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Abstract 13 

 14 

The detection of the early growth of drizzle particles in marine stratocumulus clouds is important 15 

for studying the transition from cloud water to rainwater. Radar reflectivity is commonly used to 16 

detect drizzle; however, its utility is limited to larger drizzle particles.  Alternatively, radar Doppler 17 

spectrum skewness has proven to be a more sensitive quantity for detection of drizzle embryos. 18 

Here, a machine-learning (ML) based technique that uses radar reflectivity and skewness for 19 

detecting small drizzle particles is presented. Aircraft in-situ measurements are used to develop 20 

and validate the ML algorithm.  The drizzle detection algorithm is applied to three Atmospheric 21 

Radiation Measurement (ARM) observational campaigns to investigate the drizzle occurrence in 22 

marine boundary layer clouds. It is found that drizzle is far more ubiquitous than previously 23 

thought, the traditional radar reflectivity-based approach significantly underestimates the drizzle 24 

occurrence, especially in thin clouds with liquid water path lower than 50 gm!". Furthermore, the 25 

drizzle occurrence in marine boundary layer clouds differs among three ARM campaigns, 26 

indicating that the drizzle formation which is controlled by the microphysical process is regime 27 

dependent. A complete understanding of the drizzle distribution climatology in marine 28 

stratocumulus clouds calls for more observational campaigns and continuing investigations. 29 

 30 

31 
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1.Introduction 32 

 33 

Clouds play an important role in the climate system and the accurate representation of their 34 

properties and feedbacks in Global Circulation Models (GCM) is essential for performing reliable 35 

future climate prediction (Cess et al., 1989;Bony et al., 2006;Vial et al., 2013). Among all the 36 

cloud types, marine stratocumulus is an important cloud type covering approximately 20% of the 37 

Earth’s surface (Warren et al., 1986, 1988;Wood, 2012). Marine stratocumulus clouds 38 

significantly modulate the Earth’s energy budget: on one hand, stratocumulus with high albedo 39 

strongly reflect incoming solar radiation back to space; on the other hand, as stratocumulus clouds 40 

have similar temperature with surface, they emit comparable amount of longwave radiation as the 41 

surface and do not significantly affect the infrared radiation emitted to space. Thus, overall the 42 

stratocumulus have a strong cooling effect to the climate system.  (Hartmann et al., 1992). It is 43 

estimated that only a small increase of the marine stratocumulus coverage can compensate for the 44 

increased temperature induced by the greenhouse gas effect (Randall et al., 1984). Despite the 45 

considerable influence on the climate, large uncertainties persist in the representation of marine 46 

stratocumulus in GCMs due to a lack of understanding of the cloud properties and the associated 47 

processes. (Stephens, 2005;Klein et al., 2017) One important issue is the underrepresentation of 48 

the transition from cloud water to rainwater, i.e. the autoconversion process. (Stephens et al., 49 

2010;Michibata and Takemura, 2015). (Paluch and Lenschow, 1991;Yamaguchi et al., 2017). A 50 

misrepresentation of the autoconversion process in GCM’s can affect not only the hydrological 51 

cycle but also generate compensating errors in the aerosol-cloud interactions (Michibata and 52 

Suzuki, 2020). 53 

 54 

The core component of autoconversion is the production and growth mechanisms of drizzle drops. 55 

Drizzle, by definition, refers to liquid droplets with a diameter between 40 µm and 500 µm (Wood, 56 

2005a;Glienke et al., 2017;Zhang et al., 2021). Drizzle is frequently observed in the warm cloud 57 

system and can modulate the cloud organizational structure and the boundary layer system in 58 

several ways: the drizzle production process tends to warm the cloud layer and stabilize the 59 

boundary layer, which reduces cloud top entrainment and produces thicker clouds (Wood, 60 

2012;Nicholls, 1984;Ackerman et al., 2009); the coalescence process can reduce cloud droplet 61 

concentration and cause cloud precipitation (Wood, 2006); furthermore, drizzle also plays a critical 62 
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role in the formation of the open-cell pattern of stratocumulus (Wang and Feingold, 2009;Feingold 63 

et al., 2010) and tends to promote the stratocumulus to cumulus transitions process (Paluch and 64 

Lenschow, 1991;Yamaguchi et al., 2017). 65 

 66 

Despite the importance role of drizzle plays on the marine bounday layer, a thorough 67 

understanding of its existence is incomplete due to the detection limitation. Historically, in-situ 68 

and remote sensing measurements have been used to detect drizzle in cloud (Leon et al., 69 

2008;Wood, 2005a;Wu et al., 2015;Yang et al., 2018;VanZanten et al., 2005). In-situ 70 

microphysical probes can provide size-resolved microphysical properties, importantly, Drop Size 71 

Distribution (DSD), from which drizzle drops can be easily identified according to their definition. 72 

The disadvantage of in-situ observations is the limited datasets collected during field campaigns, 73 

making it challenging to provide long term statistical analyses. Millimeter-wavelength radar, 74 

commonly known as cloud radar, is widely used for cloud/drizzle detections (Kollias et al., 2007a). 75 

The total received backscatter power of droplets is converted to radar reflectivity factor, which is 76 

independent of the radar wavelength in the cloud/drizzle regime, and is proportional to the sixth 77 

power of the diameter of the particles in the radar resolution volume1.  Compared with cloud 78 

droplets, drizzle drops have larger diameters, which produce greater reflectivity, and this signature 79 

is widely used to differentiate cloud/drizzle signals. Different reflectivity thresholds, ranging from 80 

-15dBZ to -20dBZ, have been applied in previous studies to identify drizzle existence (Frisch et 81 

al., 1995;Liu et al., 2008;Comstock et al., 2004). Nevertheless, this reflectivity-based technique 82 

has obvious drawbacks. As reflectivity is the summation of the backscattered power from all the 83 

droplets in a radar volume, the reflectivity threshold can detect the presence of drizzle drops only 84 

when their contribution to the total radar backscatter exceeds that of the cloud droplets.  More 85 

specifically, when cloud droplets dominate the reflectivity signal, even if drizzle drops exist, they 86 

fail to be detected as the total reflectivity is usually lower than -20 dBZ; this indicates that the 87 

reflectivity-based technique is unable to detect small drizzle particles (Kollias et al., 2011b).  88 

 89 

Besides reflectivity, another radar observed quantity which is sensitive to the presence of drizzle 90 

is the skewness of the radar Doppler spectrum (hereafter skewness). Skewness is the third moment 91 

of the radar-observed Doppler spectrum and is a measure of the asymmetry of the spectrum. For 92 

 
1 It is noted that attenuation is not considered in this study. 
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cloud droplets, Doppler spectra are on average symmetric with skewness equal to zero; as drizzle 93 

drops grow and start falling, their terminal velocity is recorded in the fast-falling part of the 94 

Doppler spectra, which has greater backscatter power than the power contributed by cloud droplets, 95 

leading to  asymmetric spectra with a non-zero skewness (Kollias et al., 2011b;Luke and Kollias, 96 

2013). The capability of using skewness to detect early drizzle development stages was 97 

demonstrated in Acquistapace et al. (2019). In Acquistapace et al. (2019) a threshold of the 98 

skewness is used as part of the detection algorithm. Considering the noisiness in the estimation of 99 

the third moment of the radar Doppler spectrum, the use of a fixed threshold value can lead to 100 

considerable misclassifications.  Here, a supervised Machine Learning (ML) algorithm is used to 101 

provide a more robust detection of drizzle particles in warm stratiform clouds. First, in-situ DSD 102 

measurements are used as input to a sophisticated radar Doppler spectrum simulator that can 103 

accurately represent the performance of the ARM profiling cloud radars in estimating the 104 

corresponding radar-observed reflectivity and skewness. Next, the ML algorithm is trained from 105 

2 months of in-situ observations to generate a classification model; the classification results from 106 

one case study will be presented and compared against the in-situ measurements. Finally, 107 

comprehensive datasets from three ARM observational campaigns are used to investigate drizzle 108 

occurrence and demonstrate the omnipresence of drizzle in marine stratocumulus clouds.  109 

 110 

2.Instruments and Data 111 

 112 

The data used in this study are collected from three observatories operated by the U.S. Department 113 

of Energy’s Atmospheric Radiation Measurement (ARM) facility. The Eastern North Atlantic 114 

(ENA) is a permanent observational site established on Graciosa Island in the Azores archipelago 115 

in 2013 as representative of a maritime environment. The Aerosol and Cloud Experiments in the 116 

Eastern North Atlantic (ACE-ENA) field campaign was conducted in the vicinity of the ENA site 117 

from June 2017 to February 2018. The Gulfstream-1 aircraft was deployed during ACE-ENA to 118 

provide in-situ measurements. The Marine ARM GPCI Investigation of Clouds (MAGIC) 119 

campaign was based on a mobile observatory facility traversing between Los Angeles, California, 120 

and Honolulu, Hawaii, from October 2012 to September 2013. Measurements of Aerosols, 121 

Radiation, and Clouds over the Southern Ocean (MARCUS) was a field campaign conducted from 122 

October 2017 to April 2018 along the route between Hobart, Australia, and the Antarctic. All of 123 
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the observational campaigns were equipped with a variety of instruments which provide 124 

comprehensive datasets being used in this study.  125 

 126 

The primary instrument being used in this study is the cloud radar: a Ka-Band ARM Zenith Radar 127 

(KAZR) was operated at ENA and MAGIC and a W-Band ARM Cloud Radar (WACR) was used 128 

during MARCUS. The KAZR and WACR are both vertically pointing with 30 m range resolution; 129 

the temporal resolution of the WACR and KAZR used at ENA is 2 s, while the temporal resolution 130 

of the KAZR used for MAGIC is 0.36 s. To make the observations comparable, radar moments 131 

from MAGIC are averaged over 2 s to be consistent with the ones collected at ENA and MARCUS. 132 

Radar reflectivity and Doppler skewness are obtained from the Microscale Active Remote Sensing 133 

of Clouds (MicroARSCL) product (Kollias et al., 2007b). Radar reflectivity at ENA and MAGIC 134 

is calibrated with surface-based measurements of the raindrop PSD using a disdrometer (Gage et 135 

al., 2000;Kollias et al., 2019). At MARCUS, a disdrometer is not suitable for radar calibration thus 136 

instead we follow Mace et al. (2021) by adding 4.5 dB to the reflectivity for WACR calibration. 137 

In addition, a ceilometer and microwave radiometer (MWR) are used to estimate cloud base height 138 

and liquid water path (LWP). The time resolution of the MWR and ceilometer are 10 s and 15 s 139 

respectively. Besides the surface-based observations, in-situ measurements from ACE-ENA 140 

during the intensive observation period 1 (IOP1) which was conducted from 21 June to 20 July in 141 

2017 are also used in this study. The DSD of hydrometeors with diameter ranging from 1.5 µm to 142 

9075 µm  are characterized using combined measurements from the fast cloud droplet probe 143 

(FCDP), 2-dimensional stereo probe (2D-S) and high-volume precipitation spectrometer (HVPS-144 

3). Liquid water content is measured using a multi-element water content system and a Gerber 145 

probe. 146 

 147 

3.Methodology 148 

 149 

As Doppler skewness is a sensitive indicator of weak drizzle signals, the focus of the methodology 150 

is to synthesize this quantity with reflectivity to construct a robust drizzle detection algorithm. 151 

Thus, the key issue lies in the challenging task of determining the appropriate reflectivity/skewness 152 

combination to identify drizzle signals. Here we address this problem in a novel way: first we 153 

identify the existence of cloud/drizzle based on in-situ observed DSDs; then a well-established 154 
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Doppler spectrum simulator is applied to emulate the radar observed spectrum for the given DSD 155 

and estimate the corresponding reflectivity and skewness. Finally, the resulting collection of well-156 

defined cloud/drizzle datasets is trained by a machine learning algorithm to resolve the drizzle 157 

identification function. 158 

 159 

3.1 Doppler spectrum simulation 160 

 161 

According to previous studies, liquid droplets with diameter exceeding 40 µm are defined to be 162 

drizzle (Wood, 2005a;Zhang et al., 2021). We follow this definition to classify the in-situ observed 163 

DSD: cloud/drizzle are defined by the maximum diameter in the DSD being smaller/larger than 164 

40 µm. Example DSDs of cloud-only and mixed cloud-drizzle conditions are shown in Fig. 1a and 165 

Fig. 1c. Next, the Doppler spectrum simulator developed by Kollias et al. (2011a) is applied to 166 

generate the radar-observed Doppler spectrum based on the in-situ DSD. The associated simulator 167 

parameters are set as follows: Doppler spectra are generated with 256 FFT bins and a Nyquist 168 

velocity of ±6 m/s, which correspond to the KAZR configuration operated by ARM (Kollias et 169 

al., 2016); turbulence broadening (𝜎#) is set as 0.2m/s which is obtained from local observations: 170 

for radar observation with reflectivity smaller than -20 dBZ, Doppler spectra width is mainly 171 

contributed by turbulence and can be used to estimate 𝜎#. The KAZR-observed spectral width 172 

collected from the ACE-ENA IOP1 indicate that the mean value of the  𝜎# is estimated as 0.2 m/s 173 

(Fig. S1). Finally, radar noise is simulated by adding random perturbation to the Doppler spectra; 174 

positive velocity indicates downward motion. A detailed description of the Doppler spectrum 175 

simulator application is found in Zhu et al. (2021).  Once a spectrum is generated, a post-processing 176 

algorithm (Kollias et al., 2007b) is used to eliminate noise (Hildebrand and Sekhon, 1974) and to 177 

estimate the Doppler moments, i.e. reflectivity and skewness. To demonstrate that the simulator 178 

can represent radar observations, the simulated reflectivity and skewness are compared with 179 

KAZR observations (Fig. S2) and shows consistent ranges and distribution pattern, indicating that 180 

the simulated radar moments are capable to represent the real observation signal. The relatively 181 

large fraction of the in-situ measurements with dBZ > -20 in Fig. S2 is likely caused by the 182 

different observational strategies between in-situ and KAZR measurements (Wang et al., 2016).  183 

 184 
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Fig. 1b and 1d show examples of the simulated Doppler spectra along with the estimated 185 

reflectivity and skewness for a cloud-only and mixed cloud-drizzle DSD. It is noticed for the 186 

drizzle case (Fig. 1d), reflectivity is well below the conventional threshold (-20 ~ -15 dBZ) used 187 

for drizzle detection and is unable to discriminate it from the cloud-only case (Fig. 1b). Skewness, 188 

however, shows a significant difference between drizzle (0.5) and cloud (0), emphasizing the 189 

importance of including skewness as an additional indicator for drizzle detection. 190 

 191 

3.2 Machine Learning algorithm application 192 

 193 

From the IOP1 of ACE-ENA, 6000 in-situ observed DSDs (2000 for cloud-only and 4000 for 194 

mixed cloud-drizzle) are selected from the cloudy samples defined as having liquid water content 195 

larger than 0.01 gm-3 (Zhang et al., 2021). For each DSD, the spectrum simulator is applied to 196 

estimate the reflectivity and Doppler skewness. The distribution of these two quantities for all the 197 

selected datasets is shown in Fig. 2. It shows that drizzle with positive skewness tends to be 198 

associated with reflectivity lower than -20 dBZ. For reflectivity ranging from -35 to -25 dBZ and 199 

skewness around zero, the drizzle signal overlaps with cloud; this region represents the early stage 200 

of drizzle initiation with low reflectivity and indistinguishable skewness features compared with 201 

cloud signals.   202 

 203 

In order to determine the classification boundary to distinguish cloud/drizzle categories (i.e. 204 

red/blue points in Fig. 2), we apply a supervised machine learning algorithm which is widely used 205 

in classification-related problems, the Support Vector Machine (SVM) (Cortes and Vapnik, 206 

1995;Vapnik et al., 1997). SVM handles complicated data classification tasks by solving 207 

optimization relationships and finding the optimal classification equations in the feature space. 208 

There are three reasons to use SVM in this study: 1) SVM is nonparametric and thus does not 209 

require specification or assumption of the classification equation; 2) By applying the appropriate 210 

kernel, SVM can generate a non-linear classification boundary to classify non-linearly separable 211 

datasets; 3) The decision boundary resolved by SVM will separate the categories with maximum 212 

distance; this is a distinctive feature of the SVM algorithm which is extensively used in a variety 213 

of areas (Ma and Guo, 2014).  214 

 215 
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For the collected cloud/drizzle datasets, 80% of them are used for training, and the remain 20% 216 

for validation. Inputs to the SVM are Doppler skewness and reflectivity, where the reflectivity 217 

from -50 dBZ to 0 dBZ is normalized from -1 to 0; the output is classified as either cloud (0) or 218 

drizzle (1). Here the Radial Basis Function (RBF) with two tuning parameters, Γ and C, is used as 219 

the SVM kernel (Keerthi and Lin, 2003). The RBF kernel is one of the most widely used kernels 220 

due to its similarity to the Gaussian distribution. The Γ parameter determines the curvature of the 221 

decision boundary with a high value indicating more curvature for capturing the complexity of the 222 

dataset; C is a regularization parameter to set the classification accuracy versus the maximization 223 

of the decision function margin; a lower C leads to a larger margin, and a simpler decision function 224 

at the cost of training accuracy. Following Davis and Goadrich (2006), we use precision/recall to 225 

evaluate the performance of the classification outcome. In this study, precision refers to the number 226 

of correct drizzle detections divided by total drizzle detections reported by the SVM, and recall 227 

refers to the number of the correct drizzle detections divided by the number of true drizzle 228 

occurrences in dataset. Different combinations of RBF parameters with Γ ranging from 1 to 500 229 

and C from 1 to 1000 are applied, with the classification outcome shown in Table 1. Here we 230 

choose Γ = 50 and C = 1 as the preferred parameters to produce classification results with precision 231 

and recall as 98% and 85%, respectively. That is, for the cloud-drizzle dataset collected at ACE-232 

ENA, at most, 85% of the drizzle can be detected by the algorithm and among the detection 233 

outcomes, 98% are true drizzle signals.  234 

 235 

The resolved classification boundary is shown as the black line in Fig. 2. We can see the algorithm 236 

reasonably separates the cloud/drizzle clusters; the resolved skewness threshold being used to 237 

distinguish cloud/drizzle is around ±0.2, and the maximum reflectivity used for classification is -238 

20dBZ. These values are consistent with previous studies (Frisch et al., 1995;Liu et al., 239 

2008;Kollias et al., 2011b;Acquistapace et al., 2019).  We further estimate the cumulative 240 

distribution function (CDF) of the correctly detected drizzle samples as a function of dBZ from 241 

the ML technique (magenta solid line in Fig. 2) and from the traditional method with reflectivity 242 

threshold ranging from -20 to -15 dBZ. (magenta shading in Fig. 2). It is noticed that drizzle can 243 

be detected with dBZ <-30 from the ML method; this value is significantly lower than for 244 

traditional thresholds in use. The ML method is more sensitive to the weak drizzle signals than the 245 

dBZ thresholds that have been proposed. Specifically, compared to the ML technique, 35% and 246 

https://doi.org/10.5194/acp-2021-1102
Preprint. Discussion started: 7 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 9 

21% of the drizzle are missed by the reflectivity threshold approach when using dBZ >-20 and 247 

dBZ >-15, respectively. Another important implication of this result is that dBZ >-15 is 248 

traditionally applied by CloudSat to identify light rain incidence (Haynes et al., 2009); here we 249 

demonstrate that a more robust threshold is likely to be much lower. 250 

 251 

Besides the encouraging performance of the ML technique, some noticeable issues can be 252 

identified: 1) Compared with the true CDF of the drizzle fraction (dotted magenta line in Fig. 2), 253 

20% of drizzle is undetected. This missing drizzle subset, as explained previously by the 254 

overlapping area, is composed of tiny drizzle embryos that have yet to develop distinctive features 255 

compared with their cloud counterparts. 2) Another issue is the unrealistic broadening of the 256 

classification boundary for reflectivity lower than -35dBZ; this issue is related to the kernel being 257 

applied in the SVM algorithm. Since drizzle rarely exists below -35 dBZ, this issue will not affect 258 

the classification performance as far as we are concerned.  259 

 260 

4.Results 261 

 262 

The ML-based drizzle detection algorithm is applied to the dataset collected at three ARM 263 

observatories. First, an example case is presented for which aircraft observations are available and 264 

the corresponding in-situ measurements are used to demonstrate the performance of the algorithm. 265 

Then, the drizzle occurrence on classified stratocumulus clouds at ENA, MARCUS and MAGIC 266 

observatories are presented; the differences of the drizzle occurrence from the proposed machine 267 

learning based algorithm (hereafter MLA) and the traditional dBZ-based algorithm (hereafter 268 

dBZA) are compared to indicate that drizzle occurrence in stratocumulus clouds is far more 269 

frequent that has been previously suggested. For the dBZA, we use reflectivity >-17 dBZ for 270 

drizzle identification, while the application of other thresholds ranging from -20 to -15 dBZ did 271 

not affect the results as discussed.  272 

 273 

4.1 Single cloud layer case 274 

 275 

For the selected case (Fig. 3), a thin cloud layer with thickness around 150m is identified. Cloud 276 

signals is very weak with 99% of reflectivity lower than -17 dBZ. However, considerable large 277 
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skewness values shown in Fig. 3b indicates the presence of the drizzle particles. The classification 278 

results from the MLA classification are shown in Fig. 3c, it can be seen that drizzle is omnipresent 279 

and spread throughout the cloud layer, mixed with cloud-only detections. 280 

 281 

Here the in-situ observed DSD is used to verify the MLA detection. On June 30th, 2017, aircraft 282 

measurements were conducted from 09:27 to 13:16 UTC. We constrained the in-situ 283 

measurements to be within 20 km of the ENA observatory (Fig. 4). Considering that the average 284 

in-cloud wind speed is 3.7 m/s, the distance of 20 km is equivalent to around 1.5 hour of KAZR 285 

observations; thus, the radar measurements from 08:00 to 13:30 UTC are selected to match the 286 

aircraft observations. We assume the signal of the drizzle/cloud occurrence collected from the in-287 

situ measurements can be used to verify the drizzle presence observed from KAZR. For the 288 

selected period, drizzle occurrence is 47% from the MLA detections and 65% from the in-situ 289 

observations.  The 18% of the missing drizzle by MLA is largely attributed to the “overlapping 290 

area” shown in Fig. 2 indicating the early stage of drizzle embryos which are indistinguishable 291 

from cloud droplets. Nevertheless, this comparison provides strong evidence that drizzle is widely 292 

present in the cloud layer for the selected case and demonstrates that the classification results from 293 

MLA are reliable. Contrastingly, negligible drizzle signals (0.05%) are detected with the 294 

reflectivity-based (dBZ >-17) technique. 295 

 296 

4.2 Drizzle occurrence at ARM campaigns 297 

 298 

During the operational periods of ACE-ENA, MARCUS and MAGIC, single-layer marine 299 

stratocumulus clouds are selected with cloud top temperature greater than 0	℃ and cloud top 300 

height lower than 4000 m.  The moving standard deviation of cloud top height within 30-minutes 301 

(𝜎) is calculated and profiles with 𝜎 larger than 200 m are excluded to reject non-stratocumulus-302 

type clouds. LWP retrievals are biased when MWR is wet; thus, radar profiles with their lowest 303 

range gates containing hydrometeor detections are considered to be precipitation and are removed 304 

from the analysis. A complete list of the days being used is shown in Table 2. In total, 204, 72, and 305 

215 hours of radar observation were selected from the ACE-ENA, MARCUS and MAGIC 306 

campaigns.  307 

 308 
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In order to composite cloud layers with different thickness, cloud height is normalized between 0 309 

to 1 as: 310 

ℎ = 	
𝐻 − 𝐻$
𝐻# − 𝐻$

 311 

 312 

Where H is the physical height of a given radar gate, 𝐻# and 𝐻$ is the cloud top and base height. 313 

h=0 represents cloud base and h=1 indicates cloud top. 314 

 315 

Drizzle occurrence is calculated as the number of drizzle detections divided by the total observed 316 

signals in each normalized height bin (0.1) and LWP bin (50 g m-2). The drizzle occurrence being 317 

detected from both methods at the three ARM observatories are shown in Fig. 5. For all the 318 

observational site/campaigns, drizzle is more likely to occur as LWP increases. This tendency 319 

holds true despite the drizzle detection method being used. However, for each observational 320 

campaign, drizzle occurrence detected from MLA (Fig. 5 a, b, c) is always larger than from dBZA 321 

(Fig. 5 d, e, f). This difference becomes significant especially for thin clouds with low LWP: when 322 

LWP is under 50 g m-2, or equivalently, cloud thickness is less than 200 m (Fig. 6), drizzle 323 

occurrence being detected from dBZA is around 0.1 while it is 0.4~0.5 from MLA.  This result 324 

clearly indicates that the traditional drizzle detection method based on a reflectivity threshold 325 

significantly underestimates the true drizzle occurrence, especially in thin cloud layers. To 326 

quantitatively describe the detection performance, we estimate the relative percentage difference 327 

of the drizzle detections between two methods as follows: 328 

𝑃%&'	(%) =
𝑁(%),%&' − 𝑁+,-),%&'

𝑁(%),%&'
∗ 100 329 

Where 𝑁(%),%&' and 𝑁+,-),%&' indicate the number of the drizzle detection by MLA and dBZA 330 

respectively for a given LWP category. The results (Fig. 7a) indicate that when LWP is smaller 331 

than 50 g m-2, which frequently occurs under the ENA and MAGIC campaigns (Fig. 7b), 90% of 332 

drizzle are missed by dBZA at ENA and MARCUS, and 60 % of drizzle is undetected at MAGIC 333 

compared with MLA. An application of a relative lower reflectivity threshold with dBZ< -20, to 334 

some degree, mitigate the missing drizzle detections compared with MBL, but still with   50~80% 335 

of the drizzle being undetected (shading area in Fig. 7a).  336 

 337 
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Besides the considerable drizzle signals missed by dBZA, another implication to be noted is the 338 

difference of drizzle distribution among the three ARM campaigns. Specifically, large drizzle 339 

fractions tend to occur in the upper part of cloud at ENA and in the lower parts of cloud at 340 

MARCUS and MAGIC (Fig. 5). When compared with MLA, the missing drizzle detections based 341 

on dBZA are much more significant for ENA/MARCUS than for MAGIC (Fig. 7a). The different 342 

drizzle distribution pattern suggests that clouds among these three campaigns might have different 343 

microphysical properties and processes that controls the drizzle initiation. For instance, the 344 

contrasting thermodynamics environment among the ARM campaigns with low/high temperature 345 

and humidity at MARCUS/MAGIC might leads to different autoconversion process which control 346 

the drizzle formation. In particular, we suspect that a more humid environment under MAGIC will 347 

benefits the generation of larger cloud droplets compared with the other campaigns (Laird et al., 348 

2000;Zhou et al., 2015). Fig. 8 supports this hypothesis by showing that the mean cloud reflectivity 349 

at MAGIC is 8dB larger than it is at the other two campaigns for LWP smaller than 100 gm-2. The 350 

relatively large dBZ for small LWP, to some degree, mitigates the underrepresented drizzle 351 

detection by the reflectivity-based method. 352 

 353 

5.Conclusion and Discussion 354 

 355 

Building on the concept that radar Doppler spectra skewness is more sensitive to drizzle presence, 356 

a new method of detecting drizzle in marine boundary clouds is presented. In-situ observed DSDs 357 

are used to unambiguously classify cloud and drizzle particles; then, a radar Doppler spectra 358 

simulator is applied to estimate the expected radar-observed reflectivity and skewness. Extensive 359 

datasets collected from the ACE-ENA campaign are trained via the ML-based algorithm to 360 

optimally determine a classification equation of cloud/drizzle. The proposed algorithm is validated 361 

by the in-situ measurements to successfully detect weak drizzle signals, which are completely 362 

missed by the traditional reflectivity-based technique.  363 

 364 

The drizzle/cloud classification outcome of a thin cloud layer observed on June 30, 2017 at ENA 365 

was presented to show the performance of the detection algorithm.  It was found that even for thin 366 

cloud with thickness less than 150 m, a significant amount of drizzle already exists; this 367 

classification result is further verified by the in-situ observations. Furthermore, a statistical 368 
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analysis compares the drizzle occurrence from two detection methods at the ACE-ENA, MARCUS 369 

and MAGIC field campaigns. The results indicate that drizzle is ubiquitous in cloud layers and its 370 

existence has been significantly underestimated by conventional reflectivity-based methods, 371 

especially in thin cloud layers. The drizzle occurrence and vertical structure differ among the three 372 

campaigns, indicating that drizzle formation and distribution in marine stratocumulus clouds might 373 

be regime dependent, determined by microphysical and dynamical process in the local region. In 374 

this study, data from the three observational campaigns are used to explore the drizzle frequency 375 

of marine stratocumulus in middle/high latitude regions; however, it is quite possible that the 376 

drizzle occurrence from other locations might differ from the presented results. A complete 377 

understanding of the drizzle climatology in marine stratocumulus clouds calls for more campaign 378 

observations and continuing investigations. 379 

 380 

The results in this study provide a new perspective for viewing drizzle existence in radar 381 

observations with the hope of shedding light on several critical topics in the warm cloud studies: 382 

1) In most microphysics retrieval algorithms, the existence of drizzle particles is determined by a 383 

reflectivity threshold. However, this study shows the presence of significant drizzle drops during 384 

low reflectivity conditions (lower than -20 dBZ) and a lack of considering this may lead to a certain 385 

degree of the retrieval uncertainty; 2) Drizzle production mechanisms are widely regarded as a 386 

critical missing piece of the puzzle in warm cloud research (Takahashi et al., 2017). Particularly, 387 

the parameterization schemes of the autoconversion/accretion processes in numerical models have 388 

large variations among each other, leading to significant uncertainty in future climate predictions 389 

(Michibata and Suzuki, 2020;Wood, 2005b). The results presented in this study can be used to 390 

verify the proposed parameterization schemes by comparing the drizzle climatology. 3) 391 

Furthermore, the novel utilization of in-situ and remote sensing synthesis of observations presented 392 

in this study yields insights on the potential of combined multi-platform observations to investigate 393 

the microphysical processes in warm clouds.  394 

 395 

 396 

 397 

  398 

 399 
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Figures and Tables: 575 

 576 

Figure 1: In-situ observed DSD of cloud-only (a) and the corresponding simulated Doppler Radar 577 
spectrum (b), reflectivity and skewness of the spectrum are indicated in the upper left corner.  (c) 578 
and (d) are same as (a), (b) but for mixed cloud-drizzle DSD.  The dash line in (a), (c) indicates 579 
diameter with 40 𝜇𝑚. 580 
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 588 

 589 

Figure 2: Distribution of the cloud-only (red points) and mixed cloud-drizzle (blue points) samples 590 
from the in-situ observation over the reflectivity-skewness space. The black line indicates the 591 
classification boundary of cloud/drizzle resolved by Machine Learning algorithm. Right axis 592 
indicates the CDF of all correctly identified drizzly samples as a function of reflectivity by each 593 
method: dotted magenta line is for the in-situ observations, which represents the true value; solid 594 
magenta line is for the ML technique; the magenta shading is for the reflectivity-based technique 595 
with upper boundary using dBZ > -20 and lower boundary using dBZ > -15; the dashed magenta 596 
line is for the reflectivity-threshold technique with dBZ > -17. 597 
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Table 1: Precision(P) and Recall(R) of the drizzle/cloud classification outcome for different 608 
combination of C and Γ. The dark shaded cell represents the classification performance for the 609 
selected parameters (C=1, Γ=50) being used in the study. 610 
 611 

						Γ 

   C       
1 10 50 100 200 500 

1 
0.99(P) 

0.82(R) 

0.98(P) 

0.85(R) 

0.98(P) 

0.85(R) 

0.98(P) 

0.85(R) 

0.97(P) 

0.86(R) 

0.92(P) 

0.87(R) 

10 
0.99(P) 

0.84(R) 

0.98(P) 

0.85(R) 

0.98(P) 

0.85(R) 

0.98(P) 

0.85(R) 
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0.85(R) 
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0.86(R) 
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0.99(P) 

0.84(R) 
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0.85(R) 

0.97(P) 
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 623 

 624 

Figure 3: Reflectivity (a), skewness (b) and the classification mask (c) on June 30, 2017, at ENA 625 
site. Black line indicates the ceilometer-determined cloud base, magenta line in (a) indicates 626 
altitude track of the aircraft during the observation period.  627 
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 633 

Figure 4: Aircraft track (black line) during the operational period on June 30, 2017. Shaded circle 634 
indicates the area within 20km around ENA site. The arrow in the upper right corner indicates 635 
mean wind direction and wind velocity in cloud layer during the observational period. 636 
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 651 

 652 

Table 2: Selected stratocumulus days in ACE-ENA, MAGIC and MARCUS campaigns. 653 

ARM site Selected Days 

ENA 

20170603, 20170604, 20170605, 20170616, 20170617, 20170627,20170628, 

20170630, 20170701,20170702, 20160703, 20170706, 20170707, 20170709, 

20170713,20170714, 20170715, 20170718, 20170719 

  MAGIC 

20121016, 20121020, 20121030, 20121105, 20130526, 20130604,20130605, 

20130708, 20130709, 20130710, 20130717, 20130720, 20130721,20130722, 

20130729, 20130730, 20130731, 20130804 

MARCUS 20180109, 20180110 ,20180228, 20180301, 20180322, 20180323 

 654 

 655 
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 664 

Figure 5: Vertical distribution of drizzle occurrence categorized by LWP based on MLA under 665 
ENA (a), MARCUS (b) and MAGIC (c) observational campaigns. (d), (e) and (f) are same as (a), 666 
(b), (c) except the drizzle is detected by dBZA. 667 
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Figure 6: Joint histogram of cloud thickness and LWP at three campaigns: (a) ENA, (b) MARCUS 675 
and (c) MAGIC. The black line indicates the mean cloud thickness in each LWP category. For 676 
comparison, the relationship between mean cloud thickness and LWP at three campaigns (black 677 
line in (a),(b),(c) ) are shown in (d). 678 
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 689 

Figure 7: (a) Relative percentage difference of drizzle detection between the dBZA (dBZ > -17) 690 
and MLA as a function of LWP at ARM observational campaigns: ENA (red line), MARCUS 691 
(blue line) and MAGIC (black line). The shading area indicates same results but with different 692 
reflectivity threshold being used: the upper boundary is for the dBZ > -15 and the lower 693 
boundary is for dBZ > -20. (b) Histogram of the LWP distribution collected at three campaigns: 694 
ENA (red line), MARCUS (blue line) and MAGIC (black line). 695 
 696 

Figure 8: Mean KAZR reflectivity of the hydrometeor signal as a function of LWP at three 697 
campaigns: ENA (red line), MARCUS (blue line) and MAGIC (black line). 698 
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