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Abstract 18 

We examined the impacts of aerosol-radiation interactions, including the effects of 19 

aerosol-photolysis interaction (API) and aerosol-radiation feedback (ARF), on surface-20 

layer ozone (O3) concentrations during one multi-pollutant air pollution episode 21 

characterized by high O3 and PM2.5 levels from 28 July to 3 August 2014 in North China, 22 

by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model 23 

embedded with an integrated process analysis scheme. Our results show that aerosol-24 

radiation interactions decreased the daytime shortwave radiation at surface by 93.2 W 25 

m-2 averaged over the complex air pollution areas. The dimming effect reduced the 2 m 26 

temperature and near-surface photolysis rates of J[NO2] and J[O1D] by 0.56 °C, 1.8 × 27 

10-3 s-1 and 6.1 × 10-6 s-1, respectively. However, the daytime shortwave radiation in the 28 

atmosphere was increased by 72.8 W m-2, which made the atmosphere more stable. The 29 

stabilized atmosphere decreased the planetary boundary layer height and 10 m wind 30 

speed by 129.0 m and 0.12 m s-1, respectively, and increased the relative humidity at 2 31 

m by 2.4%.Our results show that aerosol-radiation interactions decrease the daytime 32 

downward shortwave radiation at surface, 2 m temperature, 10 m wind speed, planetary 33 

boundary layer height, photolysis rates J[NO2] and J[O1D] by 115.8 W m-2, 0.56 °C, 34 

0.12 m s-1, 129 m, 1.8 × 10-3 s-1 and 6.1 × 10-6 s-1, and increase relative humidity at 2 m 35 

and downward shortwave radiation in the atmosphere by 2.4% and 72.8 W m-2.  The 36 

weakened photolysis rates and changed meteorological conditions reduced daytime 37 

surface-layer O3 concentrations by up to 11.4 ppb (13.5%), with API and ARF 38 

contributing 74.6% and 25.4% of the O3 decrease, respectively. The combined impacts 39 

of API and ARF on surface O3 are further quantitatively characterized by the ratio of 40 

changed O3 concentration to local PM2.5 level. The ratio is calculated to be -0.14 ppb 41 

(µg m-3)-1 averaged over the multi-pollutant air pollution area in North China. Process 42 

analysis indicates indicated that the weakened O3 chemical production makes made the 43 

greatest contribution to API effect while the reduced vertical mixing is was the key 44 

process for ARF effect. This study implies that future PM2.5 reductions will lead to O3 45 

increases due to weakened aerosol-radiation interactions. Therefore, tighter controls of 46 
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O3 precursors are needed to offset O3 increases caused by weakened aerosol-radiation 47 

interactions in the future. 48 
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1 Introduction 49 

China has been experiencing severe air pollution in recent years, characterized by 50 

high loads of PM2.5 (particulate matter with an aerodynamic equivalent diameter of 2.5 51 

micrometers or less) and high levels of ozone (O3). Observational studies exhibited 52 

positive correlations and synchronous occurrence of PM2.5 and O3 pollution in North 53 

China during summer (Zhao et al., 2018; Zhu et al., 2019), indicating that complex air 54 

pollution is becoming a major challenge for North China. 55 

Aerosols can absorb and scatter solar radiation and therefore alterto affect Earth’s 56 

energy balanceradiative balance. They can also act as cloud condensation nuclei and 57 

ice nuclei, and further modify the microphysical characteristics of clouds (Albrecht et 58 

al., 1989; Haywood et al., 2000; Lohmann et al., 2005). Both ways perturb 59 

meteorological variables, e.g., temperature, planetary boundary layer height (PBLH), 60 

and precipitation, and eventually influence air pollutants (Petäjä et al., 2015; Miao et 61 

al., 2018; Zhang et al., 2018). Many studies were are focused on the feedback between 62 

aerosol and meteorology (Gao et al., 2015; Gao et al., 2016a; Qiu et al., 2017; Chen et 63 

al., 2019; Zhu et al., 2021). Gao et al. (2015) used the WRF-Chem model to investigate 64 

the feedbacks between aerosols and meteorological variables over the North China 65 

Plain in January 2013, and pointed out that aerosols could cause a decrease in surface 66 

temperature by 0.8-2.8 °C but an increase of 0.1-0.5 °C around 925 hPa when feedbacks 67 

between aerosols and meteorological variables were considered in WRF-Chem model. 68 

The more stable atmosphere caused by surface cooling and higher-layer heating led to 69 

the decreases of surface wind speed and PBLH by 0.3 m s-1 and 40-200 m, respectively, 70 

which further resulted in overall PM2.5 increases by 10-50 μg m-3 (2-30%) over Beijing, 71 

Tianjin and south Hebei during January 2013. By using the same WRF-Chem model, 72 

Qiu et al. (2017) reported that the surface downward shortwave radiation and PBLH 73 

were reduced by 54.6 W m-2 and 111.4 m due to aerosol radiative forcing during 21 and 74 

27 February 2014 in the North China Plain. As a result, the surface PM2.5 concentration 75 

averaged over the North China Plain was increased by 34.9 μg m-3 (20.4%). 76 

Aerosols can also influence O3 through aerosol-radiation interactions, including 77 
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aerosol-photolysis interaction and aerosol-radiation feedback. Aerosols can scatter and 78 

absorb UV radiation, and therefore directly affect O3 photochemistry reactions, which 79 

is called aerosol-photolysis interaction (API) (Dickerson et al., 1997; Liao et al., 1999; 80 

Li et al., 2011; Lou et al., 2014). The changed meteorological variables due to aerosol 81 

radiative forcing can indirectly affect O3 concentrations, which is called aerosol-82 

radiation feedback (ARF) (Hansen et al., 1997; Gao et al., 2018; Liu et al., 2020). 83 

Although the effects of API or ARF on O3 have been examined by previous studies 84 

(Xing et al., 2017; Gao et al., 2018; Gao et al., 2020), the combined effects of API and 85 

ARF on O3, especially under the conditions of synchronous occurrence of high PM2.5 86 

and O3 concentrations, remain largely elusive. 87 

The present study aims to (1) quantify the respective/combined contributions of 88 

API and ARF on surface O3 concentrations by using the WRF-Chem model; (2) explore 89 

the prominent physical and/or chemical processes responsible for API and ARF effects 90 

by using an integrated process rate (IPR) analysis embedded in WRF-Chem model. The 91 

analysis is conducted during one multi-pollutant air pollution episode characterized by 92 

high O3 and PM2.5 levels from 28 July to 3 August 2014 in North China. The model 93 

configuration, numerical experiments, observational data, and the integrated process 94 

rate analysis are described in section 2. Section 3 shows the model evaluation. The 95 

presentation and discussion of the model results are exhibited in section 4, and the 96 

conclusion is provided in section 5. The presentation of the model results and the 97 

corresponding analyses are exhibited in section 4. The discussion is provided in section 98 

5, and the conclusion and uncertainties of this study are given in section 6. 99 

2 Methods 100 

2.1 Model configuration 101 

The version 3.7.1 of the online-coupled Weather Research and Forecasting with 102 

Chemistry (WRF-Chem) model (Grell et al., 2005; Skamarock et al., 2008) is used in 103 

this study to explore the impacts of aerosol-radiation interactions on surface-layer O3 104 

in North China. WRF-Chem can simulate gas phase species and aerosols coupled with 105 

meteorological fields, and has been widely used to investigate air pollution over North 106 
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China (Gao et al., 2016a; Gao et al., 2020; Wu et al., 2020). As shown in Fig. 1, we 107 

design two nested model domains with the number of grid points of 57 (west–east) × 108 

41 (south–north) and 37 (west–east) × 43 (south–north) at 27 and 9 km horizontal 109 

resolutions, respectively. The parent domain centers at 39 °N, 117 °E. The model 110 

contains 29 vertical levels from the surface to 50 hPa, with 14 levels below 2 km for 111 

the fully description of the vertical structure of planetary boundary layer (PBL).  112 

The Carbon Bond Mechanism Z (CBM-Z) is selected as the gas-phase chemical 113 

mechanism (Zaveri and Peters, 1999), and the full 8-bin MOSAIC (Model for 114 

Simulating Aerosol Interactions and Chemistry) aerosol module with aqueous 115 

chemistry is used to simulate aerosol evolution (Zaveri et al., 2008). The photolysis 116 

rates are calculated by the Fast-J scheme (Wild et al., 2000). Other major physical 117 

parameterizations used in this study are listed in Table 1.  118 

The initial and boundary meteorological conditions are provided by the National 119 

Centers for Environmental Prediction (NCEP) Final Analysis data with a spatial 120 

resolution of 1° × 1°. In order to limit the model bias of simulated meteorological fields, 121 

the four-dimensional data assimilation (FDDA) is used with a nudging coefficient of 122 

3.0 × 10−4 for the wind, temperature and humidity (no analysis nudging is applied for 123 

the inner domain) (Lo et al., 2008; Otte, 2008). Chemical initial and boundary 124 

conditions are obtained from the Model for Ozone and Related chemical Tracers, 125 

version 4 (MOZART-4) forecasts (Emmons et al., 2010). 126 

Anthropogenic emissions are taken from the 2010 MIX Asian emission inventory 127 

(Li et al., 2017a), which provides emissions of sulfur dioxide (SO2), nitrogen oxides 128 

(NOx), carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs), 129 

carbon dioxide (CO2), ammonia (NH3), black carbon (BC), organic carbon (OC), PM10 130 

(particulate matter with aerodynamic diameter is 10 µm and less) and PM2.5. Emissions 131 

are aggregated from four sectors, including power generation, industry, residential, and 132 

transportation, with 0.25° × 0.25° spatial resolution. Biogenic emissions are calculated 133 

online by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) 134 

(Guenther et al., 2006).  135 
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2.2 Numerical experiments 136 

To quantify the impacts of API and ARF on O3, three case simulations have been 137 

conducted: (1) BASE – the base simulation coupled with the interactions between 138 

aerosol and radiation, which includes both impacts of API and ARF; (2) NOAPI – the 139 

same as the BASE case, but the impact of API is turned off ( aerosol optical properties 140 

are set to zero in the photolysis module), following Wu et al. (2020); (3) NOALL – both 141 

the impacts of API and ARF are turned off  (removing the mass of aerosol species 142 

when calculating aerosol optical properties in the optical module), following Qiu et al. 143 

(2017). The differences between BASE and NOAPI (i.e., BASE minus NOAPI) 144 

represent the impacts of API. The contributions from ARF can be obtained by 145 

comparing NOAPI and NOALL (i.e., NOAPI minus NOALL). The combined effects 146 

of API and ARF on O3 concentrations can be quantitatively evaluated by the differences 147 

between BASE and NOALL (i.e., BASE minus NOALL).  148 

Each simulation is conducted from 26 July to 3 August 2014, with the first 40 hours 149 

as the model spin-up. Simulation results from the BASE case during 28 July and 3 150 

August 2014 are used to evaluate the model performance.  151 

2.3 Observational data 152 

Simulation results are compared with meteorological and chemical measurements. 153 

The surface-layer meteorological data (2 m temperature (T2), 2 m relative humidity 154 

(RH2), and 10 m wind speed (WS10)), with a temporal resolution of 3 h, at three ten 155 

stations (Table S1) are obtained from NOAA’s National Climatic Data Center 156 

(https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly). The radiosonde data of temperature 157 

at 08:00 and 20:00 LST in Beijing (39.93 °N, 116.28 °E) are provided by the University 158 

of Wyoming (http://weather.uwyo.edu/). Observed hourly concentrations of PM2.5 and 159 

O3 at thirty-two sites (Table S2) in North China are collected from the China National 160 

Environmental Monitoring Center (CNEMC). The photolysis rate of nitrogen dioxide 161 

(NO2) (J[NO2]) measured at the Peking University site (39.99 °N, 116.31 °E) is also 162 

used to evaluate the model performance. More details about the measurement technique 163 

of J[NO2] can be found in Wang et al. (2019). The satellite-retrieved 550 nm AOD 164 

https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly
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products from the Moderate Resolution Imaging Spectroradiometer (MODIS) are also 165 

used to compare with the simulated ones. The model results from 10:00 to 11:00 and 166 

13:00 to 14:00 LT are extracted and averaged, due to instruments on board the Terra 167 

and Aqua platforms pass over China at around 10:30 and 13:30 LT, respectively. 168 

2.4 Integrated process rate analysis 169 

Integrated process rate (IPR) analysis has been widely used to quantify the 170 

contributions of different processes to O3 variations (Goncalves et al., 2009; Gao et al., 171 

2016b; Tang et al., 2017; Gao et al., 2018). In this study, four physical/chemical 172 

processes are considered, including vertical mixing (VMIX), net chemical production 173 

(CHEM), horizontal advection (ADVH), and vertical advection (ADVZ). VMIX is 174 

initiated by turbulent process and closely related to PBL development, which influences 175 

O3 vertical gradients. CHEM represents the net O3 chemical production (chemical 176 

production minus chemical consumption). ADVH and ADVZ represent transport by 177 

winds (Gao et al., 2016b). In this study, we define ADV as the sum of ADVH and ADVZ. 178 

3 Model evaluation 179 

Reasonable representation of observed meteorological and chemical variables by 180 

the WRF-Chem model can provide foundation for evaluating the impacts of aerosols 181 

on surface-layer ozone concentration. The model results presented in this section are 182 

taken from the BASE case. The concentrations of air pollutants are averaged over the 183 

thirty-two observation sites in Beijing, Tianjin and Baoding. To ensure the data quality, 184 

the mean value for each time is calculated only when concentrations are available at 185 

more than sixteen sites. 186 

3.1 Chemical simulations 187 

Figure 2 shows the spatial-temporal variations of observed and simulated PM2.5 188 

and O3 concentrations over North China during 28 July to 3 August 2014. The observed 189 

higher concentrations in Beijing and Baoding than those in Tianjin are well reproduced 190 

by the WRF-Chem modelWRF-Chem. The model can also reasonably capture the 191 

temporal variations of observed PM2.5 and O3 with high correlation coefficients (R) of 192 
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0.66 for PM2.5 and 0.86 for O3, although simulated results underestimate the observed 193 

PM2.5 by -19.2% and O3 by -12.0%. The failure to reproduce PM2.5 peak values may be 194 

attributed to incomplete treatments of chemical reactions in WRF-Chem, e.g., The 195 

failure to reproduce PM2.5 peak values may be attributed to incomplete treatments of 196 

chemical reactions in WRF-Chem, e.g., missing the heterogeneous chemistry in the 197 

model (Cheng et al., 2016) and the lack of secondary organic aerosols (SOA) formation 198 

pathways in the aerosol module (Chen et al., 2019).the aqueous-phase reactions of SO2 199 

oxidized by NO2 in aerosol water (Cheng et al., 2016). More statistical parameters 200 

between simulations and observations are presented in Table 2. 201 

Figure S1 shows the spatial distributions of aerosol optical depth (AOD) at 550 202 

nm retrieved from MODIS and simulated by WRF-Chem during 28 July to 3 August 203 

2014. In the WRF-Chem model, the AOD at 550 nm are calculated by using the values 204 

at 400 and 600 nm according to the Ångstrom exponent. Analyzing Fig. S1, the model 205 

can well reproduce the spatial distribution of observed AOD but slightly underestimate 206 

the value. The spatial correlation coefficient between the simulated and observed AOD 207 

is 0.98. 208 

3.2 Meteorological simulations 209 

Figure 3 shows the time series of observed and simulated T2, RH2, and WS10 210 

averaged over three cities (Beijing, Tianjin, and Baoding) over ten meteorological 211 

observation stations, and J[NO2] at Peking University during 28 July to 3 August 2014. 212 

The statistical metrics for T2, RH2, WS10, and J[NO2] are also presented in Table 2. 213 

Generally, the model can depict the temporal variations of T2 fairly well with R of 0.98 214 

and the mean bias (MB) of -0.2-1.5 °C. For RH2, the R and MB are 0.930.91 and -215 

6.00.5%, respectively. Although WRF-Chem model overestimates WS10 with the MB 216 

of 0.60.7 m s-1, the R for WS10 is 0.700.89 and the root-mean-square error (RMSE) is 217 

1.00.9 m s-1, which is smaller than the threshold of model performance criteria (2 m s-218 

1) proposed by Emery et al. (2001). The large positive bias in wind speed was also 219 

reported in other studies (Zhang et al., 2010; Gao et al., 2015; Liao et al., 2015; Qiu et 220 

al., 2017). The predicted J[NO2] agrees well with the observations with R of 0.97 and 221 
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NMB of 6.8%. We also conduct comparison between observed and simulated 222 

temperature profiles at 08:00 and 20:00 LST in Beijing during 29 July to 1 August 2014 223 

in Figure S21. The vertical profile of observed temperature, especially the thermal 224 

inversion layer occurred on 31 July around 1600 m, is well captured by the model. 225 

Generally, the WRF-Chem model reasonably reproduces the temporal variations of 226 

observed meteorological parameters.  227 

4 Results 228 

It is known that co-occurrence of PM2.5 and O3 pollution is frequently observed 229 

nowadays over China (Dai et al., 2021). The complex air pollution characterized by 230 

high PM2.5 and O3 levels has already received widespread attentionsattention from both 231 

scientists and policy-makers. Therefore, we examine the impacts of aerosol-radiation 232 

interactions on O3 concentrations with a special focus on the complex air pollution areas 233 

(CAPAs, Fig. S2S3), where the mean simulated daily PM2.5 and MDA8 (maximum 234 

daily 8-h average) O3 concentrations are larger than 75 µg m-3 and 80 ppb, respectively, 235 

based on the National Ambient Air Quality Standards (http://www.mee.gov.cn).  236 

4.1 Impacts of aerosol-radiation interactions on meteorology 237 

Figure 4 shows the impacts of aerosol-radiation interactions on downward 238 

shortwave radiation at the surface (BOT_SW), downward shortwave radiation in the 239 

atmosphere (ATM_SW), PBLH, T2, RH2, and WS10 during the daytime (08:00-17:00 240 

LST) from 28 July to 3 August 2014. As a result of the interactions between aerosol and 241 

radiation (the combined impacts of API and ARF), BOT_SW is decreased over the 242 

entire simulated domain. Over CAPAs, the BOT_SW is decreased by 115.893.2 W m-2 243 

(20.5%). Contrary to the changes in BOT_SW, ATM_SW is increased significantly 244 

with an increase of 72.8 W m-2 (25.3%) over CAPAs. The decreased BOT_SW perturbs 245 

the near-surface energy flux, which weakens convection and suppresses the 246 

development of PBL (Li et al., 2017b). The PBLH averaged over CAPAs is calculated 247 

to decrease by 129.0 m (13.0%). The reduced surface radiation budget can directly lead 248 

to changes in near-surface temperature. Therefore, the changes in T2 have the similar 249 
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spatial patterns with BOT_SW; the surface temperature is decreased by 0.56 °C 250 

averaged over CAPAs. RH2 is increased over most of the domain with an average rise 251 

of 2.4%, which is beneficial for the hygroscopic growth of aerosols. WS10 exhibits 252 

overall reductions over CAPAs and is calculated to decrease by 0.12 m s-1 on average. 253 

We also examine the changed meteorological variables caused by API and ARF 254 

respectively. As shown in Fig. S3S4, API has little impact on meteorological variables; 255 

the above changes are mainly caused by ARF.  256 

4.2 Impacts of aerosol-radiation interactions on photolysis 257 

Figure 5 shows the spatial distribution of mean daytime surface PM2.5 258 

concentrations simulated by BASE case and the changes in J[NO2] and J[O1D] due to 259 

aerosol-radiation interactions from 28 July to 3 August 2014. When the combined 260 

impacts (API and ARF) are considered, J[NO2] and J[O1D] are decreased over the entire 261 

domain; the spatial patterns of changed J[NO2] and J[O1D] are similar to that of 262 

simulated PM2.5. The surface J[NO2] and J[O1D] are decreased by 1.8 × 10-3 s-1 (40.5%) 263 

and 6.1 × 10-6 s-1 (48.8%) averaged over CAPAs. Figure S4 S5 exhibits the percentage 264 

changes in surface J[NO2] and J[O1D] caused by API and ARF respectively. It is found 265 

that J[NO2] and J[O1D] are significantly modified by API and little affected by ARF. 266 

4.3 Impacts of aerosol-radiation interactions on O3 267 

Figure 6 shows the changes in surface-layer O3 due to API, ARF, and the combined 268 

effects (denoted as ALL). As shown in Fig. 6a, API alone leads to overall surface O3 269 

decreases over the entire domain with an average reduction of 8.5 ppb (10.1%) over 270 

CAPAs. The change can be explained by the substantially diminished UV radiation due 271 

to aerosol loading, which significantly weakens the efficiency of photochemical 272 

reactions and restrains O3 formation. The decreased surface O3 concentration due to 273 

ARF, however, is only 2.9 ppb (3.1%, Fig. 6b), which indicates that API is the dominant 274 

way for O3 reduction related to aerosol-radiation interactions. The distributions of 275 

changed O3 concentrations coincide with NOx variations (Fig. S5b). Since North China 276 

is VOC-limited (Jin et al., 2015), the increase in NOx due to ARF may partly explain 277 

the O3 decrease. The combined effects of API and ARF are shown in Fig. 6c. Generally, 278 
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aerosol-radiation interactions decrease the surface O3 concentration by 11.4 ppb (13.5%) 279 

averaged over CAPAs.  280 

 281 

We further define an index to characterize the effects of aerosols on surface O3 282 

concentrations. The ratio of changes in O3 to local PM2.5 levels is defined as:  283 

ROP =  
ΔO3

PM2.5_BASE
, 284 

where ΔO3 is the changed O3 concentration caused by ALL, and PM2.5_BASE is the 285 

surface PM2.5 concentration simulated in the BASE scenario. The calculated ROP is -286 

0.14 ppb (µg m-3)-1 averaged over CAPAs, which means when the concentrations of 287 

PM2.5 is 100 µg m-3, the O3 decrease will be up to 14 ppb over CAPAs due to aerosol-288 

radiation interactions.  289 

4.4 Influencing mechanism of aerosol-radiation interactions on O3 290 

Figure 7a shows diurnal variations of simulated surface (first layer) daytime O3 291 

concentrations over CAPAs in three cases (BASE, NOAPI, and NOALL). All cases 292 

present O3 increases from 08:00 LST. It is shown that the simulated O3 concentrations 293 

in BASE case increase more slowly than that in NOAPI and NOALL cases. To explain 294 

the underlying mechanisms of API and ARF impacts on O3, we quantify the variations 295 

in contributions of different processes (ADV, CHEM, and VMIX) to O3 by using the 296 

IPR analysis.  297 

Figure 7b shows hourly surface O3 changes induced by each physical/chemical 298 

process (i.e., ADV, CHEM, and VMIX) in BASE case. The significant positive 299 

contribution to the hourly variation in O3 is contributed by VMIX, and the contribution 300 

reaches the maximum at about 10:00 LST. After 14:00 LST, the contribution from 301 

VMIX remains constant (nearly +2 ppb h-1), which is probably attributed to the stable 302 

boundary layer development (Tang et al., 2016). The CHEM process makes negative 303 

contributions at around 09:00 and 16:00 LST, which means that the chemical 304 

consumption of O3 is stronger than the chemical production. At noon, the net chemical 305 

contribution turns to be positive due to stronger solar UV radiation. The contribution 306 

from all the processes (NET, the sum of VMIX, CHEM, and ADV) to O3 is peaked at 307 
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the noon and then becomes weakened. After sunset (17:00 LST), the NET contribution 308 

turns to be negative over CAPAs, leading to O3 decrease.  309 

Figure 7c shows the changes in hourly process contributions caused by API. The 310 

chemical production of O3 is suppressed significantly due to aerosol impacts on 311 

photolysis rates. The weakened O3 chemical production decreases the contribution from 312 

CHEM, and results in a negative value of CHEM_DIF (-3.5 ppb h-1). In contrast to 313 

CHEM_DIF, the contribution from changed VMIX (VMIX_DIF) to O3 concentration 314 

due to API is always positive, and the mean value is +3.1 ppb h-1. The impact of API 315 

on ADV process is relatively small (-0.36 ppb h-1). NET_DIF, namely the sum of 316 

VMIX_DIF, CHEM_DIF and ADV_DIF, indicates the differences in hourly O3 changes 317 

caused by API. As shown in Fig. 7c, NET_DIF is almost negative during the daytime 318 

over CAPAs with the mean value of -0.76 ppb h-1. This is because the decreases in 319 

CHEM and ADV are larger than the increases in VMIX caused by API; the O3 decrease 320 

is mainly attributed to the significantly decreased contribution from CHEM. The 321 

maximum difference in O3 between BASE and NOAPI appears at 17:00 LST with a 322 

value of -10.1 ppb (Fig. 7a).  323 

Figure 7d shows the impacts of ARF on each physical/chemical process 324 

contribution to the hourly O3 variation. At 08:00 LST, the change in VMIX due to ARF 325 

is large with a value of -4.6 ppb h-1, resulting in a net negative variation with all 326 

processes considered. The decrease in O3 reaches the maximum with the value of 6.1 327 

ppb at around 09:00 LST over CAPAs (Fig. 7a). During 10:00 to 16:00 LST, the positive 328 

VMIX_DIF (mean value of +0.59 ppb h-1) or the positive CHEM_DIF (mean value of 329 

+0.16 ppb h-1) is the major process to positive NET_DIF.  330 

When both impacts of API and ARF are considered, the variation pattern of the 331 

difference in hourly process contribution shown in Fig. 7e is similar to that in Fig. 7c, 332 

which indicates that API is the dominant factor to surface-layer O3 reduction.  333 

Figure 8 presents the vertical profiles of simulated daytime O3 concentrations in 334 

three cases (BASE, NOAPI, and NOALL), and the differences in contributions from 335 

each physical/chemical process to hourly O3 variations caused by API, ARF and the 336 
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combined effects during 28 July to 3 August 2014 over CAPAs. As shown in Fig. 8a, 337 

the O3 concentration is lower in BASE than that in other two scenarios (NOAPI and 338 

NOALL), especially at the lower 12 levels (below 731.9 m), owing to the impacts of 339 

aerosols (API and/or ARF).  340 

The changes in each process contribution caused by API are presented in Fig. 8b. 341 

The contribution from CHEM_DIF is -2.14 ppb h-1 for first seven layers (from 23.4 to 342 

290.7 m). Conversely, the contribution from VMIX_DIF shows a positive value under 343 

the 290.7 m (between first layer to seventh layer)at the lower seven layers with the 344 

mean value of +1.7 ppb h-1. The positive variation in VMIX due to API may be 345 

associated with the different vertical gradient of O3 between BASE and NOAPI cases. 346 

The contributions of changed advections (ADVH_DIF and ADVZ_DIF) are relatively 347 

small, with mean values of +0.25 and -0.47 ppb h-1 respectively below the first seven 348 

layers, which may result from small impact of API on wind filed (Fig. S3aS4a). The net 349 

difference is a negative value (-0.66 ppb h-1); API leads to O3 reduction not only nearly 350 

surface but also in the aloft.  351 

Figure 8c shows the differences in O3 budget due to ARF. When the ARF is 352 

considered, the vertical turbulence is weakened and the development of PBL is inhibited, 353 

which makes VMIX_DIF negative at the lower 7 layers (below the 290.7 m) with a 354 

mean value of -0.55 ppb h-1, but the variation in CHEM caused by ARF is positive with 355 

a mean value of +0.6 ppb h-1. The chemical production of tropospheric O3 is affected 356 

by both photolysis rate and the concentrations of precursors (Tie et al., 2009). The 357 

enhanced O3 precursors due to ARF can promote the chemical production of O3 (Tie et 358 

al., 2009). The changes of ADVZ and ADVH (ADVZ_DIF and ADVH_DIF) caused by 359 

ARF are associated with the variations in wind filed. When ARF is considered, the 360 

horizontal wind speed is decreased (Fig. S6a), which makes ADVH_DIF positive at the 361 

lower twelve layers with a mean value of +0.5 ppb h-1. However, ADVZ_DIF is 362 

negative at these layers with a mean value of -0.48 ppb h-1 because aerosol radiative 363 

effects decrease the transport of O3 from the upper to lower layers (Fig. S6b).  364 

In Fig. 8d, the pattern and magnitude of the differences in process contributions between 365 
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BASE and NOALL are similar to those caused by API, indicating again the dominate 366 

role of API on O3 changes. The impacts of API on O3 both near the surface and aloft 367 

are greater than those of ARF. 368 

5 Discussions 369 

In order to make the analysis and conclusions more robust, another two complex 370 

air pollution episodes (8-13 July 2015 and 5-11 June 2016) in this region are also 371 

selected to conduct simulations for generating general conclusions. Simulated air 372 

pollutants (PM2.5 and O3) and meteorological variables (T2, RH2, and WS10) during 8-373 

13 July 2015 (Episode 2) and 5-11 June 2016 (Episode 3) are compared with 374 

observations (Fig. S7-Fig. S8). In general, both the observed meteorological parameters 375 

and pollutant concentrations can be reasonably reproduced by the model, with 376 

correlation coefficients (R) of 0.56~0.98 and normalized mean bias (NMB) of –377 

7.1%~+33.4%. More details about the model evaluation are listed in the supporting 378 

information (Text S1).  379 

As shown in Fig. S9(a1-a2), API alone leads to the decrease in surface O3 over the 380 

entire domain with an average reduction of 9.0 ppb (10.6%) and 8.3 ppb (10.4%) over 381 

CAPAs in Episode 2 and Episode 3, respectively. The decreased surface O3 382 

concentrations over CAPAs due to ARF are only 1.0 ppb (1.2%, Fig. 9(b1)) and 1.0 ppb 383 

(1.1%, Fig. 9(b2)) during Episode 2 and Episode 3, respectively. All the results indicate 384 

that API is the dominant factor for O3 reduction related to aerosol-radiation interactions, 385 

the same as the conclusion analyzed from the case during 28 July to 3 August 2014. 386 

The combined effects of API and ARF decrease surface O3 by 10.0 ppb (11.9%) and 387 

9.3 ppb (11.6%) over CAPAs in Episode 2 and Episode 3, respectively. Analyzing Fig. 388 

S10 and Fig. S11, similar variation characteristics are shown in Episode 2 and Episode 389 

3 as that during 28 July to 3 August 2014, with the larger impacts of API on O3 both 390 

near the surface and aloft than those of ARF, indicating the dominant role of API on O3 391 

reduction related with aerosol-radiation interactions.  392 

5 6 Conclusions 393 
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In this study, the fully coupled regional chemistry transport model WRF-Chem is 394 

applied to investigate the impacts of aerosol-radiation interactions, including the impact 395 

of aerosol-photolysis interaction (API) and the impact of aerosol-radiation feedback 396 

(ARF), on O3 during a summertime complex air pollution episode from 28 July to 3 397 

August 2014. Three sensitivity experiments are designed to quantify the respective and 398 

combined impacts from API and ARF. Generally, the spatiotemporal distributions of 399 

observed pollutant concentrations and meteorological parameters are captured fairly 400 

well by the model with high correlation coefficients of 0.66–0.86 for pollutant 401 

concentrations and 0.70–0.98 for meteorological parameters.  402 

Sensitivity experiments show that aerosol-radiation interactions decrease 403 

BOT_SW, T2, WS10, PBLH, J[NO2], and J[O1D] by 115.893.2 W m-2, 0.56 °C, 0.12 m 404 

s-1, 129 m, 1.8 × 10-3 s-1, and 6.1 × 10-6 s-1 over CAPAs, and increase ATM_SW and 405 

RH2 by 72.8 W m-2 and 2.4%. The changed meteorological variables and weakened 406 

photochemistry reaction further reduce surface-layer O3 concentration by up to 11.4 407 

ppb (13.5%), with API and ARF contributing 74.6% and 25.4%, respectively. The 408 

combined impacts of API and ARF on O3 can be characterized by the ratio of changed 409 

O3 (ΔO3) to local PM2.5 level (PM2.5_BASE), defining as ROP = ΔO3/PM2.5_BASE. 410 

The calculated ROP is -0.14 ppb (µg m-3)-1 averaged over CAPAs. 411 

We further examine the influencing mechanism of aerosol-radiation interactions 412 

on O3 by using integrated process rate analysis. API can directly affect O3 by reducing 413 

the photochemistry reactions within the lower several hundred meters and therefore 414 

amplify the O3 vertical gradient, which promotes the contribution from VMIX and the 415 

vertical mixing of O3. The reduced photochemistry reactions of O3 weaken the chemical 416 

contribution and reduce surface O3 concentrations, even though the enhanced vertical 417 

mixing can partly counteract the reduction. ARF affects O3 concentrations indirectly 418 

through the changed meteorological variables, e.g., the decreased PBLH. The 419 

suppressed PBL can weaken the vertical mixing of O3 by turbulence. Generally, the 420 

impacts of API on O3 both near the surface and aloft are greater than those of ARF, 421 

indicating the dominant role of API on O3 reduction related with aerosol-radiation 422 
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interactions. 423 

This study provides a detailed understanding of aerosol impacts on O3 through 424 

aerosol-radiation interactions (including both API and ARF). The results imply that 425 

future PM2.5 reductions will lead to O3 increases due to weakened aerosol-radiation 426 

interactions. A recent studyRecent study emphasized the need for controlling VOCs 427 

emissions to mitigate O3 pollution (Li et al., 2019). Therefore, tighter controls of O3 428 

precursors (especially VOCs emissions) are needed to counteract future O3 increases 429 

caused by weakened aerosol-radiation interactions., and the contributions of different 430 

mitigation strategies with the impacts of aerosol-radiation interactions to O3 air quality 431 

will be discussed detailedly in our future work. 432 

There are some limitations to this work. The uncertainty of the lack of secondary 433 

organic aerosols (SOA), and the missing mechanisms of some heterogeneous reactions 434 

may result in large uncertainties in the final simulation results. Gao et al. (2017) added 435 

some SOA formation mechanisms into the MOSAIC module by using the volatility 436 

basis set (VBS) in WRF-Chem and found that the surface PM2.5 concentrations in urban 437 

Beijing were reduced by 1.9 µg m-3 due to the weakened ARF effect during Asia-Pacific 438 

Economic Cooperation (APEC). Similar magnitude can also be found in Zhou et al. 439 

(2019) (-1.8 µg m-3) who did not consider the impacts of SOA in WRF-Chem when 440 

analyzing the impacts of weakened ARF on PM2.5 during APEC. Therefore, more work 441 

should be conducted to explore the impacts of ARF on PM2.5 and O3 concentrations 442 

under consideration of SOA in future. 443 

  444 
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Data availability  445 

The observed hourly surface concentrations of air pollutants are derived from the China 446 

National Environmental Monitoring Center (http://www.cnemc.cn). The observed 447 

surface meteorological data are obtained from NOAA’s National Climatic Data Center 448 

(https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly). The radiosonde data are provided by 449 

the University of Wyoming (http://weather.uwyo.edu/). The photolysis rates of nitrogen 450 
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Table 1. Physical parameterization options used in the simulation. 1 

Options Schemes 

Microphysics scheme Lin (Purdue) scheme (Lin et al.,1983) 

Cumulus scheme Grell 3D ensemble scheme 

Boundary layer scheme Yonsei University PBL scheme (Hong et al., 2006) 

Surface layer scheme Monin-Obukhov surface scheme (Foken, 2006) 

Land-surface scheme 

Longwave radiation scheme 

Shortwave radiation scheme 

Unified Noah land-surface model (Chen and Dudhia, 2001) 

RRTMG (Iacono et al., 2008) 

RRTMG (Iacono et al., 2008) 

  2 
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Table 2. Statistical parameters between simulated and observed PM2.5 (µg m-3), O3 1 

(ppb), 2 m temperature (T2, °C), 2 m relative humidity (RH2, %), 10 m wind speed 2 

(WS10, m s-1), and photolysis rate of NO2 (J[NO2], s
-1) during 28 July to 3 August 2014. 3 

Variables Oa Ma Rb MBc MEd NMBe(%) NMEf(%) RMSEg 

PM2.5 113.3 90.7 0.66 -21.8 25.2 -19.2 22.2 30.1 

O3 47.7 44.1 0.86 -5.7 15.5 -12.0 32.4 18.2 

T2 28.4 28.0 0.98 -0.21.5 0.91.6 -0.75.7 3.35.8 1.11.8 

RH2 70.9 65.7 0.93

0.91 

-6.00.5 6.75.3 -8.50.7 9.57.9 8.77.0 

WS10 2.4 3.0 0.70

0.89 

0.60.7 0.90.8 27.928.5 36.632.1 1.00.9 

J[NO2] 1.6×10-3 1.8×10-3 0.97 1.1×10-4 3×10-4 6.8 18.5 5.3×10-4 

aO and M are the averages for observed and simulated results, respectively. O = 4 

1

n
× ∑ Oi

n
i=1 , M =

1

n
× ∑ Mi

n
i=1 . 5 

bR is the correlation coefficient between observations and model results. R= 6 

∑ |(Oi-O)×(Mi-M)|n
i=1

√∑ (Oi-O)n
i=1

2
× ∑ (Mi-M)n

i=1
2
. 7 

cMB is the mean bias between observations and model results. MB = 
1

n
× ∑ (Mi-Oi)

n
i=1 . 8 

dME is the mean error between observations and model results. ME = 
1

n
× ∑ |Mi-Oi|

n
i=1 . 9 

eNMB is the normalized mean bias between observations and model results. NMB = 10 

1

n
× ∑

Mi-Oi

Oi

n
i=1 ×100%. 11 

fNME is normal mean error between observations and model results. NME= 12 

1

n
× ∑

|Mi-Oi|

Oi

n
i=1 ×100%. 13 

gRMSE is the root-mean-square error of observations and model results. RMSE= 14 

√
1

n
× ∑ (Mi-Oi)

2n
i=1 . 15 

In the above Oi and Mi are the hourly observed and simulated data, respectively, and n 16 

is the total number of hours. 17 
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Figure 1. Map of the two WRF-Chem modeling domains with the locations of 3 

meteorological (white dots) and environmental (red crosses) observation sites used for 4 

model evaluation.Map of the two WRF-Chem modeling domains and the locations of 5 

observation sites (white dots) used for model evaluation. 6 
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Figure 2. (a1-a2) Spatial distributions of simulated (color counters) and observed 1 

(colored circles) surface PM2.5 and O3 concentrations averaged during 28 July to 3 2 

August 2014. (b1-b2) Time series of observed (black) and simulated (red) hourly 3 

surface PM2.5 and O3 concentrations averaged over the thirty-two32 observation sites 4 

in Beijing, Tianjin, and Baoding. The error bars in (b1) and (b2) are standard deviation 5 

on those average. The calculated correlation coefficient (R), mean bias (MB), and 6 

normalized mean bias (NMB) are also shown. 7 
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Figure 3. Time series of 3-hourly observed (blue dots) and hourly simulated (red lines) 3 

(a) 2-m temperature (T2), (b) 2-m relative humidity (RH2), (c) wind speed at 10 m (WS10) 4 

averaged over ten meteorological observation stations, and (d) surface photolysis rate 5 
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of NO2 (J[NO2]) during 28 July to 3 August 2014. The calculated correlation coefficient 1 

(R), mean bias (MB), and normalized mean bias (NMB) are also shown. 2 

 3 
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Figure 4. The impacts of aerosol-radiation interactions on (a) downward shortwave 1 

radiation at the surface (BOT_SW), (b) downward shortwave radiation in the 2 

atmosphere (ATM_SW), (c) PBL height (PBLH), (d) 2-m temperature (T2), (e) 2-m 3 

relative humidity (RH2), and (f) 10-m wind speed (WS10) during the daytime (08:00-4 

17:00 LST) from 28 July to 3 August 2014. The region sandwiched between two black 5 

lines is defined as the complex air pollution areas (CAPAs) where the mean daily PM2.5 6 

and MDA8 O3 concentrations in BASE case are larger than 75 µg m-3 and 80 ppb. The 7 

calculated changes averaged over CAPAs are also shwon shown at the top of each panel. 8 
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Figure 5. Spatial distributions of (a) simulated surface-layer PM2.5 concentrations in 2 

BASE case, and changes in surface (b) J[NO2] and (c) J[O1D] due to aerosol-radiation 3 

interactions during the daytime (08:00-17:00 LST) from 28 July to 3 August 2014. The 4 

calculated values (percentage changes) avaraged over CAPAs are also shwon shown at 5 

the top of each panel. 6 
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Figure 6. The changes in surface-layer ozone due to (a) aerosol-photolysis interaction 3 

(API), (b) aerosol-radiation feedback (ARF), and (c) the combined effects (ALL, 4 

defined as API+ARF) during the daytime (08:00-17:00 LST) from 28 July to 3 August 5 

2014. The calculated mean changes avaraged over CAPAs are also shown at the top of 6 

each panel.  7 
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Figure 7. (a) Diurnal variations of simulated surface O3 concentrations in BASE (black), 3 

NOAPI (blue), and NOALL (red) cases over CAPAs. (b) The hourly surface O3 changes 4 

induced by each physical/chemical process using the IPR analysis method in BASE 5 

case. (c-e) Changes in hourly surface O3 process contributions caused by API (BASE 6 

minus NOAPI), ARF (NOAPI minus NOALL), and ALL (BASE minus NOALL) over 7 

CAPAs during the daytime (08:00-17:00 LST) from 28 July to 3 August 2014. The 8 

black lines with squares denote the net contribution of all processes (NET, defined as 9 

VMIX+CHEM+ADV). Differences of each process contribution are denoted as 10 

VMIX_DIF, CHEM_DIF, ADV_DIF, and NET_DIF. 11 
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Figure 8. (a) Vertical profiles of simulated O3 concentrations in BASE (black), NOAPI 2 

(blue), and NOALL (red) cases over CAPAs. (b-d) Changes in O3 budget due to API, 3 

ARF, and ALL over CAPAs during the daytime (08:00-17:00 LST) from 28 July to 3 4 

August 2014. Differences of each process contribution are denoted by ADVZ_DIF, 5 

ADVH_DIF, CHEM_DIF, and VMIX_DIF.  6 
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