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Abstract. Questions about how emissions are changing during the COVID-19 lockdown 16 

periods cannot be answered by observations of atmospheric trace gas concentrations alone, in part 17 

due to simultaneous changes in atmospheric transport, emissions, dynamics, photochemistry, and 18 

chemical feedback. A chemical transport model simulation benefiting from a multi-species 19 

inversion framework using well-characterized observations should differentiate those influences 20 

enabling to closely examine changes in emissions. This approach has another advantage in that we 21 

can, to a certain extent, disentangle the chemical and physical processes involved in the formation 22 

of ozone. Accordingly, we jointly constrain NOx and VOC emissions using well-characterized 23 

TROPOMI HCHO and NO2 columns during the months of March, April, and May 2020 24 

(lockdown) and 2019 (baseline). We observe a noticeable decline in the magnitude of NOx 25 

emissions in March 2020 (14-31%) in several major cities including Paris, London, Madrid, and 26 

Milan expanding further to Rome, Brussels, Frankfurt, Warsaw, Belgrade, Kyiv, and Moscow (34-27 

51%) in April. The large variability of changes in NOx emissions is indicative of different dates 28 

and the degree of restrictions enacted to prevent the spread of the virus. For instance, NOx 29 

emissions remain at somewhat similar values or even higher in northern Germany and Moscow in 30 

March 2020 compared to the baseline. Comparisons against surface monitoring stations indicate 31 
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that the model estimate of the NO2 reduction is underestimated, a picture that correlates with the 32 

TROPOMI frequency impacted by cloudiness. During the month of April, when ample TROPOMI 33 

samples are present, the surface NO2 reductions occurring in polluted areas are described fairly 34 

well by the model (model: -21±17%, observation: -29±21%). Changes in VOC emissions are 35 

dominated by eastern European biomass burning activities and biogenic isoprene emissions. In 36 

March, however, TROPOMI HCHO sets an upper limit for HCHO changes such that the chemical 37 

feedback of NOx on HCHO constrained by TROPOMI NO2 reveals a non-negligible decline in 38 

anthropogenic VOC emissions in Paris (-9%), Milan (-29%), London (-5%), and Rome (-5%). 39 

Results support an increase in surface ozone during the lockdown. In April, the constrained model 40 

features a reasonable agreement with maximum daily 8 h average (MDA8) ozone changes 41 

observed at the surface (r=0.43), specifically over central Europe where ozone enhancements 42 

prevail (model: +3.73±3.94%, +1.79 ppbv, observation: +7.35±11.27%, +3.76 ppbv). Results of 43 

integrated process rates of MDA8 surface ozone over central Europe in the same month suggest 44 

that physical processes (dry deposition, advection and diffusion) decrease ozone on average by -45 

4.83 ppbv, while ozone production rates dampened by largely negative JNO2[NO2]-kNO+O3[NO][O3] 46 

become less negative, leading ozone to increase by +5.89 ppbv. Experiments involving fixed 47 

anthropogenic emissions suggest that meteorology (mainly as air temperature and photolysis) 48 

contributes to 42% enhancement in MDA8 surface ozone over the same region with the remaining 49 

part (58%) coming from changes in anthropogenic emissions. Results illustrate the capability of 50 

satellite data of major ozone precursors to help atmospheric models capture the essential character 51 

of ozone changes induced by abrupt emission anomalies. 52 

1. Introduction 53 

Continuous monitoring of air pollution by satellites can help our understanding of both 54 

anthropogenic and biogenic variability and change caused by rapid economic recession 55 

[Castellanos and Boersma, 2012] and regulations [Krotkov et al., 2016; Souri et al., 2020a]. Earth’s 56 

atmosphere has exponentially become more polluted during previous decades because of rapid 57 

industrialization increasing anthropogenic emissions [Li and Lin, 2015], thus any abrupt hiatus in 58 

these emissions should result in an impulsive and sweeping impact on relatively short lifetime 59 

pollutants such as nitrogen dioxide (NO2), formaldehyde (HCHO), and tropospheric ozone (O3). 60 

The beginning of the global COVID-19 pandemic in early 2020 [Fauci et al., 2020] provided such 61 

an abrupt change in human activities [Le Quéré et al., 2020]. A first step to fully understand how 62 
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much of these impacts are related to the pandemic lockdowns is to disentangle the physical and 63 

chemical processes determining their ambient concentrations. Unraveling those processes require 64 

precise, continuous observations of physical and chemical states and emission rates, which are not 65 

routinely available on global, continental and regional scales. Therefore, we resort to using a model 66 

realization attempting to reproduce such an intricate system. Models without observational 67 

guidance are incapable of numerically representing the real world [Lorenz, 1963], so our best 68 

option to improve a model is to constrain some of its prognostic inputs using well-characterized 69 

observations. Accordingly, the framework of this study is centered around inverse modeling and 70 

data assimilation. 71 

Significant attention has been given to documenting the lockdown-related changes in 72 

atmospheric compositions around the world using both in-situ and satellite observations [e.g., 73 

Sicard et al., 2020; Shi and Brasseur, 2020; Lee et al., 2020; Salma et al., 2020; Le Quéré et al., 74 

2020; He et al., 2020; Le et al., 2020; Miyazaki et al., 2020; Liu et al., 2020; Barré et al., 2020; 75 

Goldberg et al., 2020; Ordóñez et al., 2020; Wyche et al., 2021]. The broad picture is consistent 76 

among these studies; the lockdown drastically reduced the concentrations of NOx, CO, and SO2 77 

and some types of particulate matters, whereas the concentrations of several secondarily formed 78 

compounds such as ozone increased due to emissions and/or meteorology. To the best of our 79 

knowledge, changes in volatile organic compounds (VOCs) due to the lockdown over Europe have 80 

not been reported. 81 

The motivations of this study are to determine the capability of a regional model 82 

constrained by satellite HCHO and NO2 columns to capture near-surface pollution, and if local 83 

ozone production rates are the driving factors for heightening ozone pollution during the 2020 84 

lockdown. In other words, what chemical and physical processes are associated with the elevated 85 

ozone? How representative are satellite observations at capturing surface air quality through an 86 

inversion context? Is meteorology the primary factor in shaping elevated ozone as suggested by 87 

Ordóñez et al. [2020]? 88 

To address these pivotal questions, it is desirable to constrain models using multi-species 89 

observations because relationships between the atmospheric compounds such as HCHO and NO2 90 

are importantly intertwined [Marais et al., 2012; Valin et al., 2016; Wolfe et al., 2016; Souri et al., 91 

2020a,b]. Accordingly we build our inversion framework upon a non-linear joint analytical 92 

inversion of NOx and VOCs proposed in Souri et al. [2020a] using TROPOMI HCHO and NO2 93 
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observations in Europe. Performing this type of inversion not only enables us to precisely quantify 94 

the impact of the pandemic on emissions (along with its uncertainty, as the inversion framework 95 

is analytical) but also paves the way for estimating the resulting changes on different pathways of 96 

surface ozone. 97 

2. Measurements, Modeling, and Methods 98 

2.1. Satellite Observations 99 

2.1.1. TROPOMI NO2 100 

We use daily offline S5P TROPOMI tropospheric NO2 slant columns 101 

[Copernicus Sentinel data processed by ESA and Koninklijk Nederlands 102 

Meteorologisch Instituut (KNMI), 2019] derived from a two-step framework 103 

involving DOAS spectral fitting in conjunction with a stratosphere/troposphere 104 

decoupler [Boersma et al., 2018]. The time periods of this study are March, April 105 

and May 2020 and 2019. The data provide Jacobians of light intensity with respect 106 

to optical thickness (i.e., vertically-resolved scattering weights) which are 107 

dependent on scene surface reflectivity, the cloudiness of the assumed Lambertian 108 

clouds, and sensor viewing geometry. Aerosol effects on the scattering weights are 109 

not taken into consideration. The 2019 TROPOMI observations used in this study 110 

have a spatial resolution of 7×3.5 km2, whereas those in 2020 have a spatial 111 

resolution of 5.5×3.5 km2. The NO2 products for the study time period were 112 

produced by processor versions v01.02.02 (1 March 2019 – 20 March 2019) and 113 

v01.03.02 (20 March 2019 onward). The v01.03.02 processor includes an update 114 

to the FRESCO-S cloud algorithm and improvements to a quality flag variable. 115 

NO2 validation from processors v01.02.02 and v01.03.02 shows similar biases and 116 

dispersion [Lambert et al., 2020], as do comparisons from before and after the pixel 117 

spatial resolution change [Verhoelst et al., 2021]. We extract good quality pixels 118 

based on the main quality flag (qa_flag) > 0.75, which removes retrievals flagged 119 

as bad and pixels over snow/ice or with cloud radiance fractions > 0.5, and resample 120 

them to our 15-km regional model (discussed later) using bilinear interpolation. 121 

Since vertical column densities (VCDs) depend on assumed gas profile shape (i.e., 122 

they are quasi-observations), we recalculate those shape factors using profiles from 123 

our constrained chemical transport model. 124 
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Satellite remote sensing observations are usually far more stable than they 125 

are accurate. This can make the data practical for measuring relative changes in 126 

emissions, but may necessitate the use of a bias correction for absolute emissions 127 

estimates. Moreover, the systematic and random errors associated with satellite 128 

retrievals may differ markedly from location to location. It is therefore crucial to 129 

thoroughly validate columns against independent observations. To this end, we 130 

compile statistics reported in several validation studies focusing on the TROPOMI 131 

tropospheric NO2 product and summarize their findings in Table 1. The most 132 

comprehensive global study to date is a comparison of TROPOMI tropospheric 133 

NO2 with that derived from 19 MAX-DOAS instruments [Verhoelst et al., 2021]. 134 

This study indicates there is a low bias in TROPOMI tropospheric NO2 of -23 to -135 

37% relative to MAX-DOAS at clean to moderately polluted sites, and as large as 136 

-51% at highly polluted sites. When considering all sites, the overall median bias 137 

in this study was found to be -37%, with a RMSE of 3.5×1015 molec/cm2 (defined 138 

as half of the 68% interpercentile). No obvious seasonal patterns were found in the 139 

biases. These results are consistent with other validation studies which have 140 

observed a low bias in TROPOMI tropospheric NO2 [Chan et al., 2020; Griffin et 141 

al., 2019; Judd et al., 2020]. A potential significant source of bias in polluted 142 

regions is the relatively low-spatial resolution (1×1o) TM5-MP prior profiles used 143 

in the TROPOMI air mass factor calculation. Several validation studies have shown 144 

the low bias in TROPOMI NO2 can be reduced in polluted regions by 5-17% 145 

through the use of higher spatial resolution model a priori profiles or other 146 

improvements in the AMF calculation [Chan et al., 2020; Griffin et al., 2019; Judd 147 

et al., 2020; Zhao et al., 2020]. There are challenges in using the aforementioned 148 

numbers, of which the largest relates to the lack of formulating errors as functions 149 

of prognostic inputs used for the retrievals (e.g., albedo, scene radiance, etc.). This 150 

in turn precludes a more general estimation of errors for all pixels. Given the fact 151 

that our study will derive emissions primarily from information in moderate to 152 

highly polluted areas [Souri et al., 2020a], we uniformly scale up NO2 pixels by 153 

25% based on the low bias determined by Verhoelst et al. [2021] while considering 154 

the potential reduction in the bias through the use of higher spatial resolution trace 155 
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gas a priori profiles. We set the RMSE to 1.1×1015 molec/cm2 (<6×1015  molec/cm2) 156 

in clear regions and 3.5×1015 molec/cm2 (>=6×1015 molec/cm2) in moderately to 157 

highly polluted regions. 158 

2.1.2. TROPOMI HCHO 159 

We use daily offline S5P TROPOMI HCHO total slant columns 160 

[Copernicus Sentinel data processed by ESA, German Aerospace Center (DLR), 161 

2019]. A full description of the algorithm can be found in De Smedt et al. [2018]. 162 

The HCHO products for the study time period were produced by processor versions 163 

v01.01.05 (1 March 2019 – 28 March 2019), v01.01.06 (28 March 2019 – 23 April 164 

2019) and v01.01.07 (23 April 2019 onward). The newer versions have added 165 

updates to the surface classification climatology and cloud products that might have 166 

some effects on the magnitude of HCHO in cloudy scenes. We again remove bad 167 

pixels based on qa_flag < 0.75 and recalculate shape factors using the simulated 168 

profiles derived from our regional model.  169 

Validation efforts reported in the sixth Quarterly Validation Report of the 170 

Copernicus Sentinel-5 Precursor Operational Data Products [Lambert et al., 2020] 171 

indicate varying biases depending on the magnitude of HCHO concentrations in 172 

comparison to ground-based observations. Locations with HCHO concentrations 173 

above 8×1015 molec/cm2 show a low bias of ~-31%. Conversely, clean sites with 174 

HCHO concentrations below 2.5×1015 molec/cm2 undergo a high bias of 26%. 175 

Those biases oscillate around 8×1015 molec/cm2. Vigouroux et al. [2020] expanded 176 

the validation suite by including more than 25 FTIR stations majorly located over 177 

pristine areas and 9 MAX-DOAS stations located in polluted sites. Results from 178 

the comparison with FTIR measurements (over clean areas) indicate a high bias, 179 

whereas those compared with MAX-DOAS measurements at Cabauw and De Bilt 180 

(Netherlands) show a low bias of -44%. The agreement between MAX-DOAS and 181 

satellite observations improved after adjusting TROPOMI shape factors based on 182 

MAX-DOAS observations. By compiling numbers quoted in Lambert et al. [2020] 183 

and Vigouroux et al. [2020], we correct the existing biases in TROPOMI HCHO 184 

by scaling 25% (<2.5×1015 molec/cm2) down columns in clear areas and 30% 185 
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(>=7.5×1015 molec/cm2) up in polluted areas. We set the magnitude-dependent 186 

RMSE to be equal to 4% of HCHO total columns based on Vigouroux et al. [2020]. 187 

2.1.3. MODIS AOD 188 

To improve the simulation of total aerosol mass, we use the collection 6 189 

MODIS aerosol optical depth (AOD) from both Aqua (~ 13:30 LT) and Terra (~ 190 

10:30 LT) platforms over both land and ocean [Levy et al., 2013] (available at 191 

https://ladsweb.modaps.eosdis.nasa.gov, access May 2020). We independently 192 

validate all three major products, namely the deep blue, the dark target and a 193 

combined dark blue products by comparing to AOD values measured by 194 

AERONET over Europe at the same time period of this study. Only good and very 195 

good (qa>=2) pixels are selected for the comparison. The AERONET AOD data 196 

are computed based on the values at 500 nm and Angstrom Exponent in the 440-197 

675 nm range. We collocate two datasets if they are within 10 km radius and less 198 

than 30 mins apart. The dark blue product results in the best agreement (r>0.87) 199 

with a high bias of <0.05 (Figure S1, and S2). We remove the bias and assign the 200 

value of the covariance matrix of observations to the RMSE values obtained from 201 

the comparison. 202 

2.2. Surface Measurements 203 

UV photometry and chemiluminescence surface ozone and NO2 measurements all 204 

over continental Europe are used to investigate possible changes in their concentrations 205 

induced by the lockdown (https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm, 206 

access June 2020). The NO2 chemiluminescence measurements are usually overestimated 207 

due to interferences from the NOz family (PAN, organic nitrate, HNO3, etc.). We assume 208 

that the interferences are not significantly different between the baseline and lockdown 209 

mainly due to relatively low photochemistry in early spring [Lamsal et al., 2008] compared 210 

to summertime. 211 

More than 6450 meteorological stations archived on NOAA’s integrated surface 212 

database (https://www.ncei.noaa.gov/data/global-hourly/, access April 2020) are used to 213 

validate the performance of our weather model in terms of several prognostic inputs 214 

including ambient air temperature, air humidity, and U and V wind components. 215 

 216 
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2.3. WRF-CMAQ Modeling 217 

The regional air quality simulations at 15×15 km2 are carried out with the widely 218 

used CMAQ v5.2.1 (https://doi.org/10.5281/zenodo.1212601) in conjunction with WRF 219 

v3.9.1 [Skamarock et al. 2008] models. The models overlap and cover continental Europe 220 

and some portions of Africa and Middle East. The domain consists of 483 east-west, 383 221 

north-south grids, and 37 unevenly spaced eta levels (Figure 1). The simulation time period 222 

is from March to May 2019 and 2020 (six months). Since IC/BC are taken from already 223 

spun-up National Centers for Environmental Prediction (NCEP) FNL (final) reanalysis and 224 

GEOS-Chem v12.9.3 (10.5281/zenodo.3974569) runs, we only spin up the models for the 225 

month of February. The chemistry configuration of the CMAQ model mainly consists of 226 

CB05 with chlorine chemistry (gases) and AERO6 (aerosol). Biogenic emissions are 227 

processed by the offline standalone Model of Emissions of Gases and Aerosols from Nature 228 

(MEGAN) v2.1 model [Guenther et al., 2012] based on high-resolution plant functional 229 

maps made by Ke et al. [2012]. Anthropogenic emissions are based on the Community 230 

Emissions Data System (CEDS) inventory in 2014 [Hoesly et al., 2018]. We also output 231 

the CMAQ integrated process analysis quantifying the contribution of each process to the 232 

amount of compounds. The physical setting of WRF includes the Lin microphysics scheme 233 

[Lin et al., 1983], the Grell 3-D ensemble cumulus scheme [Grell and Dévényi, 2002], the 234 

RRTMG radiation scheme, ACM2 planetary boundary layer parametrization [Pleim, 235 

2007], and Pleim-Xu land-surface scheme [Xiu and Pleim, 2001]. We nudge moisture, 236 

wind and temperature fields toward the reanalysis data used only outside of the PBL layer. 237 

Moreover, leaf area index and the sea surface temperature are updated every 6 hours based 238 

on satellite measurements included in the reanalysis data. Extensive model evaluations 239 

based upon surface observations show a striking correspondence (Table S1, S2) which is 240 

indicative of fair energy budget and transport in our model. 241 

2.4. Inverse Modeling and Data Assimilation 242 

To adjust the bottom-up emission inventories, we follow a non-linear joint 243 

inversion method proposed in Souri et al. [2020a]. Briefly, a Gauss-Newton algorithm is 244 

utilized to incrementally solve the Bayes’ quadratic function in analytical fashion. The 245 

posterior emissions are then derived by 246 

𝐱"#$ = 𝐱& + 𝐆[𝐲 − 𝐹(𝐱") + 𝐾"(𝐱" − 𝐱&)] (1) 
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where y is bias-corrected TROPOMI NO2 and HCHO observations, xa (or x0) is the prior 247 

emissions, xi is the posterior emission at the ith increment, F is the forward model (here 248 

WRF-CMAQ) to project the emissions onto columns space, G is the Kalman gain, 249 

𝐆 = 𝐒2 𝐾"34𝐾"𝐒2 𝐾"3 + 𝐒5 6
7$

 (2) 

and 𝐾" (= 𝐾(𝐱")) is the Jacobian matrix calculated explicitly from the model using the finite 250 

difference method. So and Se are the error covariance matrices of the observations and 251 

emissions. In terms of the prior errors, we use the numbers reported in Souri et al. [2020a]. 252 

The instrument covariance matrices are populated with squared-sum of the aforementioned 253 

RMSEs based on the compilation of the validation studies and precision errors provided 254 

with the data. Both error matrices are diagonal. The inversion window is monthly. The 255 

covariance matrix of the a posteriori is calculated by: 256 

𝐒82 = (𝐈 − 𝐆𝐾: )𝐒2  (3) 

where 𝐾: is the Jacobian from the ith iteration. Here we iterate Eq.1 three times. The 257 

averaging kernels (A) are given by: 258 

𝐀 = 𝐈 − 𝐒82𝐒27$ (4) 

Not only does this method considers non-linear chemical feedback among NO2-259 

HCHO-NOx-VOC by simultaneously incorporating the HCHO and NO2 in the inversion 260 

framework, it also permits quantification of A that explicitly explains the amount of 261 

information obtained from the observation. 262 

We also correct total aerosol mass by daily assimilating the MODIS dark blue AOD 263 

observations following the algorithm discussed in Jung et al. [2019]. Briefly, the 264 

assimilation framework uses a modified optimal interpolation method adjusting uniformly 265 

all relevant aerosol masses in a column as a function of a weighted-distance and appropriate 266 

errors. 267 

3. Results and Discussion 268 

3.1.Variability of HCHO and NO2 columns seen by TROPOMI 269 

We assess difference maps of TROPOMI HCHO and NO2 columns in 2020 with respect 270 

to those in 2019 during the months of March, April and May. The difference maps along with the 271 

absolute values of the tropospheric NO2 columns are shown in Figure 2. Regardless of the year, 272 

we observe a noticeable reduction in NO2 as we approach warmer months which can be explained 273 
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by increases in OH concentrations (higher water vapor content, solar radiation, and O3 levels), 274 

faster vertical mixing due to larger sensible fluxes (more diluted columns due to stronger advection 275 

in higher altitudes), and a reduction in temperature-dependent light-duty diesel NOx emissions 276 

[Grange et al., 2019]. Two unintended consequences of this sequential decline, noted by Silvern 277 

et al. [2019] and Souri et al. [2020a], are first the free-tropospheric region complications and 278 

second a barrier to obtaining high amount of information from the sensor which manifests itself in 279 

lower averaging kernels of emission estimates (shown later). The anomaly map in March indicates 280 

pronounced decreases in tropospheric NO2 columns over several countries including France, 281 

Spain, Italy, and Germany (box A). In contrast, we see negligible reductions in the magnitude of 282 

the NO2 columns over some portions of the UK excluding London (box B), northern Germany 283 

(box C), and Moscow, Russia (box D). A very recent study [Barré et al. 2020] observed roughly 284 

the same tendency which was attributable to meteorological changes. While those changes are 285 

indeed an important piece of information that will be investigated later in this study, we should 286 

recognize that the degree of the enforced restrictions varies both spatially and temporally; 287 

moreover changes in emission heavily rely on the dominant emission sector (e.g., mobile or 288 

industry) and population. For instance, northern Germany is associated with less populated areas 289 

and industrial areas which might be less impacted by the shutdown (see Figure 2 in Le Quéré et 290 

al. [2020]), and as a result, we would expect a weaker signal in the reduction of NO2. According 291 

to TASS press [https://tass.com/society/1144123, accessed Sep 2020], Russian governments did 292 

not take significant measures to control the virus before April 15, immediately evident in the large 293 

NO2 enhancement over Moscow in March (box D). During the next two months (April and May), 294 

we observe a major turnaround over this city (box F and H). In May, the anomaly of the 295 

tropospheric NO2 suggests an abrupt hiatus in the ongoing reduced NOx emissions in central 296 

Europe (box G). However it is crucial to note that these maps are based upon sporadic clear-sky 297 

pixels that might obscure the full portrayal of emissions changes happening throughout the period 298 

(discussed later). 299 

We further investigate potential changes in HCHO total columns shown in Figure 3 in the 300 

same context as we discussed for NO2. Various VOCs with different sources contribute to the 301 

formation of HCHO (see Figure 2 in Chan Miller et al. [2016]) leading to striking HCHO column 302 

patterns with large variations. In theory, we have a higher chance to single out anthropogenic-303 

derived HCHO concentration by looking at wintertime measurements, although temperature and 304 
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photochemistry are always key influencers of oxidizing/photolyzing all types of VOCs. The 305 

inevitable trade-off for this is dealing with a weaker signal that is near to instrument detection 306 

limit. Encouragingly, the TROPOMI HCHO retrieval offers a very low detection limit for 307 

individual pixels (7×1015 molec/cm2) that can be further lowered down by co-adding 308 

measurements (roughly a factor of 1/√n).  Accordingly, we observe a promising signal in March 309 

over eastern European countries that is not explainable by biogenic emissions; but the magnitudes 310 

of the difference over these areas (<1.5 ×1015 molec/cm2) are below the detection limit (~ 2.4×1015 311 

molec/cm2 given the co-added measurements over time) to relate them to the lockdown in a robust 312 

manner; nonetheless TROPOMI sets an upper limit for these changes. In April, results show 313 

elevated HCHO concentrations in high latitudes in 2019 (box I), mainly a result of biomass burning 314 

activities in eastern Europe [e.g., Karlsson et al. 2013]. As temperature rises in May, the footprint 315 

of biogenic emissions become more visible. This signal is not only induced by the inherent 316 

temperature-dependency of biogenic isoprene emissions, but also stems from the fact that isoprene 317 

reactivity significantly increases by rising temperature [Pusede et al. 2015]. The dipole anomaly 318 

of HCHO columns suggested by TROPOMI (box J and K) pertains largely to variations in ambient 319 

surface air temperature (shown later). 320 

3.2.Top-Down estimates of NOx and VOC emissions 321 

Following the inversion and the data assimilation frameworks, we adjust the total amounts 322 

of VOC, NOx emissions, and aerosols mass using the well-characterized TROPOMI HCHO, NO2 323 

and MODIS AOD observations for the study time period. We focus on the topic of gas phase 324 

chemistry (i.e., ozone and its precursors) implying that the aerosol data assimilation is carried out 325 

to partially remove errors associated with radiation [e.g., Jung et al., 2019] or heterogenous 326 

chemistry [Jacob, 2000], therefore, the aspect of aerosol changes induced by the lockdown will be 327 

examined elsewhere. The spatial distributions of magnitude of the top-down NOx and VOC 328 

emissions (i.e., constrained by the observations), their corresponding changes and averaging 329 

kernels are shown in Figure 4 and Figure 5, respectively. It is worth emphasizing that we use 330 

identical prior values in terms of anthropogenic emissions in both years; therefore, the differences 331 

in the top-down emissions are primarily dictated by the observations used in the inversion. 332 

According to Figure 4, large averaging kernels associated with NOx emissions are confined in 333 

high-emitting regions suggesting that the most valid estimates can be found in areas undergoing 334 

strong TROPOMI NO2 signals. We observe a large reduction (31-45%) in the bias associated with 335 

https://doi.org/10.5194/acp-2021-121
Preprint. Discussion started: 12 March 2021
c© Author(s) 2021. CC BY 4.0 License.



 12 

simulated surface NO2 using the posterior emissions compared to the surface measurements in 336 

Europe, although improvements in correlation were minimal (not shown). Similarly, as expected, 337 

the discrepancies between the simulated tropospheric NO2 columns versus TROPOMI are largely 338 

mitigated by the inversion (Figure S3 and S4). Immediately apparent in Figure 4 is a strong 339 

correlation between anomaly maps of TROPOMI tropospheric NO2 (Figure 2) and those of top-340 

down emissions. However, in practical terms, the magnitude of these anomalies is not as drastic 341 

as the ratio of observation to model ratio because of the consideration of observational errors and 342 

chemical feedback [Souri et al., 2020a], which always leaves some doubt about the practicality of 343 

direct mass balance methods. We observe reductions in NOx emissions in March (14-31%) in 344 

several major cities including Paris, London, Madrid, and Milan; the reductions further expand to 345 

Rome, Brussels, Frankfurt, Warsaw, Kyiv, Moscow, and Belgrade with higher magnitudes (34-346 

51%) in April. Table 2 summarizes the absolute and relative differences in total NOx emissions 347 

estimated by the inversion binned to different regions in Europe based on country land borders. In 348 

general, the level of NOx reduction is somewhat higher in April relative to months of March and 349 

May owing to spatiotemporal variabilities associated with the restrictions; for example, UK and 350 

Poland governments enforced the restrictions starting in the last week of March to the middle of 351 

April, a situation that clearly shows up in our results. Interestingly, the decreased anthropogenic 352 

NOx emissions in the strait of Gibraltar and Alboran Sea reveal reportedly reduced ship activities 353 

[United Nations Conference on Trade and Development Report, Accessed Dec 2020]. The 354 

numbers in May indicate that several countries in central and eastern Europe (shown in box G in 355 

Figure 2) likely eased coronavirus lockdown restrictions, a picture that has yet to be verified by 356 

surface measurements (discussed later). 357 

As to VOC emissions, we observe a significant improvement in the magnitude and spatial 358 

distribution of simulated HCHO columns after the inversion with respect to TROPOMI data 359 

(Figure S5 and S6). It is very evident that the magnitudes of the emissions primarily follow 360 

anthropogenic sources in March; expectedly, very low averaging kernels over major European 361 

cities in this month are indicative of inadequacies of one-month averaged TROPOMI HCHO data. 362 

However, we surprisingly observe a noticeable decline in the amount of VOC emissions (majorly 363 

anthropogenic) in Paris (-9%), Milan (-29%), London (-5%), and Rome (-5%). All of these cities 364 

emit considerable amounts of VOCs during wintertime [Schneidemesser et al., 2011; Possanzini 365 

et al., 2002; Baudic et al., 2016]. This tendency, which is striking, mainly stems from the indirect 366 
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impacts of the reduced NOx emissions on HCHO formation [Marais et al., 2012; Valin et al., 2016; 367 

Wolfe et al., 2016; Souri et al., 2020b]. The sensitivity of HCHO levels to VOC emissions is 368 

controlled by the availability of OH that is impacted by NOx. A decrease in NOx emissions in NOx-369 

saturated areas frees up more OH to faster oxide VOCs [Souri et al., 2020b] resulting in a steeper 370 

gradient of HCHO with respect to its sources. Likewise we observe larger Jacobians of HCHO 371 

with respect to VOC emissions in 2020 over the cities mentioned (not shown). If we assume the 372 

relative changes in HCHO levels between the two years to be insignificant, which are suggested 373 

by TROPOMI HCHO (considering the errors in the retrieval), the steeper gradient of HCHO 374 

concentrations with respect to VOC emissions should normally lead to a reduction in the VOC 375 

emissions in 2020. In other words, it would require a smaller VOC emission rate to reach to the 376 

same amount of HCHO. We note that the TROPOMI HCHO observations provide an upper limit 377 

of the changes so that we can make this assumption. Table 3 summarizes the amount of VOCs 378 

changing in the cities mentioned. The inversion partly corrects for the large underrepresentation 379 

of biomass burning emissions in high latitudes occurring in April 2019 but due to large 380 

uncertainties of the retrieval over this area, averaging kernels are low. We revisit the pronounced 381 

dipole anomaly of dominantly biogenic VOC emissions in May. It is readily evident from the 382 

averaging kernels that more realistic information from TROPOMI HCHO is attainable in warmer 383 

months, contrary to the NO2 case. 384 

3.3. Disparities and rationale behind the differences in near-surface concentrations 385 

suggested by the constrained model versus those by in-situ measurements 386 

3.3.1. NO2 and HCHO 387 

We further investigate the effect of the lockdown on the surface HCHO and NO2 388 

concentrations based on the constrained simulations. Figure 6 gives the difference maps (lockdown 389 

minus baseline) of daily-averaged surface NO2 and HCHO overplotted with the differences of 390 

surface wind vectors, planetary boundary layer heights (PBLHs), surface air temperature, and the 391 

ratio of photolysis rates below clouds (Jbelow) to those in clear-sky conditions (Jclear) following 392 

Madronich [1987]. The anomaly of emissions is on par with those of surface NO2 and HCHO 393 

surface concentrations, this is perhaps not surprising, since the emissions are mostly located near 394 

the surface. Horizontal transport (shown as wind vectors) plays a critical role in explaining the 395 

spatial variations in emissions downwind.  396 
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PBLH describes the level of vertical diffusion of air parcels [Jacobson, 2005]. The increase 397 

(decrease) in the PBLH is an indication of more (less) diluted air, subject to assuming that the 398 

pollutant concentration (in mixing ratio) would exponentially decrease aloft. The extent to which 399 

PBLH can impact air pollution relative to advection is strongly dependent upon the wind speed 400 

(see Figure 8 in Su et al., [2018]). The stronger the wind, the more likely PBLHs are going to be 401 

of secondary importance. We subjectively identify calm conditions by assuming that wind speeds 402 

should be below 1 m/s. We overlay the calm conditions as black dots over the PBLH contour. 403 

Although model uncertainties exist, the less pronounced NO2 reduction over UK and northern 404 

Germany in March is unlikely to be resulting from shallower PBLHs in 2020 given how strong the 405 

predominant winds are. A strong expansion of PBL over the central Europe in April and May 2020 406 

relative to 2019 possibly contributes to a larger reduction of NO2 concentration.  407 

Because of relatively colder air and less photochemistry in March, VOCs become naturally 408 

less reactive. This in turn will provide an opportunity for the volume of air to become dispersed. 409 

Thus the reduced VOC emissions over several major cities influence larger areas and become less 410 

distinctive. The temperature dependency of HCHO concentration progressively becomes more 411 

pronounced with increasing temperature. Both photochemistry and biogenic derived emissions are 412 

a function of shortwave solar radiation [Madronich, 1987; Guenther et al., 2012; Stavrakou et al., 413 

2014] that can vary significantly with cloud transmissivity and the solar zenith angle. The ratio of 414 

Jbelow/Jclear well describes such a relationship; positive (negative) differences in the ratio suggest 415 

more (less) photochemistry. The strongly positive ratio of Jbelow/Jclear over the central Europe in 416 

April potentially overrides the fluctuations associated with surface temperature leading HCHO 417 

levels to rise.  418 

Clearly, with the help of the CMAQ process analysis, more quantitative work on relevant 419 

physical/chemical processes pertaining to NO2 and HCHO surface concentrations can be done 420 

here, but before proceeding it is necessary to examine whether the constrained model can 421 

adequately represent the changes observed by surface measurements. Unfortunately we limit the 422 

analysis to NO2 due to the lack of routinely measured HCHO observations. Several factors can 423 

complicate this analysis: i) having overconfidence in the constrained model where the satellite 424 

observations used were uncertain; this problem can be safely addressed by considering grid cells 425 

whose averaging kernels are above a threshold (here 0.5), ii) ignoring spatial representivity 426 

function to directly compare point measurements to the model grids; a statistical construction of 427 
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the spatial representivity function [Janic et al., 2016] requires a dense observational network so 428 

that we can build a semivariogram; instead, we only consider model grid cells having more than 429 

two stations; those observations then are then averaged, iii) interferences of NOz family on NO2 430 

chemiluminescence measurements [Dickerson et al., 2019] which can be partly discounted when 431 

calculating differences, iv) model uncertainties, especially with respect to turbulent and convective 432 

fluxes that are heavily determined by representing local heterogenicity of forces and non-433 

hydrostatic dynamics [Emanuel, 1994], all of which are challenging to properly resolve in a 15-434 

km resolution. With these caveats in mind, we plot the daily-averaged changes of surface NO2 435 

concentrations in 2020 relative to 2019 derived by the model and the European air quality network 436 

for the months of March, April, and May (Figure 7). Large gaps in Figure 7 are caused by 437 

considering grid cells with averaging kernels>0.5 and number of samples>2. The constrained 438 

model correlates reasonably well with the changes observed by the surface measurements in March 439 

and April, but it fails to reflect those in May. The surface measurements reinforce the less 440 

pronounced reduction in NO2 in northern Germany and UK, although the magnitudes are not as 441 

large as those suggested by the model. The constrained model tends to consistently underrepresent 442 

the decline in NO2 in March (model: -11±21%, observation: -19±16%), April (model: -21±17%, 443 

observation: -29±21%), and May (model: -12±18%, observation: -25±20%). The frequency of 444 

TROPOMI data heavily impacted by cloudiness is another factor that can effectively lead to the 445 

underrepresentation of the model in a course of a month. Figure 8 depicts the number of days that 446 

TROPOMI was able to sample on. There is a strong degree of correlation between the frequency 447 

of the data and the discrepancy between the model versus the surface observations. This is 448 

especially the case for May when we see too few days to be able to realistically reproduce NO2 449 

changes. Given the reasonable performance of our model at reproducing the changes observed 450 

over the surface in April, a result of abundant samples from TROPOMI, we only focus on this 451 

month for the subsequent analysis. 452 

3.3.2. Ozone 453 

Figure 9 depicts the changes in maximum daily 8 h average (MDA8) surface ozone 454 

concentrations suggested by the measurements and the constrained model in April. Immediately 455 

obvious from the observations is the elevated surface ozone concentrations up to 32% in places 456 

where NOx emissions drastically decreased such as Germany, Italy, France, UK, Switzerland, and 457 

Belgium (shown as box L). This tendency potentially is driven by ozone chemistry [Sicard et al., 458 
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2020a; Shi and Brasseur, 2020; Grange et al. 2020; Salma et al., 2020; Lee et al., 2020] and/or 459 

meteorology [Lee et al., 2020; Wyche et al., 2021; Ordóñez et al., 2020] has drawn much attention. 460 

The challenge is to simulate a model that is the characteristic of such a complex tendency [e.g., 461 

Parrish et al., 2014]. Encouragingly, our constrained model does have skill in describing the 462 

essential character of the ozone enhancements over the whole domain (r=0.43). In the proximity 463 

of central Europe (shown as box L), the enhanced MDA8 ozone concentration observed by the 464 

observations is 7.35±11.27% (+3.76 ppbv) which is nearly a factor of two larger than that of the 465 

model (3.73±3.94%, +1.79 ppbv).  466 

While the remaining model uncertainty could be either improved or characterized by 467 

including more observations (if available), reconfiguring the physical/chemical mechanisms used, 468 

and constraining chemical boundary conditions, it is imperative to gauge the contribution of each 469 

process (i.e., transport, chemistry, etc.) in forming ozone changes. Here we mainly make use of 470 

the CMAQ process analysis. A direct use of the process analysis output (in unit of ppbv hr-1) can 471 

be confusing as both physical/chemical processes and underlying concentrations are inextricably 472 

linked together. To be able to isolate each process (in unit of hr-1), we normalize the outputs by 473 

ozone concentrations. Here, we average each process at the same hours used in calculating MDA8. 474 

Figure 10 shows the major model processes, namely as horizontal transport (horizontal advection 475 

plus diffusion), vertical transport (vertical advection plus diffusion), dry deposition, and chemistry 476 

in 2020, 2019, and their differences. Positive (negative) values indicate a source (sink) for ozone. 477 

Regarding the horizontal transport, the values mostly follow the transport pattern and are 478 

dependent on whether the advected air mass is more or less polluted. The vertical transport 479 

correlates with the PBLH which is an indicator of the atmospheric stability and turbulence, 480 

although we should not rule out the impact of the subgrid convective transport that can occur 481 

sporadically. Low PBLHs are usually associated with more stable (or sometimes capping 482 

inversion) and weaker vertical mixing [e.g., Nevius and Evans, 2018]. Vertical transport which is 483 

majorly dictated by the vertical diffusion is by far the most influential factor in the magnitude of 484 

ozone [e.g., Cuchiara et al., 2014]. In contrast to NO2 and HCHO, a stronger vertical diffusion 485 

increases surface ozone due to positive gradients of ozone with respect to altitude. However, the 486 

aerodynamic resistance controlling dry deposition velocity [Seinfield and Pandis, 2006] is also a 487 

function of turbulent transport. For example, during daytime, intensified turbulence exposes more 488 

pollution to surface deposition. It is because of this reason that we see the dry deposition process 489 
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largely counteracting vertical transport. This will leave the chemistry process the major driver of 490 

the ozone changes.  491 

We separately sum the quantities of the physical processes and PO3 contributing to MDA8 492 

surface ozone changes binned to box L. The physical processes lead to -4.83 ppbv changes in the 493 

MDA8 ozone mainly due to a relatively larger dry deposition in 2020, whereas P(O3) contributes 494 

to +5.89 ppbv. The net effect is +1.01 ppbv which is slightly smaller than the simulated changes 495 

in MDA8 ozone in this region (+1.79 ppbv). This apparent discrepancy is caused by the differences 496 

in boundary and initial conditions which are not quantifiable by the process analysis and would 497 

require additional sensitivity test. Nonetheless, we believe these numbers should provide 498 

convincing evidence on the fact that chemistry has promoted the enhancements of surface ozone 499 

during the lockdown. 500 

Chemistry is also a function of meteorology, specifically solar radiation and temperature. 501 

A typical scenario to isolate emissions from meteorology is by running the model with fixed 502 

anthropogenic emissions (and boundary conditions) and subtracting the outputs from the variable 503 

emission output. Figure 11 shows the contribution of anthropogenic emissions (VOCs and NOx) 504 

to the changes seen over the surface. The anthropogenic emissions make up roughly 58% of the 505 

changes. The map is strongly in line with the changes in NOx emissions constrained by TROPOMI. 506 

The impact of meteorology plus biogenic changes (the former is dominant) highly correlates with 507 

anomalies in both surface air temperature and photolysis rate (Figure 6). We observe negligible 508 

ozone changes due to emissions over Iberian Peninsula reinforcing the significance of the 509 

meteorological impacts [Ordóñez et al., 2020]. 510 

3.4.Ozone chemistry 511 

Figure 12 shows the numerically-solved ozone production rates (PO3) simulated by the 512 

constrained model during the MDA8 hours period. We observe positive PO3 in less polluted areas 513 

and eastern Europe where biomass burning activities occurred in 2019, while negative PO3 in 514 

major cities. Negative values in PO3 are indicative of either loss in O3 or O3-NO-NO2 partitioning. 515 

The difference in PO3 between the two years suggests that the ozone enhancement in box L is 516 

caused by a reduction in negative PO3 in 2020 over major cities compared to 2019. To examine 517 

which pathways are contributing to this pattern, we attempt to analytically reproduce the 518 

numerically-solved PO3 (Figure 12) through two different equations: the first equation widely 519 

applied in photochemically active environments follows [Kleinman et al., 2002]: 520 
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𝑃(𝑂>) = 𝑘@A!#BA[𝐻𝑂D][𝑁𝑂] +F𝑘GA!"#BA[ 𝑅𝑂D"][𝑁𝑂]

− 𝑘A@#BA!#I[𝑂𝐻][𝑁𝑂D][𝑀] − 𝑘@A!#A#[𝐻𝑂D][𝑂>]

− 𝑘A@#A#[𝑂𝐻][𝑂>] − 𝑘A4 K$ 6#@!AL𝑂4 𝐷$ 6N[𝐻D𝑂] − 𝐿(𝑂>

+ 𝑉𝑂𝐶𝑠) 

(5) 

This equation yields negative values only if the O3 loss pathways including NO2+OH, HOx+O3 , 521 

O1D+H2O and O3+VOCs dominate over the first two terms. The second equation which is 522 

independent of RO2 and HO2 concentrations [Thornton et al., 2002], is: 523 

𝑃(𝑂>) = 𝑗𝑁𝑂D[𝑁𝑂D] − 𝑘A@#BA!#I[𝑂>][𝑁𝑂] (6) 

In summer, this equation tends to be positive during early afternoon, almost zero during afternoon 524 

(steady-state), and negative in early morning (or night) in which the second term (O3 titration) is 525 

leading. Any abrupt changes in NOx and VOC, and photolysis can directly affect equation 6 526 

moving PO3 out of the diel steady-state. The assumption of the steady-state (PO3 from equation 6 527 

equals to zero) is also not valid if an air parcel is in the vicinity of high-emitting NOx sources 528 

[Thornton et al., 2002]. 529 

Figure 13 displays the reactions rates of each individual component involved in equation 5 530 

averaged during the MDA8 hours. HO2+NO is the dominant chemical source of ozone correlating 531 

well with the changes in NOx and prevailing chemical conditions regimes (NOx-sensitive vs VOC-532 

sensitive). Souri et al. [2020a] found the reaction of RO2+NO to be primarily dependent on VOCs. 533 

Likewise, we observe a strong degree of correlation between the anomaly of RO2+NO and that of 534 

VOCs (Figure 3). Figure 13 indicates that the chemical pathways of ozone loss are rather constant 535 

between the two years; therefore the largely negative PO3 over urban areas shown previously in 536 

Figure 12 is not reproducible using this equation. Figure 14 shows the reactions rates of JNO2[NO2], 537 

kNO+O3[NO][O3], and the difference during the MDA8 hours. The difference maps replicate the 538 

largely negative PO3 over cities suggesting that we are not in the diel steady-state, and O3 titration 539 

is prevailing due to relatively low photochemistry in the springtime. Table 4 lists the averaged 540 

reactions rates involved in equation 5 and 6 along with the numerically-solved PO3 shown in 541 

Figure 12 over box L. These numbers suggest that the major chemical pathways of enhanced ozone 542 

are through JNO2[NO2] and kNO+O3[NO][O3], implying that O3-NO-NO2 partitioning is more 543 

consequential than other chemical pathways. This analysis strongly coincides with Lee et al. 544 
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[2020] and Wyche et al. [2021] who observed roughly constant O3+NO2 concentrations over the 545 

UK before and during the lockdown 2020. 546 

4. Summary 547 

The slowdown in human activities due to the COVID-19 pandemic had an immediate and 548 

sweeping impact on air pollution over Europe [Barré et al. 2020; Siccard et al., 2020]. Satellite 549 

monitoring systems with large spatial coverage help shed light on the spatial and temporal extent 550 

of those impacts. The relationships between satellite-derived HCHO and NO2 columns and near-551 

surface emissions have proven difficult to fully establish without using realistic models, capable 552 

of providing insights on the convoluted processes involving chemistry, dynamics, transport, and 553 

photochemistry and therefore help with deciphering what anomaly maps of satellite concentrations 554 

are suggesting [e.g., Goldberg et al., 2020]. To address these challenges, we jointly constrained 555 

NOx and VOC emissions using TROPOMI HCHO and NO2 columns following a non-linear Gauss 556 

Newton method developed in Souri et al. [2020a], in addition to assimilating MODIS AOD 557 

observations based on Jung et al. [2019]. The constrained emissions also permitted investigating 558 

the simultaneous effects of physical and chemical processes contributing to ozone formation, 559 

illuminating the complexities associated with non-linear chemistry, 560 

Several implications of the derived emissions for the months of March, April, and May 561 

2020 (lockdown) relative to those in 2019 (baseline) were investigated. First, as previously 562 

reported [Sicard et al., 2020; Barré et al. 2020], we observed a significant reduction in NOx in 563 

March (14-31%) in several major polluted regions including Paris, London, Madrid, and Milan. 564 

The reductions were further seen in other cities such as Rome, Brussels, Frankfurt, Warsaw, 565 

Belgrade, Kyiv, and Moscow (34-51%) in April. Second, a large spatial and temporal variability 566 

associated with the reduction in NOx was evident, as each country might have different level and 567 

timeline of restrictions. For instance, NOx emissions decreased drastically in April rather than 568 

March in some portions of UK, northern Germany, Moscow, and Poland. Third, we showed that 569 

anthropogenic VOC emissions over Paris (-9%), Milan (-29%), London (-5%), and Rome (-5%) 570 

decreased in March, a picture that was achievable through jointly using NO2 and HCHO 571 

observations. The reduced anthropogenic VOC emissions were a result of two key assumptions: 572 

the reduced NOx emissions in NOx-rich areas increased HCHO made from VOCs (evident in larger 573 

Jacobians derived from the regional model), and TROPOMI HCHO suggested a negligible 574 

difference in HCHO concentration between the two years. This striking result emphasizes the 575 
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importance of building a multi-specie framework into inverse modeling studies, as the intertwined 576 

chemical feedback between HCHO and NO2 is quite important and shown in proof of concept by 577 

Marais et al. [2012], Valin et al. [2016], Wolfe et al. [2016], and Souri et al. [2020b]. Fourth, 578 

changes in VOC emissions were primarily dictated by biogenic and biomass burning sources in 579 

April and May. 580 

The constrained model calculations gave good representations of near-surface NO2 581 

changes in April (model: -21±17%, observation: -29±21%) in places where the top-down estimates 582 

are reasonable (averaging kernels > 0.5), but inferior representations in other months, especially 583 

in May (model: -12±18%, observation: -25±20%). This tendency mainly arose from TROPOMI 584 

frequencies; too few days (10-26%) in May due to cloudiness precluded the determination of 585 

realistic NOx emission changes. 586 

We observed surface MDA8 ozone increase from both model and measurements in April 587 

2020 with respect to the baseline. Comparisons of calculation by the constrained model in terms 588 

of MDA8 surface ozone found reasonable agreement with observations in the proximity of central 589 

Europe in April (model: +3.73±3.94%, +1.79 ppbv, observation: +7.35±11.27%, +3.76 ppbv). 590 

These comparisons indicate that the performance of the constrained model to reproduce the ozone 591 

enhancement feature is promising, suggesting fruitful information in TROPOMI NO2 and HCHO, 592 

although reasons behind the underestimation of the enhancement remained unexplained. It was 593 

clear that the dominantly negative ozone production rates dictated by O3-NO-NO2 partitioning 594 

(JNO2[NO2]-kNO+O3[NO][O3]) became less negative primarily due to the reduced NOx emissions in 595 

urban areas where O3 titration occurred. This tendency was in agreement with studies of Lee et al. 596 

[2020] and Wyche et al. [2021]. We found negligible differences in ozone production from 597 

[HO2+RO2][NO] and ozone loss from O1D+H2O and O3+HOx between the two years suggesting 598 

photochemistry was rather low in the springtime over Europe. 599 

We further quantified the contributions of physical processes (transport, diffusion and dry 600 

deposition) and chemistry to the formation/loss of ozone using the integrated process rates. The 601 

physical processes decreased MDA8 ozone by -4.83 ppbv resulting from relatively larger dry 602 

deposition in 2020, whereas chemistry (ozone production) augmented ozone levels by +5.89 ppbv, 603 

indicating that rising ozone was primarily impacted by changes in chemistry. Enhanced air 604 

temperature and photolysis in 2020, both of which were well captured in our model, also affected  605 

chemistry. Experiments with fixed anthropogenic emissions underwent significant enhancement 606 
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in surface MDA8 ozone over central Europe, but those only contribute to 42% of the total 607 

enhancement indicating that anthropogenic emissions were the major factor. 608 

The results shown here reveal previously unquantified characteristics of ozone and its 609 

precursors emission changes during the lockdown 2020 in Europe. We have been able to measure 610 

the amount of changes along with the level of confidence in NOx and VOC emissions using a state-611 

of-the-art inversion technique by leveraging well-characterized satellite observations, which in 612 

turn, allowed us to unravel the chemical and physical processes contributing to increased ozone in 613 

Europe. Unless a comprehensive air quality campaign targeting COVID-19 related lockdown is 614 

available, we recommend that the impact of lockdown on air pollution should be examined through 615 

the lens of well-established models constrained by publicly available data, especially those from 616 

space in less cloudy environments. 617 
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 957 
 958 
 959 

 960 
 961 

Table 1. Statistics reported in several validations studies comparing TROPOMI 962 
tropospheric NO2 against independent observations. 963 

 964 
Study Location Time 

Period 
Benchmark 
Instrument 

Bias (low) RMSE Modification Modified 
Bias (low) 

Chan et 
al. 2020 

Munich May 
2018-Apr 
2019 

MAXDOAS 30% N/A In-situ 
MAX-
DOAS 
profiles 

17% 

Griffin et 
al. 2019 

Canadian 
Oil 
Sands 

Mar-May 
2018 
(v1.01) 

Pandora (direct 
Sun) 

15-30% N/A Higher 
resolution 
profiles (10 
km) and 
albedo 

0-25% 

Judd et 
al. 2020 

New 
York 

Jun-Sep 
2018 

GeoTASO 19-33% N/A Higher 
resolution 
profiles (12 
km) 

7-19% 

Verhoelst 
et al. 
2020 

Global Apr 2018-
Feb 2020 

MAXDOAS 37% 
(average), 
23-51% 
(range) 

3.5×1015 
molec/cm2  

N/A N/A 

Wang P. 
et al. 
2020 

Atlantic 
and 
Pacific 
Oceans 

4 
campaigns 
during 
Dec 2018-
Jul 2019 

MAXDOAS Negligible N/A N/A N/A 

Zhao et 
al. 2020 

Greater 
Toronto 
Area 

Mar 2018-
Mar 2019 

Pandora (direct 
Sun) 

24-28% 
(suburban/ur
ban) 
+4-10% 
(rural) 

 Higher 
resolution 
profiles (10 
km) and 
albedo 

13-24% 
(suburban/
urban) 
+14-15% 
(rural) 

 965 
 966 
 967 

 968 
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Table 2. Relative and absolute differences of top-down estimate of NOx emissions using 970 
TROPOMI for different countries in Europe in March-May 2020 (lockdown) with respect to 2019 971 
(baseline). Ton and d denote tonne and day, respectively. 972 

Countries March (%, ton/d) April (%, ton/d) May (%, ton/d) 
Austria -17.25 -63.36 -6.64 -23.32 -3.77 -12.17 
Belarus -12.99 -67.91 -15.39 -88.86 -4.22 -19.85 
Belgium -32.6 -159.34 -27.31 -137.95 -28.61 -177.56 

Czech Republic -23.66 -113.31 -9.74 -43.50 -2.85 -11.31 
Denmark -10.88 -17.91 -13.12 -29.58 -8.12 -19.84 
Finland -2.88 -5.92 -7.70 -18.21 -8.82 -19.39 
France -25.35 -547.20 -20.46 -467.45 -9.29 -198.17 

Germany -7.2 -203.63 -24.42 -832.93 -9.58 -285.57 
Greece -20.56 -77.88 -5.32 -19.91 -0.88 -3.38 

Hungary -12.24 -34.31 -6.21 -18.57 -5.01 -12.25 
Ireland -12.5 -24.55 -7.48 -16.83 -3.73 -8.15 
Italy -17.81 -270.57 -16.14 -252.17 +2.37 34.15 

Netherlands +8.86 28.30 -9.71 -38.99 -2.27 -10.98 
Norway -2.88 -7.69 -8.87 -26.91 -3.40 -9.52 
Poland -15.05 -246.15 -20.02 -342.90 -8.34 -126.70 

Portugal -8.83 -24.42 -8.80 -23.31 -3.39 -10.16 
Romania -12.93 -70.83 -1.13 -5.80 +1.12 5.25 

Spain -10.13 -156.21 -12.53 -192.19 -2.12 -32.45 
Sweden -6.60 -15.17 -8.94 -23.12 -6.48 -15.85 

Switzerland -8.46 -14.15 -8.03 -13.23 -13.07 -18.96 
Turkey -10.46 -224.27 -3.97 -76.61 -5.22 -98.66 
Ukraine -13.64 -224.24 -12.31 -198.00 -13.82 -207.06 

United Kingdom -14.94 -254.82 -19.11 -334.27 -14.35 -263.89 
The strait of 
Gibraltar and 
Alboran Sea 

-7.17 -77.32 -8.58 -86.69 -14.34 -10.67 

All -13.93 ± 
8.44 

-2795.65 
± 129.67 

-15.4 ± 
6.70 

-3224.62 
± 194.51 

-7.72 ± 
6.52 

-1522.46 
± 92.00 

 973 

 974 
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Table 3. Relative and absolute differences of top-down estimate of VOC emissions using 976 
TROPOMI for different cities in Europe in March 2020 (lockdown) and 2019 (baseline). 977 

Countries March 2020 (ton/d) March 2019 (ton/d) Diff (%, ton/d) 
Paris 54.27 59.66 -9.03 -5.39 
Rome 9.92 10.46 -5.18 -0.54 
Milan 1.83 2.59 -29.40 -0.76 

London 27.74 29.32 -5.38 -1.58 
 978 
 979 
Table 4. Reaction rates relating to the chemical pathways of ozone formation and loss over box L 980 
(proximity of central Europe). 981 

Reactions 
Production 
(P)  or loss 

(L) 

April 2020 
(ppbv/hr) 

April 2019 
(ppbv/hr) 

Net diff 
a(ppbv/hr) 

HO2+NO P 0.85 0.91 -0.06 
RO2+NO P 0.44 0.41 +0.03 
NO2+OH L 0.10 0.14 +0.04 
O1D+H2O L 0.07 0.08 +0.01 
O3+VOCs L 0.01 0.01 0.00 
O3+HOx L 0.09 0.08 -0.01 

JNO2[NO2] P 14.61 27.28 -12.67 
kNO+O3[NO][O3] L 15.11 28.52 +13.40 

JNO2[NO2]- kNO+O3[NO][O3] N/A -0.50 -1.24 +0.74 
Numerically solved PO3 N/A -0.79 -1.53 +0.74 

a A positive net difference indicates higher (lower) production (loss) in 2020 with respect to 2019. 982 
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 984 

 985 
Figure 1. The WRF-CMAQ 15 km domain covering Europe. The background picture is based 986 
on the publicly available NASA Blue Marble (© NASA). 987 
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 989 
 990 

 991 
Figure 2. (first row) Contour maps of tropospheric NO2 from the TROPOMI sensor during months 992 

of March, April, and May in 2020 (lockdown). (second row) Same as the first row but for the 993 

baseline year (2019). (last row), Difference of the columns in 2020 with respect to those of 2019. 994 

All columns are corrected for the bias and their AMFs are recalculated iteratively based on the 995 

posterior profiles derived from our inverse modeling practice. The satellite-derived columns are 996 

subject to errors, so a direct interpretation of their magnitudes cannot be performed in a robust 997 

manner. 998 
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 1000 
Figure 3. Same as Figure 2 but for the total HCHO columns. 1001 
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 1004 
Figure 4. Top-down estimates of total NOx during months of March, April and May in 2019 1005 

(baseline) and the differences with respect to 2020. To infer the magnitude of emissions in 2020, the 1006 

second row should be added to the first one. Both TROPOMI HCHO and NO2 observations are 1007 

jointly used to estimate these numbers. Averaging kernels (mean values based on both 2019 and 1008 

2020 estimates) explain the level of credibility of the estimate which is heavily dependent on the 1009 

TROPOMI signal/noise ratios.  1010 
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 1012 

 1013 
Figure 5. Same as Figure 4 but for the total VOC emissions. 1014 

 1015 

 1016 
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 1018 
Figure 6. Daily-averaged differences in simulated surface NO2, HCHO, surface wind vectors, 1019 

PBLH, surface air temperature, and the ratio of photolysis rate below clouds to a clear-sky 1020 

condition. The difference maps are computed by subtracting values in 2020 from those in 2019. 1021 

Black dots overlaid in the PBLH subplot denote calm surface winds (<1 m/s). 1022 

  1023 

https://doi.org/10.5194/acp-2021-121
Preprint. Discussion started: 12 March 2021
c© Author(s) 2021. CC BY 4.0 License.



 38 

 1024 

 1025 
Figure 7. Scatter maps of relative changes in surface NO2 concentrations suggested by the 1026 

European air quality network (first row), and the constrained model (second row). Results are 1027 

daily-averaged. We only consider grid cells whose averaging kernels (from the NOx inversion) 1028 

are above 0.5. Furthermore, grid cells having more than 2 stations are only included to partly 1029 

account for the spatial representivity factor. Surface concentrations are not accounted for the 1030 

NOz family interferences. 1031 
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 1033 

 1034 

 1035 
Figure 8. Number of good quality (qa_flag>0.75) TROPOMI tropospheric NO2 days observed at 1036 

15×15 km2. These numbers are heavily affected by cloudiness. 1037 
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 1039 

 1040 

 1041 
Figure 9. Changes in surface MDA8 ozone concentrations suggested by the observation (left), 1042 

and the constrained model (right) in April 2020 relative to those in 2019. 1043 
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 1045 

 1046 

 1047 
Figure 10. Surface process tendencies (hr-1) including horizontal transport (advection plus 1048 

diffusion), vertical transport (advection plus diffusion), dry deposition, and chemistry. Positive 1049 

(negative) values mean source (sink) of ozone. These outputs are based on the constrained 1050 

model. Wind vectors are the difference. 1051 
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 1053 

 1054 

 1055 
Figure 11. Simulated MDA8 surface ozone difference between April 2020 with respect to April 1056 

2019 including (left) dynamical meteorology, biogenic and anthropogenic emissions, (middle) 1057 

dynamical meteorology and biogenic emissions, and (right) the subtraction of the previous  1058 

scenarios isolating dynamical anthropogenic emissions. 1059 

 1060 
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 1062 

 1063 

 1064 
Figure 12. Numerically-solved net ozone production rates based on the WRF-CMAQ simulations 1065 

using constrained emissions in April 2020, 2019, and the difference. These values are over the 1066 

surface and are averaged during the MDA8 hours.  1067 
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 1069 
Figure 13. Surface chemical processes involved in equation 5 (ppbv hr-1) pertaining to the 1070 

production and loss of ozone in April 2020 (lockdown) and 2019 (baseline) during MDA8 hours.  1071 
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 1073 
Figure 14. Surface chemical processes involved in equation 6 (ppbv hr-1) pertaining to the O3-1074 

NO-NO2 partitioning in April 2020 and 2019 during MDA8 hours.  1075 

 1076 
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