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Abstract. Questions about how emissions are changing during the COVID-19 lockdown 16 

periods cannot be answered by observations of atmospheric trace gas concentrations alone, in part 17 

due to simultaneous changes in atmospheric transport, emissions, dynamics, photochemistry, and 18 

chemical feedback. A chemical transport model simulation benefiting from a multi-species 19 

inversion framework using well-characterized observations should differentiate those influences 20 

enabling to closely examine changes in emissions. Accordingly, we jointly constrain NOx and 21 

VOC emissions using well-characterized TROPOMI HCHO and NO2 columns during the months 22 

of March, April, and May 2020 (lockdown) and 2019 (baseline). We observe a noticeable decline 23 

in the magnitude of NOx emissions in March 2020 (14-31%) in several major cities including Paris, 24 

London, Madrid, and Milan expanding further to Rome, Brussels, Frankfurt, Warsaw, Belgrade, 25 

Kyiv, and Moscow (34-51%) in April. However, NOx emissions remain at somewhat similar 26 

values or even higher in some portions of the UK, Poland, and Moscow in March 2020 compared 27 

to the baseline possibly due to the timeline of restrictions. Comparisons against surface monitoring 28 

stations indicate that the constrained model underrepresents the reduction in surface NO2. This 29 

underrepresentation correlates with the TROPOMI frequency impacted by cloudiness. During the 30 

month of April, when ample TROPOMI samples are present, the surface NO2 reductions occurring 31 
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in polluted areas are described fairly well by the model (model: -21±17%, observation: -29±21%). 32 

Changes in VOC emissions are dominated by eastern European biomass burning activities and 33 

biogenic isoprene emissions. Results support an increase in surface ozone during the lockdown. In 34 

April, the constrained model features a reasonable agreement with maximum daily 8 h average 35 

(MDA8) ozone changes observed at the surface (r=0.43), specifically over central Europe where 36 

ozone enhancements prevail (model: +3.73±3.94%, +1.79 ppbv, observation: +7.35±11.27%, 37 

+3.76 ppbv). The model suggests that physical processes (dry deposition, advection, and diffusion) 38 

decrease MDA8 surface  ozone in the same month on average by -4.83 ppbv, while ozone 39 

production rates dampened by largely negative JNO2[NO2]-kNO+O3[NO][O3] become less negative, 40 

leading ozone to increase by +5.89 ppbv. Experiments involving fixed anthropogenic emissions 41 

suggest that meteorology contributes to 42% enhancement in MDA8 surface ozone over the same 42 

region with the remaining part (58%) coming from changes in anthropogenic emissions. Results 43 

illustrate the capability of satellite data of major ozone precursors to help atmospheric models 44 

capture ozone changes induced by abrupt emission anomalies. 45 

1. Introduction 46 

Continuous monitoring of air pollution by satellites can help our understanding of both 47 

anthropogenic and biogenic variability and change caused by rapid economic recession 48 

[Castellanos and Boersma, 2012] and regulations [Krotkov et al., 2016; Souri et al., 2020a]. Earth’s 49 

atmosphere has substantially become more polluted since the industrial era in comparison to its 50 

original environmental condition [Li and Lin, 2015], thus any abrupt hiatus in anthropogenic (man-51 

made) emissions should result in an immediate impact on relatively short lifetime pollutants such 52 

as nitrogen dioxide (NO2), formaldehyde (HCHO), and tropospheric ozone (O3). The beginning of 53 

the global COVID-19 pandemic in early 2020 [Fauci et al., 2020] provided such an abrupt change 54 

in human activities [Le Quéré et al., 2020]. A first step to fully understand how much of these 55 

impacts are related to the pandemic lockdowns is to disentangle the physical and chemical 56 

processes determining their ambient concentrations. Unraveling those processes require precise, 57 

continuous observations of physical and chemical states and emission rates, which are not 58 

routinely available on global, continental and regional scales. Therefore, we resort to using a model 59 

realization attempting to reproduce such an intricate system. Models without observational 60 

guidance are incapable of numerically representing the real world [Lorenz, 1963], so our best 61 

option to improve a model is to constrain some of its prognostic inputs using well-characterized 62 
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observations. Accordingly, the framework of this study is centered around inverse modeling and 63 

data assimilation. 64 

Significant attention has been given to documenting the lockdown-related changes in 65 

atmospheric composition around the world using both in-situ and satellite observations [e.g., 66 

Sicard et al., 2020; Shi and Brasseur, 2020; Lee et al., 2020; Salma et al., 2020; Le Quéré et al., 67 

2020; He et al., 2020; Le et al., 2020; Miyazaki et al., 2020; Liu et al., 2020; Barré et al., 2020; 68 

Goldberg et al., 2020; Ordóñez et al., 2020; Wyche et al., 2021; Bekbulat et al., 2020; Gaubert et 69 

al., 2021]. The broad picture is consistent among these studies; the lockdown drastically reduced 70 

the concentrations of NOx, CO, and SO2 and some types of particulate matter, whereas the 71 

concentrations of several secondarily formed compounds such as ozone behaved in non-linear 72 

ways due to emissions and/or meteorology. To the best of our knowledge, changes in volatile 73 

organic compounds (VOCs) over Europe have not been reported. 74 

The motivations of this study are to determine the capability of a regional model 75 

constrained by satellite HCHO and NO2 columns to capture near-surface pollution, and if local 76 

ozone production rates are the driving factors for heightening ozone pollution during the 2020 77 

lockdown. In other words, what chemical and physical processes are associated with the elevated 78 

ozone? How representative are satellite observations at capturing surface air quality through an 79 

inversion context? Is meteorology the primary factor in shaping elevated ozone as suggested by 80 

Ordóñez et al. [2020]? 81 

To address these pivotal questions, it is desirable to constrain models using multi-species 82 

observations because relationships between the atmospheric compounds such as HCHO and NO2 83 

are importantly intertwined [Marais et al., 2012; Valin et al., 2016; Wolfe et al., 2016; Souri et al., 84 

2020a,b]. Accordingly we build our inversion framework upon a non-linear joint analytical 85 

inversion of NOx and VOCs proposed in Souri et al. [2020a] using TROPOMI HCHO and NO2 86 

observations in Europe. Performing this type of inversion not only enables us to precisely quantify 87 

the impact of the pandemic on emissions (along with its uncertainty, as the inversion framework 88 

is analytical) but also paves the way for estimating the resulting changes on different pathways of 89 

surface ozone. 90 

2. Measurements, Modeling, and Methods 91 

2.1. Satellite Observations 92 

2.1.1. TROPOMI NO2 93 
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We use daily offline S5P TROPOMI tropospheric NO2 slant columns 94 

[Copernicus Sentinel data processed by ESA and Koninklijk Nederlands 95 

Meteorologisch Instituut (KNMI), 2019] derived from a two-step framework 96 

involving DOAS spectral fitting in conjunction with a stratosphere/troposphere 97 

decoupler [Boersma et al., 2018]. The time periods of this study are March, April, 98 

and May 2020 and 2019. The data provide Jacobians of light intensity with respect 99 

to optical thickness (i.e., vertically-resolved scattering weights) which are 100 

dependent on scene surface reflectivity, the cloudiness of the assumed Lambertian 101 

clouds, and sensor viewing geometry.  102 

Aerosol effects on the scattering weights are not taken into consideration. 103 

Based on radiative transfer calculations and satellite-based aerosol products, Jung 104 

Y. et al [2019] and Cooper et al. [2019] observed small changes (<10%) in AMFs 105 

with and without considering the aerosol impacts in Europe in springtime. This 106 

tendency likely results from a low aerosol optical depth. 107 

 The 2019 TROPOMI observations used in this study have a spatial 108 

resolution of 7×3.5 km2, whereas those in 2020 have a spatial resolution of 5.5×3.5 109 

km2. The NO2 products for the study time period were produced by processor 110 

versions v01.02.02 (1 March 2019 – 20 March 2019) and v01.03.02 (20 March 111 

2019 onward). The v01.03.02 processor includes an update to the FRESCO-S cloud 112 

algorithm and improvements to a quality flag variable. NO2 validation from 113 

processors v01.02.02 and v01.03.02 shows similar biases and dispersion [Lambert 114 

et al., 2020], as do comparisons from before and after the pixel spatial resolution 115 

change [Verhoelst et al., 2021]. We extract good quality pixels based on the main 116 

quality flag (qa_flag) > 0.75, which removes retrievals flagged as bad and pixels 117 

over snow/ice or with cloud radiance fractions > 0.5, and resample them to our 15-118 

km regional model (discussed later) using bilinear interpolation. Since vertical 119 

column densities (VCDs) depend on assumed gas profile shape (i.e., they are quasi-120 

observations), we recalculate those shape factors using profiles from our 121 

constrained chemical transport model. Shape factors are re-estimated by calculating 122 

the ratio of the vertical column of total air to the simulated vertical column of NO2 123 



 5 

multiplied by the mixing ratios of NO2 profile from the regional model [Martin et 124 

al., 2002]. 125 

Satellite remote sensing observations are usually far more stable than they 126 

are accurate. This can make the data practical for measuring relative changes in 127 

emissions, but may necessitate the use of a bias correction for absolute emissions 128 

estimates. Moreover, the systematic and random errors associated with satellite 129 

retrievals may differ markedly from location to location. It is therefore crucial to 130 

thoroughly validate columns against independent observations. To this end, we 131 

compile statistics reported in several validation studies focusing on the TROPOMI 132 

tropospheric NO2 product and summarize their findings in Table 1. The most 133 

comprehensive global study to date is a comparison of TROPOMI tropospheric 134 

NO2 with that derived from 19 MAX-DOAS instruments [Verhoelst et al., 2021]. 135 

This study indicates there is a low bias in TROPOMI tropospheric NO2 of -23 to -136 

37% relative to MAX-DOAS at clean to moderately polluted sites, and as large as 137 

-51% at highly polluted sites. When considering all sites, the overall median bias 138 

in this study was found to be -37%, with a dispersion of 3.5×1015 molec/cm2 139 

(defined as half of the 68% interpercentile). No obvious seasonal patterns were 140 

found in the biases. These results are consistent with other validation studies which 141 

have observed a low bias in TROPOMI tropospheric NO2 [Chan et al., 2020; Griffin 142 

et al., 2019; Judd et al., 2020]. A potential significant source of bias in polluted 143 

regions is the relatively low spatial resolution (1×1o) TM5-MP prior profiles used 144 

in the TROPOMI air mass factor calculation. Several validation studies have shown 145 

the low bias in TROPOMI NO2 can be reduced in polluted regions by 5-17% 146 

through the use of higher spatial resolution model a priori profiles or other 147 

improvements in the AMF calculation [Chan et al., 2020; Griffin et al., 2019; Judd 148 

et al., 2020; Zhao et al., 2020].  149 

Directly incorporating these numbers into an inversion model is 150 

challenging, mainly because of spatiotemporal variability in the satellite errors. 151 

Ideally, the relationship between errors and retrieval inputs (e.g., albedo, scene 152 

radiance, profiles, etc.) would be used as an additional cost function in the 153 

inversion, commonly known as variational bias correction [e.g., Auligné et al., 154 
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2007]. In the absence of such relationships, we use the biases reported in the 155 

validation studies.  156 

In the case of NO2, we uniformly scale up the satellite tropospheric columns 157 

by 25%. This bias estimate is derived by first assuming a 37% low bias in the 158 

columns over polluted regions as reported by Verhoelst et al. [2021]. In turn, this 159 

low bias can be mitigated somewhat by the application of high spatial resolution 160 

profiles in the air mass factor calculation, such as the ones used in this study. Table 161 

1 summarizes the results from several TROPOMI validation studies at specific 162 

locations that calculated NO2 using model profiles with higher spatial resolution 163 

than the operational TROPOMI (1o×1o) profiles (see Table 1 columns 164 

“Modification” and “Modified Bias”). In these studies, modified columns show 165 

increases ranging from 0 - 25%. Based on these results, we assume a low bias of 166 

37% can be mitigated by ~12% through the use of high spatial resolution profiles, 167 

for a resulting total low bias of 25%. This bias is likely not valid over pristine areas, 168 

where validation studies show lower biases in TROPOMI NO2 [Verhoelst et al., 169 

2021, Wang et al., 2020, Zhao et al., 2020]; nonetheless, we previously observed 170 

in Souri et al. [2020a] that the low signal-to-noise ratios of those column amounts 171 

resulted in small changes in the top-down emissions. We assume the errors of 172 

observations originate from two main sources: i) the precision error provided with 173 

the data (eprecision) and ii) a fixed error estimated from comparisons to in-situ 174 

measurements (econst). Mathematically, the final error is: 175 

𝑒"# = 𝑒%&'()# +
1
𝑛#-𝑒./0%1(1&',1#

'

134

 (1) 

where n is the number of samples for a given grid and econst equals to 1.1×1015 176 

molec/cm2 (<6×1015  molec/cm2) in clean regions and 3.5×1015 molec/cm2 177 

(>=6×1015 molec/cm2) in moderately to highly polluted regions. These regions are 178 

defined based on the wide ranges reported in Verhoelst et al. [2021] (3-14×1015  179 

molec/cm2 for moderately to highly polluted regions). 180 

2.1.2. TROPOMI HCHO 181 

We use daily offline S5P TROPOMI HCHO total slant columns 182 

[Copernicus Sentinel data processed by ESA, German Aerospace Center (DLR), 183 
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2019]. A full description of the algorithm can be found in De Smedt et al. [2018]. 184 

The HCHO products for the study time period were produced by processor versions 185 

v01.01.05 (1 March 2019 – 28 March 2019), v01.01.06 (28 March 2019 – 23 April 186 

2019) and v01.01.07 (23 April 2019 onward). The newer versions have added 187 

updates to the surface classification climatology and cloud products that might have 188 

some effects on the magnitude of HCHO in cloudy scenes. We again remove bad 189 

pixels based on qa_flag < 0.75 and recalculate shape factors using the simulated 190 

profiles derived from our regional model.  191 

Validation efforts reported in the sixth Quarterly Validation Report of the 192 

Copernicus Sentinel-5 Precursor Operational Data Products [Lambert et al., 2020] 193 

indicate varying biases depending on the magnitude of HCHO concentrations in 194 

comparison to ground-based observations. Locations with HCHO concentrations 195 

above 8×1015 molec/cm2 show a low bias of ~-31%. Conversely, clean sites with 196 

HCHO concentrations below 2.5×1015 molec/cm2 undergo a high bias of 26%. 197 

Vigouroux et al. [2020] expanded the validation suite by including more than 25 198 

FTIR stations located over both pristine and polluted sites. Results from the 199 

comparison with FTIR measurements (over clean areas) also indicate a high bias, 200 

whereas those compared in polluted areas show a low bias. By compiling numbers 201 

quoted in Lambert et al. [2020] and Vigouroux et al. [2020], we correct the existing 202 

biases in TROPOMI HCHO by scaling 25% (<2.5×1015 molec/cm2) down columns 203 

in clean areas and 30% (>=8×1015 molec/cm2) up in polluted areas. We assume the 204 

constant term of errors (econst) to be equal to 4% of HCHO total columns based on 205 

Vigouroux et al. [2020]. 206 

2.1.3. MODIS AOD 207 

To improve the simulation of total aerosol mass, we use the collection 6 208 

MODIS aerosol optical depth (AOD) from both Aqua (~ 13:30 LT) and Terra (~ 209 

10:30 LT) platforms over both land and ocean [Levy et al., 2013] (available at 210 

https://ladsweb.modaps.eosdis.nasa.gov, access May 2020). We independently 211 

validate all three major products, namely the deep blue, the dark target and a 212 

combined dark blue products by comparing to AOD values measured by 213 

AERONET over Europe at the same time period of this study. Only good and very 214 
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good (qa>=2) pixels are selected for the comparison. The AERONET AOD data 215 

are computed based on the values at 500 nm and Angstrom Exponent in the 440-216 

675 nm range. We collocate two datasets if they are within 10 km radius and less 217 

than 30 mins apart. The dark blue product results in the best agreement (r>0.87) 218 

with a high bias of <0.05 (Figure S1, and S2), and is available over both water and 219 

land. This product is therefore chosen for the data assimilation. We remove the bias 220 

and assign the value of the covariance matrix of observations to the RMSE values 221 

obtained from the comparison. 222 

2.2. Surface Measurements 223 

UV photometry and chemiluminescence surface ozone and NO2 measurements all 224 

over continental Europe are used to investigate possible changes in their concentrations 225 

induced by the lockdown (https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm, 226 

access June 2020). The NO2 chemiluminescence measurements are usually overestimated 227 

due to interferences from the NOz family (PAN, organic nitrate, HNO3, etc.). We assume 228 

that the interferences are not significantly different between the baseline and lockdown 229 

mainly due to relatively low photochemistry in early spring [Lamsal et al., 2008] compared 230 

to summertime. Additionally, the correction needs a careful evaluation of the model with 231 

regards to the NOz family whose measurements are not available in this case study. 232 

More than 6450 meteorological stations archived on NOAA’s integrated surface 233 

database (https://www.ncei.noaa.gov/data/global-hourly/, access April 2020) are used to 234 

validate the performance of our weather model in terms of several prognostic inputs 235 

including ambient air temperature, air humidity, and U and V wind components. 236 

 237 

2.3. WRF-CMAQ Modeling 238 

The regional air quality simulations at 15×15 km2 are carried out with the widely 239 

used CMAQ v5.2.1 (https://doi.org/10.5281/zenodo.1212601) in conjunction with WRF 240 

v3.9.1 [Skamarock et al. 2008] models. The models overlap and cover continental Europe 241 

and some portions of Africa and Middle East. The domain consists of 483 east-west, 383 242 

north-south grids, and 37 unevenly spaced eta levels (Figure 1). The simulation time period 243 

is from March to May 2019 and 2020 (six months). Since IC/BC are taken from already 244 

spun-up National Centers for Environmental Prediction (NCEP) FNL (final) reanalysis and 245 
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GEOS-Chem v12.9.3 (10.5281/zenodo.3974569) runs, we only spin up the models for the 246 

month of February. The chemistry configuration of the CMAQ model mainly consists of 247 

CB05 with chlorine chemistry (gases) and AERO6 (aerosol). Hourly-basis biogenic 248 

emissions are processed by the offline standalone Model of Emissions of Gases and 249 

Aerosols from Nature (MEGAN) v2.1 model [Guenther et al., 2012] based on high-250 

resolution plant functional maps made by Ke et al. [2012]. The biogenic emission factors 251 

are estimated based on the PFT-specific information provided in Guenther et al. [2012]. 252 

The biogenic VOCs include a wide range of compounds including isoprene, monoterpenes, 253 

aromatic VOCs, and methanol. Soil NOx emissions are estimated by Yienger  and Levy, 254 

[1999]. Lightning NOx emissions are based on in-line calculations involving convective 255 

precipitation rates and cloud vertical distributions. Lightning NOx emissions are not 256 

constrained in the model. Anthropogenic emissions are based on the Community Emissions 257 

Data System (CEDS) inventory in 2014 [Hoesly et al., 2018]. Diurnal scales are not 258 

considered for the anthropogenic emissions. We also output the CMAQ integrated process 259 

analysis quantifying the contribution of each process to the amount of compounds. The 260 

physical setting of WRF includes the Lin microphysics scheme [Lin et al., 1983], the Grell 261 

3-D ensemble cumulus scheme [Grell and Dévényi, 2002], the RRTMG radiation scheme, 262 

ACM2 planetary boundary layer parametrization [Pleim, 2007], and Pleim-Xu land-263 

surface scheme [Xiu and Pleim, 2001]. To minimize the deviation of the model from the 264 

reanalysis data, we turn on the grid nudging option with respect to wind, moisture, and 265 

temperature only outside of the PBL region. The inclusion of this option outside of the PBL 266 

is because we do not want the coarse reanalysis data washes out the relatively high-267 

resolution dynamics. Moreover, leaf area index and the sea surface temperature are updated 268 

every 6 hours based on satellite measurements included in the reanalysis data. Extensive 269 

model evaluations based upon surface observations show a striking correspondence (Table 270 

S1, S2) which is indicative of fair energy budget and transport in our model. 271 

2.4. Inverse Modeling and Data Assimilation 272 

To adjust the bottom-up emission inventories, we follow a non-linear joint 273 

inversion method proposed in Souri et al. [2020a]. Briefly, a Gauss-Newton algorithm is 274 

utilized to incrementally solve the Bayes’ quadratic function in analytical fashion. The 275 

posterior emissions are then derived by 276 
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𝐱164 = 𝐱7 + 𝐆[𝐲 − 𝐹(𝐱1) + 𝐾1(𝐱1 − 𝐱7)] (2) 

where y is bias-corrected monthly-averaged TROPOMI NO2 and HCHO observations, xa 277 

(or x0) is the prior emissions, xi is the posterior emission at the ith increment, F is the 278 

forward model (here WRF-CMAQ) to project the emissions onto columns space, G is the 279 

Kalman gain, 280 

𝐆 = 𝐒0 𝐾1BC𝐾1𝐒0 𝐾1B + 𝐒& D
E4

 (3) 

and 𝐾1 (= 𝐾(𝐱1)) is the Jacobian matrix calculated explicitly from the model using the finite 281 

difference method by perturbing separately NOx and VOC emissions by 20%. The 282 

perturbations are applied for each iteration. The model outputs along with Jacobians and 283 

emissions are spatiotemporally co-registered with the observations.  and Se are the error 284 

covariance matrices of the observations and emissions. Similar to Souri et al. [2020a], the 285 

prior errors in anthropogenic NOx and VOCs emissions are set to 50% and 150%, 286 

respectively. In terms of the biogenic emissions, the errors are set to 200% for both NOx 287 

and VOCs. The instrument covariance matrices are populated with squared-sum of the 288 

aforementioned errors based on the compilation of the validation studies and precision 289 

errors provided with the data (Eq.1). Both error matrices are assumed diagonal. The 290 

inversion window is monthly meaning we have three separate correction factors in months 291 

of March, April, and May. The covariance matrix of the a posteriori is calculated by: 292 

𝐒F0 = (𝐈 − 𝐆𝐾H )𝐒0  (4) 

where 𝐾H is the Jacobian from the ith iteration. Here we iterate Eq.2 three times. The 293 

averaging kernels (A) are given by: 294 

𝐀 = 𝐈 − 𝐒F0𝐒0E4 (5) 

Not only does this method considers non-linear chemical feedback among NO2-295 

HCHO-NOx-VOC by simultaneously incorporating the HCHO and NO2 in the inversion 296 

framework, it also permits quantification of A that explicitly explains the amount of 297 

information obtained from the observation. Low A indicates low G making the a posteriori 298 

to be rather independent of the observational constraint. 299 

We also correct total aerosol mass by daily assimilating the MODIS dark blue AOD 300 

observations following the algorithm discussed in Jung et al. [2019]. Briefly, the 301 

assimilation framework uses a modified optimal interpolation method adjusting uniformly 302 
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all relevant aerosol masses in a column as a function of a weighted-distance and appropriate 303 

errors. 304 

3. Results and Discussion 305 

3.1.Variability of HCHO and NO2 columns seen by TROPOMI 306 

We assess difference maps of TROPOMI HCHO and NO2 columns in 2020 with respect 307 

to those in 2019 during the months of March, April and May. The difference maps along with the 308 

absolute values of the tropospheric NO2 columns are shown in Figure 2. Regardless of the year, 309 

we observe a noticeable reduction in NO2 as we approach warmer months which can be explained 310 

by increases in OH concentrations (higher water vapor content, solar radiation, and O3 levels), 311 

faster vertical mixing due to larger sensible fluxes (more diluted columns for a given receptor due 312 

having a greater chance of experiencing stronger winds in higher altitudes), and a reduction in 313 

temperature-dependent light-duty diesel NOx emissions [Grange et al., 2019]. This sequential 314 

decline of NO2 obscures the quantitative interpretation of the satellite observations in two ways: 315 

first, as noted by Silvern et al. [2019], the free tropospheric background NO2, which are highly 316 

uncertain, becomes comparable to those located at near-surface, and second, the relatively lower 317 

signal-to-noise ratios reduce the amount of information obtained for NOx estimates (discussed 318 

later).  319 

The anomaly map (2020 vs 2019) in March indicates pronounced decreases in tropospheric 320 

NO2 columns over several countries including France, Spain, Italy, and Germany (box A). In 321 

contrast, we see increases in the magnitude of the NO2 columns over some portions of the UK 322 

excluding London (box B), northeastern Germany (box C), and Moscow, Russia (box D). A very 323 

recent study [Barré et al. 2020] observed roughly the same tendency which was attributable to 324 

meteorological changes. While those changes are indeed an important piece of information, we 325 

should recognize that the degree of the enforced restrictions varies both spatially and temporally; 326 

moreover changes in emission heavily rely on the dominant emission sector (e.g., mobile or 327 

industry). For instance, according to TASS press [https://tass.com/society/1144123, accessed Sep 328 

2020], Russian governments did not take significant measures to control the virus before April 15, 329 

immediately evident in the large NO2 enhancement over Moscow in March (box D). During the 330 

next two months (April and May), we observe a major turnaround over this city (box F and H). In 331 

May, the anomaly of the tropospheric NO2 suggests that the reduction in NOx emissions abruptly 332 

experiences a hiatus in central Europe (box G). However it is crucial to note that these maps are 333 
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based upon sporadic clear-sky pixels that might obscure the full portrayal of emissions changes 334 

happening throughout the period (discussed later). 335 

We further investigate the changes in HCHO total columns shown in Figure 3 in the same 336 

context as we discussed for NO2. Various VOCs with different sources contribute to the formation 337 

of HCHO (see Figure 2 in Chan Miller et al. [2016]). In theory, it is easier to single out 338 

anthropogenic-derived HCHO concentration by HCHO measurements made in wintertime, 339 

although temperature and photochemistry are always key influencers of oxidizing/photolyzing all 340 

types of VOCs. The inevitable trade-off for this is dealing with a weaker signal that is near to 341 

instrument detection limit. The TROPOMI HCHO retrieval offers a low detection limit for 342 

individual pixels (7×1015 molec/cm2) that can be further lowered down by co-adding 343 

measurements (roughly a factor of 1/√n).  Accordingly, we observe a promising signal in March 344 

over eastern European countries that is not explainable by biogenic emissions; but the magnitudes 345 

of the difference over these areas (<1.5 ×1015 molec/cm2) are below the detection limit (~ 2.4×1015 346 

molec/cm2 given the co-added measurements over time). 347 

In April, results show elevated HCHO concentrations in high latitudes in 2019 (box I), 348 

mainly a result of biomass burning activities in eastern Europe [e.g., Karlsson et al. 2013; 349 

https://earthobservatory.nasa.gov/global-maps/MOD14A1_M_FIRE, accessed June 2020]. As 350 

temperature rises in May, the footprint of biogenic emissions become more visible. This signal is 351 

not only induced by the inherent temperature-dependency of biogenic emissions, but also stems 352 

from faster isoprene oxidation through higher levels of OH [Pusede et al. 2015]. The dipole 353 

anomaly of HCHO columns suggested by TROPOMI (box J and K) pertains largely to variations 354 

in ambient surface air temperature (discussed later). 355 

3.2.Top-Down estimates of NOx and VOC emissions 356 

Following the inversion and the data assimilation frameworks, we adjust the total amounts 357 

of VOC, NOx emissions, and aerosols mass using the well-characterized TROPOMI HCHO, NO2 358 

and MODIS AOD observations for the study time period. We focus on the topic of gas phase 359 

chemistry (i.e., ozone and its precursors) implying that the aerosol data assimilation is carried out 360 

to partially remove errors associated with radiation [e.g., Jung et al., 2019] or heterogenous 361 

chemistry [Jacob, 2000], therefore, the aspect of aerosol changes induced by the lockdown will be 362 

examined in a separate study. The spatial distributions of magnitude of the top-down NOx and 363 

VOC emissions (i.e., constrained by the observations), their corresponding changes and averaging 364 
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kernels are shown in Figure 4 and Figure 5, respectively. Moreover, the monthly values of a 365 

posteriori and the a priori are shown in Figure S3, S4, S5, and S6. It is worth emphasizing that we 366 

use identical prior values in terms of anthropogenic emissions in both years.  367 

According to Figure 4, large averaging kernels associated with NOx emissions are confined 368 

in high-emitting regions suggesting that the most valid estimates can be found in areas undergoing 369 

strong TROPOMI NO2 signals. We observe a large improvement (31-45%) in the bias associated 370 

with simulated surface NO2 using the posterior emissions compared to the surface measurements 371 

in many places around Europe with an exception to northeastern Germany where TROPOMI NO2 372 

observations deviates the model from the measurements (Figs S7, S8, S9 and 10).  The 373 

improvements in correlation are minimal indicating that the prior location of emissions are well 374 

known. The discrepancies between the simulated tropospheric NO2 columns versus TROPOMI 375 

are largely mitigated by the inversion (Figure S11 and S12). Immediately apparent in Figure 4 is 376 

a strong correlation between anomaly maps of TROPOMI tropospheric NO2 (Figure 2) and those 377 

of top-down emissions. We observe reductions in NOx emissions in March (14-31%) in several 378 

major cities including Paris, London, Madrid, and Milan; the reductions further expand to Rome, 379 

Brussels, Frankfurt, Warsaw, Kyiv, Moscow, and Belgrade with higher magnitudes (34-51%) in 380 

April. Table 2 summarizes the absolute and relative differences in total NOx emissions estimated 381 

by the inversion binned to different regions in Europe based on country land borders. In general, 382 

the level of NOx reduction is somewhat higher in April relative to months of March and May 383 

possibly due to temporal variabilities associated with the restrictions; for example, UK and Poland 384 

governments enforced the restrictions starting in the last week of March to the middle of April (see 385 

Figure S1 in Okruszek et al. [2020]; https://www.bbc.com/news/uk-51981653, accessed in March 386 

2020). The decreased anthropogenic NOx emissions in the strait of Gibraltar and Alboran Sea 387 

reveal reportedly reduced ship activities [United Nations Conference on Trade and Development 388 

Report, Accessed Dec 2020]. The numbers in May indicate that several countries in central and 389 

eastern Europe (shown in box G in Figure 2) likely eased coronavirus lockdown restrictions, a 390 

picture that has yet to be verified by surface measurements (discussed later). 391 

As to VOC emissions, we observe improvements in the magnitude and spatial distribution 392 

of simulated HCHO columns after the inversion with respect to TROPOMI data over areas with a 393 

practical amount of information (e.g., AK>0.2) (Figure S13 and S14). It is very evident that the 394 

magnitudes of the emissions primarily follow anthropogenic sources in March; very low averaging 395 
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kernels over major European cities in this month are indicative of inadequacies of one-month 396 

averaged TROPOMI HCHO data. 397 

The inversion partly corrects for the large underrepresentation of biomass burning 398 

emissions in high latitudes occurring in April 2019 but due to large uncertainties of the retrieval 399 

over this area, averaging kernels are low. Vigouroux et al. [2020] showed FTIR HCHO columns 400 

to be around 4-6×1015 molec/cm2 in Saint Peterburgh (59.9oN), Kiruna (67.8oN), and Sodankylä 401 

(67.4oN) in April 2019. Despite some improvements over the biomass burning areas in April 2019, 402 

the model still greatly underestimate HCHO columns suggesting more observations are needed to 403 

adjust the emissions. The predominately high pressure system formed over these areas in April 404 

2019 (Figure S15) impedes the transport of the biomass burning pollution to central Europe. 405 

The inversion suggests larger VOC emission rates in April 2020 compared to April 2019 406 

over central Europe. Ordóñez et al. [2020] reported ambient temperature along with solar radiation 407 

to be higher than the norm. This is primarily due to a well-developed high-pressure system over 408 

the region (Figure S15) resulting in elevated HCHO columns. The top-down estimate is indicative 409 

of too low prior VOC emission rates over this area in April 2020. Given the significant role of 410 

VOCs in the formation of ozone in urban settings, this correction with reasonable AK (~0.4) is 411 

crucial for precisely modeling the surface ozone anomalies (shown later). 412 

We revisit the pronounced dipole anomaly of dominantly biogenic VOC emissions in May. 413 

In this month, the biogenic VOCs dominate. Our model suggests that ambient surface temperature 414 

differences between Russian and central Europe are more than 7oC, possibly inducing a strong 415 

dipole anomaly in biogenic emissions. It is readily evident from the averaging kernels that more 416 

realistic information from TROPOMI HCHO is attainable in warmer months, contrary to the NO2 417 

case. 418 

3.3. Disparities in near-surface concentrations suggested by the constrained model versus 419 

those by in-situ measurements 420 

3.3.1. NO2 and HCHO 421 

It is necessary to examine whether the constrained model can adequately represent the 422 

changes observed by surface measurements. Unfortunately we limit the analysis to NO2 due to the 423 

lack of routinely measured HCHO observations. Several factors can complicate this analysis: i) 424 

having overconfidence in the constrained model where the satellite observations used were 425 

uncertain; this problem can be safely addressed by only considering grid cells whose averaging 426 
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kernels are above a threshold (here 0.5), ii) not accounting for spatial representivity function when 427 

it comes to directly comparing two datasets at different scales (i.e.,  point measurements vs the 428 

model grids); a statistical construction of the spatial representivity function [Janic et al., 2016] 429 

requires a dense observational network so that we can build a semivariogram; instead, we only 430 

consider model grid cells having more than two stations; those observations then are then averaged, 431 

iii) interferences of the NOz family on NO2 chemiluminescence measurements [Dickerson et al., 432 

2019] which can be partly discounted when calculating differences, iv) model uncertainties, 433 

especially with respect to turbulent and convective fluxes that are heavily determined by 434 

representing local heterogeneity of forces and non-hydrostatic dynamics [Emanuel, 1994], all of 435 

which are challenging to properly resolve in a 15-km resolution.  436 

With these caveats in mind, we plot the daily-averaged changes of surface NO2 437 

concentrations in 2020 relative to 2019 derived by the model and the European air quality network 438 

for the months of March, April, and May (Figure 6). Large gaps in Figure 6 are caused by 439 

considering grid cells with averaging kernels>0.5 and number of samples>2. The constrained 440 

model correlates reasonably well with the changes observed by the surface measurements in March 441 

and April, but it fails to reflect those in May. The surface measurements in March reinforce 442 

increases (or negligible changes) in NO2 in northeastern Germany and UK, although the 443 

magnitudes are not as large as those suggested by the model. The constrained model tends to 444 

consistently underrepresent the decline in NO2 in March (model: -11±21%, observation: -445 

19±16%), April (model: -21±17%, observation: -29±21%), and May (model: -12±18%, 446 

observation: -25±20%). The frequency of TROPOMI data heavily impacted by cloudiness is 447 

another factor that can effectively lead to the underrepresentation of the model in a course of a 448 

month. Figure 7 depicts the average number of days that TROPOMI was able to sample on in both 449 

years (individual years are shown in Figure S16 and S17). There is a strong degree of correlation 450 

between the frequency of the data and the discrepancy between the model versus the surface 451 

observations. This is especially the case for May when we see too few days to be able to 452 

realistically reproduce NO2 changes.  453 

Given the reasonable performance of our model at reproducing the changes observed over 454 

the surface in April, a result of abundant samples from TROPOMI, we only focus on this month 455 

for the subsequent analysis. 456 

 457 
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3.3.2. Ozone 458 

Figure 8 depicts the changes in maximum daily 8 h average (MDA8) surface ozone 459 

concentrations suggested by the measurements and the constrained model in April. Immediately 460 

obvious from the observations is the elevated surface ozone concentrations up to 32% in places 461 

where NOx emissions drastically decreased such as Germany, Italy, France, UK, Switzerland, and 462 

Belgium (shown as box L). This tendency potentially driven by ozone chemistry [Sicard et al., 463 

2020a; Shi and Brasseur, 2020; Grange et al. 2020; Salma et al., 2020; Lee et al., 2020] and/or 464 

meteorology [Lee et al., 2020; Wyche et al., 2021; Ordóñez et al., 2020] has drawn much attention. 465 

The challenge is to set up a model that is the characteristic of such a complex tendency [e.g., 466 

Parrish et al., 2014]. Encouragingly, our constrained model does have skill in describing the ozone 467 

enhancements over the whole domain (r=0.43). In the proximity of central Europe (shown as box 468 

L), the enhanced MDA8 ozone concentration observed by the observations is 7.35±11.27% (+3.76 469 

ppbv) which is nearly a factor of two larger than that of the model (3.73±3.94%, +1.79 ppbv).  470 

We plot the simulated MDA8 surface ozone concentrations in April 2020 (lockdown), 471 

April 2019 (baseline), and their differences in Figure 9. Surface ozone concentrations show a 472 

strong latitudinal gradient with lower values in higher latitudes, underscoring the importance role 473 

of solar radiation in the formation of ozone. Meanwhile, the Mediterranean basin is prone to 474 

elevated concentrations of ozone resulting from different factors including calm weather, the 475 

transport from neighboring countries, atmospheric recirculation in coastal environments, and local 476 

emissions [Lelieveld et al., 2002]. While we observe a strong variability in the difference map, 477 

signaling various sources and sinks (discussed later), three distinctive features in 2020 in 478 

comparison to 2019 are evident: i) higher concentrations over the central Europe (up to 5 ppbv), 479 

ii) lower concentrations in eastern Europe (-2.67±1.65 ppbv) due to the 2019 biomass burning 480 

activities and larger snow cover fraction accelerating photolysis [e.g., Rappenglück et al., 2014], 481 

and iii) lower values in the Iberian Peninsula (-0.51±1.41 ppbv) [Ordóñez et al., 2020]. 482 

While the remaining model uncertainty could be either improved or characterized by 483 

including more observations (if available), reconfiguring the physical/chemical mechanisms used, 484 

and constraining chemical boundary conditions, it is imperative to gauge the contribution of each 485 

process (i.e., transport, chemistry, etc.) in forming ozone changes. Here we mainly make use of 486 

the CMAQ process analysis. A direct use of the process analysis output (in unit of ppbv hr-1) can 487 

be confusing as both physical/chemical processes and underlying concentrations are inextricably 488 
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linked together. To be able to isolate each process (in unit of hr-1), we normalize the outputs by 489 

ozone concentrations. We average each process at the same hours used in calculating MDA8. 490 

Figure 10 shows the major model processes, namely horizontal transport (horizontal advection 491 

plus diffusion), vertical transport (vertical advection plus diffusion), dry deposition, and chemistry 492 

in 2020, 2019, and their differences. Positive (negative) values indicate a source (sink) for ozone. 493 

Regarding the horizontal transport, the values mostly follow the transport pattern and are 494 

dependent on whether the advected air mass is more or less polluted. The vertical transport 495 

correlates with the PBLH which is an indicator of the atmospheric stability and turbulence, 496 

although we should not rule out the impact of the subgrid convective transport that can occur 497 

sporadically. Low PBLHs are usually associated with more stable (or sometimes capping 498 

inversion) and weaker vertical mixing [e.g., Nevius and Evans, 2018]. Vertical transport which is 499 

majorly dictated by the vertical diffusion is by far the most influential factor in the magnitude of 500 

ozone [e.g., Cuchiara et al., 2014]. In contrast to NO2 and HCHO, a stronger vertical diffusion 501 

increases surface ozone due to positive gradients of ozone with respect to altitude. However, the 502 

aerodynamic resistance controlling dry deposition velocity [Seinfield and Pandis, 2006] is also a 503 

function of turbulent transport. For example, during daytime, intensified turbulence exposes more 504 

pollution to surface deposition. It is because of this reason that we see the dry deposition process 505 

largely counteracting vertical transport. This will leave the chemistry process the major driver of 506 

the ozone changes.  507 

We separately sum the quantities of the physical processes and PO3 contributing to MDA8 508 

surface ozone changes binned to box L. The physical processes lead to -4.83 ppbv changes in the 509 

MDA8 ozone mainly due to a relatively larger dry deposition in 2020, whereas P(O3) contributes 510 

to +5.89 ppbv. The net effect is +1.06 ppbv which is slightly smaller than the simulated changes 511 

in MDA8 ozone in this region (+1.79 ppbv). This apparent discrepancy is caused by the differences 512 

in boundary and initial conditions which are not quantifiable by the process analysis and would 513 

require additional sensitivity test. Nonetheless, we believe these numbers should provide 514 

convincing evidence on the fact that chemistry has promoted the enhancements of surface ozone 515 

during the lockdown. 516 

Chemistry is also a function of meteorology, specifically solar radiation and temperature. 517 

A typical scenario to isolate emissions from meteorology is by running the model with fixed 518 

anthropogenic emissions (and boundary conditions) and subtracting the outputs from the variable 519 
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emission output. Figure 11 shows the contribution of anthropogenic emissions (VOCs and NOx) 520 

to the changes seen over the surface. The anthropogenic emissions make up roughly 58% of the 521 

changes. The map is strongly in line with the changes in NOx emissions constrained by TROPOMI. 522 

The impact of meteorology plus biogenic changes (the former is dominant) highly correlates with 523 

anomalies in both surface air temperature and photolysis rate (not shown). We observe negligible 524 

ozone changes due to emissions over Iberian Peninsula reinforcing the significance of the 525 

meteorological impacts [Ordóñez et al., 2020]. 526 

3.4.Ozone chemistry 527 

Figure 12 shows the numerically-solved ozone production rates (PO3) simulated by the 528 

constrained model during the MDA8 hours period. We observe positive PO3 in less polluted areas 529 

and eastern Europe where biomass burning activities occurred in 2019, while negative PO3 in 530 

major cities. Negative values in PO3 are indicative of either loss in O3 or O3-NO-NO2 partitioning. 531 

The difference in PO3 between the two years suggests that the ozone enhancement in box L is 532 

caused by a reduction in negative PO3 in 2020 over major cities compared to 2019. To examine 533 

which pathways are contributing to this pattern, we attempt to analytically reproduce the 534 

numerically-solved PO3 (Figure 12) through two different equations: the first equation widely 535 

applied in photochemically active environments follows [Kleinman et al., 2002]: 536 

𝑃(𝑂L) = 𝑘N"O6P"[𝐻𝑂#][𝑁𝑂] +-𝑘S"OT6P"[ 𝑅𝑂#1][𝑁𝑂]

− 𝑘"N6P"O6V[𝑂𝐻][𝑁𝑂#][𝑀] − 𝑘N"O6"X[𝐻𝑂#][𝑂L]

− 𝑘"N6"X[𝑂𝐻][𝑂L] − 𝑘"C YZ D6NO"[𝑂C 𝐷4 D][𝐻#𝑂] − 𝐿(𝑂L

+ 𝑉𝑂𝐶𝑠) 

(6) 

This equation yields negative values only if the O3 loss pathways including NO2+OH, HOx+O3 , 537 

O1D+H2O and O3+VOCs dominate over the first two terms. The second equation which is 538 

independent of RO2 and HO2 concentrations [Thornton et al., 2002], is: 539 

𝑃(𝑂L) = 𝑗𝑁𝑂#[𝑁𝑂#] − 𝑘P"6"X[𝑂L][𝑁𝑂] (7) 

In summer, this equation tends to be positive during early afternoon, almost zero during afternoon 540 

(steady-state), and negative in early morning (or night) in which the second term (O3 titration) is 541 

leading. Any abrupt changes in NOx and VOC, and photolysis can directly affect Eq.7 moving PO3 542 

out of the diel steady-state. The assumption of the steady-state (PO3 from Eq.7 equals to zero) is 543 

also not valid if an air parcel is in the vicinity of high-emitting NOx sources [Thornton et al., 2002]. 544 
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Figure 13 displays the reactions rates of each individual component involved in Eq.6 545 

averaged during the MDA8 hours. HO2+NO is the dominant chemical source of ozone correlating 546 

well with the changes in NOx and prevailing chemical conditions regimes (NOx-sensitive vs VOC-547 

sensitive). Souri et al. [2020a] found the reaction of RO2+NO to be primarily dependent on VOCs. 548 

Likewise, we observe a strong degree of correlation between the anomaly of RO2+NO and that of 549 

VOCs (Figure 5). Figure 13 indicates that the chemical pathways of ozone loss are rather constant 550 

between the two years; therefore the largely negative PO3 over urban areas shown previously in 551 

Figure 12 is not reproducible using this equation. Figure 14 shows the reactions rates of JNO2[NO2], 552 

kNO+O3[NO][O3], and the difference during the MDA8 hours. The difference maps replicate the 553 

largely negative PO3 over cities suggesting that we are not in the diel steady-state, and O3 titration 554 

is prevailing due to relatively low photochemistry in the springtime. Table 3 lists the averaged 555 

reactions rates involved in Eq.6 and 7 along with the numerically-solved PO3 shown in Figure 12 556 

over box L. These numbers suggest that the major chemical pathways of enhanced ozone are 557 

through JNO2[NO2] and kNO+O3[NO][O3], implying that O3-NO-NO2 partitioning is more 558 

consequential than other chemical pathways. This analysis strongly coincides with Lee et al. 559 

[2020] and Wyche et al. [2021] who observed roughly constant O3+NO2 concentrations over the 560 

UK before and during the lockdown 2020. 561 

4. Summary 562 

The slowdown in human activities due to the COVID-19 pandemic had an immediate and 563 

sweeping impact on air pollution over Europe [Barré et al. 2020; Siccard et al., 2020]. Satellite 564 

monitoring systems with large spatial coverage help shed light on the spatial and temporal extent 565 

of those impacts. The relationships between satellite-derived HCHO and NO2 columns and near-566 

surface emissions have proven difficult to fully establish without using realistic models, capable 567 

of providing insights on the convoluted processes involving chemistry, dynamics, transport, and 568 

photochemistry and therefore help with deciphering what anomaly maps of satellite concentrations 569 

are suggesting [e.g., Goldberg et al., 2020]. To address these challenges, we jointly constrained 570 

NOx and VOC emissions using TROPOMI HCHO and NO2 columns following a non-linear Gauss 571 

Newton method developed in Souri et al. [2020a], in addition to assimilating MODIS AOD 572 

observations based on Jung et al. [2019]. The constrained emissions also permitted investigating 573 

the simultaneous effects of physical and chemical processes contributing to ozone formation, 574 

illuminating the complexities associated with non-linear chemistry. 575 
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Several implications of the derived emissions for the months of March, April, and May 576 

2020 (lockdown) relative to those in 2019 (baseline) were investigated. First, as previously 577 

reported [Sicard et al., 2020; Barré et al. 2020], we observed a significant reduction in NOx in 578 

March (14-31%) in several major polluted regions including Paris, London, Madrid, and Milan. 579 

The reductions were further seen in other cities such as Rome, Brussels, Frankfurt, Warsaw, 580 

Belgrade, Kyiv, and Moscow (34-51%) in April. Second, a large temporal variability associated 581 

with the reduction in NOx was evident, as each country possibly had different timeline of 582 

restrictions. For instance, NOx emissions decreased drastically in April rather than March in UK, 583 

Moscow, and Poland. Fourth, changes in VOC emissions were primarily dictated by biogenic and 584 

biomass burning sources in April and May. 585 

The constrained model calculations gave good representations of near-surface NO2 586 

changes in April (model: -21±17%, observation: -29±21%) in places where the top-down estimates 587 

are reasonable (averaging kernels > 0.5), but inferior representations in other months, especially 588 

in May (model: -12±18%, observation: -25±20%). This tendency mainly arose from TROPOMI 589 

frequencies; too few days (10-26%) in May due to cloudiness precluded the determination of 590 

realistic NOx emission changes. 591 

We observed surface MDA8 ozone increase from both model and measurements in April 592 

2020 with respect to the baseline. Comparisons of calculation by the constrained model in terms 593 

of MDA8 surface ozone found reasonable agreement with observations in the proximity of central 594 

Europe in April (model: +3.73±3.94%, +1.79 ppbv, observation: +7.35±11.27%, +3.76 ppbv). 595 

These comparisons indicate that the performance of the constrained model to reproduce the ozone 596 

enhancement feature is promising, suggesting fruitful information in TROPOMI NO2 and HCHO, 597 

although reasons behind the underestimation of the enhancement remained unexplained. It was 598 

clear that the dominantly negative ozone production rates dictated by O3-NO-NO2 partitioning 599 

(JNO2[NO2]-kNO+O3[NO][O3]) became less negative primarily due to the reduced NOx emissions in 600 

urban areas where O3 titration occurred. This tendency was in agreement with studies of Lee et al. 601 

[2020] and Wyche et al. [2021]. We found negligible differences in ozone production from 602 

[HO2+RO2][NO] and ozone loss from O1D+H2O and O3+HOx between the two years suggesting 603 

photochemistry was rather low in the springtime over Europe. 604 

We further quantified the contributions of physical processes (transport, diffusion and dry 605 

deposition) and chemistry to the formation/loss of ozone using the integrated process rates. The 606 
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physical processes decreased MDA8 ozone by -4.83 ppbv resulting from relatively larger dry 607 

deposition in 2020, whereas chemistry (ozone production) augmented ozone levels by +5.89 ppbv, 608 

indicating that rising ozone was primarily impacted by changes in chemistry. Enhanced air 609 

temperature and photolysis in 2020, both of which were well captured in our model, also affected  610 

chemistry. Experiments with fixed anthropogenic emissions underwent significant enhancement 611 

in surface MDA8 ozone over central Europe, but those only contribute to 42% of the total 612 

enhancement indicating that anthropogenic emissions were the major factor. 613 

The results shown here reveal previously unquantified characteristics of ozone and its 614 

precursors emission changes during the lockdown 2020 in Europe. We have been able to measure 615 

the amount of changes along with the level of confidence in NOx and VOC emissions using a state-616 

of-the-art inversion technique by leveraging well-characterized satellite observations, which in 617 

turn, allowed us to unravel the chemical and physical processes contributing to increased ozone in 618 

Europe. Unless a comprehensive air quality campaign targeting COVID-19 related lockdown is 619 

available, we recommend that the impact of lockdown on air pollution should be examined through 620 

the lens of well-established models constrained by publicly available data, especially those from 621 

space in less cloudy environments. 622 
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 997 
 998 

Table 1. Statistics reported in several validations studies comparing TROPOMI 999 
tropospheric NO2 against independent observations. 1000 

 1001 
Study Location Time 

Period 
Benchmark 
Instrument 

Bias (low) Dispersio
n 

Modification Modified 
Bias (low) 

Chan et 
al. 2020 

Munich May 
2018-Apr 
2019 

MAX-DOAS 30% N/A In-situ 
MAX-
DOAS 
profiles 

17% 

Griffin et 
al. 2019 

Canadian 
Oil 
Sands 

Mar-May 
2018 
(v1.01) 

Pandora (direct 
Sun) 

15-30% N/A Higher 
resolution 
profiles (10 
km) and 
albedo 

0-25% 

Judd et 
al. 2020 

New 
York 

Jun-Sep 
2018 

GeoTASO 19-33% N/A Higher 
resolution 
profiles (12 
km) 

7-19% 

Verhoelst 
et al. 
2020 

Global Apr 2018-
Feb 2020 

MAX-DOAS 37% 
(average), 
23-51% 
(range) 

3.5×1015 
molec/cm2  

N/A N/A 

Wang P. 
et al. 
2020 

Atlantic 
and 
Pacific 
Oceans 

4 
campaigns 
during 
Dec 2018-
Jul 2019 

MAX-DOAS Negligible N/A N/A N/A 

Zhao et 
al. 2020 

Greater 
Toronto 
Area 

Mar 2018-
Mar 2019 

Pandora (direct 
Sun) 

24-28% 
(suburban/ur
ban) 
+4-10% 
(rural) 

 Higher 
resolution 
profiles (10 
km) and 
albedo 

13-24% 
(suburban/
urban) 
+14-15% 
(rural) 

 1002 
 1003 
 1004 

 1005 

  1006 



 32 

Table 2. Relative and absolute differences of top-down estimate of NOx emissions using 1007 
TROPOMI for different countries in Europe in 2020 (lockdown) with respect to 2019 (baseline). 1008 
Relative numbers are calculated with respect to values in 2019. Ton and d denote tonne and day, 1009 
respectively. 1010 

Countries March (%, ton/d) April (%, ton/d) May (%, ton/d) 
Austria -17.2 -63.4 -6.6 -23.3 -3.8 -12.2 
Belarus -13.0 -67.9 -15.4 -88.9 -4.2 -19.2 
Belgium -32.6 -159.3 -27.3 -137.9 -28.6 -177.6 

Czech Republic -23.7 -113.3 -9.7 -43.5 -2.8 -11.3 
Denmark -10.9 -17.9 -13.1 -29.6 -8.1 -19.8 
Finland -2.9 -5.9 -7.7 -18.2 -8.8 -19.4 
France -25.3 -547.2 -20.5 -467.4 -9.3 -198.2 

Germany -7.2 -203.6 -24.4 -832.9 -9.6 -285.6 
Greece -20.6 -77.9 -5.3 -19.9 -0.9 -3.4 

Hungary -12.2 -34.1 -6.2 -18.6 -5.0 -12.2 
Ireland -12.5 -24.5 -7.5 -16.8 -3.7 -8.1 
Italy -17.8 -270.6 -16.1 -252.2 +2.4 +34.1 

Netherlands +8.9 +28.3 -9.7 -39.0 -2.3 -11.0 
Norway -2.9 -7.7 -8.9 -26.9 -3.4 -9.5 
Poland -15.0 -246.1 -20.0 -342.9 -8.3 -126.7 

Portugal -8.8 -24.4 -8.8 -23.3 -3.4 -10.2 
Romania -12.9 -70.8 -1.1 -5.8 +1.1 +5.2 

Spain -10.1 -156.2 -12.5 -192.2 -2.1 -32.4 
Sweden -6.6 -15.2 -8.9 -23.1 -6.4 -15.8 

Switzerland -8.5 -14.1 -8.0 -13.2 -13.0 -19.0 
Turkey -10.5 -224.3 -4.0 -76.6 -5.2 -98.7 
Ukraine -13.6 -224.2 -12.3 -198.0 -13.8 -207.1 

United Kingdom -14.9 -254.8 -19.1 -334.3 -14.3 -263.9 
The strait of 
Gibraltar and 
Alboran Sea 

-7.2 -77.3 -8.6 -86.7 -14.3 -10.7 

All -13.9 ± 
8.4 

-2795.6± 
129.7 

-15.4 ± 
6.7 

-3224.6 
± 194.5 -7.7 ± 6.5 -1522.45 

± 92.0 
 1011 

 1012 

  1013 
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 1014 
 1015 
Table 3. Reaction rates relating to the chemical pathways of ozone formation and loss over box L 1016 
(proximity of central Europe). 1017 

Reactions 
Production 
(P)  or loss 

(L) 

April 2020 
(ppbv/hr) 

April 2019 
(ppbv/hr) 

Net diff 
a(ppbv/hr) 

HO2+NO P 0.85 0.91 -0.06 
RO2+NO P 0.44 0.41 +0.03 
NO2+OH L 0.10 0.14 +0.04 
O1D+H2O L 0.07 0.08 +0.01 
O3+VOCs L 0.01 0.01 0.00 
O3+HOx L 0.09 0.08 -0.01 

JNO2[NO2] P 14.61 27.28 -12.67 
kNO+O3[NO][O3] L 15.11 28.52 +13.40 

JNO2[NO2]- kNO+O3[NO][O3] N/A -0.50 -1.24 +0.74 
Numerically solved PO3 N/A -0.79 -1.53 +0.74 

a A positive net difference indicates higher (lower) production (loss) in 2020 with respect to 2019. 1018 
  1019 
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 1020 

 1021 
Figure 1. The WRF-CMAQ 15 km domain covering Europe. The background picture is based 1022 
on the publicly available NASA Blue Marble (© NASA). 1023 
  1024 
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 1025 
 1026 

 1027 
Figure 2. (first row) Maps of tropospheric NO2 from the TROPOMI sensor during months of 1028 

March, April, and May in 2020 (lockdown). (second row) Same as the first row but for the baseline 1029 

year (2019). (last row), Difference of the columns in 2020 with respect to those of 2019. All 1030 

columns are corrected for the bias and their AMFs are recalculated iteratively based on the 1031 

posterior profiles derived from our inverse modeling practice. The satellite-derived columns are 1032 

subject to errors, so a direct interpretation of their magnitudes cannot be performed in a robust 1033 

manner. 1034 
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 1036 
Figure 3. Same as Figure 2 but for the total HCHO columns. 1037 

 1038 

 1039 
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 1040 
Figure 4. Top-down estimates of total NOx during months of March, April and May in 2019 1041 

(baseline) and the differences between emission in 2020 (lockdown) and 2019. To infer the 1042 

magnitude of emissions in 2020, the second row should be added to the first one. Both TROPOMI 1043 

HCHO and NO2 observations are jointly used to estimate these numbers. Averaging kernels (mean 1044 

values based on both 2019 and 2020 estimates) describe the level of credibility of the estimate which 1045 

is heavily dependent on the TROPOMI signal-to-noise ratios.  1046 
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 1048 

 1049 
Figure 5. Same as Figure 4 but for the total VOC emissions. Biogenic fractions are based on the 1050 

average values in 2019 and 2020. 1051 

 1052 

 1053 

 1054 
  1055 
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 1056 

 1057 
Figure 6. Scatter maps of relative changes in surface NO2 concentrations suggested by the 1058 

European air quality network (first row), and the constrained model (second row). Results are 1059 

daily-averaged. We only consider grid cells whose averaging kernels (from the NOx inversion) 1060 

are above 0.5. Furthermore, grid cells having more than 2 stations are only included to partly 1061 

account for the spatial representivity factor. Surface concentrations are not accounted for the 1062 

NOz family interferences. 1063 
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 1065 

 1066 

 1067 
Figure 7. The average number of good quality (qa_flag>0.75) TROPOMI tropospheric NO2 days 1068 

observed at 15×15 km2 in 2019 and 2020. These numbers are heavily affected by cloudiness. 1069 
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 1072 
 1073 

 1074 
Figure 8. Changes in surface MDA8 ozone concentrations suggested by the observation (left), 1075 

and the constrained model (right) in April 2020 relative to those in 2019. 1076 
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 1078 
Figure 9. Simulated surface MDA8 ozone concentration using the constrained model in the month 1079 

of April 2020 (lockdown), April 2019 (baseline), and their difference.  1080 
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 1083 

 1084 
Figure 10. Surface process tendencies (hr-1) including horizontal transport (advection plus 1085 

diffusion), vertical transport (advection plus diffusion), dry deposition, and chemistry. Positive 1086 

(negative) values mean source (sink) of ozone. These outputs are based on the constrained 1087 

model. Wind vectors are the difference. 1088 
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 1092 

 1093 

 1094 
Figure 11. Simulated MDA8 surface ozone difference between April 2020 with respect to April 1095 

2019 including (left) dynamical meteorology, biogenic and anthropogenic emissions, (middle) 1096 

dynamical meteorology and biogenic emissions, and (right) the subtraction of the previous  1097 

scenarios isolating dynamical anthropogenic emissions. Emissions used for these experiments 1098 

are based on the top-down estimates. 1099 
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 1103 

 1104 
Figure 12. Numerically-solved net ozone production rates based on the WRF-CMAQ simulations 1105 

using the constrained emissions by the satellite data in April 2020, 2019, and the difference. These 1106 

values are over the surface and are averaged during the MDA8 hours.  1107 
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 1109 
Figure 13. Surface chemical processes involved in equation 5 (ppbv hr-1) pertaining to the 1110 

production and loss of ozone in April 2020 (lockdown) and 2019 (baseline) during MDA8 hours. 1111 

These outputs are based on the constrained model. 1112 
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 1114 
Figure 14. Surface chemical processes involved in equation 6 (ppbv hr-1) pertaining to the O3-1115 

NO-NO2 partitioning in April 2020 and 2019 during MDA8 hours. The constrained model by the 1116 

satellite observations are used to derive these outputs. 1117 
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