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Abstract. Air-sea carbon dioxide (CO2) flux is often indirectly estimated by the bulk method 11 

using the air-sea difference in CO2 fugacity (fCO2) and a parameterisation of the gas transfer 12 

velocity (K). Direct flux measurements by eddy covariance (EC) provide an independent 13 

reference for bulk flux estimates and are often used to study processes that drive K. However, 14 

inherent uncertainties in EC air-sea CO2 flux measurements from ships have not been well 15 

quantified and may confound analyses of K. This paper evaluates the uncertainties in EC CO2 16 

fluxes from four cruises. Fluxes were measured with two state-of-the-art closed-path CO2 17 

analysers on two ships. The mean bias in the EC CO2 flux is low but the random error is 18 

relatively large over short time scales. The uncertainty (1 standard deviation) in hourly 19 

averaged EC air-sea CO2 fluxes (cruise-mean) ranges from 1.4 to 3.2 mmol m-2 day-1. This 20 

corresponds to a relative uncertainty of ~20% during two Arctic cruises that observed large 21 

CO2 flux magnitude. The relative uncertainty was greater (~50%) when the CO2 flux magnitude 22 

was small during two Atlantic cruises. Random uncertainty in the EC CO2 flux is mostly caused 23 

by sampling error. Instrument noise is relatively unimportant. Random uncertainty in EC CO2 24 

fluxes can be reduced by averaging for longer. However, averaging for too long will result in 25 

the inclusion of more natural variability. Auto-covariance analysis of CO2 fluxes suggests that 26 

the optimal timescale for averaging EC CO2 flux measurements ranges from 1–3 hours, which 27 

increases the mean signal-to-noise ratio of the four cruises to higher than 3. Applying an 28 

appropriate averaging timescale and suitable fCO2 threshold (20 µatm) to EC flux data 29 

enables an optimal analysis of K. 30 

 31 
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1 Introduction 32 

Since the Industrial Revolution, atmospheric CO2 levels have risen steeply due to human 33 

activities (Broecker and Peng, 1993). The ocean plays a key role in the global carbon cycle, 34 

having taken up roughly one quarter of anthropogenic CO2 emissions over the last decade 35 

(Friedlingstein et al., 2020). Accurate estimates of air-sea CO2 flux are vital to forecast climate 36 

change and to quantify the effects of ocean CO2 uptake on the marine biosphere. 37 

Air-sea CO2 flux (F, e.g. in mmol m-2 day-1) is typically estimated indirectly by the bulk 38 

equation: 39 

 𝐹 = 𝐾660(𝑆𝑐 660⁄ )−0.5 𝛼(𝑓CO
2w

− 𝑓CO
2a

)  (1) 40 

Where 𝐾660 (in cm h-1) is the gas transfer velocity, usually parameterised as a function of wind 41 

speed (e.g. Nightingale et al., 2000), Sc (dimensionless) is the Schmidt number (Wanninkhof, 42 

2014) and α (mol L-1 atm-1) is the solubility (Weiss, 1974). 𝑓CO
2w

  and 𝑓CO
2a

 are the CO2 43 

fugacity (in µatm) at the sea surface and in the overlying atmosphere, respectively, with 44 

𝑓CO
2w

− 𝑓CO
2a

 the air-sea CO2 fugacity difference (fCO2). Uncertainties in the 𝐾660 45 

parameterisation and limited coverage of fCO2w measurements result in considerable 46 

uncertainties in global bulk flux estimates (Takahashi et al., 2009; Woolf et al., 2019).  47 

Eddy covariance (EC) is the most direct method for measuring the air-sea CO2 flux F: 48 

 𝐹 = 𝜌𝑤′𝑐′ (2) 49 

where 𝜌 is the mean mole density of dry air (e.g. in mole m-3). The dry CO2 mixing ratio c (in 50 

ppm or µmol mol-1) is measured by a fast-response gas analyser and the vertical wind velocity 51 

w (in m s-1) is often measured by a sonic anemometer. The prime denotes the fluctuations from 52 

the mean, while the overbar indicates time average. Equation 2 does not rely on fCO2 53 

measurements nor empirical parameters and assumptions of the gas properties (Wanninkhof, 54 

2014). EC flux measurements can therefore be considered useful as an independent reference 55 

for bulk air-sea CO2 flux estimates. Furthermore, the typical temporal and spatial scales of EC 56 

flux measurements are ca. hourly and 1-10 km2. These scales are much smaller than the 57 

temporal and spatial scales of alternative techniques for measuring gas transfer, e.g. by dual 58 

tracer methods (daily and 1000 km2) (Nightingale et al., 2000; Ho et al., 2006). EC 59 

measurements are thus potentially better-suited to capture variations in gas exchange due to 60 

small-scale processes at the air-sea interface (Garbe et al., 2014).  61 
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The EC CO2 flux method has developed and improved over time. Before 1990, EC was 62 

successfully used to measure air-sea momentum and heat fluxes. EC air-sea CO2 flux 63 

measurements made during those times were unreasonably high (Jones and Smith, 1977; 64 

Wesely et al., 1982; Smith and Jones, 1985; Broecker et al., 1986). After 1990, with the 65 

development of the infrared gas analyser, EC became routinely used for terrestrial carbon cycle 66 

research (Baldocchi et al., 2001). Development of the EC method was accompanied by 67 

improvements in the flux uncertainty analysis, which was generally based on momentum, heat 68 

and land-atmosphere gas flux measurements (Lenschow and Kristensen, 1985; Businger, 1986; 69 

Lenschow et al., 1994; Wienhold et al., 1995; Mahrt, 1998; Finkelstein and Sims, 2001; 70 

Loescher et al., 2006; Rannik et al., 2009, 2016; Billesbach, 2011; Mauder et al., 2013; 71 

Langford et al., 2015; Post et al., 2015). 72 

In the late 1990s, the advancement in motion correction of wind measurements (Edson et al., 73 

1998; Yelland et al., 1998) facilitated ship-based EC CO2 flux measurements from a moving 74 

platform (McGillis et al., 2001; 2004). After 2000, a commercial open-path infrared gas 75 

analyser LI-7500 became widely used for air-sea CO2 flux measurements (Weiss et al., 2007; 76 

Kondo and Tsukamoto, 2007; Prytherch et al., 2010; Edson et al., 2011; Else et al., 2011; 77 

Lauvset et al., 2011). The LI-7500 generated extremely large and highly variable CO2 fluxes 78 

in comparison to expected (Kondo and Tsukamoto, 2007; Prytherch et al., 2010; Edson et al., 79 

2011; Else et al., 2011; Lauvset et al., 2011), which are generally considered to be an artefact 80 

caused by water vapour cross-sensitivity (Kohsiek, 2000; Prytherch et al., 2010; Edson et al., 81 

2011; Landwehr et al., 2014). Mathematical corrections proposed to address this artefact 82 

(Edson et al., 2011; Prytherch et al., 2010) were later shown to be unsatisfactory (Else et al., 83 

2011; Ikawa et al., 2013; Blomquist et al., 2014; Tsukamoto et al., 2014) or incorrect 84 

(Landwehr et al., 2014). 85 

The most reliable method for measuring EC air-sea CO2 fluxes involves physical removal of 86 

water vapour fluctuations from the sampled air. The simplest approach is to combine a closed-87 

path gas analyser with a physical dryer to eliminate most of the water vapour fluctuation (Miller 88 

et al., 2010; Blomquist et al., 2014; Landwehr et al., 2014; Yang et al., 2016; Nilsson et al., 89 

2018). The tuneable-diode-laser-based cavity ring-down spectrometer (CRDS) made by 90 

Picarro Inc. (Santa Clara, California, USA) is the most precise closed-path analyser currently 91 

available (Blomquist et al., 2014). The closed-path infrared gas analyser LI-7200 (LI-COR 92 

Biosciences, Lincoln, Nebraska, USA) is another popular choice. 93 
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The advancements in instrumentation and in motion correction methods have significantly 94 

improved the quality of air-sea EC CO2 flux observations but, despite these changes, the flux 95 

uncertainties have not been well-quantified. The aims of this study are to: 1) analyse 96 

uncertainties in EC air-sea CO2 flux measurements; 2) propose practical methods to reduce the 97 

systematic and random flux uncertainty; and 3) investigate how the EC flux uncertainty 98 

influences our ability to estimate and parameterise K660. 99 

 100 

2 Experiment and methods 101 

2.1 Instrumental set-up 102 

 103 

 104 

Figure 1. EC system (upper panel) and a diagram of system setup (bottom panel). EC instruments: 1) 105 

Sonic anemometer, 2) Motion sensor, 3) Air sample inlet for gas analyser, 4) Datalogger/gas analyser. 106 

Arctic and Atlantic data from 2018 were collected on the RRS James Clark Ross (JCR, upper right) 107 

using a Picarro G2311-f, and Atlantic data from 2019 were collected using a LI-7200 on the RRS 108 

Discovery (upper left). 109 

 110 

The basic information of four cruises is summarised in Table 1. Appendix A shows the four 111 

cruise tracks (Fig. A1, A2). Data from the Atlantic cruises (AMT28 and AMT29) are limited to 112 
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3° N–20° S in order to focus specifically on the performance of two different gas analysers in the 113 

same region with low flux signal (tropical zone). 114 

 115 

Table 1. Basic information for all four cruises on the RRS James Clark Ross (JCR) and RRS Discovery 116 

that measured air-sea EC CO2 fluxes. 117 

Cruise JR18006 JR18007 AMT28 AMT29 

Data period 30 June–1 

August 2019 

5 August–29 

September 2019 

9 October–16 

October 2018 

4 November–11 

November 2019 

Visited region Arctic Ocean 

(Barents Sea) 

Arctic Ocean 

(Fram Strait) 

Tropical 

Atlantic Ocean 

Tropical 

Atlantic Ocean 

Research vessel  JCR JCR JCR Discovery 

Gas analyser Picarro G2311-f Picarro G2311-f Picarro G2311-f LI-7200 

 118 

The CO2 flux and data logging systems installed on the JCR and Discovery were operated 119 

autonomously. The EC systems were approximately 20 m above mean sea level on  both ships 120 

(at the top of the foremasts, Fig. 1) to minimise flow distortion and exposure to sea spray. 121 

Computational fluid dynamics (CFD) simulation indicates that the airflow distortion at the top 122 

of the JCR foremast is small (~1% of the free stream wind speed when the ship is head to wind, 123 

Moat and Yelland, 2015). The hull structure of RRS Discovery is nearly identical to that of 124 

RRS James Cook. CFD simulation of the James Cook indicates that the airflow at the top 125 

foremast is distorted by ~2% for bow-on flows (Moat et al., 2006). 126 

The EC system on the JCR consists of a three-dimensional sonic anemometer (Metek Inc., 127 

Sonic-3 Scientific), a motion sensor (initially Systron Donner Motionpak II, which compared 128 

favourably with and was then replaced by a Life Performance-Research LPMS-RS232AL2 in 129 

April 2019), and a Picarro G2311-f gas analyser. All instruments sampled at a frequency of 10 130 

Hz or greater and the data were logged at 10 Hz with a datalogger (CR6, Campbell Scientific, 131 

Inc.), similar to the setup by Butterworth and Miller (2016). Air is pulled through a long tube 132 

(30 m, 0.95 cm inner diameter) with a dry vane pump at a flow rate of ~40 L min-1  (Gast 1023 133 

series). The Picarro gas analyser subsamples from this tube through a particle filter (Swagelok 134 

2 µm) and a dryer (Nafion PD-200T-24M) at a flow of ~5 L min-1 (Fig. 1). The dryer is setup 135 

in the ‘re-flux’ configuration and uses the lower pressure Picarro exhaust to dry the sample air. 136 

This method removes ~80% of the water vapour and essentially all of the humidity fluctuations  137 
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(Yang et al., 2016). The Picarro internal calculation accounts for the detected residual water 138 

vapour and yields a dry CO2 mixing ratio that is used in the flux calculations. A valve controlled 139 

by the Picarro instrument injects a ‘puff’ of nitrogen (N2) into the tip of the inlet tube for 30 s 140 

every 6 hours. This enables estimates of the time delay and high-frequency signal attenuation 141 

(Sect. 2.2). 142 

The EC system on RRS Discovery consists of a Gill R3-50 sonic anemometer, a LPMS motion 143 

sensor package, and a LI-7200 gas analyser. The LI-7200 gas analyser was mounted within the 144 

enclosed staircase, directly underneath the meteorological platform and close to the inlet (inlet 145 

length 7.5 m). A single pump (Gast 1023) was sufficient to pull air through a particle filter 146 

(Swagelok 2 µm), a dryer (Nafion PD-200T-24M), and the LI-7200 at a flow of ~7 L min-1. 147 

There was no N2 puff system setup on Discovery but equivalent lab tests confirmed that the 148 

delay time was less than on the JCR because of the shorter inlet line. The dryer on the Discovery 149 

is setup in the same ‘re-flux’ configuration as the JCR and uses the lower pressure at the LI-150 

7200 exhaust (limited by an additional 0.08 cm diameter critical orifice) to dry the sample air. 151 

This setup removes ~60–70% of the water vapour and essentially all of the humidity 152 

fluctuations. The dry CO2 mixing ratio, computed by accounting for the LI-7200 temperature, 153 

pressure and residual water vapour measurements, is used in the flux calculations. 154 

 155 

2.2 Flux processing 156 

The EC air-sea CO2 flux calculation steps using the raw data are outlined with a flow chart 157 

(Fig. 2) and detailed below. The raw high frequency wind and CO2 data are processed first, 158 

yielding fluxes in 20 min averaging time interval and related statistics. These statistics are then 159 

used for quality control of the fluxes. Further averaging of the quality-controlled 20 min fluxes 160 

to hourly or longer time scales is then used to reduce random error (Sect. 4.1). Linear 161 

detrending was used to identify the turbulent fluctuations (i.e. 𝑤′  and 𝑐′ ) throughout the 162 

analyses. 163 

To correct the wind data for ship motion, we first generated hourly data files containing the 164 

measurements from the sonic anemometer (three-dimensional wind speed components: u, v 165 

and w and sonic temperature Ts), motion sensor (three axis accelerations: accel_x, accel_y, 166 

accel_z; and rotation angles: rot_x, rot_y, rot_z ), ship heading over ground (HDG, from the 167 

gyro compass) and ship speed over ground (SOG, from Global Position System). Spikes larger 168 

than 4 standard deviations (SDs) from the median were removed. Secondly, a complementary 169 

filtering method using Euler angles (see Edson et al., 1998) was applied to the hourly data files 170 
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to remove apparent winds generated by the ship movements. The motion-corrected winds were 171 

further decorrelated against ship motion to remove any residual motion-sensitivity (Miller et 172 

al., 2010; Yang et al., 2013). The motion-corrected winds were double rotated to account for 173 

the wind streamline over the ship, yielding the vertical wind velocity (w) required in Eq. 2. 174 

Inspection of frequency spectra showed that the spectral peak at the ship motion frequencies 175 

(approximately 0.1−0.3 Hz) had disappeared after the motion correction (Fig. S1, Supplement). 176 

This indicates that the majority of ship motion had been removed from the measured wind 177 

speed. The last step in the wind data processing was the calculation of 20 min average friction 178 

velocity, sensible heat flux and other key variables used for data quality control (Table S1, 179 

Supplement). 180 

The CO2 data were de-spiked (by removing values > 4 SDs from the median). The Picarro CO2 181 

mixing ratio was further decorrelated against analyser cell pressure and temperature to remove 182 

CO2 variations due to ship’s motion. The LI-7200 CO2 mixing ratio was further decorrelated 183 

against the LI-7200 H2O mixing ratio and temperature to remove residual air density 184 

fluctuations, following Landwehr et al. (2018). CO2 data were also decorrelated against ship’s 185 

heave and accelerations because these can produce spurious CO2 variability (Miller et al., 2010; 186 

Blomquist et al., 2014).  187 

A lag between CO2 data acquisition and the wind data is created because of the time taken for 188 

sample air to travel through the inlet tube. On the JCR, we use the ‘puff’ system where the lag 189 

time is the time difference between the N2 ‘puff’ start (when the on/off valve is switched) and 190 

the time when the diluted signal is sensed by the gas analyser. The lag time can also be 191 

estimated by the maximum covariance method, calculated by shifting the time base of the CO2 192 

signal and finding the shift that achieves maximum covariance between the vertical wind 193 

velocity (w) signal and the shifted CO2 signal. The lag times estimated by the maximum 194 

covariance method agree well with the estimates of the ‘puff’ procedure (Fig. S2, Supplement). 195 

These estimates indicate a lag time of 3.3–3.4 s for the Arctic cruises and 3.3 s for cruise 196 

AMT28 on the JCR. The maximum covariance method estimated lag time on Discovery 197 

(AMT29) was 2.6 s, consistent with laboratory test results prior to the cruise.  198 
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 199 

Figure 2. Flow chart of EC data processing. The raw high frequency (10 Hz)  wind and CO2 data were 200 

initially processed separately and then combined to calculate fluxes. CO2 fluxes were filtered by a series 201 

of data quality control criteria. The 20-min flux intervals were averaged to longer time scales (hourly 202 

or more). The data processing is detailed in the text. 203 

 204 

The inlet tube, particle filter and dryer cause high-frequency CO2 flux signal attenuation. The 205 

N2 ‘puff’ was also used to assess the response time by considering the e-folding time in the 206 

CO2 signal change (similar approaches have been used by Bariteau et al., 2010; Blomquist et 207 

al., 2014, Bell et al., 2015). The response time is 0.35 s for the EC system on JCR and 0.25 s 208 

for the EC system on Discovery (estimated in the laboratory prior to cruise). These response 209 

times were combined with the relative wind speed-dependent, theoretical shapes of the 210 

cospectra (Kaimal et al., 1972) to estimate the percentage flux loss due to the inlet attenuation 211 

(Yang et al., 2013). The mean attenuation percentage is less than 10% with a relative wind 212 

speed dependence (Fig. S3, Supplement). The attenuation percentage value was applied to the 213 

computed flux to compensate the flux loss due to the high-frequency signal attenuation. Finally, 214 

horizontal CO2 fluxes and other statistics such as CO2 range and CO2 trend were computed for 215 

quality control purposes (Table S1, Supplement). 216 
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The computed 20-min fluxes were filtered for non-ideal ship manoeuvres or violations of the 217 

homogeneity/stationary requirement of EC (see Supplement for the quality control criteria). 218 

 219 

2.3 Uncertainty analysis methods 220 

2.3.1 Uncertainty components 221 

Uncertainty contains two components: systematic error ( 𝛿𝐹𝑆 ) and random error ( 𝛿𝐹𝑅 ). 222 

According to propagation of uncertainty theory (JCGM, 2008), the total uncertainty in EC CO2 223 

fluxes (from random and systematic errors) can be expressed as: 224 

 δ𝐹 = √δ𝐹𝑅
2 + δ𝐹𝑆

2
 (3) 225 

Systematic errors (Sect. 2.3.2) will cause bias in the flux. They thus should be 226 

eliminated/minimised with appropriate system setup and, if needed, effective numerical 227 

corrections. Random error results in imprecision (but not bias) and can be reduced by averaging 228 

repeated measurements (Sect. 2.3.3). Errors due to insufficient sampling and instrument noise 229 

are generally considered most important in EC flux measurements (Lenschow and Kristensen, 230 

1985; Businger 1986; Mauder et al., 2013; Rannik et al., 2016).  231 

Sampling error is an inherent issue for EC flux measurements and is typically the main source 232 

of the CO2 flux uncertainty (Mauder et al., 2013). The sampling error is caused by the 233 

difference between the ensemble average and the time average. The calculation of EC flux (Eq. 234 

2) requires the separation between the mean and fluctuating components, which can be 235 

represented fully for CO2 mixing ratio c as: 236 

 𝑐(𝑥, 𝑡) = 𝑐̅(𝑥, 𝑡) + 𝑐′(𝑥, 𝑡)  (4) 237 

The mean component 𝑐̅ represents ensemble average over time (t) and space (x) and does not 238 

contribute to the flux. The time average of a stationary turbulent signal and space average of a 239 

homogenous turbulent signal theoretically converge on the ensemble average when the 240 

averaging time approaches infinity, i.e. T → ∞  (Wyngaard, 2010). In practice, Reynolds 241 

averaging over a much shorter time interval (10 min to an hour) is typically used for EC flux 242 

measurements from a fixed point or from a slow-moving platform such as a ship. This is 243 

because the atmospheric boundary layer is only quasi-stationary for a few hours. Non-244 

stationarity (e.g. diurnal variability and synoptic conditions) is an inherent property of the 245 
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atmospheric boundary layer (Wyngaard, 2010). EC flux obervations thus inevitably contain 246 

some random error due to insufficient samping time, and this error is greater at shorter 247 

averaging times. 248 

Random error due to instrument noise comes mainly from the white noise of the gas analyser, 249 

as the noise from the sonic anemometer is relatively unimportant (Blomquist et al., 2010; 250 

Fairall et al., 2000; Mauder et al., 2013). Blomquist et al. (2014) show ‘pink’ noise with a weak 251 

spectral slope for their CRDS gas analyser (G1301-f), but the gas analysers on JCR (G2311-f) 252 

and Discovery (LI-7200) demonstrate white noise with a constant variance at high frequency 253 

(Fig. B2, Appendix B). 254 

 255 

2.3.2 Systematic error 256 

Table 2 details the measures taken during instrument setup and data processing that help 257 

eliminate most sources of systematic error in EC CO2 fluxes. 258 

 259 

Table 2. Potential sources of bias in our EC air-sea CO2 flux measurements and the methods used to 260 

minimise them. 261 

Potential source 

of bias 

Methods used to minimise the bias Flux 

uncertainty 

𝛅𝑭𝑺,𝟏 

Water vapour 

cross-sensitivity 

Closed-path gas analyser with a dryer removes 

essentially all of the water vapour fluctuation (Blomquist 

et al., 2014; Yang et al., 2016). The residual H2O signal 

is measured by the gas analyser and used in the 

calculation of dry CO2 mixing ratio, which removes 

water cross-sensitivity. 

Negligible 

𝛅𝑭𝑺,𝟐 

Ship motion 

Flux uncertainty from an earlier version of the motion 

correction procedure (less rigorous than the one used by 

ourselves) is estimated to be 10-20% (Edson et al. 1998). 

The more recently-adopted decorrelation of vertical 

winds and CO2 against platform motion (Miller et al., 

2010; Yang et al., 2013) reduces this uncertainty. Flügge 

et al. (2016) compare EC momentum fluxes measured 

from a moving platform (buoy) with fluxes measured 

from a nearby fixed tower. Flux estimates from these two 

platforms agree well (relative flux bias due to the motion 

correction  6%). 

 6% 
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𝛅𝑭𝑺,𝟑 

Airflow 

distortion 

The EC flux system is deployed as far forward and as 

high as possible on the ship (top of the foremast), which 

minimises the impacts of flow distortion. Subsequent 

distortion correction using the CFD simulation (Moat et 

al., 2006; Moat and Yelland, 2015) along with a relative 

wind direction restriction further reduces the impact of 

flow distortion on the fluxes. Measured EC friction 

velocities and friction velocities from the COARE3.5 

model (Edson et al., 2013) agree well (e.g. R2 = 0.95, 

slope = 0.97) for data collected during cruise JR18006. 

Good comparison between observed and COARE3.5 

friction velocity estimates indicates that we have fully 

accounted for flow distortion effects. 

Negligible 

𝛅𝑭𝑺,𝟒 

Inlet effects 

(high-frequency 

flux attenuation 

and CO2 

sampling delay) 

High-frequency flux signal attenuation (in the inlet tube, 

particle filter and dryer) is evaluated by the CO2 signal 

response to a puff of N2 gas. Flux attenuation is 

calculated from the ‘inlet puff’ response and applied as a 

correction (< 10%, see Sect. 2.2). The uncertainty in the 

attenuation correction is about 1% for unstable/neutral 

atmospheric conditions, which is generally the case over 

the ocean (e.g. 93% of the time for the Atlantic cruises, 

80% of the time for the Arctic cruises). During stable 

conditions, the attenuation correction is larger 

(Landwehr et al., 2018) and the uncertainty is also greater 

(~20%). 

The lag time adjustment prior to the flux calculation 

aligns the CO2 and wind signals. Two methods are used 

to estimate the optimal lag time: puff injection and 

maximum covariance. The two lag estimates are in good 

agreement (Sect. 2.2). Random adjustment of ± 0.2 s (1 

σ of the puff test result) to the optimal lag time impacts 

the CO2 flux by < 1%.  

< 2% for 

vast 

majority of 

the cruises 

𝛅𝑭𝑺,𝟓 

Spatial 

separation 

between the 

sonic 

anemometer and 

the gas inlet 

The CO2 inlet is ~70 cm directly below the centre volume 

of the sonic anemometer. This distance is small relative 

to the size of the dominant flux-carrying eddies 

encountered by the EC measurement system height 

above sea level. The excellent agreement between the lag 

time determined by the puff system and by the optimal 

covariance method further confirms that the distance 

between the CO2 inlet and anemometer is sufficiently 

small. 

Negligible 
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𝛅𝑭𝑺,𝟔 

Imperfect 

calibration of the 

sensors 

The potential flux bias resulting from instrument 

calibration (gas analyser, anemometer and 

meteorological sensors required to calculate air density: 

air temperature, relative humidity and pressure) is up to 

4% for the JCR setup. The largest instrument calibration 

uncertainty derives from the wind sensor accuracy (± 

0.15 m s-1 at 4 m s-1 winds according to the Metek uSonic 

instrument specification). This bias is even lower (< 2%) 

for the Discovery setup because the Gill R3 sonic 

anemometer is more accurate. 

 4% 

Propagated bias  
Estimated from the individual bias estimates above 

(δ𝐹𝑆,1, δ𝐹𝑆,2, etc.) using δ𝐹𝑆 = √∑ 𝛿𝐹𝑆,𝑛
2𝑛

1  

< 7.5% 

 262 

In addition to bias sources related to the instrument setup (Table 2), insufficient sampling time 263 

(an inherent issue of EC fluxes) may also generate a systematic error. We use a theoretical 264 

method to estimate this systematic error in EC CO2 flux (Lenschow et al., 1994): 265 

 |δ𝐹𝑆| ≤ 2𝜎𝑤𝜎𝑐𝑎

√𝜏𝑤𝜏𝑐

𝑇
 (5) 266 

where 𝜎𝑤 (m s-1) and 𝜎𝑐𝑎
 (ppm) are the standard deviations of the vertical wind velocity and 267 

the CO2 mixing ratio due to atmospheric processes, respectively. 𝑇  is the averaging time 268 

interval (s), and 𝜏𝑤 and 𝜏𝑐 are integral time scales (s) for vertical wind velocity and CO2
 signal, 269 

respectively. The definition and estimation of the integral time scale are shown in Appendix B. 270 

The sign of δ𝐹𝑆 could be positive or negative (i.e. under or over-estimation) because of the 271 

poor statistics in capturing low-frequency eddies within the flux averaging period (Lenschow 272 

et al., 1993). The mean hourly relative systematic error due to insufficient sampling time for 273 

four cruises estimated by Eq. 5 is < 5%. According to propagation of uncertainty theory (JCGM, 274 

2008), the total systematic error is less than 9% (= √7.5%2 + 5%2). 275 

2.3.3 Random error 276 

Five approaches used to estimate the total random error (A-C) and the random error component 277 

due to instrument noise (C-E) in EC CO2 fluxes are discussed below. The random error 278 

assessments are empirical (A and D) or theoretical (B, C and E). 279 

A. An empirical approach to estimate total random error involves shifting the w data relative 280 

to the CO2 data (or vice versa) by a large, unrealistic time shift and then computing the ‘null 281 
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fluxes’ from the time-desynchronized CO2 and w time series (Rannik et al., 2016). The shift 282 

removes any real correlation between CO2 and w due to vertical exchange. The standard 283 

deviation of the resultant ‘null’ fluxes represents the random flux uncertainty (Wienhold et al., 284 

1995). We applied a series of time shifts of ~20 − 60 × 𝜏𝑤 (i.e. using time shifts ranging from 285 

-300 to -100 and 100 to 300 s, Rannik et al., 2016). This empirical estimation of total random 286 

flux uncertainty will hereafter be referred to as δ𝐹𝑅,Wienhold. 287 

B. Lenschow and Kristensen (1985) derived a rigorous theoretical equation for total random 288 

error estimation, which contains both the auto-covariance and cross-covariance functions. The 289 

theoretical equation has been numerically approximated by Finkelstein and Sims (2001): 290 

 δ𝐹𝑅, Finkelstein = {
1

𝑛
[∑ 𝑟𝑤𝑤(𝑝)𝑟𝑐𝑐

𝑚
𝑝=−𝑚 (𝑝) + ∑ 𝑟𝑤𝑐(𝑝)𝑚

𝑝=−𝑚 𝑟𝑐𝑤(𝑝)]}
1/2

 (6) 291 

where n is the number of data points within an averaging time interval, p is the number of 292 

shifting points. The maximum shifting point m can be chosen subjectively (< n). We found that 293 

the random error for m between 1000 and 2000 data points was similar, so for this study we 294 

use 𝑚 = 1500 (150 s shift time). The first term in the brackets represents the auto-covariance 295 

component and the second term is the cross-covariance component. 𝑟𝑤𝑤 and 𝑟𝑐𝑐 are the auto-296 

covariance functions for vertical wind velocity (w) and CO2 mixing ratio (c), respectively. 𝑟𝑤𝑐 297 

and 𝑟𝑐𝑤 are the cross-covariance functions for w and c. Here 𝑟𝑤𝑐  represents shifting w data 298 

relative to CO2 data, while 𝑟𝑐𝑤 represents shifting CO2 data relative to w data.  299 

C. Blomquist et al. (2010) attributed the sources of CO2 variance 𝜎𝑐
2 to atmospheric processes 300 

(𝜎𝑐𝑎
2 ) and white noise (𝜎𝑐𝑛

2 ). The sources of variance are considered to be independent of each 301 

other and the sonic anemometer is assumed to be relatively noise-free. According to 302 

propagation of uncertainty theory (JCGM, 2008), the total random flux error can be defined as: 303 

 𝛿𝐹𝑅, Blomquist ≤
𝑎𝜎𝑤

√𝑇
(𝜎𝑐𝑎

2 𝜏𝑤𝑐 + 𝜎𝑐𝑛
2 𝜏𝑐𝑛

)
1 2⁄

 (7) 304 

where the constant a varies from √2 to 2, depending on the relationship between the covariance 305 

of the two variables (w and CO2) and the product of their auto-correlations (Lenschow and 306 

Kristensen, 1985). Here, 𝜏𝑤𝑐  is equal to the shorter of 𝜏𝑤  and 𝜏𝑐 , which is typically 𝜏𝑤 307 

(Blomquist et al., 2010), and 𝜏𝑐𝑛
 is the integral time scale of white noise in the CO2 signal. The 308 

CO2 variance due to atmospheric processes (𝜎𝑐𝑎
2 ) includes two components: variance due to 309 

vertical flux (i.e. air-sea CO2 flux) 𝜎𝑐𝑎𝑣
2 , and variance due to other atmospheric processes 𝜎𝑐𝑎𝑜

2  310 
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(Fairall et al., 2000). The variance in CO2 due to vertical flux (𝜎𝑐𝑎𝑣
2 ) depends on atmospheric 311 

stability. 𝜎𝑐𝑎𝑣
2  can be estimated with Monin-Obukhov similarity theory (Blomquist et al., 2010, 312 

2014; Fairall et al., 2000): 313 

 𝜎𝑐𝑎𝑣
2 = [3

𝑤′𝑐′

𝑢∗
𝑓𝑐(𝑧 𝐿⁄ )]

2

 (8) 314 

where 𝑢∗ is the friction velocity (m s-1) and the similarity function (𝑓𝑐) depends on the stability 315 

parameter 𝑧 𝐿⁄ , where 𝑧 is the observational height (m) and 𝐿 is the Obukhov length (m). The 316 

expression of 𝑓𝑐  can be found in Blomquist et al. (2010). 317 

Equation 7 can be used to assess the random error due to instrument noise by setting 𝜎𝑐𝑎
2 = 0, 318 

referred to hereafter as δ𝐹𝑅𝑁, Blomquist. We use the CO2 variance spectra to directly estimate the 319 

white noise term 𝜎𝑐𝑛
2 𝜏𝑐𝑛

 in Eq. 7. The variance is fairly constant at high frequency (1-5 Hz; Fig. 320 

B2, Appendix B), which is often referred to as band-limited white noise. The relationship 321 

between 𝜎𝑐𝑛
2 𝜏𝑐𝑛

 and the band-limited noise spectral value 𝜑𝑐𝑛
, is expressed in Blomquist et al. 322 

(2010) as: 323 

 𝜎𝑐𝑛
2 𝜏𝑐𝑛

=
𝜑𝑐𝑛

4
 (9) 324 

D. Billesbach (2011) developed an empirical method to estimate the random error due to 325 

instrument noise alone (referred to as ∆𝐹𝑅𝑁, Billesbach). This involves random shuffling of the 326 

CO2 time series within an averaging interval and then calculating the covariance of w and CO2. 327 

The correlation between w and CO2 is minimized by the shuffling, and any remaining 328 

correlation between w and CO2 is due to the unintentional correlations contributed by 329 

instrument noise.  330 

E. Mauder et al. (2013) describe another theoretical approach to estimate the random flux error 331 

due to instrument noise: 332 

 δ𝐹𝑅𝑁, Mauder =
𝜎𝑤𝜎𝑐𝑛

√𝑛
  (10) 333 

White noise correlates with itself but is uncorrelated with atmospheric turbulence. Thus, the 334 

white noise-induced CO2 variance (𝜎𝑐𝑛
) only contributes to the total variance. The value of 𝜎𝑐𝑛

 335 

can be estimated from the difference between the zero-shift auto-covariance value (CO2 336 

variance 𝜎𝑐
2) and the noise-free variance extrapolated to a time shift of zero (Lenschow et al., 337 

2000): 338 
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 𝜎𝑐𝑛
2 = 𝜎𝑐

2 − 𝜎2(𝑡 → 0) (11) 339 

where 𝜎2(𝑡 → 0)  represents the extrapolation of auto-covariance to a zero shift, which is 340 

considered equal to variance due to atmospheric processes (𝜎𝑐𝑎
2 ). Figure 3 shows the normalised 341 

auto-covariance function curves of w and CO2 as measured by the Picarro G2311-f and the LI-342 

7200. There is a sharp decrease in the CO2 auto-covariance when shifting from 0 s shift to 0.1 343 

s shift for both the Picarro G2311-f and LI-7200 gas analyser. The same sharp decrease is not 344 

seen in the vertical wind velocity (w) auto-covariance. The relative difference in the change in 345 

normalised auto-covariance shows that white noise makes a much larger relative contribution 346 

to the CO2 variance than to the vertical wind velocity variance. 347 

 348 

Figure 3. Mean normalised auto-covariance functions of CO2 and vertical wind velocity (w) by four 349 

different instruments. The sharp decrease of the CO2 auto-covariance between the zero shift and the 350 

initial 0.1 s shift corresponds to the large contribution of white noise from the gas analysers. The LI-351 

7200 is the nosier instrument. The noise contribution from either anemometer is relatively small (< 352 

10%). 353 

 354 

3 Results 355 

Measurements from AMT28 and AMT29 set the scene for our uncertainty analysis. These two 356 

Atlantic cruises transited across the same tropical region (Fig. A2, Appendix A) in October 357 
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2018 and September 2019 with different eddy covariance systems (Sect. 2.1). AMT28 and 358 

AMT29 show broadly similar latitudinal patterns (Fig. 4a). An obvious question of interest is 359 

whether the measured fluxes were the same for the two years. To answer this question, the 360 

measurement uncertainties must be quantified. The total random uncertainties in CO2 flux 361 

(δ𝐹𝑅, Finkelstein) are comparable for the two cruises even though the random error component 362 

due to instrument noise (δ𝐹𝑅𝑁, Mauder ) is about 3 times higher during AMT29 using LI-7200 363 

than during AMT28 using Picarro G2311-f (Fig. 4b; Fig. D1, Appendix D). The similar total 364 

random uncertainty in the AMT28 and AMT29 fluxes shows that both gas analysers are equally 365 

suitable for air-sea EC CO2 flux measurements. The variance budgets of atmospheric CO2 366 

mixing ratio (used to estimate random flux uncertainty, see Sect. 3.1) are shown in Fig. 4c. 367 

Total variance in CO2 mixing ratio is dominated by instrument noise on both cruises. CO2 368 

mixing ratio variance (total and instrument noise) was substantially higher during AMT29.  369 

 370 

Figure 4. (a) Air-sea CO2 fluxes (hourly and 6-h averages), (b) random uncertainty in flux (total and 371 

due to instrument noise only), and (c) variance in CO2 mixing ratio (total and due to instrument noise 372 

only) for two Atlantic cruises. 373 

 374 
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3.1 Random uncertainty 375 

Theoretical derivation of flux uncertainty (δ𝐹𝑅𝑁, Blomquist , Eq. 7) requires knowledge of the 376 

contributions to CO2 mixing ratio variance. Total CO2 variance is made up of instrument noise 377 

(𝜎𝑐𝑛
2 ) and atmospheric processes (𝜎𝑐𝑎

2 ). Atmospheric processes include vertical flux (𝜎𝑐𝑎𝑣
2 ) and 378 

other atmospheric processes (𝜎𝑐𝑎𝑜
2 ). The variance budgets of CO2 mixing ratio for the four 379 

cruises are listed in Table 3. Atmospheric processes contribute a larger CO2 variance in the 380 

Arctic (where flux magnitudes are greater) compared to the Atlantic. Vertical flux accounts for 381 

~10% of the variance in CO2 mixing ratio in the Arctic and ~1% of the CO2 variance in the 382 

Atlantic. Previous results demonstrate that horizontal transport is a major source of 𝜎𝑐𝑎𝑜
2  for 383 

long-lived greenhouse gases (Blomquist et al., 2012). Small changes in CO2 mixing ratio 384 

transported horizontally can yield variance that greatly exceeds the variance from vertical flux.  385 

 386 

Table 3. Variance in the CO2 mixing ratio estimated using Eq. 8 and 11 for the Arctic (JR18006/7, 387 

Picarro G2311-f) and Atlantic cruises (AMT28, Picarro G2311-f; AMT29, LI-7200). Total CO2 388 

variance (𝜎𝑐
2) consists of white noise (𝜎𝑐𝑛

2 ) and atmospheric processes (𝜎𝑐𝑎
2 ). The latter can be further 389 

broken down to the CO2 variance due to vertical flux (𝜎𝑐𝑎𝑣
2 ) and due to other processes (𝜎𝑐𝑎𝑜

2 ). 390 

CO2 variance (× 10-3 ppm2) JR18006 JR18007 AMT28 AMT29 

Total, 𝝈𝒄
𝟐 9.9 8.6 3.6 13.9 

Due to instrument white noise, 𝝈𝒄𝒏
𝟐  5.8 5.4 2.0 12.6 

Due to atmospheric processes, 𝝈𝒄𝒂
𝟐  4.1 3.3 1.6 1.3 

- Due to vertical flux, 𝝈𝒄𝒂𝒗
𝟐  1.3 0.8 0.03 0.08 

- Due to other atmospheric processes, 𝝈𝒄𝒂𝒐
𝟐  2.8 2.5 1.6 1.2 

 391 

Three quasi-independent methods were used to estimate random uncertainty in EC air-sea CO2 392 

fluxes caused by instrument noise (δ𝐹𝑅𝑁 , Methods C-E, Sect. 2.3.3). Good agreement was 393 

found between all three estimates (Fig. C2, Appendix C) when √2 is used as the constant in 394 

Eq. 7 (a). The ∆𝐹𝑅𝑁, Billesbach   estimates have more scatter and are slightly higher than the 395 

theoretical results, possibly because the random shuffling of data fails to fully exclude the 396 

contribution from atmospheric turbulence (Rannik et al., 2016). For the remainder of this study, 397 

we use the δ𝐹𝑅𝑁, Mauder method to estimate δ𝐹𝑅𝑁. 398 

We used three methods to estimate the total random uncertainty (δ𝐹𝑅, Methods A-C, Sect. 2.3.3) 399 

in the hourly-averaged air-sea CO2 fluxes. There is good agreement among the three estimates 400 
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(r > 0.88; Fig. C1, Appendix C). Again, the constant in Eq. 7 (a) is set to √2, as informed by 401 

the instrument noise uncertainty analysis above. We use δ𝐹𝑅, Finkelstein  (Eq. 6) to estimate the 402 

total random flux uncertainty hereafter. Our decision is based on δ𝐹𝑅, Finkelstein not requiring 403 

the integral time scale (unlike δ𝐹𝑅, Blomquist) and showing less scatter than δ𝐹𝑅, Wienhold. 404 

Figure 5 shows the different relative contributions to the random flux uncertainty for the Arctic 405 

cruises (hourly average). Here the uncertainty is normalised by the flux magnitude and then 406 

averaged into flux magnitude bins. When the flux magnitude is sufficiently large (> 20 mmol 407 

m-2 day-1), the total relative random uncertainty in flux asymptotes to about 15% and is driven 408 

by variance associated with both vertical flux and other atmospheric processes. This estimate 409 

is similar to uncertainties in air-sea fluxes of other well resolved (i.e. high signal-to-noise ratio) 410 

variables (Fairall et al., 2000). At a lower flux magnitude, uncertainty due to atmospheric 411 

processes other than vertical flux dominates the total random uncertainty. Uncertainty due to 412 

the white noise from the Picarro G2311-f gas analyser is small. 413 

 414 

Figure 5. Relative random uncertainty in hourly CO2 flux and its contribution from noise, vertical flux 415 

and other processes during two Arctic cruises. Relative random uncertainty data are binned into 3 mmol 416 

m-2 day-1 flux magnitude bins (error bars represent 1 standard deviation). 417 

 418 

3.2 Summary of systematic and random uncertainties 419 
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The total uncertainty δ𝐹 in the hourly average EC CO2 flux (estimated using Eq. 3) ranges 420 

from 1.4 to 3.2 mmol m-2 day-1 in the mean for the four cruises (Table 4). Our EC flux system 421 

setup was optimal and subsequent corrections have minimised any bias to < 9% (Sect. 2.3.2). 422 

Systematic error is on average much lower than random error (Table 4). This means the 423 

accuracy of the EC CO2 flux measurements is very high, but the precision of hourly averaged 424 

EC CO2 air-sea flux measurements is relatively low. In Sect. 4.1, we discuss how the precision 425 

can be improved by averaging the observed fluxes for longer. 426 

 427 

Table 4. Summary of hourly average EC CO2 fluxes and associated uncertainties in the mean for the 428 

four cruises (mmol m-2 day-1). Shown are the mean CO2 flux magnitude (|𝐹|, mmol m-2 day-1), upper 429 

limitation of the total uncertainty (δ𝐹, Eq. 3), upper limitation of the absolute systematic error (|δ𝐹𝑆|, 430 

propagated from Table 2 and Eq. 5), and random error (δ𝐹𝑅, Eq. 6). The random error components are 431 

white noise (δ𝐹𝑅𝑁 , Eq. 10), vertical flux (δ𝐹𝑅𝑉 , Eq. 7) and other atmospheric processes (δ𝐹𝑅𝑂 =432 

√δ𝐹𝑅
2 − δ𝐹𝑅𝑁

2 − δ𝐹𝑅𝑉
2 ). The total uncertainty is also expressed as a % of the mean flux magnitude 433 

(δ𝐹/|𝐹| × 100%). 434 

Cruises JR18006 JR18007 AMT28 AMT29 

|𝐂𝐎𝟐 𝐟𝐥𝐮𝐱|, |𝑭|  10.1 16.3 2.5 3.5 

Total uncertainty, 𝛅𝑭  

(𝛅𝑭/|𝑭| × 𝟏𝟎𝟎%) 

2.3 

(23%) 

3.2 

(20%) 

1.4 

(58%) 

1.7 

(49%) 

Systematic error, |𝛅𝑭𝑺| 0.8 1.2 0.3 0.3 

Total random error, 𝛅𝑭𝑹 2.2 2.9 1.4 1.7 

Random error due to white noise, 𝛅𝑭𝑹𝑵  0.5 0.6 0.3 1.0 

Random error due to vertical flux, 𝛅𝑭𝑹𝑽  1.1 1.4 0.2 0.4 

Random error due to other atmospheric 

processes, 𝛅𝑭𝑹𝑶  

1.5 2.4 1.4 1.5 

 435 

The theoretical uncertainty estimates above can be compared with a portion of the AMT28 436 

cruise data (15°−20° S, ~25° W; Fig. 4), when the ship encountered sea surface CO2 fugacity 437 

close to equilibrium with the atmosphere (i.e. fCO2 ~0, Fig. A2, Appendix A). The data from 438 

this region is useful for assessing the random and systematic flux uncertainties. The standard 439 

deviation of the EC CO2 flux during cruise AMT28 when fCO2 ~0 is 1.6 mmol m-2 day-1, 440 

which compares well with the theoretical random flux uncertainty in this region (1.4 mmol m-
441 

2 day-1). The mean EC CO2 flux from this region was 0.5 mmol m-2 day-1, which is 442 
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indistinguishable from zero considering the random uncertainty. This further confirms the 443 

minimal bias in our flux observations.  444 

Figure 6 shows a comparison between the relative uncertainty and the relative standard 445 

deviation (RSTD) in in the hourly CO2 flux for the two Arctic cruises. Results have been binned 446 

into 1 m s-1 wind speed bins. Wind speed was converted to 10-meter neutral wind speed (U10N) 447 

using the COARE3.5 model (Edson et al., 2013). The relative random error decreases with 448 

increasing wind speed. This is partly because the fluxes tend to be larger at higher wind speeds 449 

and so the signal-to-noise ratio in the flux is greater. In addition, at higher wind speeds, a greater 450 

number of high-frequency turbulent eddies are sampled by the EC system, providing better 451 

statistics of turbulent eddies, and lower sampling error.  452 

 453 

Figure 6. Comparison of relative random uncertainty in hourly CO2 flux and relative standard deviation 454 

(RSTD, standard deviation/|flux mean|) of the EC CO2 flux from two Arctic cruises. These results 455 

are binned in 1 m s-1 wind speed bins.  456 

 457 

The RSTD of the flux is greater in magnitude than the estimated flux uncertainty because it 458 

also contains environmental variability. The CO2 flux auto-covariance analysis (Sect. 4.1) 459 

shows that random error in hourly flux explains ~20% of the flux variance on average for the 460 

two Arctic cruises. This implies that the remaining variability in the EC flux (~80%) is due to 461 

natural phenomena (e.g. changes in fCO2, wind speed, etc). Similarly, substantial variability 462 
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is typical in EC-derived CO2 gas transfer velocity at a given wind speed (e.g. Edson et al., 2011; 463 

Butterworth and Miller, 2016). 𝐾660  is derived from (EC CO2 flux)/∆𝑓CO2 , and thus an 464 

understanding of EC flux uncertainty can help understand and explain the variability in EC-465 

derived gas transfer velocity estimates (Sect. 4.2). 466 

4 Discussion 467 

4.1 Impact of averaging time scale on flux uncertainty 468 

The random error in flux decreases with increasing averaging time interval T or the number of 469 

sampling points n (Eq. 6, 7 and 10). This is because a longer averaging time interval results in 470 

better statistics of the turbulent eddies. However, averaging for too long is also not ideal since 471 

the atmosphere is less likely to maintain stationarity. The typical averaging time interval is thus 472 

typically between 10 min and 60 min for air-sea flux measurements (20 min intervals were 473 

used in this study). The timeseries of quality controlled 20 min flux intervals can be further 474 

averaged over a longer time scale to reduce the random uncertainty. Averaging the 20 min flux 475 

intervals assumes that the flux interval data are essentially repeat measurements within a 476 

chosen averaging time scale. If the 20 min flux intervals are averaged, one can ask: What is the 477 

optimal averaging time scale for interpreting air-sea EC CO2 fluxes? 478 

We use an auto-covariance method to determine the optimal averaging time scale. The observed 479 

variance in CO2 flux consists of random uncertainty (random noise) as well as natural 480 

variability. The random noise component should only contribute to the CO2 flux variance when 481 

the data are zero-shifted. After the CO2 flux data are shifted, the noise will not contribute to the 482 

auto-covariance function. Figure 7 shows the auto-covariance function of the air-sea CO2 flux 483 

with different averaging time scales for Arctic cruise JR18007. For the 20-min fluxes (Fig. 7a), 484 

the auto-covariance decreases rapidly between the zero shift and the initial time shift, which 485 

indicates that a large fraction of the 20-min flux variance is due to random noise.  486 
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 487 

Figure 7. (a) Auto-covariance of the original 20-min fluxes (cruise JR18007) and a fit to the noise-free 488 

auto-covariance function extrapolated back to a zero time shift. (b) CO2 flux auto-covariance functions 489 

with different averaging time scales. The black line represents the auto-covariance of the original 20-490 

min fluxes. The 20-min fluxes are further averaged at different time scales (1, 2, 3 and 6 hour) and the 491 

corresponding auto-covariance functions are shown with different colours (dark blue, orange, green and 492 

light blue). 493 

 494 

The random noise in the CO2 fluxes decreases with a longer averaging time scale, with the 495 

greatest effect observed from 20 min to 1 hour (Fig. 7b). A fit to the noise-free auto-covariance 496 

function extrapolated back to a zero time shift gives us an estimate of the non-noise variability 497 

in the natural CO2 flux. Subtracting the extrapolated natural flux variability from the total 498 

variance in CO2 flux provides an estimate of the random noise in the flux for each averaging 499 

timescale (Fig. 7a). All four cruises consistently demonstrate a non-linear reduction in the noise 500 

contribution to the flux measurements when the averaging timescale increases (Fig. 8). The 501 

random noise in flux can be expressed relative to the natural variance in flux representing the 502 

inverse of the signal-to-noise ratio (i.e. random noise in flux/natural flux variability , 503 

hereafter referred to as noise: signal). 504 

 505 

https://doi.org/10.5194/acp-2021-120
Preprint. Discussion started: 19 February 2021
c© Author(s) 2021. CC BY 4.0 License.



23 
 

 506 

Figure 8. Effect of the averaging timescale on the noise: signal ( random noise in flux/507 

natural flux variability) for EC air-sea CO2 flux measurements during four cruises. 508 

 509 

The noise: signal also facilitates comparison of all four cruises (Fig. 8) and demonstrates the 510 

consistent effect that increasing the averaging timescale has on noise: signal. Consistent with 511 

Table 4, the Arctic cruises show much lower noise: signal because the flux magnitudes are 512 

much  larger. Typical detection limits in analytical science are often defined by a 1: 3 noise: 513 

signal ratio. A 1: 3 noise: signal is achieved with a 1 h averaging timescale for the Arctic cruises. 514 

The Atlantic cruises encountered much lower air-sea CO2 fluxes and an averaging timescale of 515 

at least 3 h is required to achieve the same 1: 3 noise: signal ratio. 516 

The flux measurement uncertainty at a 6-h averaging timescale for the AMT cruises is ~0.6 517 

mmol m-2 day-1. The analysis presented above permits an answer to the question posed at the 518 

beginning of the Results section. The mean difference between the 6-h averaged EC CO2 flux 519 

observations on AMT29 and AMT28 (1.3 mmol m-2 day-1, Fig. 4a) is much greater than the 520 

measurement uncertainty. This significant difference was likely because of the interannual 521 

variability in AMT CO2 flux due to changes in the natural environment (e.g. fCO2, sea surface 522 

temperature, and physical drivers of interfacial turbulence such as wind speed) during the two 523 

cruises.  524 
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At a typical research ship speed of ~10 knots, the AMT cruises cover ~110 km in 6 h, which is 525 

equivalent to ~1° latitude. Averaging for longer than 6 h is likely to cause substantial loss of 526 

real information about the natural variations in air-sea CO2 flux and the drivers of flux 527 

variability. For example, the mean flux between 0–20° S during cruise AMT28 is 0.9 mmol m-
528 

2 day-1. However, the 6 h average EC measurements show that the flux varied between +5 mmol 529 

m-2 day-1 (~2–6° S) and -5 mmol m-2 day-1 (~11–13° S, Fig. 4a). 530 

 531 

4.2 Effect of CO2 flux uncertainty on the gas transfer velocity K  532 

The uncertainties in the EC CO2 air-sea flux measurement will influence the uncertainty that 533 

translates to EC-based estimates of the gas transfer velocity, K. For illustration, K is computed 534 

for Arctic cruise JR18007, which had a high flux signal: noise ratio of ~5 (Fig. 8). Any data 535 

potentially influenced by ice and sea ice melt were excluded using a sea surface salinity filter 536 

(data excluded when salinity < 32). Equation 1 is rearranged and used with concurrent 537 

measurements of CO2 flux (F), fCO2, and sea surface temperature (SST) to obtain K adjusted 538 

for the effect of temperature (K660). 539 

The determination coefficient (R2) of the quadratic fit between wind speed (U10N) and EC-540 

derived K660 (Fig. 9) demonstrates that wind speed explains 76% of the K660 variance during 541 

Arctic cruise JR18007. How much of the remaining 24% can be attributed to uncertainties in 542 

EC CO2 fluxes? 543 

 544 
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 545 

Figure 9. Gas transfer velocity (K660) measured on Arctic cruise JR18007 (hourly average, signal: noise 546 

~5) versus 10-m neutral wind speed (U10N). Red squares represent 1 m s-1 bin averages with error bars 547 

representing one standard deviation (SD). The red curve represents a quadratic fit using the bin averages: 548 

K660 = 0.22U10N
2 + 2.46 (R2 = 0.76). The grey shaded area represents the standard deviation calculated 549 

for each wind speed bin (K660 ± 1SD). The cyan region represents the upper and lower bounds in K660 550 

uncertainty computed from the EC flux uncertainty (K660 ± K660, see text for detail). 551 

 552 

Variability in K660 within each 1 m s-1 wind speed bin can be considered to have minimal wind 553 

speed influence. It is thus useful to compare the variability within each wind speed bin (K660 ± 554 

1SD) with the upper and lower uncertainty bounds derived from the EC flux measurements. 555 

Uncertainty in EC flux-derived K660 (K660) is calculated from the uncertainty in hourly EC 556 

flux (F) by rearranging Eq. 1 (bulk flux equation) and replacing F with F. The resultant K660 557 

is then averaged in wind speed bins. The shaded cyan band in Fig. 9 (K660 ± K660) is 558 

consistently narrower than the grey shaded band (K660 ± 1SD). On average, EC flux-derived 559 

uncertainty in K660
 can only account for a quarter of the K660 variance within each wind speed 560 

bin and the remaining variance is most likely due to the non-wind speed factors that influence 561 

gas exchange (e.g. breaking waves, surfactants). 562 

https://doi.org/10.5194/acp-2021-120
Preprint. Discussion started: 19 February 2021
c© Author(s) 2021. CC BY 4.0 License.



26 
 

The analysis above can be extended to assess how EC flux-derived uncertainty affects our 563 

ability to parameterise K660 (e.g. as function of wind speed). To do so, a set of synthetic K660 564 

data is generated (same U10N as the K660 measurements in Fig. 9). The synthetic K660 data are 565 

initialised using a quadratic wind speed dependence that matches JR18007 (i.e. K660 = 566 

0.22U10N
2 + 2.46). Random Gaussian noise is then added to the synthetic K660 data, with relative 567 

noise level corresponding to the relative flux uncertainty values taken from JR18007 (mean of  568 

20%, Table 4). The relative uncertainty in K660 due to EC flux uncertainty (K660/K660) shows 569 

a wind speed dependence (Fig. S4a, Supplement), and the artificially-generated Gaussian noise 570 

incorporates this wind speed dependence (Fig. S4b, Supplement). The R2 of the quadratic fit to 571 

the synthetic data as a function of U10N is 0.90 (the rest of the variance is due to uncertainty in 572 

K660). Since wind speed explains 76% of variance in the observed K660, it can be inferred that 573 

non-wind speed factors can account for 14% (i.e. (100-76)% - (100-90)%) of the total variance 574 

in K660 from this Arctic cruise. If the synthetic K660 data is assigned a relative flux uncertainty 575 

of 50% (reflective of a region with low fluxes, e.g. AMT28/29), the R2 of the wind speed 576 

dependence in the synthetic data decreases to 0.60. 577 

The relative uncertainty in EC flux-derived K660 (𝐾660 𝐾660⁄ ) is large when |fCO2| is small 578 

(Fig. 10). Previous EC studies have filtered EC flux data to remove fluxes when the |fCO2| 579 

falls below a specified threshold (e.g. 20 µatm, Blomquist et al. (2017); 40 µatm, Miller et al. 580 

(2010), Landwehr et al. (2014), Butterworth and Miller (2016), Prytherch et al. (2017); 50 µatm, 581 

Landwehr et al. (2018)). Analysis of the data presented here suggests that a |fCO2| threshold 582 

of at least 20 µatm is reasonable for hourly K660 measurements, leading to K660 of ~10 cm h-1 583 

(𝐾660 𝐾660⁄  ~1/3) or less on average. At very large |fCO2| of over 100 µatm, K660 is reduced 584 

to only a few cm h-1 (𝐾660 𝐾660⁄  ~1/5). At longer flux averaging time scales, it may be possible 585 

to relax the minimal |fCO2| threshold. 586 
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 587 

Figure 10. Relative uncertainty in EC-estimated hourly K660 (𝐾660 𝐾660⁄ ) versus the magnitude of the 588 

air-sea CO2 fugacity difference (|fCO2|) during Arctic cruise JR18007 and Atlantic cruises AMT28 589 

and AMT29 (no fCO2 data were collected on JR18006). The data points are colour-coded by wind 590 

speed. Blue points are medians of 𝐾660 𝐾660⁄  in 5 µatm bins. Here we use the parameterised K660 (= 591 

0.22U10N
2 + 2.46) to normalise the uncertainty in K660. The dashed line represents the 3: 1 signal: noise 592 

ratio (𝐾660 𝐾660⁄ = 1/3). 593 

 594 

5. Conclusions  595 

This study uses data from four cruises with a range in air-sea CO2 flux magnitude to 596 

comprehensively assess the sources of uncertainty in EC air-sea CO2 flux measurements. Data 597 

from two ships and two different state-of-the-art CO2 analysers (Picarro G2311-f and LI-7200, 598 

both fitted with a dryer) are analysed using multiple methods (Sect. 2.3). Random error 599 

accounts for the majority of the flux uncertainty, while the systematic error (bias) is small 600 

(Table 4). Random flux uncertainty is primarily caused by variance in CO2 mixing ratio due to 601 

atmospheric processes. The random error due to instrument noise for the Picarro G2311-f is 602 

threefold smaller than for LI-7200 (Table 4 and Fig. D1, Appendix D). However, the 603 

contribution of the instrument noise to the total random uncertainty is much smaller than the 604 
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contribution of atmospheric processes such that both gas analysers are well suited for air-sea 605 

CO2 flux measurements. 606 

The mean uncertainty in hourly EC flux is estimated to be 1.4−3.2 mmol m-2 day-1, which 607 

equates to the relative uncertainty of ~20% in high CO2 flux regions and ~50% in low CO2 flux 608 

regions. Lengthening the averaging timescale can improve the signal: noise ratio in EC CO2 609 

flux through the reduction of random uncertainty. Auto-covariance analysis of CO2 flux is used 610 

to quantify the optimal averaging timescale (Fig. 7 and 8, Sect. 4.1). The optimal averaging 611 

timescale varies between 1 hour for regions of large CO2 flux (Arctic in our analysis) and at 612 

least 3 hours for regions of low CO2 flux (tropical/sub-tropical Atlantic in our  analysis). 613 

The measurement uncertainty in EC CO2 flux contributes directly to scatter in the derived gas 614 

transfer velocity, K660. Flux uncertainties determined in this paper are applied to a synthetic 615 

K660 dataset. This enables a partitioning of the variance in measured K660 that is due to EC CO2 616 

flux uncertainty, wind speed, and other processes (10%, 76%, 14% for Arctic cruise JR18007). 617 

At a given averaging timescale, a |fCO2| threshold helps to reduce the scatter in K660. A 618 

minimum |fCO2| filter of 20 µatm is needed for interpreting hourly K660 data, with the signal: 619 

noise ratio in K660 improving further at higher |fCO2|. 620 

 621 

 622 

Appendix A: Cruise tracks 623 
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 624 

Figure A1. Cruise tracks of JR18006 (magenta) and JR18007 (green). The bottom colour bar indicates 625 

the CO2 fugacity difference (fCO2) of August 2019 (Bakker et al., 2016; Landschützer et al., 2020), 626 

while the right colour bar shows the Arctic sea ice concentrations of 1st August 2019 measured by 627 

Advanced Microwave Scanning Radiometer - Earth Observing System Sensor (AMSR-E, Spreen et al., 628 

2008). 629 
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 630 

Figure A2. Cruise tracks of AMT28 (magenta) and AMT29 (green). The ocean is coloured with the 631 

fCO2 for October 2018 (Bakker et al., 2016; Landschützer et al., 2020). 632 

 633 

Appendix B: Integral time scale and variance spectra of CO2 and vertical wind velocity  634 

Integral time scale is used in the flux uncertainty calculation (Eq. 5 and 7). The definition of 635 

integral time scale 𝜏𝑥 of variable x is: 636 

 𝜏𝑥 =
1

𝜎𝑥
2 ∫ 𝑟𝑥𝑥(𝑡)𝑑𝑡

∞

0
  (B1) 637 

where 𝜎𝑥
2 is the variance of x and 𝑟𝑥𝑥 is the auto-covariance function of x. t is the shifting time 638 

of auto-covariance (which is different from the lag time between w and CO2 in the EC flux 639 

calculation). We can use Eq. B1 to estimate the integral time scale of w and CO2 directly. 640 

However, integration up to infinity is not practical. Instead we can numerically estimate the 641 

time scale by determining the time corresponding to the auto-covariance coefficient function 642 

(𝑟𝑥𝑥/𝜎𝑥
2) value decaying to 1/e (1/e decaying method) or by integrating the auto-covariance 643 

function up to the first zero crossing of the function (zero crossing method) (Rannik et al., 644 

2009).  645 
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One can also use similarity theory to estimate the integral time scale theoretically (Blomquist 646 

et al., 2010): 647 

 𝜏𝑤 = 2.8
𝑧

𝑢𝑟̅̅̅̅
𝑓𝜏(𝑧/𝐿) (B2) 648 

Here, 𝑢𝑟̅̅ ̅ is the relative wind speed. The similarity function 𝑓𝜏(𝑧/𝐿) is described by the stability 649 

parameter 𝑧/𝐿  where 𝑧  is the observation height (m) and 𝐿  is the Obukhov length (m) 650 

(Blomquist et al., 2010). 651 

Yet another method to estimate the integral time scale is from the peak frequency (𝑓max) in the 652 

w variance spectrum (Kaimal and Finnigan, 1994): 653 

 𝜏𝑤 =
1

2𝜋𝑓max
 (B3) 654 

The integral time scales of w estimated by these four methods for cruise JR18007 are shown in 655 

Figure B1. The integral time scale estimated by the zero crossing method agrees well with the 656 

peak frequency estimates using Eq. B3. The 1/e decaying method tends to underestimate the 657 

integral time scale, which is generally observed for turbulent signals (Rannik et al., 2009), 658 

whereas the similarity method (Eq. B2) considerably overestimates the integral time scale. In  659 

this study we use the integral time scale of w from the zero crossing method to estimate the 660 

theoretical flux uncertainty (Eq. 5 and 7). The theoretical systematic error estimates (Eq. 8) 661 

also require the integral time scale of CO2. The integral time scale of CO2 is difficult to evaluate 662 

from the above four methods due to instrument noise. Instead, we estimate it by directly 663 

integrating the auto-covariance function (Eq. B1) to a shift time of 200 s (we found no 664 

significant difference of the integral time scale when integrating the CO2 auto-covariance 665 

function for shift times ranging from 150 s to 250 s). 666 
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 667 

Figure B1. Comparison of integral time scales of w estimated by four different methods. Estimated 668 

integral time scales from the zero crossing method (integrating the auto-covariance function up to first 669 

zero crossing the function) agree well with the estimation of peak frequency method (Eq. B2). However, 670 

the similarity method (Eq. B1) overestimates the integral time scale whereas the 1/e decaying method 671 

(determining the time needed for the auto-covariance coefficient function value to decay to 1/e) tends 672 

to underestimate the integral time scale. 673 

 674 
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 675 

Figure B2. Mean variance spectra for CO2 and w for one Arctic cruise JR18007. The near constant CO2 676 

variance at high frequency (1-5 Hz) indicates the band-limited noise in the CO2 signal. In contrast, the 677 

w spectrum does not show a similar band-limited noise at < 10 Hz.  678 

 679 

Appendix C: Comparison of the uncertainty estimates by different methods 680 

 681 

https://doi.org/10.5194/acp-2021-120
Preprint. Discussion started: 19 February 2021
c© Author(s) 2021. CC BY 4.0 License.



34 
 

   682 

Figure C1. Comparison of total random uncertainties in hourly flux estimated by three different 683 

methods for the Arctic cruises. The empirical estimates 𝐹𝑅, Wienhold  agree well with one of the 684 

theoretical estimates ∆𝐹𝑅, Finkelstein  (r = 0.93). The other theoretical estimate ∆𝐹𝑅,Blomquist is slightly 685 

higher than the random uncertainties ∆𝐹𝑅, Finkelstein  (slope = 1.13) if the constant in Eq. 8 is set equal 686 

to √2. 687 

 688 
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 689 

Figure C2. Comparison of random error in hourly flux due to instrument white noise, estimated by 690 

three different methods for the Arctic cruises. The three uncertainty estimations agree well. The 691 

correlation coefficient (r) between δ𝐹𝑅𝑁, Mauder  and δ𝐹𝑅𝑁, Blomquist is 1 if the constant in Eq. 7 (a) is set 692 

to √2. 693 

 694 

Appendix D: Performance of two gas analysers 695 

Figure D1 shows a comparison between the performance of the Picarro 2311-f and the LI-7200 696 

gas analysers. We estimated that the noise of the LI-7200 is on average 3 times higher than that 697 

of the Picarro 2311-f (Table 3). Indeed, random error in the CO2 flux due to the white noise is 698 

much higher for the LI-7200 than for the Picarro 2311-f, but the total flux uncertainty of the 699 

EC system with the LI-7200 on AMT29 is only slightly higher than that of the EC system with 700 

the Picarro 2311-f on AMT28 (Table 4). Again, this is because for both EC systems, sampling 701 

error dominates the total random uncertainty, while the contribution of instrument noise (< 702 

30%) to the total uncertainty is relatively small (Billesbach, 2011; Langford et al., 2015; 703 

Mauder et al., 2013; Rannik et al., 2016). Another often used CRDS gas analyser in EC 704 

measurements is the Los Gatos Research (LGR) Fast Greenhouse Gas Analyser (FGGA) 705 
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(Prytherch et al., 2017). Yang et al. (2016) showed that LGR FGGA is ca. 10 times noisier than 706 

the Picarro G2311-f, and as a result the total CO2 flux uncertainty measured by the LGR is 4 707 

times higher than that by the Picarro. From the perspective of measurement noise, Picarro and 708 

LI-7200 gas analysers are better suited for air-sea CO2 flux measurements than the LGR FGGA.  709 

 710 

 711 

Figure D1. Comparison of the relative total random uncertainty and the relative random error 712 

component due to white noise for different gas analysers. A Picarro G2311-f gas analyser was used on 713 

AMT28 and a LI-7200 infrared gas analyser on AMT29.  714 

 715 

 716 

Data availability. The processed hourly EC CO2 fluxes and uncertainties can be found in the 717 

Supplement of this paper. Raw, high frequency (10 Hz) data are large (tens of gigabytes) and are 718 

archived at PML. Please contact the authors directly if you are interested in the raw data. 719 

 720 

Supplement. The supplement related to this article is available online at:  721 

 722 
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