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Abstract.

During the one-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition the German

icebreaker Polarstern drifted through the Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85◦N

and 88.5◦N. A multiwavelength polarization Raman lidar was operated aboard the research vessel and continuously monitored

aerosol and cloud layers up to 30 km height. The highlight of the lidar measurements was the detection of a persistent, 10 km5

deep wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from about 7-8 km to 17-18 km height. The

smoke layer was present throughout the winter half year until the polar vortex, the strongest of the last 40 years, collapsed in

late April 2020. The smoke originated from major fire events, especially from extraordinarily intense and long-lasting Siberian

fires in July and August 2019. In this article, we summarize the main findings of our seven-month smoke observations and char-

acterize the aerosol properties and decay of the stratospheric perturbation in terms of geometrical, optical, and microphysical10

properties. The UTLS aerosol optical thickness (AOT) at 532 nm ranged from 0.05-0.12 in October-November 2019 and was

of the order of 0.03-0.06 during the central winter months (December-February). As an unambiguous sign of the dominance

of smoke, the particle extinction-to-backscatter ratio (lidar ratio) at 355 nm was found to be much lower than the respective

532 nm lidar ratio. Mean values were 55 sr (355 nm) and 85 sr (532 nm). We further present a review of previous height-

resolved Arctic aerosol observations (remote sensing) in our study. For the first time, a coherent and representative view on15

the aerosol layering features in the Central Arctic from the surface up to 27 km height during the winter half year is presented.

Finally, a potential impact of the wildfire smoke aerosol on the record-breaking ozone depletion over the Arctic in the spring

of 2020 is discussed based on smoke, ozone, and polar stratospheric cloud observations.

1 Introduction

As part of the one-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition (MO-20

SAiC, last access: 5 January, 2021), lasting from September 2019 to October 2020, an advanced multiwavelength polarization
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Raman lidar was operated aboard the German icebreaker Polarstern (Knust, 2017). The lidar continuously monitored aerosol

and cloud layers in the Central Arctic up to 30 km height (Engelmann et al., 2020). MOSAiC was the largest Arctic field cam-

paign ever conducted. The expedition was motivated by the rapid sea ice loss, the unusual Arctic warming, and our incomplete

knowledge about the complex processes controlling the Arctic climate (Wendisch et al., 2017, 2019). The research vessel (RV)

Polarstern served as the main MOSAiC platform for advanced remote sensing studies of the atmosphere. The ice breaker was5

trapped in the ice from October 2019 to May 2020 and drifted through the Arctic Ocean at latitudes mainly between 85◦N and

88.5◦N.

The occurrence of a persistent wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from 7-8 km to

17-18 km height over the entire winter half year 2019-2020 is one of the unprecedented events observed during the MOSAiC

expedition (Engelmann et al., 2020). The smoke layer began to dissolve in late April 2020, when the extraordinarily strong10

polar vortex, the strongest of the last 40 years (Lawrence et al., 2020), collapsed. Here, we present the results of the MOSAiC

UTLS smoke observations in all details. Based on the continuous lidar observations we describe the development of the smoke

conditions, the aerosol vertical layering, optical, and microphysical properties over the seven-month period. We discuss the

slow decay of the stratospheric perturbation with time and compare our findings with previous and ongoing long-term aerosol

observations conducted with ground-based and spaceborne lidars and by means of passive remote sensing.15

Favorable conditions for a strong perturbation of the stratospheric aerosol conditions at high northern latitudes were given

in 2019. Record-breaking temperatures in the Arctic (Yadav et al., 2020; NOAA, last access: 5 January, 2021) caused a large

number of intense fires in the summer of 2019 (FIRMS, last access: 5 January, 2021). The burning season 2019 was the most

disastrous fire period on record within the Arctic circle (CAMS-1, last access: 5 January, 2021; Bob Berwyn, Inside Climate

News, last access: 5 January, 2021). From 19 July to 14 August 2019, rather intense and long-lasting forest fires occurred in20

central and eastern Siberia between 55◦ and 70◦N and injected enormous amounts of wildfire smoke into the free troposphere,

in closest neighborhood to the Central Arctic. Figure 1 visualizes the tremendous environmental disaster over the eastern part

of Siberia end of July 2019. Several large fire centers are visible located north, northwest and northeast of Lake Baikal (53.5◦N,

108◦E). Figure 2 provides a quantitative overview of the smoke situation based on a map of the monthly mean aerosol optical

thickness (AOT) for the time period from 20 July to 20 August 2019. The heaviest fires occurred in the region indicated by box25

1 (about 650 km x 750 km) in Fig. 2, located directly north of Lake Baikal. Monthly mean AOT values frequently exceeded

1.5, and over some regions even 2.0. All white and colored pixels indicate areas with monthly mean AOT>1. The day-by-day

time series of the area-mean 550 nm AOT for the main fire centers in Fig. 2 shows that the AOT (in box 1) ranged from 1-2.5

over a seven-day period (in July 2019) and was continuously >1 for more than 8 days in August 2019.

At these high AOT levels, it is very likely that the smoke ascended up to the tropopause height within a couple of days as a30

result of absorption of shortwave solar radiation and heating of the smoke layers. Buoyancy is created and triggers self-lifting

over several kilometers (Boers et al., 2010; de Laat et al., 2012). Such self-lifting processes were observed several times in

recent years after major wildfire events (Khaykin et al., 2018, 2020; Torres et al., 2020; Ohneiser et al., 2020; Kablick et al.,

2020). Our simulations reveal that smoke layers with a typical black carbon fraction of 5% and particle extinction coefficients

of 500-2000 Mm−1 at 550 nm need about 3-10 days to ascend from 3-5 km height (smoke injection height) to the tropopause35
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(around 11 km). After reaching the tropopause, the smoke obviously spread over the entire UTLS height regime by vertical

mixing and further ascent during the following weeks and months. The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observation) lidar observations in Fig. 3 corroborate our hypothesis. Smoke layers were observed over the main fire

areas (55◦-68◦N, 85◦-95◦E) up to the tropopause on 26 July 2019. Traces of smoke are visible at heights between 10 and 15 km

as well. The stratospheric smoke layers were dispersed over large parts of the high northern latitudes and covered the entire5

Artic region in September and October 2019. These layers were even seen by ground-based lidars in Finland and Germany in

August 2019 (PollyNet, last access: 5 January, 2021). The aerosol over the Central Arctic was then trapped within the strong

polar vortex and remained detectable over the North Pole region during the first half of the MOSAiC expedition until mid of

spring of 2020.

Aerosol conditions over the Central Arctic were complex in the winter halfyear of 2019-2020. Besides the Siberian fires,10

the Raikoke volcano in the Kuril Islands (48.3◦N, 153.3◦E) erupted on 22 June 2019 and influenced the aerosol conditions

in the lower stratosphere at all latitudes north of 50◦N (Kloss et al., 2021; Vaughan et al., 2020). The volcanic SO2 plumes

were converted to sulfuric-acid-containing water droplets (about 75% H2SO4 and 25% H2O) in the following weeks. The

bluish stratospheric layers between 13-17 km height at 45◦–60◦N in Fig. 3 may indicate Raikoke-related volcanic aerosol.

Furthermore, several smoke injections into the stratosphere caused by pyrocumulonimbus (pyroCb) convection (Fromm et al.,15

2010) occurred, e.g., in western North America on 16–20 June 2019.

Importantly, in addition to the strong stratospheric aerosol perturbation, a record-breaking ozone depletion was observed

over the Arctic in the spring of 2020 (DeLand et al., 2020; Manney et al., 2020; Wohltmann et al., 2020; Inness et al., 2020;

Wilka et al., 2021; Dameris et al., 2021; Smyshlyaev et al., 2021). A potential impact of stratospheric aerosol on the complex

chemical processes leading to this strong ozone reduction was however not mentioned in any of these articles. As the main20

reason for the extraordinary large ozone depletion, the long-lasting, rather cold polar vortex was identified. The vortex triggered

the development of polar stratospheric clouds over a comparably long time period from January to April 2020, strong chlorine

activation, and ozone destruction. However, to what extent the polar smoke layers influenced ozone depletion in the spring of

2020 remain an open question that need to be clarified in the course of the MOSAiC data analysis and future studies on the

interplay between smoke, polar stratospheric clouds (PSCs), and ozone depletion.25

The article is organized as follows. A brief description of the Polarstern lidar and the data analysis is given in Sect. 2. Then,

we present our MOSAiC smoke observations in Sect. 3. We begin with October and November 2019 case studies in Sect. 3.1,

and continue with an overview of all lidar observations from October 2019 to May 2020 in Sect. 3.2. In this context, we will

also discuss the potential contribution of Raikoke volcanic aerosol particles to the observed aerosol optical and microphyscial

properties. In Sect. 3.3, we compare our results with foregoing field studies and long-term observations of optical properties to30

highlight again the strong perturbation found in the MOSAiC winter half year of 2019-2020. Finally, in Sect. 4, we illuminate

to what extent the spread of wildfire smoke particles as well as the occurrence of PSCs, as observed with the CALIPSO and

MOSAiC lidars, may have contributed to the stratospheric ozone depletion over the high Arctic. A summary and concluding

remarks are given in Sect. 5.
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2 MOSAiC lidar data analysis

During the one-year MOSAiC expedition the multiwavelength polarization Raman lidar Polly (POrtabLe Lidar sYstem) (En-

gelmann et al., 2016) was continuously operated aboard Polarstern. An overview of the Polarstern lidar instrument and all

retrievable aerosol products is given by Engelmann et al. (2020). Continuous, automated measurements of aerosol and cloud

profiles up to stratospheric heights were collected from 26 September 2019 to 2 October 2020. From the beginning of October5

2019 to the beginning of April 2020, the research vessel was north of 85◦N and reached the maximum northern latitude of

88.6◦N on 20 February 2020. A photograph of the Polarstern in the ice and snow-covered Arctic Ocean together with a photo-

graph of the main ship-based MOSAiC atmospheric measurement platforms aboard Polarstern is shown in Fig. 2 in Engelmann

et al. (2020). Six containers for in situ aerosol monitoring and for active remote sensing of aerosols and clouds with lidars and

radars were deployed on the front deck of the research vessel including the ARM (Atmospheric Radiation Measurement)10

mobile facility AMF-1 (ARM, last access: 5 January, 2021).

The Polly instrument is mounted inside the OCEANET-Atmosphere container of the Leibniz Institute for Tropospheric

Research (TROPOS). This container is designed for routine operation aboard Polarstern between Bremerhaven, Germany, and

Cape Town, South Africa and Punta Arenas, Chile (Kanitz et al., 2011, 2013), and was operated for the first time in the Arctic

during a two-month campaign in June and July 2017 (Griesche et al., 2020). The OCEANET Polly instrument belongs to the15

lidar network PollyNET (Baars et al., 2016) which is part of the European Aerosol Research Lidar Network (EARLINET)

(Pappalardo et al., 2014) organized within the Aerosols, Clouds and Trace gases Research InfraStructure (ACTRIS) project

(ACTRIS, last access: 5 January, 2021).

The setup and basic technical details of the Polly instrument are given in Engelmann et al. (2016). The Polly instrument has

13 measurement channels (polarization sensitive channels, elastic-backscatter, water vapor and nitrogen Raman channels, for20

near-range and far-range profiling). Laser pulses are emitted at the wavelengths of 355, 532, and 1064 nm. Height profiles of

the particle backscatter coefficient at the laser wavelengths, of the particle extinction coefficient at 355 and 532 nm, respective

extinction-to-backscatter ratio (lidar ratio) at 355 nm and 532 nm, the particle linear depolarization ratio at 355 nm and 532 nm

(Baars et al., 2016, 2019; Hofer et al., 2017; Haarig et al., 2018; Ohneiser et al., 2020), and the mixing ratio of water vapor to

dry air by using the Raman lidar return signals of water vapor and nitrogen (Dai et al., 2018) can be determined.25

Although PollyNET delivers automatically calculated profiles, the lidar observations were manually analyzed for the smoke

layers. In order to accurately determine the optical properties of the smoke layers with high signal-to-noise ratio, temporal

averaging over comparably long time periods of 3-18 hours were usually necessary. The basic elastic-backscatter and Raman

signal profiles were vertically smoothed with a window length of 457.5 m (61 bins, 7.5 m vertical resolution) in the case of

the backscatter and depolarization ratio profiles. Particle extinction and extinction-to-backscatter ratio (lidar ratio) profiling30

is based on a least-squares regression analysis (Baars et al., 2016). Here, we used regression window lengths of 2002.5 m

(267 bins) in the computations. Afterwards, we further smoothed the profiles of the lidar products (backscatter, extinction,

depolarization, and lidar ratios) linearly with window lengths increasing from 8 bins (at smoke layer base) to 11 bins (at layer
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top) in the case of the particle backscatter and depolarization ratio profiles, and increasing from 15 bins (base) to 20 bins (top)

and from 45 bins (base) to 53 bins (top) in the case of the particle extinction and lidar ratio profiles, respectively.

Auxiliary data are required in the lidar data analysis in form of temperature and pressure profiles in order to calculate

and correct for Rayleigh backscatter and extinction influences on the measured lidar return signal profiles. As an important

contribution to MOSAiC, radiosondes were routinely launched every 6 hours throughout the entire MOSAiC period. In our5

lidar data analysis and discussion of the results, we use the preliminary radiosonde products that were directly available during

the expedition.

We also checked our observations for PSC occurrence and removed the profile parts that showed PSCs from the smoke data

base. These stratospheric clouds can usually be easily identified. However, weak PSC structures developed in the smoke as

well, predominately in January and February 2020, and these not well-defined layers were not removed. The impact of these10

weak PSC layers is discussed in the next section.

Smoke microphysical properties such as volume, mass, and surface area concentration were retrieved by applying the

POLIPHON (Polarization Lidar Photometer Networking) approach (Ansmann et al., 2020). A smoke particle density of

1.15 g cm−3 was assumed in the mass concentration retrieval. Alternatively to the POLIPHON method, we used the multi-

wavelength lidar inversion technique (Veselovskii et al., 2002) to derive microphysical properties of the smoke layers including15

the particle size distribution.

Additionally, we compare the Polly observations with CALIOP data (CALIOP, last access: 5 January, 2021) and also with

measurements with the Spitsbergen lidar KARL (Koldewey Aerosol Raman Lidar) (KARL, last access: 5 January, 2021;

Hoffmann et al., 2009; Ritter et al., 2016). The lidar is located in Ny-Ålesund (Svalbard, Norway, 78.9◦N, 11.9◦E). In the

discussion of a potential impact of the wildfire smoke on the record-breaking ozone depletion in the spring of 2020, we use the20

MOSAiC ozone profiles measured with ozone sondes launched at Polarstern on a regular schedule from October 2019 to May

2020 (von der Gathen and Maturilli, 2020; Wohltmann et al., 2020).

For our studies of the smoke in the upper troposphere and lower stratosphere and quantification of the tropospheric and

stratospheric smoke fractions, a good knowledge of the tropopause height is required. The tropopause was computed from the

radiosonde temperature and pressure profiles by using the approach of the Global Modeling and Assimilation Office (GMAO),25

Goddard Space Flight Center, Greenbelt, Maryland, USA (GMAO, 2008). In this approach, the tropopause height zTP is

found from the height profile of the difference αT (z)− log10 p(z) with α= 0.03, temperature T in Kelvin, pressure p in hPa,

and height z in meter. The tropopause pressure p(zTP) is defined as the pressure where the defined difference reaches its

first minimum above the surface. If no clear minimum was found up to z = 13000 m over Polarstern, a tropopause height

zTP was not assigned. The obtained tropopause heights agree well with the ones we obtain by applying the definition of the30

World Meteorological Organization (WMO, 1992) to the radiosonde temperature profiles and considering refinements in the

determination described by Klehr (last access: 5 January, 2021).

5
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3 Observations

Figure 1 in Engelmann et al. (2020) shows the track of the drifting RV Polarstern from October 2019 to May 2020. The

Polarstern was at latitudes ≥85◦N from the beginning of October 2019 to the beginning of April 2020. The highest northern

latitude with 88.6◦N was reached around 20 February 2020. The MOSAiC expedition provided for the first time the unique

opportunity to perform lidar observations close to the North Pole over the entire winter half year. This part of the Central Arctic5

is not covered by any other lidar measurement. The spaceborne CALIPSO lidar is blind for the region >81.8◦N. A first brief

overview of our UTLS smoke observations from October 2019 to May 2020 was given in Engelmann et al. (2020). In this

section, we present the full set of observed optical and microphysical properties and summarize the main results. We begin

with several case studies in Sect. 3.1. A detailed October-to-May overview is then given in Sect. 3.2. In the last subsection

(Sect. 3.3), we provide a review of published Arctic aerosol profile observations, conducted since 2000, and integrate them10

into our measurements to provide, for the first time, a coherent view on the aerosol conditions in the Central Arctic up 26 km

height.

3.1 The polar UTLS smoke layer in the autumn of 2019: case studies

Figure 4 shows the aerosol situation over the Central Arctic on 25 October 2019. The Polarstern was at 85.4◦N and 127.9◦E at

10:00 UTC. A haze layer with stratiform structures extended from the surface up to 4.5 km height and the aged smoke layer15

with smooth structures ranged from 5.5 to 15 km height as indicated by dashed lines in Fig. 4. Most of the smoke was above

the tropopause, and thus above 8 km height. The HYSPLIT backward trajectories (HYSPLIT, last access: 5 January, 2021) in

Fig. 5 for the arrival height of 10 km (center of the smoke layer) suggest that the polluted UTLS air mass was already trapped

in the Arctic circulation system in October 2019, i.e., before the rather strong, long-lasting and cold polar vortex was fully

established. According to Fig. 5, the same air mass moved twice over the location of RV Polarstern within 10 days in these late20

October days.

Figure 6 presents mean height profiles of the basic lidar products for the case shown in Fig. 4. Another case, measured

on 7 November 2019, is shown in Fig. 7. Here, the Polarstern observations at 85.9◦N on 7 November are compared with

the AWI multiwavelength Raman lidar observations at Spitsbergen at 78.9◦N of 4 November. Very similar smoke conditions

were found over and 700 km south of the Polarstern. Long signal averaging times and large vertical smoothing length were25

necessary to reduce the impact of signal noise at these comparably clean polar conditions. Because of the necessary signal and

product smoothing procedures, the true (effective) height resolution is about 500 m (backscatter, depolarization ratio), 2000 m

(extinction), and 2400 m (lidar ratio). The KARL observations were generally smoothed with window length of 2400 m.

As can be seen in Fig. 6 and 7, the maximum backscatter and extinction values were found around 9-10 km height, and thus

just above the tropopause so that the possibility of removal of the aerosol particles by cirrus clouds (via particle scavenging30

and sedimentation processes) was no longer given. From the backscatter coefficient the boundaries of the smoke layer as given

in Fig. 6a and 7a were determined. The maximum extinction coefficients in the center of the smoke layer were in the range

of 15 to 25 Mm−1 and the AOT of the UTLS polar smoke layer was of the order of 0.1 at 532 nm in October and early

6

https://doi.org/10.5194/acp-2021-117
Preprint. Discussion started: 17 February 2021
c© Author(s) 2021. CC BY 4.0 License.



November 2019. The wavelength dependence of the extinction coefficient σλ, expressed in terms of the Ångström exponent

Aσ,355,532=ln(σ355/σ532)/ ln(532/355) with wavelengths λ of 355 and 532 nm, was low with values around 0.7. Such a low

Ångström exponent is typical for wildfire smoke.

The striking feature for the dominance of smoke particles is, however, the observed pronounced inverse spectral dependence

of the extinction-to-backscatter or lidar ratio together with the comparably large 532 nm lidar ratios of 70-90 sr (Fig. 6c). This5

is typically found in cases of aged smoke after long-range transport (Müller et al., 2005; Haarig et al., 2018; Ohneiser et al.,

2020). Arctic haze, which may also contain aged biomass burning particles, is also able to produce an inverse spectral behavior

of the lidar ratio (Ritter et al., 2016; Engelmann et al., 2020). From the clear wavelength dependence of the lidar ratio, we

concluded that the impact of sulfuric-acid droplets originating from the Raikoke volcanic eruption in June 2019 must have

been small. Mattis et al. (2010) measured volcanic particle lidar ratios three months after the eruption of the Sarychev volcano10

(48◦N, 153◦E) in 2009 and found stratospheric lidar ratios of 40±10 sr at both wavelengths. This is in agreement with detailed

simulation studies of the optical properties of volcanic aerosol by Wandinger et al. (1995) and Jäger and Deshler (2003). By

assuming the same lidar ratio of 40 sr at 355 and 532 nm for volcanic particles and a typical difference between the 532 and

355 nm lidar ratio of 25-30 sr for aged wildfire smoke (see recent review in Haarig et al. (2018)) the clear lidar ratio difference

of 20-25 sr as given in Fig. 6 and 7 is only consistent with a volcanic aerosol fraction of≤20%. It is worthwhile to emphasize in15

this context that such an unambiguous aerosol typing is only possible with dual-wavelength lidars permitting the independent

retrieval of backscatter, extinction, lidar ratio and depolarization ratio, and, most important, of the spectral dependencies of

these optical properties.

The particle and volume linear depolarization ratio in Fig. 6b and 7b were very low at both laser wavelengths of 355 and

532 nm and indicated the presence of spherical particles. Differences between the KARL and Polly observations in Fig. 7b are20

insignificant. Both, the volcanic as well as the smoke particles were spherical according to the lidar observations. The main

phase of smoke particle aging obviously occurred already in the troposphere during the first days after emission. Assuming a

core-shell structure of the smoke particles (Dahlkötter et al., 2014; Yu et al., 2019; Gialitaki et al., 2020), slight deviations from

the spherical shape (e.g., caused by an irregular black-carbon-containing core structure) can lead to depolarization ratios of up

to 0.25 at 355 nm and 0.2 at 532 nm (Haarig et al., 2018; Gialitaki et al., 2020; Ohneiser et al., 2020). This core structure gets25

compact (or collapses) during the aging process so that the particles become spherical and the depolarization ratios are close

to zero.

Lidar observations at Leipzig (51.3◦N 12.4◦E) in July and August 2019 corroborate the interpretation of the MOSAiC lidar

observations. Clear smoke signatures in a stratospheric layer from 9.5-14 km (14 August 2019) and 12-16 km (23 August

2019) were observed in terms of the measured extinction-to-backscatter ratios (lidar ratios of 50-75 sr at 355 nm and of 75-30

110 sr at 532 nm). The stratospheric AOT showed values of 0.08-0.1 at 532 nm. The particle depolarization ratios were low

and indicated spherical smoke particles. In agreement with the lidar measurements at Capel Dewi Atmospheric Observatory,

close to Aberystwyth in west Wales (51.3◦N, 12.4◦W), United Kingdom reported by Vaughan et al. (2020), we observed clear

volcanic aerosol signatures over Leipzig on 10 and 23 July 2019 (before first fire smoke plumes from Siberia reached central

Europe). The lidar ratios were similar and around 30 sr at 355 and 532 nm wavelengths on 10 July and again similar and35
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roughly between 30-60 sr on 23 July. The layer extended from the tropopause at 11 km to 12.5 km height (10 July) and from

14-16.5 km (23 July). The AOT at 532 nm was about 0.01-0.015 (10 July) and 0.02-0.03 (23 July). The depolarization ratio

was rather low and indicated spherical sulfuric-acid droplets.

Figure 8 and Table 1 provide information on the underlying microphysical properties of the Arctic smoke and summarize the

main optical and microphysical particle characteristics discussed above for the two days (25 October and 7 November 2019)5

and for another observation taken on 13 October 2019. The volume size distributions shown in Fig. 8 were obtained from the

Polly observation by applying the lidar inversion method to the layer-mean three backscatter and two extinction coefficients

(Veselovskii et al., 2012). All size distributions are normalized so that the integral over each shown size distribution is one.

The 532 nm extinction profiles in Fig. 6c were used to estimate mass and surface-area concentration profiles by applying the

conversion factors for the polar smoke in Ansmann et al. (2020). Surface area values of 0.2-0.4 cm2 m−3 in the center of the10

smoke layer in Fig. 8 correspond to 20-40 µm2 cm−3. This latter unit is typically used in PSC studies (Jumelet et al., 2008,

2009). These surface area values are in the same range as found for PSC particle layers.

The findings agree well with many in-situ observations of long-transported aged smoke (Fiebig et al., 2003; Petzold et al.,

2007; Dahlkötter et al., 2014). As typical for smoke layers, a well-defined accumulation mode was found. A distinct coarse

mode was absent. The sharp edge of the size distribution towards larger particles may indicate an efficient removal of the15

large smoke and volcanic particles during the several-month long-term travel. The effective radii of the smoke particles were

relatively small with values from 0.2–0.25 µm. As shown by Müller et al. (2007) for smoke layers in the middle troposphere,

the particles can grow to large sizes (with effective radii close to 0.35 µm) as a result of particle aging during long-range travel.

However, as discussed by Das et al. (2020), the relatively low effective radii may be the result of the missing impact of pyroCb

activity in the case of the Siberian fires in July and August 2019. The larger effective particle size for pyroCb-sourced smoke20

(Haarig et al., 2018; Ohneiser et al., 2020) is possibly due to the rapid coagulation of the individual aerosol particles in dense

smoke plumes emitted from extreme pyroCb events combined with the removal of the larger smoke and volcanic particles. The

found smoke particle surface area concentrations in Table 1 are similar to typical PSC particle surface area concentrations and

thus may have provided relevant sites for ozone-depleting heterogeneous chemical processes.

The values for the refractive index (real part nreal, imaginary part nimag) and the single scattering albedo SSA in Table 125

of the polar smoke are in good agreement with respective findings of Dubovik et al. (2002) based on extended sunphotometer

observations of North American wildfire smoke (nreal=1.5±0.4, nimag=0.0094±0.003, and SSA=0.94±0.2). However, our

refractive index and SSA values are highly uncertain and must therefore be interpreted with care. Wandinger et al. (2002)

showed cases of Canadian wildfire smoke for which SSA was 0.8 and nimag around 0.05. The articles of Müller et al. (2005)

(Canadian and Siberian wildfires) and Tesche et al. (2011) (agricultural fires in central western Africa) provide an impression30

of the large spread of possible values for SSA and the imaginary part of the refractive index for smoke. The values can range

from 0.63 to 0.98 (SSA) and from 0.001 to 0.07 (nimag) according to these two papers. Correspondingly large differences can

be found in terms of the lidar ratio (about 30 to 110 sr for 532 nm). These large ranges of values reflect that smoke can show

rather different properties in terms of chemical composition, black carbon fraction, and particle size depending on fire type

(flaming vs smoldering), burning material, and environmental conditions during the aging process shortly after emission and35
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during long-range transport in the troposphere or in the stratosphere. When discussing polar smoke properties one needs to

keep in mind that these observations are hard to compare with smoke properties at other places around the globe. The smoke

(observed from October to May) circulated around the North Pole in total darkness at very low temperatures for months, and

it is simply unknown in which way the smoke chemical and physcial properties change with time and how they influence the

optical properties of the aged smoke and contributed to the strong ozone reductions in winter and spring of 2020. This will be5

further discussed in the next subsection.

3.2 The UTLS Arctic smoke layer from August 2019 to May 2020

An overview of our MOSAiC smoke observation aboard the drifting RV Polarstern is presented in Fig. 9. One set of lidar

products per day is considered. Gaps in the data time series in Fig. 9a are caused by fog and low-cloud events, partly lasting

over many days. We included KARL observations at Spitsbergen in Fig. 9b and c to prolong the AOT and extinction time series10

and to better link the strong contribution of the Siberian fires (mid July to mid August 2019) to the UTLS aerosol load in the

Arctic. Furthermore, we show the KARL data to emphasize the good agreement between the different lidar observations and

that the smoke and volcanic aerosol mixture covered large areas in the Arctic as it was also reported by (Kloss et al., 2021).

According to the KARL observations, the UTLS AOT reached values around 0.25 at 532 nm in the beginning of August 2019

and decreased to values of 0.1-0.15 in the second half of August 2019 and thus were similar to the stratospheric AOT values of15

close to 0.1 as observed over Leipzig at 52◦N in central Europe on 14 and 23 August 2019 (see discussion in Sect. 1).

Figure 9a shows the temporal evolution of the geometrical properties of the smoke layer as observed close to the North Pole

during the winter half year. The UTLS aerosol layer extended, on average, from 7-8 km to 17-18 km height. The smoke layer

base was always close to the tropopause. Figure 10 provides details of the smoke layer depths. As can be seen, the vertical

extent of the smoke layer was most frequently between 7 and 11 km (in 80% out of all cases). By comparing the 2019 with20

the 2020 observations, it can also be seen that the layer thickness increased with time. The layer top reached greater heights in

2020. This was probably caused by advection of smoke (and enhanced ozone) containing air masses from lower latitudes, as

will be discussed further in Sect. 4.

The vertical bars in Fig. 9a are colored to distinguish different levels of particle backscattering and extinction. The backscat-

ter coefficients at 532 nm were multiplied by a lidar ratio of 85 sr to obtain the respective value of the extinction coefficient.25

The maximum light-extinction values were found around or just above the tropopause. A trend of downward motion of the

smoke layer in terms of the optical properties is not visible. The extinction coefficients around the tropopause slowly decreased

with time from values >10 Mm−1 in October and November to <5 Mm−1 in April 2020 (Fig. 9a).

The vertically non-symmetric distribution of the aerosol concentration (here expressed in terms of light extinction) with the

maximum close to the base of the smoke layer may indicate an efficient removal of the particles in the troposphere by cirrus30

formation and ice crystal sedimentation processes. Once the aerosol particles reached the heights below the tropopause due

to gravitational settling or downward mixing, they became obviously efficiently deposited by scavenging and precipitation

processes. A part of the smoke particles may have served as ice-nucleating particles (Engelmann et al., 2020).
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Figure 9a also contains information about the occurrence of PSCs. Most of the PSCs over Polarstern were detected in

January 2020. A measurement from 15 January 2020 is presented in Fig. 11. According to the PSC classification scheme

(Achtert and Tesche, 2014), we observed a type Ib PSC. This type is made up of supercooled liquid ternary solutions that

consist of H2SO4, HNO3, and H2O. PSCs were most frequently found in the upper part of or above the smoke layer. All in all,

we observed a much lower number of PSCs over the North Pole region (86◦ to 88.6◦N) during the winter and spring seasons of

2020 than the CALIPSO lidar within the latitudinal range from 60◦ to 81.8◦N where most of the ozone depletion occurred as5

discussed in Sect. 4. We corrected our stratospheric smoke observations in Fig. 9 for clearly identified PSC effects. But weak

PSC effects remained in the optical data for January and February as was mentioned in Sect. 2 and is visible in Fig. 12a and c

by slightly enhanced depolarization ratios and decreased Ångström exponents as discussed below. The remaining PSC impact

on the AOTvalues was estimated to be of the order of <5%.

Figure 9b provides an overview of the development of the aerosol optical thickness (AOT) at 355 and 532 nm from Au-10

gust 2019 to May 2020. We computed the AOT from the particle backscatter height profiles in order to reduce the noise in the

lidar AOT observations significantly and thus to better see trends in the evolution of the polar smoke layer. The directly deter-

mined extinction profiles were too noisy, especially in 2020. The 355 nm and 532 nm backscatter coefficients were multiplied

by the statistically mean lidar ratio of 55 sr at 355 nm and 85 sr at 532 nm, respectively. The lidar ratio time series for both

wavelengths are shown in Fig. 12b. Subsequently, we integrated the extinction values between the smoke layer base and top15

heights as given in Fig. 9a.

The combined KARL and Polly observations show a coherent downward trend in the AOT time series until the beginning

of December 2019. The 532 nm AOT observed over the Polarstern decreased from 0.05–0.12 in October and November to

values of 0.03-0.06 from December to mid of March, and then dropped to 0.01-0.02 in April 2020. Almost constant AOT

conditions were observed from 10 December to 10 March. During this time period, the extraordinarily strong polar vortex was20

well established and advection of smoke for southern latitudes and smoke removal processes in the upper tropopshere over

the North Pole area widely equalized. The vortex collapsed around 20 April (Lawrence et al., 2020). Based on the KARL and

Polly observations, we can conclude that the UTLS perturbation decreased from about 0.2 (532 nm AOT) in the beginning of

August 2019 to 0.02 at the end of April 2020 (within 9 months), thus, the e-folding decay time was about 4 to 4.5 months.

The layer mean 532 nm smoke extinction coefficients in Fig. 9c (obtained from AOT divided by the respective layer geo-25

metrical depth in Fig. 9a) were of the order of 10 Mm−1 until mid of November 2019, and around 4-5 Mm−1 during the main

winter months until mid of March 2020 and mostly ≤3 Mm−1 at the end of the life time of the smoke layer. According to

longterm observation at mid-latitudinal lidar sites, the minimum 532 nm AOT value for a clean stratosphere is around 0.001-

0.002 (Sakai et al., 2016; Baars et al., 2019) and the minimum extinction coefficients are of the order of 0.1-0.2 Mm−1. The

Ångström exponent calculated from the extinction values of 355 and 532 nm was on average 0.65, which is a typical value for30

wildfire smoke. The Ångström exponent exceeds 1.0 when volcanic aerosol is main component of the UTLS aerosol mixture.

From the measured layer mean extinction coefficients, mass concentrations of the smoke particles were derived and ranged

from 0.4-2 µg m−3 during the autumn and winter months. Minimum stratospheric mass concentrations (at mid latitudes) are
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close to 0.01-0.02 µg m−3 (Baars et al., 2019). The shown surface area concentrations of 0.05-0.2 cm2 m−3 or 5-20 µm2 cm−3

are in same range as the ones for typical PSCs (Jumelet et al., 2008, 2009) as mentioned.35

We compared our UTLS AOT observations with respective satellite aerosol retrievals discussed by Kloss et al. (2021). From

OMPS-LP (Ozone Mapping Profiler Suite Limb Profiler) measurements at 675 nm, they found AOT mean values (integrated

over all longitudes for the latitide of 80◦N, converted to 550 nm) for the height range above the tropopause of about 0.025-0.03

in September and October 2019, and around 0.01 (1-20 May 2020). The KARL and Polly observations revealed stratospheric

AOT contribution for 532 nm of about 0.05-0.08 (mid September to mid October 2019), and 0.01-0.02 (April-May 2020) and5

thus a factor of 2-3 higher values for the autumn-2019 months then retrieved by using passive remote sensing methods (Kloss

et al., 2021).

Figure 12 presents the time series of the layer mean intensive particle properties. In contrast to the extensive properties in

Fig. 9b and c, the depolarization ratio, lidar ratio, and backscatter-related Ångström exponents show no dependence on time.

The aerosol properties remained almost unchanged over the entire winter half year. Particle coagulation or signifant removal10

processes, influencing the size distribution and thus the Ångström exponent, are not visible. The increasing variability in the

depolarization ratios starting in January 2020 and a weak trend in the Ångström exponent for the 532-1064 nm wavelength

range towards lower values are related to a non-perfect removal of weak PSC effects on the lidar signal profiles. Table 2

contains the respective mean values of the intensive aerosol properties. Again, a clear smoke signature is visible in Fig. 12 and

Table 2, expressed by the inverse wavelength dependence of the lidar ratio and the rather different Ångström exponents for15

backscattering and extinction.

Figure 13 shows monthly mean profiles of the 532 nm particle extinction coefficient. The same lidar data as in Fig. 9c are

used here, i.e., the height profiles of the particle backscatter coefficient at 532 nm were multiplied by a lidar ratio of 85 sr and

then separately averaged for each of the shown seven months. As can be seen, there is clear separation between the aerosol

within the polar dome (Stohl, 2006; Bozem et al., 2019) and above this isolated polar air mass. The vertical depth of the polar20

dome increased from October to Februay. The smoke layer maximum is close to but above the tropopause for the period from

October to February. The smoke particle concentration decreased with time from October to April, however, the remarkable

similarity of the the three profiles for the central winter months (December to February) indicates again the strong impact of

the polar vortex on the polar aerosol conditions to provide steady state conditions for advection from more southern Arctic

latitudes and removal of smoke when entering the troposphere from above. In spring (see March and April profiles), with the25

returning sunlight, changing meteorological conditions including the impact of absorption of solar radiation by the smoke,

the stable polar stratification of different air masses started to collapse. We finally estimated the smoke aerosol load over the

Arctic by multiplying the area (considering latitudes>66.7◦N) by a mean smoke layer depth of 8 km, a mean smoke extinction

coefficient of about 5 Mm−1, a volume-to-extinction conversion factor of 0.124· 10−12 Mm for wildfire smoke (Ansmann et al.,

2020), and the smoke particle density of 1.15 g m−3, and yield 0.2 Mt of smoke as a guess for the mean value of the smoke30

aerosol load over the Arctic during the winter halfyear 2019-2020.
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3.3 Comparison with foregoing Arctic aerosol studies

In Fig. 14, we compare our polar aerosol observations performed between 85◦-88.6◦N in the autumn and winter seasons of

2019-2020 with CALIPSO long-term observations of Arctic aerosol profiles (Di Pierro et al., 2013; Di Biagio et al., 2018; Yang

et al., 2020) and retrievals of the particle extinction coefficient from satellite-based OMPS-LP and Stratospheric Aerosol and

Gas Experiment (SAGE) II and III observations (Treffeisen et al., 2006; Taha et al., 2021). In this way, a consistent, vertically

resolved view on the aerosol condition in the Central Arctic during the winter half year almost up to 30 km is provided, to our

knowledge, for the first time.

The following satellite data sets are used. Di Pierro et al. (2013) analyzed CALIPSO lidar observations at 532 nm and5

considered all data collected within the latitudinal belt from 70◦-81.8◦N from June 2006 to December 2012. However, as

we can see in Fig. 14, the applied CALIPSO version 3 data analysis obviously removed too many dense smoke and haze

layers because of an improper aerosol/cloud discrimination procedure. Dense smoke layers were probably interpreted as thin

or subvisible cirrus and removed from the aerosol data base.

Yang et al. (2020) analyzed Arctic CALIPSO observations for the latitudinal belt from 65◦-81.8◦N for the time period from10

June 2006 to December 2019 and made use of the latest data analysis version 4 with an improved aerosol/cloud discrimination

scheme. The shown seasonal mean height profiles are in good agreement with our measurement. Since these observations

include observations of the UTLS smoke from the major Canadian fires in 2017 (Baars et al., 2019) and the huge fires in

Siberia in the summer of 2019, they are close to our 2019-2020 profile observations. The 13-year mean autumn profile, shown

in Fig. 14, suggests a strong and regular contributions from wildfires to the polar aerosol load in the middle troposphere in late15

summer and autumn.

Di Biagio et al. (2018) combined ground-based lidar observations between 80◦-83◦N and 7◦-27◦E (north of Svalbard) from

October 2014 to June 2015 with CALIPSO observations from 80◦-81.8◦N and 5◦-25◦E to obtain an improved knowledge of

the wintertime aerosol conditions in the high Central Arctic. The ground-based lidars were operated at 800 nm and mounted on

autonomous drifting buoys (IAOOS: Ice-Atmosphere-Ocean Observing System platforms) and made, for the first time, aerosol20

observations at latitudes up to 83◦N during the winter season.

All aerosol profiles derived from CALIPSO lidar observation stop at 12 km. At greater heights the signal-to-noise ratio is too

low to permit a proper aerosol retrieval for a trustworthy multiyear statistics. A discussion on the sensitivity of the CALIPSO

lidar in the case of Arctic aerosol is given by Di Biagio et al. (2018).

Treffeisen et al. (2006) analyzed SAGE II and III data for 525 nm and were able to present, for the first time, an annual cycle25

of aerosol vertical layering from 4-12 km for 60◦-80◦N. Data collected from 2001-2006 were used in Fig. 14. The SAGE II

and III measurements are obviously representative for typical background aerosol conditions.

Taha et al. (2021) analyzed OMPS-LP data and SAGEIII/ISS (International Space Station) observations and provide aerosol

information for the height levels of 18.5, 20.5, and 25.5 km height (2017-2019) for 60◦N and 70◦N for the wavelength of

745 nm. The 60◦ and 70◦N values were used to estimate the values at 80◦N, shown in Fig. 14, via extrapolation. Taha et al.30

(2021) used an Ångström exponent of 1.9 to convert the satellite aerosol observations at 745 nm to the ones at 532 nm.
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Baars et al. (2019) reported minimum values of the stratospheric AOT of the order of 0.001 to 0.002 at 532 nm and related

particle extinction coefficient close to 0.1-0.2 Mm−1 (see pink vertical lines from 12-20 km height in Fig. 14) derived from

Raman lidar observations at Leipzig, Germany, from January 2000 to June 2008 (during a period with no significant volcanic

eruption and wildfire smoke events).

If we define the aerosol profile from 4-12 km of (Treffeisen et al., 2006) in combination with the curve of Taha et al. (2021)

and the interpolated dashed line in Fig. 14 as the smoke-free and volcanic-aerosol-free background aerosol level, then the

particle extinction coefficient was enhanced in the lower stratosphere up to about 14-15 km height by an order of magnitude in

the winter half year of 2019-2020. The impact of the 2019-2020 smoke layer is clearly visible from about 8 to 19 km height,5

i.e., the height range in which also the unprecedented strong ozone reduction was found from January to April 2020 (see next

section).

4 PSCs, UTLS wildfire smoke and ozone depletion

Complex atmospheric circulation patterns (resulting from planetary and gravity wave activity) determine the meridional and

vertical transport of momentum, heat, aerosol particles, and gaseous components (ozone, N2O, water vapor, etc.) towards the10

Arctic and from greater to lower heights within the Arctic circle (via the descending branch of the Brewer Dobson circulation).

Variations in the Arctic ozone concentration are, therefore, the result or horizontal and vertical ozone transport and local

chemical processes causing ozone depletion. The destruction of ozone is closely linked to chlorine activation (conversion from

nonreactive forms into forms that destroy ozone) taking place on the surface of PSC particles. Because of weak planetary

wave forcing in the summer and autumn of 2019, a strong, cold, and persistent polar vortex developed in the winter of 201915

(Manney et al., 2020), the strongest in the last 40 years (Lawrence et al., 2020). In the isolated Arctic air mass, temperatures

dropped below the nitric acid trihydrate (NAT) PSC threshold of −78◦C for a long time period (from mid November 2019 to

March 2020) so that favorable conditions for the formation of extended PSC fields and thus chlorine activation were given.

The strongest ozone reduction ever observed in the Arctic occurred in the spring of 2020 (DeLand et al., 2020; Manney et al.,

2020; Wohltmann et al., 2020; Inness et al., 2020; Wilka et al., 2021; Dameris et al., 2021; Smyshlyaev et al., 2021). Manney20

et al. (2020) analyzed 16-year Aura Microwave Limb Sounder (MLS) measurements and further pointed out that chlorine

activation and ozone depletion began earlier than in any previously observed winter, with evidence of chemical ozone loss

starting already in November 2019. Peak chlorine activation and thus peak ozone loss occurred at lower altitudes in 2020 as

usual. The prolonged polar processing in 2019/2020 resulted in substantial low O3 anomalies beginning in early January 2020.

Because of the unusual stratospheric smoke situation in the Arctic in 2019-2020, the question arises to what extent the25

long lasting aerosol perturbation in the lowest part of the Arctic stratosphere may have contributed to the pronounced ozone

reduction? According to HYSPLIT backward trajectories (HYSPLIT, last access: 5 January, 2021) and ground-based Raman

lidar observations of the Alfred Wegener Institute at Spitsbergen and over the Polarstern, the smoke layer covered large parts

of the Arctic. The CALIPSO lidar data were of limited use here to describe the smoke situation over the Arctic. The data base

(CALIOP, last access: 5 January, 2021) does not contain any clear hint on the Arctic smoke layer. The reason is probably30
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that the smoke layer showed no sharp edges, was rather homogeneous, and the smoke backscatter coefficients were too low to

be unambiguously identified as stratospheric aerosol in the noisy CALIPSO signal profiles. Di Biagio et al. (2018) discussed

CALIPSO lidar detection limits in the case of Arctic aerosol observations and corroborate our hypothesis. This circumstance

is probably also the reason that non of the recent papers (mentioned above) dealing with the record-breaking ozone depletion

considered this strong stratospheric aerosol perturbation in their explanations and discussions.

The overall question can be split into three more precise research questions: 1) How did the optically thick wildfire smoke

layers influence the atmospheric circulation pattern (and planetary wave driving) at high northern latitudes in the summer and

early autumn of 2019 by absorbing solar radiation and heating of the air? Large scale warming may have indirectly contributed5

to create favorable conditions for the development of a strong vortex. 2) To what extent did the wildfire smoke particles

influence the evolution of PSCs and specifically their microphysical properties (number concentration, size distribution) (Hoyle

et al., 2013; Zhu et al., 2015, 2018)? 3) To what extent were the wildfire particles directly involved in heterogeneous chemical

processes by increasing the particle surface area available to convert nonreactive chlorine components into reactive forms?

The wildfire smoke particles in the stratosphere were probably glassy, showed a core-shell morphology, and were probably10

largely composed of organic material (organic carbon, OC, in the shell) and, to a minor part, of black carbon (BC, concentrated

in the core part). The volcanic aerosol particles (sulfuric-acid particles) and the smoke particles were most likely widely

externally mixed, however, collisions and coagulation of smoke and volcanic aerosol particles leading to internally mixed

particles cannot be excluded. Changes in the morphology (size, shape, and internal structure) of smoke particles and their

internal mixing state were ongoing during the long-range transport.15

The smoke-PSC-ozone research field is meanwhile (since 2017) as important as the studies on the impact of stratospheric

volcanic aerosol on ozone depletion (Ansmann et al., 1996; Zhu et al., 2018) because major wildfire smoke events may oc-

cur frequently in future as a result of climate change as discussed in the introduction. It is interesting to note in the context

that the stratospheric aerosol conditions in both hemispheres (2019 in the northern hemisphere, 2020 in the southern hemi-

sphere) (Ohneiser et al., 2020; Khaykin et al., 2020; Kablick et al., 2020; Kloss et al., 2021) were significantly perturbed by20

wildfire smoke, and in both hemispheres record-breaking ozone depletion was reported (https://public.wmo.int/en/media/news/

record-breaking-2020-ozone-hole-closes) and occurred in a smoke-polluted stratospheric environment.

The goal of this section is to provide a composite view on the Artic ozone situation 2019-2020 based on CALIPSO PSC

observations, our MOSAiC smoke and PSC observations, and MOSAiC ozone profiles measured with sondes launched from

Polarstern. The data may serve as a useful guide for an improved atmospheric modeling of this record-breaking ozone-depletion25

event with the specific aim to clearify the role of smoke in the complex ozone depletion processes.

The MOSAiC and CALIPSO measurements are shown in Fig. 15 and 16. 40 ozone sondes were launched during the seven-

month period from October 2019 to may 2020 (von der Gathen and Maturilli, 2020; Wohltmann et al., 2020). 13 out of the

40 sondes were launched from the beginning of March to mid of April 2020 and thus during the period with lowest ozone

concentration.30

To obtain an idea about the impact of the PSCs on chlorine activation and subsequent ozone destruction, we analyzed the

CALIPSO observations in the latitudinal belt from 60◦N to 80◦N on a daily basis. The pink lines in Fig. 15 indicate the height
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range in which PSCs were detected. The top of the PSC height range was always easy to identify in the CALIPSO observations.

The base height must be exercised with care because the lowermost PSCs may have produced too weak backscatter and were

then not clearly detectable in the noisy CALIPSO data. According to the MOSAiC radiosondes launched four times a day35

aboard Polarstern, the lowest temperatures occurred between 15 km and 27 km height in the central winter (December 2019

to March 2020). The PSC relevant temperatures of <−78◦C were found between 18 km and 27 km height in December 2019

and continuously propagated downward to about 15-23 km height in early March 2020. This height range of low temperatures

coincides well with the PSC height range in Fig. 15 and also with the respective PSC retrievals presented by DeLand et al.

(2020).5

In addition to the PSC height range, the time series of the smoke layer base and top heights as well as of the tropopause

height are shown in Fig. 15. As can be seen in the composite figure, a layer with very low ozone partial pressure between 15

and 20 km height crossed the Polarstern in March and April 2020 (until the Polar vortex collapsed around 20 April). This layer

of low ozone concentration coincides with the PSC height range in which chlorine activation occurred in the months before.

The smoke layer, extending roughly from the tropopause to 15–18 km height did not overlap with the region with very low10

ozone concentration in the spring of 2020, and also not with the PSC height range until mid of January 2020. Horizontal ozone

transport above the smoke layer was probably responsible for the local ozone maximum between 15 and 20 km height until

10 December 2019. Later on, ozone-rich and smoke-rich air became advected from lower latitudes and as consequence the

smoke layer height increased in December, and afterwards followed the enhanced ozone signature from mid December to mid

March. Since mid of January 2020, the layer with enhanced ozone concentration was influenced by both, smoke and PSCs.15

To obtain a more clear picture on ozone depletion during the winter and spring season 2019-2020, Fig. 16 presents ozone

deviations from the long-term mean values as discussed by Inness et al. (2020) together with the PSC and smoke layer informa-

tion. Also, the PSC observations with the Polarstern lidar are included. Inness et al. (2020) used a reanalysis dataset produced

by the Copernicus Atmosphere Monitoring service (CAMS, reanalysis, 2003–2019) to describe the evolution of the 2020 Arc-

tic ozone season and to compare it with years back to 2003. Inness et al. (2020) pointed out that the December anomaly may20

be due to the observed and modeled reduced meridional mixing because of reduced wave activity. However, there is a clear

signature of chemical ozone depletion leading to the extremely low ozone values over the North Pole in March and April

2020. In March 2020, ozone values in the ozone layer over the North Pole were partly reduced to more than 10 mPa below

the climatological values. Again, we notice a clear link between PSC occurrence and anomalously large ozone reduction. But

we see a large vertical overlap between the smoke layer and the height range with strong negative ozone deviations. As was25

mentioned by Manney et al. (2020), the height range with strong ozone anomalies reached down to unusually low heights and

thus to heights where smoke was permanently present. Surface area concentrations of the smoke particles were in the same

range of typical values for Arctic PSCs (as shown in Fig. 9). All in all, Fig. 16 may motivate future studies on the interplay

between smoke, PSCs, and ozone depletion based on advanced modelling in a way presented by Zhu et al. (2018) in the case

of an additional impact of volcanic aerosol on ozone depletion.30
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5 Summary and outlook

We presented a detailed optical and microphysical characterization of an unexpected UTLS smoke layer over the North Pole

region in the winter half year of 2019-2020. Never before, such a strong perturbation of the stratospheric aerosol conditions

in the High Arctic was measured and reported. For the first time, the spread of smoke of a major forest fire event up to

stratospheric heights could be explained by self-lifting effects, and thus without the need of pyroCb convection. The majority

of the smoke originated from strong, long-lasting wildfires in Siberia in July and August 2019. A month earlier, the Raikoke

volcano erupted and the resulting stratospheric sulfuric-acid aerosol layers also covered large parts of the northern hemisphere.

We emphasized the need for a dual wavelength lidar, such as the Polarstern Polly operated during the MOSAiC expedition, to5

unambiguously identify the prevailing aerosol type based on the spectral dependence of the lidar ratio. We estimated the impact

of volcanic aerosol contribution to the overall stratospheric aerosol mass concentration to <20%. The UTLS smoke AOT at

532 nm ranged from 0.05-0.12 in October-November 2019 and was of the order of 0.03-0.06 during the central winter months

(December-February). The observed extinction-to-backscatter ratios (lidar ratios) were, on average, 55 sr at the wavelength

of 355 nm and of 85 sr at 532 nm as typical for moderately light-absorbing smoke. The light-extinction-related 355-532 nm10

Ångström exponent of around 0.65 also clearly indicated that smoke particles dominated.

Based on an extended review of the literature dealing with aerosol profile observations in the Arctic, we were able to develop

a coherent picture on aerosol structures and layering features for the autumn and winter seasons up to 27 km height. In the next

step, we will analyze the MOSAiC lidar observations of the summer halfyear to fully cover the annual cycle of Arctic aerosol

conditions as a function of height.15

We discussed, to our knowledge for the first time, a potential impact of the wildfire smoke aerosol on the record-breaking

ozone depletion over the Arctic in the spring of 2020 based on vertically resolved information on PSC and smoke occurrence

and strength of ozone depletion. This discussion may initiate in-depth modeling studies to clarify the role of wildfire smoke

in stratospheric PSC formation and ozone reduction processes. If follow-on studies will indicate a link between huge fires

(caused by unusually hot temperatures and droughts as a result of climate change), corresponding smoke occurrence in the20

lower stratosphere, and severe ozone depletion in the Arctic and Antarctica, the climate change debate will be added by a new,

and until now, not considered important aspect.

As one of another important follow-on tasks, we will explore the potential of wildfire smoke to influence cirrus formation

during the winter half year. A first case study was discussed in Engelmann et al. (2020). Furthermore, we will contrast these

results with ones of similar studies of aerosol-cirrus interaction during the summer half year when long-range transport of25

anthropogenic haze mixed with mineral dust from Asia, Europe, and North America as well as episodic wildfire smoke events

prevailed.

6 Data availability

Polly lidar observations (level 0 data, measured signals) are in the PollyNET data base (PollyNet, last access: 5 January, 2021)

with quicklooks at http://polly.tropos.de. All the analysis products are available at TROPOS upon request (polly@tropos.de).30
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KARL lidar can be provided by AWI upon request. CALIPSO observations were downloaded from the CALIPSO data base

(CALIOP, last access: 5 January, 2021), Fire and MODIS data are available at the NASA data base (FIRMS, last access: 5

January, 2021; MODIS, last access: 5 January, 2021). The radiosonde and ozonesonde data (von der Gathen and Maturilli,

2020) are currently as well available via the MCS. PANGAEA is the primary long-term archive for the MOSAiC data set.
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Table 1. Optical and microphysical properties of the polar wildfire smoke layer in the autumn of 2019. Layer mean values of the particle

backscatter coefficient β, extinction coefficient σ, lidar ratio S, and backscatter, extinction and lidar-ratio-related Ångström exponents Aβ ,

Aσ , and AS, respectively, are given in the upper part. Indices indicate wavelength in nm and wavelength spectrum. The lower block contains

the retrieved particle number concentration (particles with radius >50 nm), mean and effective particle radius rmean and reff , volume (V ),

mass (m), and surface area (s) concentration, real (nreal) and imaginary part (nimag) of the refractive index, and single scattering albedo

SSA. Uncertainties are of the order of 10% (β), 15% (σ), 20% (S,A), 100% (N ), 20% (V,m,s), ±0.05 (nreal), up to 50% (nimag), and 0.05

(SSA).

Parameter 13 Oct 2019 25 Oct 2019 7 Nov 2019

Height, base to top [km] 4.5–15 5.5–16 5.5–14

β355 [Mm−1 sr−1] 0.250 0.233 0.250

β532 [Mm−1 sr−1] 0.116 0.117 0.124

β1064 [Mm−1 sr−1] 0.037 0.039 0.039

σ355 [Mm−1] 13.8 11.2 11.3

σ532 [Mm−1] 10.4 8.2 8.7

S355 [sr] 55 48 45

S532 [sr] 90 70 70

Aβ,355,532 1.88 1.71 1.72

Aβ,532,1064 1.66 1.59 1.68

Aσ,355,532 0.68 0.78 0.63

AS,355,532 -1.22 -0.93 -1.09

N (r >50 nm) [cm−3] 42 55 42

rmean [µm] 0.18 0.15 0.17

reff [µm] 0.22 0.20 0.22

V [µm3 cm−3] 1.2 0.98 1.0

m [µg m−3] 1.38 1.13 1.15

s [µm2 cm−3] 16.0 14.8 14.0

nreal 1.49 1.50 1.50

nimag 0.010 0.007 0.007

SSA, 355 nm 0.948 0.961 0.962

SSA, 532 nm 0.956 0.967 0.969

SSA, 1064 nm 0.930 0.950 0.954
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Table 2. Mean values and standard deviations of smoke optical properties computed from the time series in Fig. 12. 151 daily observations

from the beginning of October 2019 to mid of March 2020 are considered. δp denotes the particle linear depolarization ratio (PLDR). In the

case of the lidar ratio S, we checked all daily profiles and subjectively selected only cases with clear profile information, not corrupted by a

too high noise level so that the profile was strongly fluctuating. 46 days (355 nm lidar ratio) and 36 days (532 nm lidar ratio) are considered.

The Ångström exponents for the lidar ratio and the extinction coefficient are calculated from the mean values of S355 and S532 in Fig. 12

and the mean values of σ355 and σ532 in Fig. 9c.

Parameter Mean ± SD

δp,355 0.02±0.0086

δp,532 0.0152±0.0049

S355 [sr] 54.5±5.5sr

S532 [sr] 85.3±10.4sr

Aβ,355,532 1.7±0.7

Aβ,532,1064 2.56±0.51

Aβ,355,532 1.62±0.32

Aσ,355,532 0.62

AS,355,532 -1.07
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Figure 1. Extended dense fields of wildfire smoke (grey areas) north of Lake Baikal originating from extraordinarily strong wildfires in

eastern Siberia (MODIS, last access: 5 January, 2021), (a) MODIS overpass on 24 July 2019, (b) on 26 July 2019, and (c) on 28 July 2019.

White areas indicate cloud layers. Fires detected at the three days are given as red dots (FIRMS, last access: 5 January, 2021).
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Figure 2. Monthly mean AOT (550 nm, 20 July - 20 August 2019) north (boxes 1 and 2) and northeast (box 3) of Lake Baikal, Russia, and

time series of daily mean AOT (mean AOT of boxes 1, 2, and 3) (MODIS, last access: 5 January, 2021).
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Figure 3. CALIPSO lidar measurement (height–latitude/longitude display of 532 nm attenuated aerosol backscatter) of wildfire smoke over

eastern Siberia during an overpass over an extended forest fire area (55◦-68◦N, 93◦-112◦E) on 26 July 2016, 20:59-21:08 UTC (CALIOP,

last access: 5 January, 2021). Thick smoke plumes (red and yellow) occurred below 5 km height. Ascending smoke plumes (mostly in green)

are visible up to the tropopause at 10-11 km height as well as in the lower stratosphere up to 15 km, partly mixed with volcanic aerosol

(bluish colors at heights above 10 km) probably originating from the Raikoke volcanic eruption.
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Figure 4. The wildfire smoke layer over RV Polarstern at 85.4◦N, 128.0◦E on 25 October 2019, 4:30–16:30 UTC. The tropopause height

according to the Polarstern radiosonde (launched at 12:00 UTC) is given as an orange solid line and the base and top height of the smoke

layer are indicated by white dashed lines. Further haze layers and embedded cirrus clouds (virga in yellow to red) are visible at heights below

5 km. The uncalibrated attenuated backscatter coefficient at 1064 nm (in arbitrary units) is shown.
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Figure 5. The 10-d ensemble backward trajectories arriving at RV Polarstern (black star) on 25 October 2019, 1200 UTC, at 10 km height

(HYSPLIT, last access: 5 January, 2021; Stein et al., 2015; Rolph et al., 2017). Thin and thick symbols indicate 6-hour and 24-hour time

steps, respectively.
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Figure 6. Profiles of optical properties (4.5 h mean values) of the wildfire smoke layer on 25 October 2019, 09:30–14:00 UTC (cirrus-

free period, Fig. 4). Base and top heights of the smoke layer are indicated by black horizontal lines. (a) Particle backscatter coefficient at

three wavelengths, (b) particle linear depolarization ratio at 355 and 532 nm, (c) smoke extinction coefficient at 355 and 532 nm, and d)

respective smoke extinction-to-backscatter ratio (lidar ratio) are shown. Vertical resolution is about 500 m (backscatter, depolarization ratio),

2000 m (extinction coefficient), and 2400 m (lidar ratio). Mass concentration and surface area concentration (obtained from conversion of

the extinction coefficients) are given in addition (upper x-axix in c). Error bars indicate the estimated uncertainties around layer center.

Depolarization ratios and extinction coefficients close to and around the layer boundaries have to be interpreted with caution.
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(a) (b) (c) (d)

Figure 7. Same as in Fig. 6, except for 7 November 2019 (20:25-23:35 UTC, 85.9◦N, 116.8◦E). KARL (AWI lidar at Ny-Ålesund, Svalbard,

Norway, 78.9◦N, 11.9◦E) observations from 4 Nov 2019 are shown for comparison (open symbols, thin lines). 2400 m vertical signal

smoothing is applied. Note that (b) shows the volume depolarization ratio instead of the particle linear depolarization ratio as in Fig. 6. Good

agreement between the different observation was found. Tropopause over Polarstern was at 7.6 km height.

0.05 0.07   0.1              0.2     0.3  0.4  0.5   0.7

Figure 8. Size distributions of the stratospheric smoke particles retrieved from the multiwavelength lidar observations on 13 and 25 October

and 7 November 2019. A narrow accumulation mode with particle sizes (diameters) from 400 to 1000 nm and a weak Aitken mode to the

left is typical for aged wildfire smoke particles. All size distributions are normalized so that the integral over each distribution is one.
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Figure 9. (a) Overview of Polly observations of UTLS smoke layers (colored bars from bottom to top, one bar per day) from 23 July 2019 to

8 May 2020. Observational gaps between bars are caused by opaque low level clouds and fog. The colors in each bar indicate segments with

different extinction coefficient levels (< 5 Mm−1, 5− 10 Mm−1, and > 10 Mm−1, see legend in the panel). Furthermore, the tropopause is

indicated as small black bars, and PSCs layers are shown as pink vertical lines. (b) Smoke layer AOT (KARL, open symbols, Polly, closed

symbols) at 355 nm and 532 nm, calculated from the profiles of the backscatter coefficients multiplied by a lidar ratio of 55 sr and 85 sr,

respectively. Column mass concentrations are indicated as well (right y-axis). (c) Layer mean 355 and 532 nm particle extinction coefficient

(i.e., AOT in panel b divided by layer depth in panel a), and respective mass and surface area concentrations (right y-axis). For comparison,

background AOT and extinction levels (532 nm) are of the order of 0.001–0.002 and 0.1–0.2 Mm−1, respectively (Baars et al., 2019).
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Figure 10. Frequency of occurrence of smoke layer depth. 151 days are considered.
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Figure 11. Polar stratospheric cloud (PSC) from 18-22.5 km height on top of the smoke layer on 15 January 2020, 22:30-23:30 UTC. The

532 nm particle backscatter coefficient is shown and the AOT values for the smoke (computed from the backscatter values multiplied by a

lidar ratio of 85 sr) and of the PSC layer (computed from the backscatter values multiplied by a lidar ratio of 50 sr) are given as numbers.

Horizontal gray lines show different temperature levels. Tropopause was at 8.8 km height.
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(a)
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Figure 12. (a) Overview of smoke optical properties in terms of (a) particle linear depolarization ratio (PLDR), (b) extinction-to-backscatter

ratio (lidar ratio), and (c) backscatter-related Ångström exponent defined as ln(βi/βj)/ ln(λj/λi) with backscatter coefficient βi for laser

wavelength λi. All results are derived from Polly observations within the smoke layer. The considered time period spans from 1 October

2019 to 22 March 2020.
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Figure 13. Monthly mean profiles of the 532 nm particle extinction coefficient. The monthly mean tropopause (with standard deviation

bars) is indicated by short horizontal bars. Very constant aerosol conditions were observed during the central winter months (December to

February).
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Figure 14. Comparison of seasonally averaged particle extinction coefficient profiles (autumn: October and November, winter: December to

February), measured with the Polarstern lidar, with profile observations found in the literature (see list to the right of the figure). The surface

area concentration (upper y-axis) is related to the MOSAiC smoke extinction profiles (by applying surface-area-to-extinction conversion

factors for smoke). More details are given in the text.
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Figure 15. Height-time display of the ozone partial pressure observed with ozonesondes launched at Polarstern. The PSC height range

(according to daily CALIPSO lidar observations between 60 and 80◦N) is indicated by pink lines. The smoke layer from base (green) to top

(dark green) as observed with the MOSAiC lidar over Polarstern (at >85◦N) is indicated as well. The yellow line shows the tropopause.

Dec Jan Feb Mar

Figure 16. Height range with negative ozone deviation of 1-2 mPa (light blue), 2-3 mPa (blue) and >3 mPa (dark blue) from the long-

term climatological monthly mean (2003–2019) at 90◦N (as shown in Fig. 6c1-c4 in (Inness et al., 2020)). The light and dark pink vertical

bars show the height ranges in which PSCs were detected with the CALIPSO lidar between 60 and 80◦N and with the Polarstern lidar (at

>85◦N), respectively. The green bars indicate the smoke layer from base to top, dark green indicates the central range with particle extinction

coefficients >3 Mm−1.
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