆r of the log-polar cells is ∆r = ri+1− ri where ri+1 = ri e
a. The value250

of a= 0.18 is chosen so that the log-polar cells approximate a square with sides ∆r ≈∆θ. The ring radii of the log-polar grid

are determined by starting with a initial ring r0 of radius (≈ 8.7km). The choice of the value for r0 should be large enough to

allow the first ring of radial cells to have an area larger than the grid cells in the highest resolution output from FLEXPART so

that at least one original FLEXPART output grid falls on each radial cell. The following ring radii are obtained iteratively using

ri+1 = ri e
a. For each log-polar grid cell, the is obtained by adding the values of the rectangular grid cells whose centre of255

mass is contained within the log-polar grid cell.
::::
than

::
on

:::
the

:::::::::::::
equirectangular

::::
grid.

::::
The

:::::::::
regridding

::::::
process

::
is

:::::::
complex

:::
as

::
we

::::
had

::
to

:::::
devise

:
a
:::::::
method

:::
that

::::
was

::::
both

::::::::::::::
computationally

:::::::
efficient

:::
and

::::::::
accurate.

:
A
:::::::
detailed

::::::::::
explanation

::
of

::::
this

::::::::
regridding

:::::::::
procedure

::
is
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::::
given

::
in
:::::::

section
:::
A2

::
of

:::
the

::::::::
Appendix

::::
and

:::::::
visually

::::::::
illustrated

::
in
::::::

Figure
::::
A1.

:::
The

::::::
results

::
of

:::
the

:::::::::
regridding

:::::::
process

:::
are

::::::
shown

::
in

::::::
Fig. 3.b

:::::
which

::::::
shows

:
a
:::::::

smooth
::::::::
evolution

::
of

:::
the

:::::
SRR

::::
with

::
no

::::::::::
boundaries

::::::
evident

::
at

:::
the

::::::::::
intersection

:::::::
between

:::
the

::::
two

:::::::
original

:::::
nested

:::::
grids.

:
As a result of the grid transformation, we are left with 33480 log-polar grid cells defined by 36 θ planes

::::::
wedges,260

31 r cylinders and 30 z levels: .
::::::::
SRRθrzt.::::

This
::
is

:
a
:::::
factor

::
of

::::
328

:::::
times

::::::
smaller

::::
than

:::
the

:::::::
original

::::::
number

::
of

::::
grid

:::::
cells.

::
In

:::::
terms

::
of

:::
data

:::::::
volume

::::
this,

:::
this

:::::::::::
dramatically

::::::
reduces

:::
the

::::
data

::::::
volume

:::::
from

:::::
186.6

::
Gb

::::::::::
(SRRxyzt)::

to
:::
0.6

:::
Gb

::::::::::
(SRRθrzt, :::

see
:::::
Table

:::
S3).

:

In order to perform a cluster analysis on this dataset, we need to define the elements that will be clustered/grouped, the

number of clusters, and the features of each element used to determine the group identification. The 33480 log-polar grid

cellsare taken to be the elements to be clustered. The element’s features are the intensities at each release time (although called265

the release time, it is indeed the arrival time at the destination i. e. the receptor). The particles were released at hourly intervals

starting on 2017-12-06 and ending on 2018-07-01, therefore, there are 4248 features for each element.

3.2
::::

Grid
:::
cell

:::::::::::::
pre-processing

:::::
(step

::
4)

It is common practice to pre-process the elements before applying the clustering algorithm
::
In

:::::::
general,

:::::::::
clustering

:::::::::
algorithms

:::::
benefit

:::::
from

::::::::::::
pre-processing

:::
of

:::
the

::::
input

::::::
dataset

::::::
which

::::
here

::
is

:::
the

::::::::
SRRθrzt:::::::

matrix.
::::
This

::::::::::::
pre-processing

::::::::
modifies

:::
the

::::::
dataset270

::
for

:::
the

::::
sake

::
of

::::::::
grouping

:::
the

::::
grid

::::
cells

:::
into

::::::::::::
clusters—that

::
is

::::::::
assigning

::::
each

::::
grid

:::
cell

::
to

:
a
::::::
group. In our case, we apply three pre-

processing procedures (Fig. 1
::
1, step 4): Gaussian filter smoothing, quantile transform and filtering out non-relevant elements.

In order to smooth the dataset, we order the elements in a
:::
this

::::::::::::
pre-processing

:::
the

:
4-dimensional array. Three of the dimensions

are defined by the previously described cylindrical log-polar grid and the fourth one is the release time. The smoothing is

obtained by applying a multidimensional Gaussian filter on all 4 dimensions of the array.275

We are interested in grouping elements depending on their variation over time rather than their absolute values, therefore

we need to normalize the dataset. We use scikit-learn’s (Pedregosa et al., 2011) quantile transform function to normalize our

elements to a uniform distribution. This procedure has the advantage of being robust to outliers and also performs quite well

with sparse arrays or semi-sparse arrays like ours. After this function is applied, the distribution of each element resembles a

uniform distribution with a value range from 0
::::::::
SRRθrzt ::::::

matrix
:
is
::::
also

:::::::
stacked

:::
into

::
a
::::::::::::
2-dimensional

::::::
SRR′ρt:::::::

matrix.
:::::::
Specific280

:::::
details

::::::
about,

:::
and

::::::::
additional

::::::::::
justification

:::
for

:::::
using,

:::
the

::::::::
Gaussian

::::
filter

::::::::::
smoothing,

::::::
quantile

:::::::::
transform

:::
and

:::::::
filtering

:::
are

::::::::
presented

::
in

:::
the

::::::::
Appendix,

:::::::
section

:::
A3.

:::
As

:
a
::::
side

::::
note,

::
it

::
is

::::::::
important

::
to

::::::::
highlight

:::
that

:::
the

:::::::::
processed

::::
SRR

:::::
values

:::::::::
(SRR′ρt) ::

are
:::::

only
::::
used

::
to

:::::
group

:::
the

:::
grid

:::::
cells

:::
and

:::
not

:
to 1.

::::::::
determine

:::
the

:::::::
statistics

::
of

::::
each

::::::::
resulting

::::::
cluster.

::::::
Instead

:::
we

:::::::::
combined

::
the

::::::
cluster

::::::::
numbers

::::
with

:::::::
original,

::::::::::::
non-processed

::::
data

:::::::::
(SRRθrzt)::

to
::::::
obtain

:::
the

::::::
results

:::
that

:::
we

::::::
present

::
in

::::::
section

::
5.
:

Finally, we filter out elements whose values are either zero or have so little influence that including them adds computational285

burden to the clustering algorithm and does not improve the results.

In order to decide which elements are not beneficial based on the above definition, we define a threshold T in the following

way. First, we sum all the values for each of the elements over the time period. Then, we sort the element based on their total

value and compute the cumulative values. Finally, we split this dataset at the point where of the total value is reached and

discard the remaining . This procedure leaves us with cells out of the total in the grid. Out of the excluded cells, had a zero290

total value and the total median for the non-zero left out cells is . The total median for the included 8580 cells is .
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3.3
:::

The
::::::::
k-means

::::::::
clustering

::::::
(steps

::
5,

:
6
::::
and

::
7)

The next step (Fig. 1
::
1,

:
step 5) consists of clustering the pre-processed

::::::
SRR′ρt, i.e., the goal is to divide the matrix into a

number nc ::::::
SRR′ρt::::::

matrix
::::
into

:
k
:::::::

number
:

of groups (clusters), whose cells
::::::::
individual

:::::::
grid-cell

:::::
SRR

:::::
values

:
have a similar

temporal evolution regarding their values. The procedure is similar to the one used by Herrmann et al. (2015) and references295

there-in with a few notable differences outlined below. The
::::::::
evolution

::
in

:::
the

:::::::::::
t-dimension.

:::
To

::
be

:::::
clear,

:::
the overall objective is

to cluster 3D grid cells in the domain based on the
::::
SRR

:
contribution that they have over time

::
(t) as opposed to clustering the

spatial patterns (snapshots)
:::::
which

::
is

:::
the

::::::::
approach

::::
taken

:::
by

::::::::::::::::
Sturm et al. (2013).

:

::
In

:::::
order

::
to

:::::::
perform

::
a

::::::
cluster

:::::::
analysis

::
on

::::
this

:::::::
dataset,

:::
we

::::
need

::
to
::::::

define
:::
the

::::::::
elements

::::
that

:::
will

:::
be

::::::::::::::::
clustered/grouped,

:::
the

::::::
number

::
of

:::::::
clusters,

::::
and

:::
the

::::::
features

:::
of

::::
each

:::::::
element

::::
used

::
to

::::::::
determine

:::
the

:::::
group

::::::::::::
identification.

:::
The

:
33480

:::::::
log-polar

::::
grid

::::
cells300

::
are

:::::
taken

::
to

:::
be

::
the

::::::::
elements

::
to

::
be

:::::::::
clustered.

:::
The

::::::::
element’s

:::::::
features

:::
are

:::
the SRR

::::::::
intensities

::
at

::::
each

::::::
release

::::
time

::::::::
(although

::::::
called

::
the

:::::::
release

::::
time,

::
it

::
is

:::::
indeed

:::
the

::::::
arrival

::::
time

::
at

:::
the

:::::::::
destination

:::
i.e.

:::
the

::::::::
receptor).

::::::
There

:::
are

::::
4248

:::::::
features

:::
for

::::
each

:::::::
element,

::::
one

::
for

::::
each

:::
of

:::
the

:::::
hourly

:::::::
releases

:::::
from

:::::::::
2017-12-06

::
to
::::::::::
2018-05-31.

We use the ’k means’
:::::::
k-means (Lloyd, 1982) clustering algorithm due to its generalized use, speed and adequate performance

with a large number of elements and medium size number of clusters.
:::::::::
Additional

::::::
details

:::
on

::::
how

:::
the

:::::::
k-means

:::::::::
algorithm

::
is305

::::::
applied

:::
are

::::::::
presented

:::
in

::::::
section

:::
A4

:::
of

:::
the

:::::::::
Appendix.

::::
The

:::::
result

::
of

:::
the

::::::::
k-means

::::::::
clustering

:::
is

:::
that

:::::
each

::::
grid

:::
cell

::
in
::::

the
:::
3D

:::::::
log-polar

::::
grid

::
is

::::::::
allocated

:
a
::::::
cluster

:::::::
number.

However, the ’k means’
:::::::
k-means algorithm does not automatically select the number of clusters

:
k and there is not a right

answer for the number of clusters. Too few clusters (e.g.
:

2) means that no meaningful information is obtained whereas too

many clusters (e.g.
:
100) is impractical and risks overfitting. The optimal number of clusters is usually determined by trying310

a variety of options and calculating quantitative measures of how similar an element is to its own cluster compared to other

clusters. Here we try 2 to 24 clusters and use the silhouette method
:::::
score (Rousseeuw, 1987), which ranges from -1 to +1, to

determine the optimal number (Fig. 1 step 5
:
1
::::
step

::
6). Large positive values of the silhouette score indicate that the element

is well matched within its clusters and poorly matched to other clusters while a low or negative value imply possible miss-

classification. The overall silhouette score is obtained by averaging over the scores for each individual element and in our case315

we do a weighted average based on the total SRR of each element, so that cells with a high density have a bigger influence

on the overall score. The resulting silhouette scores for 2 to 24 clusters are shown in Fig. 4and we selected the cluster number

where a localised maximum occurs. Two options exist: 6 clusters or 18 clusters (Fig. 1 step 7).A second approach to select the

::
4.

:::
We

:::::
select

:::
the number

::
of

::::::
clusters

:::::
based

:::
on

::::
three

:::::::::::::
considerations:

:::::
firstly,

::::
and

::::::::
primarily,

::
by

::::::::::
identifying

:::::::
localised

::::::::::
maximums

::
in

::
the

:::::::::
silhouette

:::::
score,

::::::::
secondly

::
by

::::::::::
considering

:::
the

:::::::::::
applicability

::
to

:::
our

::::::::
scientific

:::::::
question

::::
and

:::::
lastly

::
by

:::::::::
accounting

:::
for

::::::::
practical320

::::::
aspects

::::
(e.g.

::::
very

::::
large

:::::::
number

:
of clusters , which is complementary to and can be used together with

:::
are

:::
not

::::
easy

::
to

:::::::
analyse

:::
and

:::::::::
visualise).

:::::
Based

::
on

:
the silhouette score , is to consider the number of clusters needed to address the scientific question. In

::::::
(Fig. 4),

:::
we

:::
first

:::::
select

::
6
:::::::
clusters

::
as

:::
this

::
is
::
a
::::
clear

:::::
local

::::::::
maximum

::::
and

:
a
:::::::

suitable
:::::::
number

::
to

:::::::
identify

:::
the

::::::::
direction

::::
from

::::::
which

::
air

:::::::
masses

:::::::
approach

:::::
CHC.

::
In

:::::::
addition

::
it

::
is

::::
easy

::
to

::::::
analyse

:::
and

::::::::
interpret.

::::::::
However,

:::
this

:::::
likely

:::::
lacks

:::::
details

::::
and

::
in our case, we are interested325
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in the air mass footprint not only in terms of their direction from CHC but also the distance from the station and the vertical

heights. Therefore a satisfactory solution would have approximately 16 clusters: 4 directions x 2 height levels x 2 distance

ranges. As this is in rough agreement with the
::
we

:::
are

::::
also

:::::::::
interested

::
in

:
a
:::::::
solution

:::::
with

::::
more

::::::::::
descriptive

:::::::
clusters.

:::::::::
Therefore,

::
in

:::::::
addition

::
to

:::::
k = 6,

:::
we

::::
also

:::::
chose

:::
the

::::
next

:::::
local

:::::::::
maximum

::
in

:::
the

::::::::
silhouette

:::::
score

:::::
which

::
is
:::::::
k = 18

:::::::
clusters.

:::
The

:
18 clusters

we find using the silhouette score, we select 18 clusters. This is however quite a large number and for some applications may330

be too detailed. Therefore, in addition we also perform the analysis for 6 clusters
:::::
cluster

:::::::
solution

:::::::::
adequately

:::::::::
describes

:::
the

:::
data

:::::
while

::::::::::
maintaining

::
a
:::::::::::::
straightforward

:::::::::::
interpretation.

:::::::::
Localised

:::::::::
maximums

::
in

:::
the

:::::::::
silhouette

::::
score

::::
also

::::
exist

:::
for

::::::
k = 21

::::
and

::::::
k = 23

:::::::
clusters.

::::::::
However,

::
we

:::::::
perform

:::
our

:::::::
detailed

:::::::
analysis

:::::
using

::
18

:::::::
clusters

:::::
rather

::::
than

::
21

::
or

:::
23

::::::
clusters

:::
as

:
it
::
is

::::
more

::::::::
practical

::
to

::::
work

::::
with

:
a
:::::::
smaller

::::::
number

:::
of

::::::
clusters. To ensure the 6 clusters can be directly related to the set of 18 clusters

:::
(i.e.

:::::
share

:::
the

::::
same

::::::::::
boundaries), we first create the 18 clusters and then perform a second round of clustering (starting from the 18 clusters)335

to obtain the 6 clusters. The 6 clusters are subsequently referred to as the 6 main pathways
::::::::
following

:::
the

::::::::::
terminology

::::
used

:::
by

:::::::::::::::::
Fleming et al. (2012).

4 Additional diagnostics and data

In order to understand and categorize air masses that have been in contact with either the surface (where the emissions occur)

or the PBL (where surface emissions are well mixed), we define the surface SRR percentage influence:340

SSRR =
SRRsurface

SRRtotal
× 100 (2)

:::::
where

:::
the

::::::
SRRtotal::

is
:::::
equal

::
to

:::
the

::::::::
theoretical

::::
total

::::::::
residence

::::
time

::
of

:::
the

:::::::::
simulation

::::::::
expressed

::
in

:::::::
seconds

:::::::::::::::::::::::
(4days = 345600seconds).

and the pseudo boundary layer percentage influence:
::
In

:::::::
addition

::
to

:::
air

::::::
masses

::::::
which

::::
have

::::
been

:::::::::
influenced

:::
by

:::
the

:::::::
surface,

::
we

:::
are

::::
also

:::::::::
interested

:::
free

::::::::::::
tropospheric,

::::::::
(“clean”)

::
air

:::::::
masses

:::::
which

:::
are

:::::
those

::::
that

:::::::
originate

::::
and

::::::
remain

:::::
above

::::
the

::::::::
boundary345

::::
layer

:::::
(BL).

:::
For

::::
this

:::::
reason

:::
we

::::
also

:::::::
calculate

:::
the

:::::::
pseudo

:::
BL

::::::::
influence:

PBL∗SRR =
SRR<1.5km

SRRtotal
× 100. (3)

Using the concept of a
:::::
where

:

SRR<1.5km =
1.5km∑

z=0

SRRθrzt.

::::::::::::::::::::::::

(4)

:::::
Using

:::
the

::::::
pseudo

:::
BL

::::::::
influence

:::::
allows

:::
us

::
to

:::::::
calculate

:::
the

::::
free

::::::::::
tropospheric

::::::::
influence

::::::
simply

::
as

::::::::::::::::::
FTSRR = 1−PBL∗SRR.

:::::
Thus

:::
the350

:::::::::
percentage

::
of

:::
air

:::
not

:::::::::
influenced

::
by

:::
the

::::::
lowest

::::::
1.5km

::
is

:::::::
assumed

:::
to

::::::::
represent

:::
the

:::
free

::::::::::
troposphere

:::::
(FT).

::
A
:
pseudo boundary

layer , which has
:::
with

:
a constant depth of 1.5 km (i.e we select the first 3 levels of the FLEXPART output (<),

:::
also

:
means

that we neglect the diurnal variation in the PBL height. We make this approximation as due to our computational procedure,
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the specific depth of the PBL is lost when transforming the SRR output into log-polar coordinates. The choice of 1.5 km

is motivated by previous studies that have quantified PBL depth in nearby regions. For example, Carneiro and Fisch (2020)355

analysed radiosonde and remote sensing data from the GoAmazon project (Martin et al., 2016) and show that the typical

minimum PBL height is 250 m and the deepest PBLs occur during daytime in the dry season and are 1.5 km deep on average.

The global study by von Engeln and Teixeira (2013), based on reanalysis data, shows that PBL heights are somewhat deeper

near CHC than in the Amazon but PBL heights
:::
and

:
typically range between 500 m and 1.5 km. Therefore, the real PBL

will usually be similar in depth or shallower than our value of 1.5 km. This means using the pseudo BL depth will likely360

over-estimate the influence of PBL air masses
:::
and

::::::::::::
underestimate

:::
the

:::
FT

:::::::
influence.

When referring to the SRR percentage influence of a cluster, for simplicity we use

SRR[%] =
SRR

SRRtotal
× 100100.

:::
(5)

where the SRRtotal is equal to the theoretical total residence time of the simulation expressed in seconds (4days = 345600seconds).

This means that for every time step of the FLEXPART simulation, the sum of all the SRR cluster values adds up to SRRtotal.365

In practice this theoretical value is not always achieved since inevitably a very small fraction of the particles leave the outer

domain (D01) before the end of the 4-day simulation. This also implies that for some time periods, the sum of all the cluster

might not add up to 100%.

In order to understand diurnal cycles in the from different vertical levels and regional sources, we generated detrended diurnal

cycle timeseries by decomposing the raw signal into a trend (SRRtrend) and a diurnal cycle (SRRdiurnal cycle) in the following370

fashion:

SRRdiurnal cycle(t) = SRRraw signal(t)−SRRtrend(t).

The SRRtrend is obtained by applying a running mean with a window of to the raw signal.

Furthermore, when analysing the diurnal variation of the for each of the 18 clusters we first objectively identify the clusters

that present a diurnal cycle by transforming their time series into the frequency domain by applying a fast Fourier transform375

and plotting the resulting frequency spectrum (Fig. S4). In this domain, we visually identify those clusters that present a local

peak around the frequency . Manual inspection of the clusters’ timeseries indicated that not every day included in each cluster

identified by the fast Fourier transform process to have a peak at had a pronounced diurnal cycle. Therefore, the clusters are

then subjected to a dynamic time warp (DTW) grouping procedure (Tavenard et al., 2020) that classifies the days with and

without a diurnal peak i.e. influence from the boundary layer. The results of this classification are shown in Figs. S5 to S8.380

In order to describe the land-use characteristics of the geographical areas that the resulting clusters and main pathways origi-

nate from, we make use of the World Wildlife Fund (WWF) terrestrial ecoregions (TER, Dinerstein et al., 2017
:::::::::::::::::
Dinerstein et al., 2017),

WWF marine ecoregions (MER, Spalding et al., 2007
::::::::::::::::
Spalding et al., 2007) classification scheme, and two extra regions

(EXR), namely the Lake Titicaca and the Southern Atlantic ocean regions, that we add to fulfil the domain. In total, 37

different ecoregions exist in the area covered by the largest WRF model domain. The advantage of using these regions is that385

they are well defined and described in the literature, do not depend on arbitrary political borders and are defined considering
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regions that have similar ecosystems and therefore similar potential emission signatures. Furthermore, the regions are also

nested within biomes that provide a more general picture. Within our outermost domain (D01), 13 different biomes are present.

Sulfate mass concentrations measured at the CHC station from March to May 2018 are used in this study to illustrate an

example application of our clustering methodology. The aim of this example is to show that our new method can identify the390

main source of the high sulfate concentrations measured at CHC. A very likely source of this is degassing from nearby volca-

noes which was observed at the same time. The sulfate dataset is obtained using the quadrupole aerosol chemical speciation

monitor (Q-ACSM, Aerodyne Research Inc.) which is able to routinely characterize non-refractory submicron aerosol species

such as organics, nitrate, sulfate, ammonium, and chloride (Ng et al., 2011). Because of the low atmospheric pressure, a 130

µm diameter critical orifice was used in order to retain the normal sample mass flow rate (Fröhlich et al., 2013). In addition,395

inlet flow and mass calibration (using ammonium nitrate and ammonium sulfate as standards) were accomplished to guaran-

tee optimal instrumental performance and mass quantification. The instrument’s time resolution was 30 minutes. This sulfate

timeseries was then correlated to the SRR timeseries of both the 18 clusters and the 6 main pathways.

5 Results

We now present the results. In section ??
:::
First

::
in

:::::::
section

:::
5.1

::
we

:::::::
present

::
an

::::::::
overview

::
of

:::
the

:::::
mean

:
SRR

:::::::::
horizontal

::::::::::
distribution.400

::
In

::::::
section

:::
5.2 we quantify the contribution of the surface, "pseudo "

::::::
pseudo PBL, and FT sources to the air masses measured

at CHC. In section 5.3 the characteristics of the 6 main pathways are presented before the more detailed analysis of the 18

clusters is shown in in section 5.4. Finally, in section 5.5 we show one example of how our clustering results can be combined

with measurements to identify source areas.

5.1 Relative contribution of PBL and FT to air sampled at CHC
:::::
Mean

::::
SRR

::::::
spatial

:::::::::::
distribution405

:::::
Before

::::
the

::::::::
clustering

::::::
results

:::
are

:::::::::
presented,

:::
we

::::
first

::::
give

:
a
::::
brief

::::::::
overview

:::
of

:::
the

:::::::
6-month

::::::::
average,

::::::::
vertically

::::::::
integrated

:::::
SRR

::
on

:::
the

::::::::
log-polar

::::
grid

::::
and

::
its

::::::
spatial

::::::::::
distribution

:::::::
(Fig. 3).

::::
The

:::::::
average

::::
SRR

::
is
::::

not
::::::::
uniformly

::::::::::
distributed,

::::
even

:::::
when

:::::::
similar

::::::::
horizontal

::::::
ranges

:::
are

:::::::::
considered.

::::
Two

:::::::
distinct

:::::::::
large-scale

::::
areas

::::
exist

::::
with

::::
high

:::::
SRR

::::::
values.

:::
The

::::
first

::
of

::::
these

::
is

:::
the

::::::::
lowlands

::
of

::::::
Bolivia

::
to

:::
the

::::::::
south-east

::::
and

:::
east

::
of

:::::
CHC

:::
and

:::
the

::::::
second

::
is

::
the

::::::::
lowlands

::
of

::::
Peru

::
to

:::
the

:::::::::
north-west

::
as

::::
well

::
as

::::
parts

:::
of

::
the

:::::::
Pacific.

:::::
These

:::
two

:::::::
distinct

::::
areas

:::
are

:::::::
divided

::
by

:::
the

::::::
Andes

::::
(see

::::::
Fig. 2b)

::::::
which

:::
run

::::::::::::
approximately

::::::::::
north-south

:::
and

:::
act

::
as

::
a
::::::
barrier.

::::
The410

:::::::
presence

::
of

:::
the

:::::
steep

::::::::::
topography

::
is

::::
also

::::
why

::::
areas

:::
of

:::
low

:::::
SRR

:::
are

::::::::
identified

::
in

::::::::
northern

:::::::
Bolivia;

:::
the

:::::::
easterly

:::::
winds

::
in

::::
this

:::::
region

:::
are

:::::::
blocked

:::
and

::::::::
deflected

::
by

:::
the

::::::::::
topographic

::::::
barrier

:::::::::
preventing

:::
air

::::::
masses

::::
from

:::::
these

::::::
region

:::::
easily

:::::::
reaching

:::::
CHC.

:

:::
The

::::
inset

:::
in

::::::
Fig. 3b

::::
also

:::::
shows

:::
the

:::::::
average

::::::::
influence

:::
that

:::
La

:::
Paz

::
/
::
El

::::
Alto

:::
has

:::
on

:::::
CHC.

::::
The

:::::::
average,

::::::::
vertically

:::::::::
integrated

::::
SRR

:::::
values

:::
in

:::
this

::::
area

:::
are

::::::::::
surprisingly

:::
low

::::
and

:::::
much

:::::
lower

::::
than

:::::
other

::::
areas

::
at
::
a
::::::
similar

:::::
radial

:::::::
distance

:::::
from

::::
CHC

:
(
:::::::

20km).

:::
For

:::::::
example,

:::
the

::::::
region

::
20

:::
km

:::::::::
north-east

::
of

::::
CHC

:::
has

:::::::
average,

::::::::
vertically

:::::::::
integrated

::::
SRR

:::::
values

::::
that

:::
are

::::
more

::::
than

::::::
double

:::::
those415

:::::
found

::
in

:::
the

::
La

::::
Paz

:
/
::
El

::::
Alto

:::::
area.

::::::
Figure

::
3b

::::
only

:::::
gives

:
a
:::::

very
::::
basic

::::::::
overview

::
of

::::::
where

:::
air

::::::
masses

:::
that

:::::
affect

:::::
CHC

::::::::
originate

::::
from.

:::
At

:::
this

:::::
point,

::::::
before

::::::
having

::::::::
clustered

:::
the

::::
SRR,

:::
the

:::::::
vertical

:::::::::
distribution

::::
and

:::::::
temporal

::::::::
evolution

::
of
:::
air

::::::
masses

::::::::::
influencing

::::
CHC

::::::
cannot

:::::
easily

::
be

::::::::::
determined

:::
nor

:::::::::
visualised.

:
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5.2
::::::

Relative
::::::::::::
contribution

::
of

:::
the

:::::::
surface,

:::::
PBL

:::
and

:::
FT

::
to
:::
air

::::::::
sampled

::
at

:::::
CHC

As stated in the introduction, high-altitude mountain-top sites are often used in an attempt to sample free tropospheric air. In420

this section, we use the SRR output from FLEXPART to determine the relative influence of PBL air
::
the

:::::::
surface,

::::
PBL

:
and FT

air on the total sampled air mass at CHC over the 6-month period and the diurnal pattern of this influence. Previous methods,

for example, those based on specific tracers (Sturm et al. (2013)), are binary in nature as they label each observation time

as influenced either by PBL or FT air masses. In contrast, our
:::
Our

:
method is probabilistic and

:
, for each observation time

:
,

determines the percentage of the sampled air mass influenced by the PBL or FT. Figure 5a shows frequency histograms of the425

percentage influence of the "surface" and of a pseudo PBL (see Eq. ??
:
2
::::
and

:::::
Eq. 3 for definitions) for each hour. There is a

strong linear correlation between the surface and PBL influence ; the best fit regression is given by

SSRR = 0.42×PBL∗SSR− 0.76

and the r-squared value is
:::::::::
(slope=2.38

::::
and

:::
r2=0.9

:
)
:::::
which

:::::::
implies

::::
that

:::
the

::::::::::
1.5km-deep

::::::
pseudo

::::::::
boundary

:::::
layer

::
is

::
in

:::::::
general

:::::
within

:::
the

::::
well

:::::
mixed

:::::::::
boundary

::::
layer.430

The median influence of the surface is 9% meaning that on average 9% of the air sampled at CHC has been in contact

with the surface in the last 4 days. In terms of the pseudo PBL, on average 24% of the sampled air masses represent PBL

air. Indirectly this means that approximately 76% of the air sampled at CHC can be considered representative of the FT. Note

that this does not mean 76% of observation times are representative of the FT; it should be interpreted as, on average, at any

given time ∼
::
an

::::::
average

::::::::::
simulation

::::
hour

:
24% of the measured air mass represents the PBL and the remainder the FT. This435

is a key strength of our method; it can determine at any given time what percentage of the sampled air mass arrives from

different locations. An additional interpretation of the results shown in Fig. 5a is to consider the percentage of time when there

is no influence (0 % on the x-axis) from the surface or pseudo BL i.e. where there is purely free tropospheric air masses. This

situation is never detected which indicates CHC is rarely representative of purely FT air. However, this is partly an artefact of

the method employed here as all particles are forced to arrive at the surface (10 m a.g.l.) at the station.440

Figure 5b shows the diurnal cycle of the detrended surface influence for each day of the 6-month campaign.
::::
study

::::::
period

:::::::
whereas

::::::
Fig. 5c

:::::
shows

::::
the

::::::
average

:::::::
diurnal

:::::
cycle.

:
The largest positive values, indicative of a large surface influence, occur

during daytime. The peak emerges at 10 am local time
::
(c)

::::
and

:::::::
happens almost every day

::
(b). The duration of the high surface

influence increases throughout the campaign with higher values of surface influence extending later in the afternoon in April

and May. This gradual increase in the surface influence during the campaign might be explained by the transition towards the445

dry season when clear-sky conditions become more frequent increasing insolation periods which, in turn, favour deep well

mixed PBL structures.

5.3 The six main pathways

In this section we describe the results from clustering the SRR log-polar cells into 6 groups. We call these 6 groups the main

pathways (PW) since they tend to start near the station and reach far away from it as opposed to the 18 clusters that occupy450
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more localised regions.
::::
Also,

:::
the

:::::
limits

:::
of

:::::
many

::
of

:::::
these

:::
are

::::::::
delimited

:::
by

:::
the

:::::::
Andean

:::::::
plateau. Furthermore, we label each

cluster based on their ‘clock direction’ from CHC and append them with the acronym PW to distinguish them from the 18

clusters. For example, cluster label ‘03_PW’ refers to the cluster whose centroid position is located east from the station.

In Fig.
:
6a and b we show the 6 main pathways (PW) along with the 18 cluster centroids. The pathways are the shaded

coloured regions and contain 2 to 4 clusters from the 18-cluster grouping. The 03_PW is located geographically in the lowlands455

to the east of the station occupying the biomes 1, 2, 6, and 9 which in general are tropical forests and grasslands (Fig. 6e and

f).

Cluster 05_PW originates from the south of the station in the altiplanic (montane grass and shrubland, biome 4) and lowland

(subtropical dry broadleaf, biome 6) regions. Horizontally, it follows the Altiplano plateau and its eastern slopes to the station.

The cluster 07_PW comes from the south-west and most of its area is located above the Pacific Ocean/coast (biomes 3, 5, 7460

and 8). Cluster 09_PW comes from a relatively short distance and it occupies the altiplanic biome 4, the Titicaca lake (13) and

two Pacific biomes (5, 8). The cluster 11_PW comes from the north and north-west. It occupies the lowlands, Altiplano and the

Pacific coast i.e. biomes 1, 4, 11. As it gets closer to CHC, cluster 11_PW is located higher than 12_PW and thus goes above

12_PW. Finally, 12_PW comes from the lowlands north of the station and is contained within biome 1 (tropical broadleaf

forest).
:::::::::
Additional

::::::::::
information

:::::::::
containing

:::
the

::::::::
pathways

::::::::::
boundaries

:::
and

::::
their

::::::
spatial

:::::
SRR

:::::::::
distribution

:::
at

:::::::
different

:::::::
z-levels

::
is465

:::::
shown

::
in

:::::::
Fig. S9.

In Fig. 7a to d, we respectively describe the pathways’ centroids in terms of their height above ground; height above sea

level; surface influence (SSRR, Eq. 2); and SRR percentage influence. In general, the farther the centroid is from CHC, the

higher above ground level its centroid location is. The same pattern is observed for their height above sea level, however, if

the location of the centroid is not too far away and above a location where the ground height is considerably lower than CHC,470

then the centroid location is located below the linear trend, e.g. 03_PW and 12_PW. In terms of their SSRR, a decreasing trend

is observed, in other words, the farther the centroid, the lower the influence from the surface. Therefore, 12_PW is highly

influenced by its contact with ground (62 %, Table
::::::
Figs. 7

:::
and

:
S2) while 07_PW is almost unperturbed by the surface (8 %).

Finally, the SRR influence of each pathway seems to be uncorrelated with the distance from CHC. Pathway 03_PW has the

highest influence over CHC with a share of 29 %. This is in agreement with previous studies at CHC (Chauvigné et al., 2019)475

where air masses from the Amazon were identified as the major contributors during the wet season DJFM (our modelling

period involves
:::::
covers DJFMAM).

Finally, in Fig.
:
8, we show the temporal influence of each of the pathways. We quantify the influence in percentage of each

pathway by dividing the pathway’s SRR values by the theoretical total residence time of the simulation, 96 hours × 3600

seconds. Note
::::
again that the sum of the influence for all 6 pathways shown in Fig.

:
8 does not always sum to exactly 100 which480

is due to particles leaving the domain. One of the strengths of our method is that at any given time, we can identify more that

one cluster influencing the station. Time series of the %influence for each of the 6 main pathways (PW) from 2017-12-06 until

2018-05-31.

A clear change in the influence pattern at the beginning of May is seen: On one hand, the influence of pathways 03_PW

and 05_PW and to a lesser extent 12_PWbecomes
:::::::
become almost negligible. On the other hand, pathways 07_PW and 08_PW485
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increase their influence. This is consistent with Chauvigné et al. (2019) where it was shown that during the wet season (DJFMA)

air masses from the lowlands and the east-southeast tend to have a bigger influence on CHC. In our case, 12_PW and 03_PW

are clearly lowland pathways while 05_PW has a mixture of Altiplano and lowland influence that, nonetheless, comes from

the southwest and therefore is mostly favoured during the wet season. The pathway 11_PW does not present a clear change

during the 6 month period. Finally, visual inspection shows that the influence of each pathway happens in
:::::
varies

::
on

::
a
::::::::
timescale490

::
of 1-to-2 week timespans

:::::
weeks. We will further develop this point when focusing on the detailed 18 clusters (section 5.4).

5.4 The 18 clusters

In the previous section, we provided a general picture of the air masses that influence CHC by using the 6 pathways. However,

for an in-depth description, we now focus on the more detailed 18 clusters. We have subdivided these 18 clusters into 4 sub-

groups based on their horizontal distance from CHC: short range (SR), short-medium range (SM), medium range (MR) and495

long range (LR) for distances ranging from 0 to 100 km, 100 to 300 km, 300 to 800 km and >800 km respectively. Further-

more, we have labelled each cluster based on their distance range along with their ‘clock direction’ from CHC. For example,

cluster label ‘09_MR’ refers to the cluster whose centroid position is located west from the station at a distance between

300 and 800 km. As done before, we first describe the clusters in terms of their horizontal location, then their vertical centroid

properties and finally their temporal evolution. In Fig. 6c and d, we show the clusters geographical location along with a ref-500

erence to the biomes that they occupy in space (Fig.
:
6e and f).

::::::::
Additional

::::::::::
information

:::::::::
containing

:::
the

:::::::
clusters

:::::::::
boundaries

::::
and

::::
their

:::::
spatial

:::::
SRR

:::::::::
distribution

::
at
::::::::
different

::::::
z-levels

::
is

::::::
shown

::
in

:::::::
Fig. S10.

:

To further quantify the superposition of clusters and biomes presented in Fig. 6e and f, in Fig. 9 we show a heat map

of the percentage of area that each cluster and biome share. For example, the geographical area of cluster 02_MR is split

between the Tropical & Subtropical Moist Broadleaf Forests (biome 1, 56%), the Tropical & Subtropical Grasslands, Savannas505

& Shrublands (biome 2, 28%), the Tropical & Subtropical Dry Broadleaf Forests (biome 6, 10%), and the Flooded Grasslands

& Savannas (biome 9, 6%). In general, there is a clear split between clusters located northeast
::::::::
north-east

:
(i.e. clock direction

of 11 to 05) and southwest (clock direction of 05 to 11) from the station. The first are located in the generally more tropical

and humid lowland biomes (1, 2, 6, 9) while the latter are located in drier altiplanic biomes (4, 13) and pacific biomes (3, 5, 7,

8, 10, 11, 8).510

In Fig. 10a to d, we respectively describe the clusters’ centroids in terms of their height above ground; height above sea level;

surface influence (SSRR, Eq. 2); and SRR percentage influence. In general, they follow the same patterns that we described for

the 6 pathways with the exception that there are more clusters below the CHC station’s height a.s.l. (Fig. 10b). These clusters,

namely 02_SR, 12_SM and 03_SM are located close to CHC in the lowlands located north and northeast
::::::::
north-east

:
from the

station.515

Specifically, all of the short-range clusters’ centroids are below 2 km a.g.l. and below 5.2 km a.s.l. (Fig. 10a and b) which is

below the CHC station height (5.2 km a.s.l.). Furthermore, these clusters are in close contact with the surface since their SSRR

(Eq. 2) is greater than 50 % (Fig. 10c).
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The short-medium range clusters’ centroids are between 2.4 km and 2.6 km a.g.l. However, their height a.s.l. varies from

4.1 to 6.1 km. This is due to clusters coming from both the Altiplano to the southwest and the lowlands to the northeast520

::::::::
north-east of the station. In general, only one third of these clusters’ air masses are below 1.5 km (SSRR) and thus these clusters

include notably more influence from the free troposphere than the SR clusters.

The medium-range centroids are between 3.2 km and 6.8 km a.g.l. This variance is mostly proportional to the distance from

CHC (Fig. 10a) with clusters 04_MR and 05_MR being slightly below the rest due to their location in the lowlands. Their

height above sea level varies from 6.1 to 7.1 km (Fig. 10b). In terms of their SSRR, these clusters vary from 7 to 20 %. These525

values are approximately inversely proportional to their centroid distance from the station (Fig. 10c).

Finally, for the long-range subgroup, their clusters’ centroid far distance from CHC is reflected in their mean height a.g.l.

of 8.0 km, mean height a.s.l. of 8.4 km, and their low mean SSRR of 0.7 %. Furthermore, due to this high altitude and low

influence from the surface, air masses arriving from these clusters are likely to present free troposphere characteristics. These

clusters are all located west of the station (clock direction 07-10).530

The temporal evolution of the clusters is shown in Figs. 11 and 12. All clusters within the short-range subgroup show a high

degree of temporal variability (Fig. 11a and b). Cluster 02_SR presents a high frequency variability which upon further analysis

(via Fourier transform, Fig. S4) is shown to be a clear diurnal pattern. However, this pattern does not happen everyday (Fig. S5)

but in 81 out of the 176 modelled days (46 %). During these days, the peak happens in the early afternoon (13h local time). The

cluster 04_SR is highly variable as well however it does not present a diurnal pattern (Fig.
:
S4) and its variation is similar to that535

of 05_MR, probably due to the fact that both clusters belong to the same pathway. Cluster 07_SR does present a sharp diurnal

pattern in 41 (23 %) out of 176 modelled days (Fig.
:
S6) peaking at 11h local time. We conjecture that the peak time difference

between 02_SR (13h) and 07_SR (11h) is due to the different land type; 02_SR originates from the high humidity biome 1

(Tropical and subtropical forest, Fig.
:
6f) whereas 07_SR originates from the less humid biome 4 (Montane grasslands). This

difference would entail different thermal inertia, different diurnal cycles and partitioning of the sensible and latent heat fluxes540

and thus a different boundary layer evolution. Cluster 07_SR is of particular interest since intense anthropogenic emission

sampled at CHC would most likely be generated in this highly populated area. Furthermore, the close contact of cluster 07_SR

with the surface and its diurnal variability favour transport of emissions to the station during the day when PBL air from La

Paz and El Alto is advected upslope by thermally driven winds. The cluster 10_SR, which originates close to Lake Titicaca,

presents a diurnal pattern in 63 (36 %) out of 176 days peaking at 8h local time (Fig. S7). We conjecture that this early morning545

peak is related to the lake breeze circulation that develops due to the temperature difference between land and the lake. The

average surface temperature of the lake, obtained from Pillco Zolá et al. (2019), is 10 °C and does not have a diurnal cycle.

At 8h local time, the lake’s surface temperature is higher than the surroundings favouring a land breeze (airflow from land to

the lake) near the surface and ascent over the lake. The return flow, near the top of the BL, potentially advects air masses from

the lake to CHC. The cluster 11_SR does not present a diurnal variation (Fig. S4) and its influence seems to be mostly driven550

by the medium-range cluster 11_MR (Fig. 12). Cluster 12_SR does present a diurnal pattern (Fig.
:
S8) in 48 days out of the

176 modelled days (27 %) with a peak around 10h local time. This earlier peak, in comparison to 07_SR, is most likely due
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to its close location to CHC (the closest one, 14 km ) so that early morning irradiation would create favourable conditions for

up-slope winds.

The short-medium (SM), medium (MR) and long (LR) range clusters’ temporal variability is shown in Fig. 11c and d, and555

Fig. 12a to d. The power spectra of the SRR intensity for these clusters is shown in Fig. S4 and is between 1 and 2 weeks

except for 08_SM and 12_SM which, in addition, also show a small diurnal variability (Fig. S4).
:
.

The prevalence of some short-medium range clusters changes during the 6-month period. Clusters 03_SM, 12_SM, 02_MR,

04_MR and 05_MR occur regularly from December (wet season) to April (transition season) but cease influencing in May

(dry season). In contrast, the influence of clusters 06_SM, 11_MR and 10_LR do not change substantially during the 6 months560

whereas the influence of clusters 08_SM increases 09_MR, 07_LR and 08_LR in May.

Finally, in Table
:::
Fig. 13 we present a quantitative summary of the 18 clusters centroid properties along with their average

SRR influence. Furthermore, we also link each of the 18 clusters to their main pathway. On average, there are 3 clusters per

pathway and at least two distinct distance ranges. Furthermore, the clusters within each pathway are heterogeneous in position,

surface influence and age which supports the idea that further insight into the air mass transport patterns can be attained by565

further subdividing the pathways.

5.5 An example application: sulfate from volcanic degassing

This section presents a proof of concept for our newly developed method to identify sources regions of air sampled at CHC.

We use
::
in

:::
situ

:
observations of particulate sulfate at CHC , performed with an Aerosol Chemical Speciation Monitor (ACSM)

::::
taken

::::
with

::
a
::::::::
Q-ACSM

:
instrument, together with the results of our air mass history clustering analysis presented above to do570

so
::::::
identify

:::
the

::::::
source

::
of

:::
the

:::::::::
emissions. During March and April, satellite imagery showed that while the Ubinas volcano was

not degassing, the Sabancaya volcano, located 400 km WNW from CHC, was
:::::::
emitting and thus there was a clear, known,

almost point source of particulate sulfate. As there are no other comparable strong point sources of particulate sulfate in the

domain of interest, we assume that when high levels of particulate sulfate were measured at CHC, the air mass passed through

the area near the volcano. Therefore, there should be a high correlation between the time series of sulfate and the SRR time575

series for clusters originating near the volcano.

To determine if this is the case, we calculated the ‘Pearson’ correlation coefficients for all available measurements of sulfate

from the ACSM
::::::::
Q-ACSM to the SRR time series of each of the 18 clusters and all of the 6 pathways which are shown in

Fig. 14a.

The cluster and pathway with the highest coefficients are 09_MR (0.40) and 08_PW (0.42) and both correlations have a580

pvalue < 0.001. The horizontal locations of this cluster and pathway are shown in Fig. 14b and their corresponding timeseries

are shown in Fig.
:
14d. The timeseries for the sulfate measurements is shown in Fig. 14c. The correlation in combination with

either the simplified (6 pathways) and the specific (18 clusters) clustering scheme correctly assigns the source region to the

location of the degassing Sabancaya volcano.

The coefficients from the pathways are quite clear; the highest value of 0.42 is at least twice as high as the next candidate,585

07_PW. This clearly distinguishes 08_PW as the best candidate for the source of measured sulfate. The 18 clusters also assign
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the highest coefficient value correctly to 09_MR. However, 10_SR, 11_SR and 08_LR all have similarly high correlation

coefficients. Therefore, while the results from 18 clusters are better at pinpointing the source region of sulfate, other regions

also appear as plausible candidates so there is a risk of overfitting when too many regions are considered. This may be a result

of this source regions being entangled in terms of their temporal influence over the station. For example, in this particular case,590

the high correlation of 10_SR, 11_SR and 08_LR could be attributed to the fact that air masses that travel through the region

of the volcano also have a time residence in the regions where 10_SR, 11_SR and 08_LR are located.

This example shows that the clustering scheme is successful in identifying regions in its simplified version (6 pathways) and

also in its more detailed version (18 clusters) albeit care must be taken when drawing conclusions so that we do not overfit to

the source regions. Finally, it should be noted that only one example is presented here. Future work will include the extension595

to additional case studies, for example, comparing the clusters to measurements of black carbon.

6 Discussion and recommendations

Previously, we described the characteristics and location of the 6 pathways and 18 clusters and related this to the surface type

(biomes). It is also relevant to consider how the pathway positions and time series relate to typical meteorological patterns.

During the austral summer, the Intertropical Convergence Zone (ITCZ) migrates south, coinciding with the decrease of the600

meridional gradient temperature and the associated southward shift of the westerly subtropical jet stream. At the same time,

deep convection starts to develop especially in the central part of the continent. This favours the expansion of the equatorial

easterly winds and thus a weak mean east-to-west flow in the middle and upper troposphere is established (Garreaud et al.,

2003). This east-to-west flow is well captured by 03_PW (03_SM, 02_MR and 04_MR) which is strong in DJFMA.

At the same time, the expansion of the trade winds also generates the South American Low Level Jet (SALLJ) which brings605

moisture from the Atlantic and the Amazon basin first to the eastern slopes of the Andes and then turning in a north-to-south

fashion towards the southern part of the continent. It is known that the SALLJ is also responsible for bringing moisture to the

Altiplano plateau since part of this flow is channelled into/goes over the plateau (Insel et al., 2010). This pattern correlates

well with 12_PW (12_SR, 02_SR and 12_SM) which brings low altitude air masses from the eastern slopes of the station. The

pathway also is strong during DJFMA and diminishes its influence in May. It is important to note that 03_PW and 12_PW do610

not necessarily influence the station synchronously.

During the austral winter, the ITCZ migrates north and the subtropical westerly jet stream moves north reaching up to 20

degrees south Garreaud et al. (2003)
::::::::::::::::::
(Garreaud et al., 2003). This creates an upper-level, large-scale westerly flow that favours

air masses from the Pacific/Altiplano region. This coincides with the increment of the influence of both 07_PW (06_SM,

07_LR and 08_LR) and 08_PW (specially 08_SM and 09_MR). The first brings long-range subsiding air masses from high615

up in the troposphere (7.7 km a.s.l.) while the second advects dry air from Altiplano at low-level (2.5 km a.g.l.). Both of these

clusters are present during the dry season and reach maximum intensity in May.

The connections of pathways 05 and 11 to the general atmospheric dynamics is not immediately evident. Pathway 05_PW,

which comes from the south ,
:::
and is strongest between December to

:::
and

:
March and has a low centroid height a.g.l.

:
(3 km),
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:
.
::::
This could be linked to the development of a strong South Atlantic Convergence Zone starting in the eastern slopes of the620

Altiplano at latitudes of around 20° that would pull surface air from the south. On the other hand, 11_PW which consists of 3

clusters, originates from both from the Amazon and the Pacific (Fig.
:
9). These multiple sources areas, spanning both east and

west, indicate that 11_PW is a "hybrid" pathway and therefore likely occurs in both the wet and dry seasons.

This study builds upon a previous source region analysis performed by Chauvigné et al. (2019) at the CHC station where

a similar WRF setup was used in combination with back trajectories. Our methodological approach is notably different from625

this earlier study primarily as we use a Lagrangian dispersion transport model rather than a back trajectory model meaning

that turbulent mixing and convection processes that air parcels experience during transport are better represented in this study.

Additionally, our WRF simulations and hence meteorological data have a higher vertical resolution (61 levels compared to

28) and our 18 clusters provide more detail than the 6 clusters presented by Chauvigné et al. (2019). Our pathway results are

largely in agreement with this previous study: similar source regions are observed for similar seasons and both studies show630

that source regions from the west start influencing the station in the transition month of May. However, key additions of this

study are (1) the vertical distribution of the air masses sources is more accurately captured, (2) the influence of the surface and

the pseudo PBL on air sampled at CHC is more accurately quantified and (3) the diurnal cycle is captured by the analysis.

The type of analysis performed here is applicable to many other stations worldwide both in mountainous regions but also

for stations in non-mountainous areas which are equally influenced by local and remote sources. Therefore, based on the635

experience and knowledge gain here, we make the following recommendations for future studies:

– For source identification in regions with complex terrain we strongly recommend the use of Lagrangian dispersion

models over simple, limited number back trajectories based approaches. This has been previously noted also by Stohl

et al. (2002).

– The accuracy of the meteorological input data is crucial for reliable results and therefore should be verified before640

performing the FLEXPART simulations. In our case, this step revealed large biases in the Titicaca lake temperature

which affected local wind patterns.

– Selecting the optimal number of clusters is challenging and both quantitative scoresand the scientific application
::::::::::
particularly

::
in

::::::::
situations

::::
like

:::
this

::::::
where

:::::
there

::
is

:::::::::
continuum

::::::
rather

::::
than

:
a
:::::

clear
:::::::
number

::
of

::::::::
clusters.

::::::::::::
Consequently,

::
in

:::::::
addition

:::
to

:::::::::
quantitative

:::::::
scores,

:::
the

::::::::
scientific

::::::::::
applications

::::
and

:::::::
practical

:::::::
aspects

:
should be considered

::::
when

::::::::
selecting

:::
the

:::::::
number645

::
of

::::::
clusters. We recommend that both pathways (smaller number) and clusters (larger number) are computed and their

centroid characteristics analysed. Both are useful and have notably different applications.

– Due to computational limitations, and given that the campaign only lasted for six months, we only simulated six months.

For a more complete physical understanding, if computational resources allow, we recommend that a full annual cycle

is always simulated even if the observational campaigns the model simulations support are shorter in duration.650
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7 Summary and Conclusions

In this study we successfully developed a new method to identify air mass source regions in sites of complex topography. We

then applied this methodology to the GAW station CHC, located near La Paz / El Alto at 5240 m.a.s.l. In order to accomplish

this, we started with a WRF simulation in combination with FLEXPART to create a high-resolution data set of source areas

for CHC. Then we applied our new method, based on cluster analysis, to transform the complex and large output dataset into655

a user-friendly timeseries dataset of air mass source regions. We documented the characteristics of the identified source areas

and demonstrated the strength and simplicity of the method’s classification results by applying our method to confirm that the

Sabancaya volcano is the source of sulfate measurements at the CHC station. The main conclusions of our analysis are:

– On average, 9% of the air sampled at CHC has been in contact with the surface, and 24% with the "pseudo "
::::::
pseudo

:
PBL,

within the previous 4 days. Therefore we can conclude that on average, at any given time∼76% of the measured air mass660

at CHC represents free tropospheric air. Thus, the air masses sampled at CHC are very rarely purely free tropospheric

air masses .
:::::::
(Fig. 5a).

– The surface influence has a clear diurnal cycle, with low contributions during the night and higher contributions starting

at 10 am local time and continuing during the day. The duration of the high surface influence during daytime is longer

in the dry season (May) compared to the wet season (December - March).
::::::::::::::
December–March,

:::::::
Figs. 5b

::::
and

::
c).

:
665

– Air masses arriving at CHC have a wide range of sources covering many different biomes and altitudes and it is common

for any one specific sample time to have more than one source region .
:::::
(Figs.

::
6,

::
8,

:::
11,

::
12

:::
and

::::
S3).

:

– The most dominant pathway to emerge in our 6-month study is 03_PW which is responsible for 29% of the SRR and

originates in the Amazon. However, as we detected that this PW does not occur in May, we hypothesize, based on

Chauvigné et al. (2019), that if our analysis extended over all of the dry season (May-August
:::::::::::
May–August), the overall670

prevalence of this PW would decrease and others (e.g.
:
07_PW and 08_PW) would increase .

::::::
(Figs. 7

::::
and

::::
S2).

– For the clusters’ centroid positions, a linear relationship exists between the horizontal distance from CHC and the height

above ground, with those farther away also being located higher in the atmosphere .
::::::
(Figs. 7

::::
and

:::
10).

:

– Clusters located closest to CHC have the highest pseudo PBL influence and, rather than a linear decrease, the influence

of the pseudo PBL decreases almost exponentially with increasing distance from CHC .
:::::::
(Fig. 10).675

– The contribution to the SRR is largest for the medium-range clusters and smallest for the short-range clusters thus

showing no linear relationship with the distance from CHC .
:::::::
(Fig. 10).

:

– The short-range clusters have high temporal frequency modulated by local meteorology driven by the diurnal cycle

whereas the mid- and long-range clusters’ variability occurs on timescales- governed by synoptic-scale dynamics .

:::::::
(Figs. 11,

:::
12,

::::
S4,

:::
S5,

:::
S6,

::
S7

::::
and

::::
S8).680
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To conclude, firstly, the method developed here can be applied to many other long term monitoring stations. Secondly, the

data sets produced here, that provide detailed information about the sources of air masses sampled at CHC, will be applied in

forthcoming studies on the chemical composition measurements made at CHC during the SALTENA campaign.

Appendix A:
:::::::::
Additional

:::::::::::
FLEXPART

::::::
output

:::::::::::::
pre-processing

::::
and

:::::::::
clustering

::::::
details

:::
The

:::::::
purpose

::
of

::::
this

:::::::
appendix

::
is
::
to

::::
give

:::::::::
additional

:::::::
technical

::::::
details

:::::::::
concerning

::::
how

:::
the

::::
raw

::::::::::
FLEXPART

::::::
output

:::
was

:::::::::
processed685

:::
and

:::::::::::
subsequently

::::::::
clustered.

::
In

::::::::
addition,

::::
more

:::::::
detailed

::::::::::
justification

:::
for

:::
the

::::::
choices

:::::
made

::
in

::::
this

::::::
process

:::
are

::::
also

:::::
given

::::
here.

:

A1
:::::::
Vertical

::::
(dz)

:::::::::::
FLEXPART

:::::::
output

:::::
levels

:::
The

::::
two

:::::
nested

::::::
output

:::::
grids

::
of

::::::::::
FLEXPART

:::::
were

::::::
defined

::
as

::::::::
described

:::
in

::::::
section

:::
2.2.

::::
The

::::::
vertical

::::
grid

::::
was

:::::::
selected

::
to

::::
have

::
a

:::::::
constant

::
dz

:::
of

:::
500

::
m
:::::::

instead
::
of

:::
the

:::::::::
customary

:::::::
varying

::::::::
resolution

:::::
a.g.l.

:::::::
(usually

:::
the

::::::
vertical

:::::::::
resolution

::
is

::::::
higher

::::
close

:::
to

:::
the

::::::
surface

::::
than

:::::
aloft).

::::::::
However,

::
as

:::
we

:::
are

::
in

::
an

::::
area

::
of

::::::::
complex

:::::
terrain

:::
the

:::::::
constant

:::
dz

::::
was

::::::
chosen

::
so

:::
that

::::::::::
comparison

::
of

:::::::
vertical690

::::
grids

:::
for

::::::::
locations

::::
with

:::::::::::
considerable

:::::::
different

:::::::
ground

:::::
height

:::::
a.s.l.

::
is

:::::
easier.

::::
For

:::::::
example

:::::::
consider

:::
the

::::
grid

:::::
cells

:::::
above

:::::
CHC

::
(5

:::
km

:::::
a.s.l.)

:::
and

:::
La

:::
Paz

::::
(3.6

:::
km

::::::
a.s.l.).

:
If
:::

we
:::::
were

::
to

:::
use

:::::::
varying

::::::
vertical

:::::::::
resolution

::::
a.g.l.

::::
then

:::
an

:::
air

::::
mass

:::::::
moving

:::::
along

:::
the

::::
same

:::::::
pressure

:::::
level

::
as

:::::
CHC

:::::
would

:::::
move

:::::
from

:
a
::::
high

:::::::::
resolution

::::::
vertical

::::
grid

::
to

::
a

:::
low

:::::::::
resolution

::::::
vertical

::::
level

:::
in

:::
less

::::
than

:::
20

:::
km

:::
(the

:::::::::
horizontal

:::::::
distance

::::
from

:::::
CHC

::
to

::
La

:::::
Paz).

:::
We

:::::::
selected

:
a
:::
dz

::
of

:::
500

:::
m

::
as

:
a
:::::::::::
compromise;

::::::
ideally

:::
we

::::
want

::
as

:::::
small

::
as

:::
dz

::
as

:::::::
possible

::::
near

:::
the

::::::
surface

:::
but

::
to

::::::::
minimize

::::::::::::
computational

::::
cost

:::
we

::::
want

::
a
::::
large

:::
as

:::::::
possible

::
dz

::::
and

::::
thus

:::::
fewer

::::::
vertical

::::::
levels.695

:::
The

:::::::
constant

:::
dz

::::
also

:::::
makes

:::
the

:::::::::
conversion

:::::::
between

:::::
a.s.l.

:::
and

::::
a.g.l.

:::::::::
seamless.

A2
:::::::::::
Rectangular

::
to

::::::::
log-polar

::::::::::
regridding

::
of

:::
the

:::::
SRR

::::::
matrix

:::::
(step

::
3)

::::
Since

:::
we

:::
are

:::
in

:::
the

::::::
tropics,

::
it

::
is

:::::::::
reasonable

::
to

:::
use

:::
an

:::::::::::::
equirectangular

:::::::::
projection

::
to

:
a
::::::::
Cartesian

:::::::::
coordinate

:::::::
system

::::::
defined

:::
by

::::::::
longitude

:
(lon

:
),
:::::::

latitude
:
(lat

:
)
:::
and

::::::
height

:::::
above

::::::
ground

:::::
level

:::
(z).

::::
Any

:::::
point

::::
(lat,

:::
lon,

::
z)

::::
can

::
be

::::::::::
represented

::
in

:::::
polar

:::::::::
cylindrical

:::::::::
coordinates

::::
and

:
is
:::::
given

:::
by700

r=
√

(lon− lonc)2 + (lat− latc)2
::::::::::::::::::::::::::

θ= tan−1
lon− lonc
lat− latc

:::::::::::::::

z
:
= z
:::

:::::
where

:
r
::
is
:::
the

:::::
radial

:::::::
distance

::
to
:::
the

:::::::
receptor

:::::::
location

:::::
(lonc,::::

latc)::::
and

:
θ
::
is
:::
the

:::::::::
clockwise

:::::
angle

::::::
starting

:::::
north

::::
from

:::
the

::::::::
receptor.

:::::
Notice

::::
that

:
r
::
is
:::
the

:::::::::
Euclidean

:::::::
distance

::
of lat

:::
and

:
lon

:
.
:::
The

:::::::
relation

:::::::
between

::
r

:::
and

:::
the

::::::::
geodesic

:::::::
distance

:
d
::
in

:
km

:
is
:::::
given

:::
by

:::
the705

::::::::::::
approximation

d [km] = 108.6
km

°
r (±3%)

::::::::::::::::::::::
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:::
and

::
is

::::
valid

:::
for

:::
the

:::::
whole

::::::
region

::::::
covered

:::
by

:::
the

::::
WRF

::::
D01

:::::::
domain.

::::
The

:::::
radial

:::::::::
boundaries

::
of

:::
the

::::::::
log-polar

:::
grid

:::
are

::::::::
separated

:::
by

:
a
:::::::
distance

:::::::::
∆θ = 10°.

:::
The

:::::
radial

::::::
length

:::
∆r

::
of

:::
the

::::::::
log-polar

::::
cells

::
is

:::::::::::::
∆r = ri+1− ri:::::

where
::::::::::
ri+1 = ri e

a
::::
and

:
e
::
is

::::::
Euler’s

:::::::
number

:
(2.71 ). The value of a= 0.18 is chosen so that the log-polar cells approximate a square with sides ∆r ≈ ri ·∆θ. The ring radii710

of the log-polar grid are determined by starting with a initial ring r0 of radius 0.08°
:::::::::
(≈ 8.7km).

::::
The

::::::
choice

::
of

:::
the

:::::
value

::
for

:::
r0

:::::
should

:::
be

::::
large

:::::::
enough

::
to

:::::
allow

:::
the

:::
first

::::
ring

::
of
::::::

radial
::::
cells

::
to

::::
have

:::
an

::::
area

:::::
larger

::::
than

:::
the

:::
grid

:::::
cells

::
in

:::
the

::::::
highest

:::::::::
resolution

:::::
output

:::::
from

::::::::::
FLEXPART

::
so

::::
that

::
at

::::
least

:::
one

:::::::
original

::::::::::
FLEXPART

::::::
output

::::
grid

::::
falls

::
on

::::
each

:::::
radial

::::
cell

:::::
(with

:::
this

::::::::::::
configuration,

::
the

::::::::
550-km2

:::::
urban

::::
area

:::
of

::
La

::::
Paz

:
/
:::
El

::::
Alto

::
is

:::::::
covered

::
by

:::
37

::::::::
log-polar

::::
grid

:::::
cells).

::::
The

::::::::
following

:
30

:::
ring

::::
radii

:::
are

::::::::
obtained

::::::::
iteratively

:::::
using

:::::::::::
ri+1 = ri e

a.715

::::
Once

:::
the

::::
new

::::::::
log-polar

:::
grid

::
is
:::::::
defined,

:::
the

::::
SRR

:::::
must

::
be

::::::::
regridded

::::
from

:::
the

:::::::
original

:::::::::::::::
longitude-latitude

:::
grid

::
to
::::
this

::::
new

::::
grid.

:::
For

::::
each

::::::::
log-polar

:::
grid

::::
cell,

:::
the

:
SRR

::
is

:::::::
obtained

:::
by

::::::
adding

:::
the SRR

:::::
values

::
of

:::
the

:::::::::
rectangular

::::
grid

::::
cells

::::::
whose

:::::
centre

::
of

:::::
mass

::
is

::::::::
contained

:::::
within

:::
the

::::::::
log-polar

::::
grid

::::
cell.

:::::
Given

:::
the

::::::::::
considerable

:::::::
amount

:::
of

::::
data,

:::
the

::::::::
regridding

:::::::::
procedure

:::::
needs

::
to

::
be

::::
very

:::::::::::::
computationally

:::::::
efficient.

::::
The

:::::::::::::
straightforward

:::
way

::
to
::::::

regrid
:::
the

::::::
dataset

::::::
would

::::
have

::::
been

:::
to

:::
find

:::
the

:::::::
volume

::::
that

::::
each

:::::::::
rectangular

::::
grid

::::::
shares

::::
with

::::
each

::::::::
log-polar

::::
grid

::::
cell720

:::
and

::::
then

::::::::
distribute

:::
the

:::::
SRR

:::::
value

:::::::::::
accordingly.

:::::::
However

::::
this

:::::::
method

::::::
proved

::
to

:::
be

::::::::::::::
computationally

:::
too

:::::::::
demanding

::::
and

:::
an

::::::::
alternative

:::::::::::::::::::::
computationally-efficient

:::::::
method

::::
with

::::::
similar

:::::
logic

::::
was

:::::::
devised

:::
and

::
is
::::::

shown
::::::::::::

schematically
::
in

::::::
Figure

::::
A1.

::::
The

::::::::
alternative

:::::::
method

::
is

:::::::::
performed

::
in

:
a
:::::::::
procedural

:::::::
manner

::::::
starting

::::
with

::
a

:::::::
log-polar

::::
grid

::::
cell

::
in

:::
the

::::::::
outermost

::::
ring.

::::
The

::::::::
log-polar

::::
cell’s

:::::
SRR

:::::
value

::
is

:::::::
obtained

:::
by

::::::
adding

:::
all

:::
the

:::::::::
rectangular

::::
grid

:::::
cells

::::::
(yellow

:::::::
squares

::
in

::::::::
Fig. A1)

::::
from

:::
the

::::::
coarse

:::::::::
resolution

:::::::::
rectangular

::::
grid

::::
(L1)

::::::
whose

:::::
center

::::
fall

:::::
within

:::
the

::::::::
log-polar

::::
grid

::::
cell.

:::::
Then

:::
we

:::::::
proceed

::
to

::::::
obtain

:::
the

::::
SRR

:::::
value

::
of

:::
all

:::::
other725

:::::::
log-polar

::::
grid

::::
cells

::
in

:::
the

:::::
same

:::
ring

::::
and

::::
then

:::::::
continue

::::
with

:::
the

::::
next

::::
ring

::::
until

:::
we

::::
reach

:::
the

:::::
inner

::::
most

::::
ring.

:::
As

:
a
::::
rule

::
of

::::::
thumb

:
at
:::::
least

::
50

::::::::::
rectangular

::::
grid

::::
cells

:::
are

:::::::
required

:::
per

:::
one

::::::::
log-polar

::::
grid

::::
cell.

::
If

:::
this

::::::::
condition

::
is
:::
not

::::
met,

::::
then

:::
the

::::::::::
rectangular

::::
grid

::::::::
resolution

::
is

::::::::
increased

::
by

:::::::
splitting

::::
each

::::
cell

:::
into

::
4

:::::::::
equal-sized

::::::::::
rectangular

::::
cells

::::
with

:::
1/4

::
of

:::
the

::::::
original

::::
SRR

:::::
value

::::
(for

:::::::
example

:::
that

::
is

:::
the

::::
case

::
for

::::
L2,

:::
H2,

:::
H3

:::
and

::::
H4)

::
or,

::
if
::::::::
available,

:::
by

:::::::
choosing

::
a
:::::::::
rectangular

::::
grid

::::
with

:::::
higher

:::::::::
resolution

:::
(for

::::::::
example

::::
H1).

::
In

:::
this

:::::::
manner

::
we

::::::
ensure

::::
that

::::
each

::::::::
log-polar

::::
grid

:::
cell

::
is

:::::::
obtained

:::::
from

:::
the

::::
most

:::::::
resolved

::::::::::
rectangular

::::
grid

:::::::
available

::::
and

::
in

:::
the730

:::
case

::::
that

:::
the

::::::::
log-polar

::::::::
grid-cell

:::
size

:::::
starts

:::
to

::
be

::::::::::
comparable

::
to

::::
that

::
of

:::
the

:::::::::
collocated

::::::::::
rectangular

::::
grid,

:::::
then,

:::
the

::::::::::
rectangular

:::
grid

::
is

:::::::::
subdivided

:::
so

:::
that

:::
the

::::
SRR

::::::
values

::
of

:::
the

::::::::::
rectangular

:::
grid

:::::
cells

:::
are

::::::::::::
proportionally

::::::
mapped

:::::
onto

:::
the

:::::::
log-polar

:::::
cells.

::::
The

:::::
output

::
of

:::
the

:::::::::
regridding

::
is

:
a
::::::::::::
4-dimensional

:::::
array:

:::::::::
SRRθrzt.:

A3
:::::::::::::
Pre-processing

::
of

:::
the

:::::
SRR

::::::
matrix

:::::
(step

:::
4):

:::::::::
smoothing,

:::::::::::::
normalization

::::
and

:::::::
filtering

:::
The

:::::::::
SRRθrzt ::::::

matrix
::
is

:::::::::
smoothed

::
in

:::
all

:
4
::::::::::

dimensions
::::::

using
::::::
scipy’s

::::::::
Gaussian

:::::
filter

:::::::
function

::::::::::::::::::::
(Virtanen et al. (2019)).

::::
The735

:::::::
standard

:::::::::
deviations

::
of

:::
the

::::::::
Gaussian

:::::
filter

:::
are

:::::
given

:::
for

::::
each

:::::::::
dimension

::::
and

:::
are

:::::::::::::::::::::::::
t= 3,z = 0.25, r = 1,θ = 0.5.

::::
The

:::::::
purpose

::
of

:::::::::
smoothing

:::
the

:::
data

::
is
::::::
solely

::
to

:::::::
improve

:::
the

:::::::
accuracy

:::
of

:::
the

::::::::
clustering.

:::::::::
Clustering

:::::::
without

:::::::::
smoothing

::::::::
produces

::::
very

::::::
similar

:::::
results

::::::
except

:::
that

:::::
when

:::::::::
smoothing

::
is

:::
not

:::::
used,

::::
very

:::
low

::::
and

:::::::::
intermittent

::::::::
influence

::::
cells

:::
are

::::::::
assigned

::::::
clusters

:::::::::
randomly

:::::
rather

:::
than

::::::::
matching

:::::
their

::::::::::
neighbours.

:::
The

:::::::::
smoothing

::::::
forces

::::
these

::::
few

:::::::::::
‘problematic’

:::::
cells

::
to

::
be

::::::::
assigned

::
to

:::
the

::::::::::
neighboring

::::::
group.

::::
Once

:::
the

:::::::::
clustering

:::
has

::::
been

::::::::::
performed,

:::
and

::::
each

::::
grid

::::
cell

::::::::
allocated

::
to

:
a
::::::
cluster,

:::
the

::::::::::
subsequent

:::::::
analysis

::
is

:::::::::
performed

:::::
using740

::
the

::::::::::::
non-smoothed

:::::::::
SRRθrzt.:
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:::
We

:::
are

::::::::
interested

::
in

::::::::
grouping

::::::::
elements

:::::::::
depending

::
on

:::::
their

:::::::
variation

:::::
over

::::
time

:::::
rather

::::
than

::::
their

::::::::
absolute

::::::
values,

::::::::
therefore

::
we

:::::
need

::
to

::::::::
normalize

::::
the

::::::
dataset.

:::
We

::::
use

:::::::::::
scikit-learn’s

::::::::::::::::::::::::::
(Pedregosa et al., 2011) quantile

::::::::
transform

::::::::
function

::
to

::::::::
normalize

::::
our

:::::::
elements

::
to

::
a
:::::::
uniform

::::::::::
distribution.

::::
This

:::::::::
procedure

:::
has

:::
the

:::::::::
advantage

::
of

:::::
being

:::::
robust

:::
to

::::::
outliers

::::
and

:::
also

::::::::
performs

:::::
quite

::::
well

::::
with

:::::
sparse

::::::
arrays

::
or

::::::::::
semi-sparse

:::::
arrays

::::
like

::::
ours.

:::::
After

::::
this

:::::::
function

::
is

:::::::
applied,

:::
the

:::::::::
distribution

:::
of

::::
each

:::::::
element

::::::::
resembles

::
a745

::::::
uniform

::::::::::
distribution

::::
with

::
a

::::
value

:::::
range

:::::
from

:
0
::
to
::
1.
:::

In
::::
order

:::
to

:::::::::
accomplish

:::
the

::::::::::::
normalization,

:::
the

:::::::::
smoothed

::::::::
SRRθrzt::

is
::::
then

::::::::::
transformed

::::
from

::
a

::::::::::::
4-dimensional

::::
array

::
to
::
a
::::::::::::::
two-dimensional

:::::
array

:::::
which

::
as

::::
one

:::::::::
dimension

:::
has

:::
the

::::::
arrival

::::
time

:
t
:::
and

:::
as

:::
the

::::::
second

:::::::::
dimension

:::
has

::
all

:::
of

:::
the

::::
grid

::::
cells

:::
(p):

::::::::
SRRpt.::::

This
::::::::::::
transformation

::::::
means

::::
that

:::
the

::::::::
clustering

:::::::
scheme

::::
will

:::
not

:::::
know

:::::
which

::::
cells

:::
are

::::::::::::::::
neighbours—hence

:::
the

:::::
need

::
to

::::::
smooth

:::::::::
SRRθrzt :::::

while
:::
still

::
in
::::::::::::
4-dimensional

::::::
space.

::::
The

::::::::::::
transformation

::::
step

:::::
(a.k.a.

::::::::
stacking)

::::
into

:
a
::
2

::::::::::
dimensional

:::::
array

::
is

::::::
normal

::
in

::::::::
k-means

::::::::
clustering

::
as
::

it
::
is
::
a

::::::::::
requirement

::
of

:::
the

:::::::::
algorithm.

::::::::
Quantile750

:::::::
mapping

::
is

::::
then

:::::::
applied

:::::
along

:::
the

::::
time

:::::::::
dimension

:::
of

:::
the

:::
2D

:::::
array,

:::::::
SRRpt:::::

using
:::::::::::

scikit-learn’s
::::::::

quantile
:::::::
mapping

::::::::
function

::::::::::::::::::
(QuantileTransformer,

::::::
default

::::::::
options).

:::
The

::::::
output

::
of

::::
this

::::
step

::
is

:
a
:::
2D

:::::
array

::::
with

:::
the

:::::
same

::::::::::
dimensions

::
as

:::::::
SRRpt,::::::::

however

::::::
instead

::
of

:::
the

::::
SRR

::::::
values,

:::
the

::::::
values

::::
now

::::
range

:::::
from

:
0
::
to
::
1.
::::
This

::
is
:::::::
denoted

:::::::
SRR′pt.:

:::
The

::::
last

:::
step

::::::
before

:::::::::
clustering

::
is

::
to

:::::::
remove

:::
the

::::
grid

:::::
points

:::::
from

:::::::
SRR′pt :::::

whose
:::::
SRR

:::::
values

::::
are

:::::
either

::::
zero

::
or

:::::
have

::::
very

::::
little

::::::::
influence

:::
and

::::::::
including

:::::
them

::::
adds

::::::::::::
computational

:::::::
burden

::
to

:::
the

::::::::
clustering

:::::::::
algorithm

:::
and

:::::
does

:::
not

:::::::
improve

:::
the

:::::::
results.755

::::::::
However,

:::
this

::::
also

::::::
makes

::::::::
scientific

:::::::::
sense—we

:::
do

:::
not

::::
want

:::
to

::::::
include

::::
grid

::::
cells

::::
into

::::
any

:::::
cluster

::
if
:::

air
:::::
from

:::::
those

:::
grid

:::::
cells

::::
never

:::
(or

::::
very

::::::
rarely)

::::::
arrives

::
in

::::::
CHC.

::
In

:::::
order

::
to

:::::
decide

::::::
which

::::::::
elements

:::
are

:::
not

::::::::
beneficial

:::::
based

:::
on

:::
the

:::::
above

:::::::::
definition,

:::
we

:::::
define

:
a
::::::::
threshold

::
T

::
in

:::
the

::::::::
following

::::
way.

:::::
First,

:::
we

:::
sum

:::
all

:::
the SRR

:::::
values

:::
for

::::
each

::
of

:::
the

::::::::
elements

::::
over

:::
the

::::
time

::::::
period.

:::::
Then,

::
we

::::
sort

:::
the

:::::::
element

:::::
based

::
on

::::
their

::::
total

:
SRR

::::
value

:::
and

::::::::
compute

:::
the

:::::::::
cumulative

:
SRR

::::::
values.

:::::::
Finally,

::
we

::::
split

::::
this

::::::
dataset

::
at

:::
the

::::
point

::::::
where 85 %

:
of

:::
the

::::
total

:
SRR

::::
value

::
is

:::::::
reached

:::
and

:::::::
discard

:::
the

::::::::
remaining

:
15 %.

::::
This

:::::::::
procedure

:::::
leaves

:::
us

::::
with 8580 cells760

out of the total 33480 in the grid. Out of the excluded cells, 24.8 %
:::
had

:
a
:::::

zero SRR
:::
total

:::::
value

::::
and

:::
the

::::
total

:::::::
median

:::
for

:::
the

:::::::
non-zero

:::
left

:::
out

:::::
cells

::
is 2060 s

:
.
::::
The

::::
total

::::::
median

:::
for

:::
the

:::::::
included

:::::
8580

::::
cells

::
is
:
112190 s

:
.
:::
The

::::::
output

::
of

::::
this

:::
step

::
is
::::::::
SRR′ρt,

:::::
where

:
ρ
:::
are

:::
the

:::::::
retained

::::
grid

::::::
points.

A4
::::
The

:::::::::
clustering

:::::::::
algorithm

::::::
SRR′ρt::

is
::::
then

:::::
used

::
as

:::::
input

::
to

:::
the

:::::::
k-means

:::::::::
clustering

:::::::::
algorithm.

::::
The

:::
aim

:::
of

:::::::
k-means

:::::::::
clustering

::
is

::
to

::::::::
minimize

::
a

:::::::
distance765

:::::
metric

:::::::
between

::::
each

::::::
cluster

:::::::
member

::::
and

:::
the

:::::
cluster

::::::::
centroid.

:::::::::::::
Mathematically

:::
this

::
is
::::::::
achieved

::
by

::::::::::
minimizing

:::
the

:::::::
function

:

J =
k∑

j=1

ρ∑

i=1

‖xi− cj‖2

::::::::::::::::::

(A1)

:::::
where

:
k
::
is
:::
the

:::::::
number

::
of

:::::::
clusters,

:
ρ
::
is
:::
the

:::::::
number

::
of

:::
grid

::::::
points,

:::
xi :

is
:::
the

:::
ith

::::
grid

:::
cell

:::
and

:::
cj :

is
:::
the

::::::
cluster

::::::::
centroid.

:::::::::
‖xi− cj‖2

:
is
:::
the

:::::::::
Euclidean

:::::::
distance

:::::
which

::
is

:::
the

:::::::
distance

::::::
metric

::::
used

::::
here.

:

:::
The

:::::::
number

::
of

::::::::
clusters,

::
k

::
is

::::
first

::::::
defined

::::
and

::::
their

::::::::
centroids

::::::::
positions

::::
(i.e.

::::::
cluster

::::::
centre

::::::
points)

:::
are

:::::::
initially

:::::::::
randomly770

::::::::
specified.

::::
Each

::::
grid

:::
cell

::::::::
(element)

::
is

::::
then

:::::::
assigned

::
to

:::
the

::::::
cluster

::
to

:::::
which

::
it
::
is

::::::
closest

::
to

:::::
based

::
on

:::
the

:::::::::
Euclidean

:::::::
distance.

:::::
Once

::::
each

:::::::
element

::
is

:::::::
assigned

::
to

::
a

::::::
cluster,

::::
new

:::::::
centroid

::::::::
positions

:::
are

:::::::::
computed.

:::
An

:::::::
iterative

:::::::::
procedure

::::
then

::::
takes

::::::
place,

::::
with

:::
the

:::::::
elements

::::::::::
re-assigned

::
to

:::::::
clusters

:::::
based

:::
on

:::
the

:::::
newly

:::::::::
computed

::::::::
centroids.

::::
This

:::::::
iteration

:::::::::
continues

::::
until

:::::
either

:::::::::::
convergence

::
is
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:::::::
achieved

::
or

:::
the

:::::::::
maximum

::::::
number

::
of

::::::::
iterations

::
is

:::::::::
completed.

:::::::::::
Convergence

::
is

:::::::::
determined

:::
by

:::::::::
considering

:::
the

:::::::
residual

::
of

:::
the

::::
sum

::
of

::::
each

:::::::::
individual

::::::::
euclidean

:::::::
distance.

::::
The

::::
final

::::::
output

::
of

:::
the

:::::::
k-means

:::::::::
clustering

::
is

:::
that

::::
each

::::
grid

::::
cell

::::::::
(element)

::
is

:::::::
assigned

::
a775

:::::
cluster

:::::::
number.

:
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Step 2 FLEXPART

Step 3 Log-polar 
grid transforma-
tion

Step 4 Grid cell 
pre-processing

Step 7  Selecting
the optimal 
number of clusters

Step 5 Iterative 
k-means clustering 
algorithm 

Step 6  Silhouette 
scoring 

source receptor 
relationship

- gaussian �lter

- quantile transform

- remove low in�uence cells

input: coarse meteo data (CFSv2)

Step 1 WRF high-res. meteo data

Figure 1. Flowchart describing the method’s steps. The steps are divided into three groups: modelling, pre-processing and clustering. SRR

refers to the source-receptor relationship (explained more in section 3)and T is the threshold used for the removal of low influence cells.Knc

is the set containing nc number of clusters Ci. Each cluster Ci is populated with grid cells that have a similar temporal influence over CHC.
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Figure 2. Overview of the studied region and the WRF model domains. Panel a) shows the location of the 4 nested domains (D01, D02, D03

and DO4
:::::::
D01–DO4), b) shows the topography in kilometers above sea level (km a.s.l.) of the whole domain, c) is a zoomed in version of a)

and also shows the location of the Chacaltaya station (CHC, 5.2 km a.s.l.
:
, blue dot), La Paz / El Alto metropolitan area (LPB, 3.6 km a.s.l.,

orange dot) and Lake Titicaca (TCC, 3.9 km a.s.l.
:
, blue outline). Panel d) shows the topography (km a.s.l.) in the area closest to CHC.

a b[s]SRR [s]SRR

Figure 3.
:::::::::
Rectangular

:::
and

:::::::
log-polar

::::::
surface

:::::
plots

::
of

:::
the

::::
SRR

::::
from

:::::::::
December

::::
2017

::
to

::::
May

:::::
2018.

::
In
:::

a)
::
the

:::::
mean

:::::::::
rectangular

:::::
SRR:

:::::::::::::::::::::
SRRxy =

∑
z

∑
tSRRxyzt

nt
;
:::
and

::
in
::
b)
:::

the
::::
man

:::::::
log-polar

:::::
SRR:

:::::::::::::::::::::
SRRrθ =

∑
z

∑
tSRRθrzt

nt
.
:::
The

:::::
black

:::
dot

::
is

::::
CHC

:::
and

:::
the

:::
red

:::::::
polygon

:
is
:::
the

:::::::::
metropolitan

::::
area

::
of

::
La

:::
Paz

:
/
::
El

::::
Alto.

:
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Figure 4. Average Silhouette score for the iterative ‘k means’
::::::
k-means

:
clustering algorithm as a function of number of clusters (from K=2

to 24). Red vertical bars and points show the selected number (6 and 18) of clusters.
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Figure 5. Panel a) is a frequency histogram showing the percentage
:::
(and

:::::::
residence

::::
time

::
in
:::::::::::
hours—upper

:::::
x-axis)

:
of air sampled at CHC

during each modelled hour that was in contact with the surface (SSRR, Eq. 2, blue) or located within the pseudo PBL (PBL∗SRR, Eq. 3,

orange). Panel b) shows the detrended surface influence
::
(as

:
a
:::::::
residence

:::::
time) for every day of the modelled period as a function of local

time.
::::
Panel

::
c)

:::::
shows

:::
the

:::::
diurnal

:::::
mean,

::::::
median,

:::
and

:::
the

::::::
5,25,75

:::
and

::
95

::::::::
percentile

:::::
ranges

::
of

:::
the SRR

:::::
surface

:::::::
influence.

::::
The

:::
left

:
y
:::
axis

::
is
:::
the

:::::::
residence

:::
time

:::
and

:::
the

::::
right

:
y
::::
axis

:
is
:::
the

::::::::
percentage

::::::::
influence.
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Figure 6. The shading in panels a) and b) show the horizontal extent of the 6 main pathways (PW). For easier visualization we only shade grid

cells which have SRR values in the top 80% for each cluster. Each cluster centroid is marked with a disk (short range), square (short-medium

range), triangle (medium range), or pentagon (long range) locator. The colour of each region is related to the main pathway they belong to:

03_PW (yellow), 05_PW (purple), 07_PW (green), 08_PW (orange), 11_PW (pink), and 12_PW (teal). The dashed black line corresponds

to a height of 3.9 km a.s.l. and encircles the Altiplano plateau. Panel b) corresponds to the region inside the red rectangle in panel a). Panels

c) and d) show the horizontal location of the 18 clusters. The colour is related to their distance range from CHC and the hatch distinguishes

each cluster independently. Panel d) corresponds to the region inside the red rectangle in panel c). The colours, both for the centroid markers

and the shaded areas, differentiate the distance range from CHC (SR, SM, MR, LR). The hatch patterns distinguish the area of each of the

18 clusters. Panels e) and f) show the biomes as described in section
:
4 and are shown to compare the area of the clusters and pathways to

the underlying biome. The resulting area overlaps between each cluster and biome are shown in Fig. 9
:
.
::::
Also

:
a
:::::
similar

:::::
figure

:::
but

::::::
showing

:::
the

::::::::
eco-regions

:::::
rather

::::
than

::
the

::::::
biomes

::
is

:::::
shown

:
in
::::

Fig.
:::
S3.
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Figure 7. Centroid properties for each of the main pathways (PW). Panel a) shows the median height above ground level of each cluster

while panel b) shows the median height above sea level. Panel c) shows the ratio between the SRR values that are below 1.5 km above ground

level and the total SRR value for each cluster. Panel d) shows the mean SRR percentage for each PW. Quantitative numbers are presented in

Table
::::
Fig. S2.
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Figure 8.
::::
Time

:::::
series

::
of

::
the

:
SRR [

::
%]

::::::
influence

:::
for

::::
each

:
of
:::

the
:
6
:::::

main
:::::::
pathways

::::
(PW)

::::
from

:::::::::
2017-12-06

::::
until

:::::::::
2018-05-31.

Figure 9. Heat map showing the biome and land cover characteristics associated with each of the 18 clusters. The percentages values

indicate the percentage of air in each cluster that travels over each different biome. The darker the colour, the stronger the influence from the

corresponding biome. For a description of the biomes see section 4. Due to rounding errors and the use of integers, some columns add to 99

rather than 100.
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Figure 10. Cluster-median properties for each cluster. The horizontal axis for all panels represents the radial distance from CHC. Panel a)

shows the median height above ground level of each cluster while panel b) shows the height above sea level. Panel c) shows the median ratio

between the SRR values that are below 1.5 km above ground level and the total SRR value for each cluster. Panel d) shows the median SRR

percentage for each cluster.
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Figure 11. Time series of the SRR [%] cluster influence from 2017-12-06 until 2018-05-31. Panels a) and b) show the short-range (SR)

clusters, c) and d) show the short-medium-range (SM) clusters. Note the different y-axis between panels a), b) and c), d).
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Figure 12. Time series of the SRR [%] cluster influence (similar to Fig. 11). Panels a) and b) show the medium range (MR) clusters. Panels

c) and d) display the long range (LR) clusters.
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Figure 13. Properties of the eighteen clusters (nc = 18). The short name’s digits refer to the clockwise direction of the centre of mass of each

cluster. The letters refer to the range: SR = short range, SM = short-medium range, MR = medium range, and LR = long range. The SRR [%]

column describes the average contribution of each cluster. We also show the distance from CHC, height above ground and height above sea

level of each cluster’s centre of mass. Furthermore, SRR<1.5km
SRRtotal

[%] shows the ratio between the SRR below 1.5 km and the SRR summed over

the full vertical column (SRRtotal). The age column shows the weighted median time (in hours) required by the air masses to arrive from the

respective cluster to CHC. The last two columns describe the results of clustering the 18 clusters into 6 clusters (main pathways, nc = 6).

The digits also refer to the clockwise direction. The last column adds up the SRR [%] of the cluster belonging to each main pathway. The

colours in the first column correspond to the 6 pathways and associated colours shown in Figs. 6a and b, 7, and 8.

41



Su
lfa

te

Figure 14. In panel a), we show the Pearson correlation coefficient between sulfate concentrations sampled at CHC and, both, the 18 clusters

and the 6 pathways (PW). In panel b), the regions covered by the pathway 08_PW and the clusters 09_MR, 08_SM, 10_SR and 07_SR are

shown along with Sabancaya and Ubinas volcanoes (both are located within 09_MR). All of the aforementioned clusters are contained by

08_PW. Panel c) and d show the timeseries of sulfate sampled at CHC and the normalized SRR timeseries of 08_PW and 09_MR respectively.
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Figure A1.
:::::::
Schematic

::
of

:::
the

::::::::
rectangular

::
to

:::::::
log-polar

:::::::::
regridding.

:::
See

:::::
section

:::
A2

::
for

::
a

:::
full

::::::::
description.

:
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