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Key Points 17 

• Unforced variability of the climate system, primarily ENSO, plays a key role in the 18 

occurrence of extreme events. 19 

• Uncertainty of internal variability is shown to reduce as one looks at larger regions or at a 20 

global perspective by using the large Ensembles. 21 

• Increases of heat wave indices are significant between 1.5°C and 2.0°C of warming and 22 

the risk of facing extreme heat events is higher in low GDP regions. 23 

24 
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Abstract 25 

 This study investigates the impact of global warming on heat and humidity extremes by 26 

analyzing 6-hourly output from 28 members of the Max Planck Institute Grand Ensemble driven 27 

by forcing from a 1%/year CO2 increase. We find that unforced variability drives large changes 28 

in regional exposure to extremes in different ensemble members, and these variations are mostly 29 

associated with ENSO variability. However, while the unforced variability of the climate can 30 

alter the occurrence of extremes regionally, variability within the ensemble decreases 31 

significantly as one looks at larger regions or at a global population perspective. This means that, 32 

for metrics of extreme heat and humidity analyzed here, forced variability of the climate is more 33 

important than the unforced variability at global scales. Lastly, we found that most heat wave 34 

metrics will increase significantly between 1.5°C and 2.0°C, and that low GDP regions shows 35 

significant higher risks of facing extreme heat events compared to high GDP regions. 36 

Considering the limited economic adaptability of population to heat extremes, this reinforces the 37 

idea that the most severe impacts of climate change may fall mostly on those least capable to 38 

adapt.   39 
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1. Introduction 40 

 The long-term goal of the 2015 Paris agreement is to keep the increase in global 41 

temperature well below 2°C above pre-industrial levels, while pursuing efforts and to limit the 42 

warming to 1.5°C. Given that no one lives in the global average, however, understanding how 43 

these global average thresholds translate into regional occurrences of extreme heat and humidity 44 

is of great value(Harrington et al., 2018). Various studies have reported that regional extreme 45 

heat events and heat waves will not only be more frequent, but also more extreme in a warmer 46 

world. This was discussed in various assessment and reports such as US National Climate 47 

assessment and IPCC (Melillo et al., 2014;Wuebbles et al., 2017;Hoegh-Guldberg et al., 48 

2018;Masson-Delmotte et al., 2018) and it is reported to have significant impacts on human 49 

society and health. 50 

Many criteria and indices have been used to assess extreme heat, such as the absolute 51 

increase of maximum temperature from the reference period (Wobus et al., 2018), risk ratio 52 

(Kharin et al., 2018), and heat wave magnitude index (Russo et al., 2017). In this study, we 53 

utilize four locally defined heat wave indices from Fischer and Schär (2010) and Perkins et al. 54 

(2012) of duration, frequency, amplitude, and mean. We also focus on consecutive-day extremes, 55 

which are known to cause more harm than single-day events (Baldwin et al., 2019;Simolo et al., 56 

2011;Tan et al., 2010). In addition, because the combined effect of temperature and humidity is 57 

known to affect human health by reducing the body’s ability to cool itself through perspiration, 58 

wet-bulb temperature is frequently analyzed (Kang and Eltahir, 2018) and we will do so here.  59 

Climate extremes are always a combination of long-term forced climate change acting in 60 

concert with unforced variability (Deser et al., 2012).  Thus, characterizing and quantifying the 61 

variability of the climate system is crucial in assessing the future risk of extreme events. There 62 
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have been numerous studies that links dominant modes of unforced variability to extreme events. 63 

Temperature connections with El Niño Southern Oscillation (ENSO) (Thirumalai et al., 64 

2017;Meehl et al., 2007), Pacific Decadal Oscillation (PDO) (Birk et al., 2010) , Atlantic 65 

Multidecadal Oscillation (AMO) (Zhang et al., 2020) have been investigated from the previous 66 

studies.  The effect of climate extremes on different populations depends on the level of 67 

economic development, with impacts of heat extremes being more severe in less economically 68 

developed countries (Diffenbaugh and Burke, 2019;Harrington et al., 2016;King and Harrington, 69 

2018). For example, as temperatures go up, increased energy demand to cool buildings will be 70 

required (Parkes et al., 2019;Sivak, 2009).  But this requires resources to both install air 71 

conditioning and then run it. 72 

In this paper, a single-model initial-condition ensemble of 28 runs of a global climate 73 

model (GCM) is used to quantify heat and humidity extremes in a warmer world.  We use 74 

population data to look at population risk as well as thresholds for mortality events in daytime 75 

(Mora et al., 2017) and nighttime (Chen and Lu, 2014). We also utilize per capita gross domestic 76 

product (GDP per capita) data to investigate how climate change impacts different levels of 77 

economic status during extreme events. To quantify the impact on energy demand, we also 78 

quantify changes in cooling degree days and warming degree days. 79 

The rest of the paper will focus on the following topics: Section 2 describes the model 80 

and data used, Section 3 explains the bias-correction method, as well as explaining the metrics 81 

used. Section 4 describes the results of the calculations and associated heat wave events in the 82 

warmer world as well as the role of unforced variability on extreme heat events. Section 5 83 

summarizes the results and suggests directions for the future work. 84 

 85 
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2. Data 86 

2.1. MPI-GE ensembles 87 

  Simulation data in this study come from an ensemble of runs of the Max-Plank Institute 88 

Earth System Model collectively known as the MPI Grand Ensemble (MPI-GE) project (Maher 89 

et al., 2019). Each of the 28 ensemble members branches from different points of a 2000-year 90 

pre-industrial control run and go for 150 years, forced by CO2 concentration increasing at 1% per 91 

year (hereafter, 1% runs).  Because the radiative forcing scales as the log of CO2 concentration, 92 

the 1% runs feature radiative forcing that increases approximately linearly in time. We analyze 93 

6-hourly output with 1.875° × 1.875° spatial resolution for land and near-land ocean areas 94 

between 60°N and 60°S. Our analysis will focus on 2-meter temperature (hereafter, t2m) and 2-95 

meter dew point temperature (d2m), from which 2-meter relative humidity and wet-bulb 96 

temperature (w2m) are calculated using the equations of Stull (2011). 97 

 Unforced variability in the climate system generates uncertainties in the projection of the 98 

climate by impacting the dynamic component of the climate, especially for extreme events (Kay 99 

et al., 2015;Thompson et al., 2015). In this paper, we use the ensemble to allow us to estimate the 100 

impact of unforced variability on temperature extremes. 101 

 We also analyze a 100-member ensemble of runs of the same model with historical 102 

forcing (hereafter, historical runs), which simulates the years 1850-2005.  We also analyze runs 103 

with RCP8.5 forcing, which simulate the years 2006-2100. Like the 1% runs, each historical 104 

ensemble member and it’s RCP 8.5 extension branches from a different point in the same 2000-105 

year control run.  This historical and RCP8.5 ensemble only has monthly average fields.  106 

 107 

2.2. Global population and GDP per capita data 108 
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 Global population data from the NASA Socioeconomic Data and Applications Center 109 

(SEDAC, 2018) are used to weight the heat wave indices by population. The data represent the 110 

population in year 2015 at 30′′ × 30′′ spatial resolution, and we averaged and re-gridded to the 111 

1.875° × 1.875° grid of the MPI model by summing the values in grid boxes surrounding the 112 

MPI grid centers. In our population-weighted calculations, we assume that the relative 113 

distribution of population remains fixed into the future. 114 

 Gridded GDP per capita data (Kummu, 2019) over 1990-2015 are used to estimate the 115 

risk of heat extreme events for different levels of wealth. These data are regridded from the 116 

original 5′′ × 5′′ spatial resolution to the MPI model’s resolution of 1.875° × 1.875° by 117 

averaging the GDP inside the grid box. When averaging the GDP, per capita GDP has been 118 

multiplied by population to estimate the total GDP. Data were then averaged over the 1990-2015 119 

period.  We assume that the relative percentile of GDP per capita for each grid point is assumed 120 

to be fixed into the future, so changes in climate risk are due to exposure to warmer climate 121 

extremes, not changes in relative per capita wealth. 122 

 123 

3. Method of analysis 124 

3.1. Global warming 125 

 Global warming is defined as the global and annual average temperature increase 126 

compared to the first 5 years of the 1% run. We find that ensemble- and global-average t2m 127 

reaches 1.5°C, 2°C, and 4°C occur in years 59, 76, and 133 years, respectively, and reaches 128 

4.59°C at the end of the 150-year run. The increase of global average temperature is nearly linear 129 

for both t2m and w2m (Figure 1a and 1b), consistent with a linear ramping of the forcing. 130 

 131 
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3.2. Bias-correction of 1% runs 132 

 Many GCMs have systematic biases in surface temperature, and various attempts have 133 

been made to correct them (e.g. Li et al. (2010);Thrasher et al. (2012)). In our analysis, we are 134 

mainly interested in the spatial pattern of warming, and to judge the fidelity of that in the MPI-135 

ESM 1.1 model, we compare the 1% runs with ERA-Interim reanalysis data (Dee et al., 2011) 136 

from European Centre for Medium-range Weather Forecast (ECMWF). To do this, we compared 137 

the period 2003-2017 in the ERA-interim with a 15-year period in the 1% runs (years 39-53) 138 

with the same ensemble- and global-average absolute temperature. The ensemble and area-139 

averaged bias for land and near-land ocean areas archived in the 6-hourly dataset is near zero for 140 

t2m, but underestimates w2m over this period by 0.18°C (Figure 1).  141 

But while the ensemble- and area-averaged t2m bias is near zero, the difference is not 142 

zero at all grid points of individual ensemble members.  Figures 2a and 2b show the difference in 143 

the 90th percentile value of t2m and w2m at each grid point calculated over the 15-year period in 144 

the model ensemble minus the 90th percentile value at the same grid point in the ERA-Interim.  145 

Figures 2c and 2d show the difference in median values.   146 

This bias is not the result of unforced variability — it is consistent in all ensemble 147 

members. To show this, we calculate at each grid point the difference between the highest and 148 

lowest 90th percentile temperature in the ensemble divided by the ensemble average 90th 149 

percentile temperature bias between reanalysis data the ensemble, computed where the bias is 150 

greater than 2°C (Figure 2e).  We also do the same for the median temperature (Figure 2f). The 151 

disagreement between the ensembles is at most 37% of the bias in the same region, and the 152 

average is 13% (Figures 2e, f). In other words, the systematic bias of the model compared to 153 

reanalysis exceeds the spread within the ensemble.  154 
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The CDF-t method (Michelangeli et al., 2009) is used to bias correct each ensemble 155 

member of the 1% runs. CDF-t method finds the transformation function that maps the 156 

cumulative density function (CDF) of a GCM to the CDF of a historical reanalysis data in a 157 

reference period, which is year 39-53 in 1% runs and 2003-2017 for ERA-Interim reanalysis 158 

data. This function is then applied to the 1% runs to generate bias-corrected fields. For the values 159 

that fall outside the limits of the CDFs in the reference period, linear extrapolation is used. CDF-t 160 

is known to realistically correct the temperature and precipitation output of GCMs, especially for 161 

extreme events (Vrac et al., 2012;Watanabe et al., 2012). 162 

Bias correction via CDF-t is done for t2m and d2m, and then rh and w2m are calculated 163 

with these bias-corrected fields. The bias is reduced significantly for all regions for both t2m and 164 

w2m (Figures 1c, 1d, 2a-2d). The bias in w2m is mostly caused by the small remaining biases in 165 

t2m and d2m, which are amplified in the w2m calculation. Hereafter, ‘1% runs’ will refer to the 166 

bias-corrected 1% runs. 167 

Since the 1% runs are CO2-only forcing, without aerosol forcing, one might wonder 168 

whether the temperature extremes estimated by these models would apply to a world with a more 169 

realistic forcing that includes aerosols. To determine this, we have compared monthly average 170 

and monthly maximum temperatures from an ensemble of 100 RCP 8.5 scenario runs from the 171 

MPI-GE to the same quantities estimated from the 1% ensemble.  If we compare the ensembles 172 

at points in time when they have 1.5, 2, 3, and 4°C of ensemble- and global-average warming, 173 

we find very small regional differences — the regional ensemble averaged maximum and mean 174 

temperature difference was less than 0.5°C in all regions. Alternatively, since we bias-corrected 175 

the 1% CO2 runs to reanalysis data, which contains aerosol forcing, our bias-corrected 1% CO2 176 

https://doi.org/10.5194/acp-2021-109
Preprint. Discussion started: 22 February 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

runs can be understood as a continuously warming climate driven by CO2, with effect of aerosols 177 

fixed at 2003-2017 period. 178 

 179 

3.3. Heat wave indices 180 

 Identification of heat waves is done in several steps. First, we smooth a daily maximum 181 

temperature (determined form 6-hourly temperatures) using a 15-day moving window for the 182 

first 5 years of 1% runs, which is the period before significant warming has occurred. This was 183 

done at each grid points, followed by a framework from Fischer and Schär (2010). Then, also for 184 

each grid point, the 90th percentile of smoothed daily maximum temperature for the first 5 years 185 

was calculated. This value is used as a threshold for the heat waves. After calculating the 186 

threshold, we calculate the heat wave days, defined as days that exceeds the threshold for three 187 

or more consecutive days (Baldwin et al., 2019). 188 

We then define four indices to represent the characteristics of these heat waves. To 189 

determine the occurrence of events, heat wave duration (HWD; longest heat wave of the year) 190 

and heat wave frequency (HWF; total number of heat wave days in a year) are calculated. From 191 

an intensity perspective, heat wave amplitude (HWA; maximum temperature during heat wave 192 

days during a year) and heat wave mean (HWM; mean temperature during heat wave days in a 193 

year) are selected. These indices are also calculated in an analogous fashion for wet bulb 194 

temperature (w2m), since wet-bulb temperature is arguably more relevant for human health (Heo 195 

et al., 2019;Morris et al., 2019;Buzan and Huber, 2020).  These indices are summarized in Table 196 

l. 197 

 198 

3.4. Deadly days and tropical nights 199 
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Heat wave thresholds are different for each grid point because they are based on pre-200 

industrial baseline at that grid point. Combined with regional differences in the ability to adapt, 201 

this means that heat waves in different regions may have different implications for human 202 

society. We therefore also count the number of days each year with w2m above 24°C, which we 203 

refer to as “deadly days”.  This value is consistent with the analysis of Mora et al. (2017), who 204 

demonstrated that this is the threshold above which fatalities from heat-related illness occur.  A 205 

warm nighttime minimum temperature can be as important as a high maximum temperature for 206 

human health and mortality (Argaud et al., 2007;Patz et al., 2005), so we define “tropical nights” 207 

as a daily minimum t2m over 25°C (Lelieveld et al., 2012). 208 

 209 

3.5. Cooling degree days and heating degree days 210 

 To assess the economic and energy impact of heat extremes, cooling degree days (CDD) 211 

and heating degree days (HDD) are calculated. CDD and HDD are metrics of the energy demand 212 

to cool and heat buildings. For each grid point, annual CDD is calculated by subtracting 18°C 213 

from the daily average temperature and summing only the positive values over the year. HDD is 214 

the absolute value of the sum of the negative values. Although energy demand could be highly 215 

linked to the culture, wealth, population of the region and other meteorological conditions rather 216 

than the daily mean temperature, previous studies reported that CDD and HDD are closely 217 

related to energy consumption (Sailor and Muñoz, 1997). 218 

 219 

4. Results 220 

4.1. Impact of unforced variability of climate on regional heat extremes 221 
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To investigate the impact of unforced variability on more regional heat extremes, we 222 

select 15 large cities spread around the world (Fig. 3a). Figure 3b-d shows the maximum spread 223 

in the number of deadly days and tropical nights within the ensemble — i.e., the difference 224 

between the ensemble member with the highest values of extreme events (deadly days, tropical 225 

nights) minus the member with the lowest — at a year when ensemble- and global-average 226 

temperature reaches the threshold.  227 

This difference within the ensemble is the result of unforced variability and we see that it 228 

varies considerably among the cities. For example, Moscow shows a small spread within the 229 

ensemble members for both deadly days and tropical nights for all periods of global warming. 230 

This is because, even with 4°C of warming, Moscow experiences a maximum of only 8 deadly 231 

days and 25 tropical nights per year. In contrast, with 3°C of warming, a warmer city such as 232 

Kinshasa experiences 148 more deadly days in some ensembles than others, and 55 more tropical 233 

nights. For all 15 cities, average spread in the number of deadly days at 1.5°C, 2.0°C, 3.0°C , and 234 

4.0°C of global warming between the ensemble members with maximum and minimum numbers 235 

is 53.5, 53.2, 63.6, and 56.8 days per year. For tropical nights, the spread is 50.4, 50.3, 50.9, and 236 

52.2 days per year. So, on average, unforced variability can change the number of extreme days 237 

and nights by about two months per year. 238 

Previous work has attempted to distinguish the origin and mechanisms of unforced 239 

variability from temperature and temperature extremes (Meehl et al., 2007;Zhang et al., 240 

2020;Birk et al., 2010). To probe the physical mechanisms affecting this spread of ensembles, 241 

empirical orthogonal function (EOF) analysis was performed separately on the detrended and 242 

normalized time series of deadly days and tropical nights for the 15 cities across the ensemble. 243 
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We aim to find the dominant drivers of unforced variability that impacts representative cities 244 

around the world.  245 

The first three EOF patterns are plotted in Fig. 4. The first EOF mode of deadly days per 246 

year in 15 cities show similar signs for all cities except Istanbul and Kinshasa, where the 247 

magnitude of the EOF is small for both cities. This means that, if one of the cities is hot, then the 248 

others also tend to be hot. The second and third EOFs for deadly days shows more variability 249 

between the cities. The EOFs for tropical nights (Fig. 4d, 4e, 4f) shows more variability, with 250 

higher number of tropical nights in some cities associated with lower values in others.  251 

The PC time series are projected onto detrended annual sea surface temperature (SST) 252 

anomalies. This allows us to investigate how heat extreme events in 15 major cities are 253 

associated with global modes of internal variability. This is also plotted in Fig. 4. All of the 254 

projections of deadly day PCs and projections of the first two modes of tropical nights shows 255 

patterns similar to El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO).  256 

Characteristic patterns for ENSO, PDO, and AMO are calculated for each ensemble using all 257 

150-year of SSTs, and the pattern is averaged over ensembles to come up with a single ENSO, 258 

PDO, and AMO SST for the ensemble. Then, those patterns are compared with the PC projection 259 

on SST. Correlation coefficients between the standard climate indices and PC projected SST is 260 

shown on lower panel of Fig. 4. 261 

Power spectra of the PCs are plotted in Figure 5. Overall, the spectra of the deadly day 262 

PCs look very much like the spectrum for ENSO, but does not have the ~20-year peak of the 263 

PDO spectrum.  This tells us that, in this model at least, the variability in the occurrence of 264 

deadly days in these large cities is strongly regulated by ENSO. The third deadly day PC has 265 

lower correlations with ENSO or PDO index and a peak at both the ENSO period a slightly 266 
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longer period than ENSO, about 10 years, so it is harder to draw firm conclusions about the 267 

mechanism behind it.   268 

The tropical night PCs also show peaks at ENSO periods (Fig. 5b) suggesting that, like 269 

deadly days, tropical night variability is controlled by ENSO.  However, the PC-projected SST 270 

of the third EOF of tropical nights shows high values near Northern Africa and East Asian 271 

region, suggesting that this EOF represents the effect of ENSO on tropical night variability in 272 

this region.    273 

 274 

4.2. Cluster analysis and population risk of heat wave indices 275 

 We calculate HWD, HWF, HWA, and HWM for both t2m and w2m each year at each 276 

grid point, which generates eight different 150-year time series for each of the 28 ensemble 277 

members. Each time series at each grid point is regressed vs. time, yielding a slope and the 278 

intercept for each time series in all of the 28 ensemble members. The 16 variables (8 [heat wave 279 

indices] × 2 [slope, intercept]) are then utilized as a predictor variable for K-means clustering 280 

(Likas et al., 2003) to categorize the spatial variation of heat waves. K-means clustering aims to 281 

classify the observations (grid point over land) into clusters using the Euclidean distance of its 282 

predictor variables (16 variables). The number of clusters (K) in this study is set to 6, using the 283 

elbow method (Syakur et al., 2018).  284 

Figure 6a shows the cluster value that most ensembles assigned to each grid point and it 285 

shows distinct geographical characteristics, as summarized in Table 2 (the result of clustering 286 

shows little difference between the ensemble members).  As might be expected, each cluster 287 

shows a different evolution of heat extremes in warmer world (Figure 7).  Although the warming 288 

signal is largest in the polar regions (Figure 6b), the largest increases of HWD and HWF are 289 
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observed at lower latitudes (in cluster 1 and 2 on Figure 7a-d). This is due to low variability in 290 

these regions compared to polar regions, making it easier for a trend to exceed the heatwave 291 

threshold.  292 

For HWA and HWM, the rate of increase is similar for all clusters, with increases of 293 

HWAt2m and HWAw2m of 3.5 and 2.2°C, respectively (Figure 7e-h). The exception is HWAt2m in 294 

cluster 6.  The large increase of HWAt2m in this region is connected to the strong global warming 295 

signal in high latitudes that has been predicted for decades and now observed (Stouffer and 296 

Manabe, 2017). 297 

Turning to deadly days (Fig. 7i), we find a substantial increase occurs in cluster 1 after 298 

1.5°C of warming; this is important because it gives additional support for the Paris Agreement’s 299 

aspirational goal of limiting global warming to 1.5°C. Almost all of the increases in deadly days 300 

are in low latitudes (cluster 1, 2, and 3). For tropical nights, low latitudes as well as deserts 301 

(cluster 4) contribute most of the increase.  These regions also show more rapid increases when 302 

global average warming exceeds 1.5-2°C. 303 

Figure 7 also shows the spread in within the ensemble for each metric and cluster. We 304 

find that the spread for a cluster is generally smaller than the differences between the clusters. 305 

This suggests that the differences obtained are not due to interannual variability. 306 

 We also generated indices weighted by population. Heat wave indices for the 90th 307 

percentile of population (meaning 10% of the population is exposed to higher values) and 308 

median of the population are depicted in Figure 8. Figure 8a shows that with 4°C of warming, 309 

10% of the Earth’s population will experience heat waves lasting 131 days, and half of the 310 

population will experience heat waves around 64 days long.  These are large increases over 311 

present-day values of 35 days and 17 days.  Notably, the average of the standard deviation 312 
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between the ensembles during 150-yr period are 6.7 days and 3.4 days for the 90th percentile and 313 

median, respectively. This is significantly smaller than values from the regional analyses of cities 314 

in Figure 3, where the unforced variability can make a huge difference in the occurrence of heat 315 

waves.   316 

The rate of increase of HWDw2m and HWFw2m in Fig. 8 accelerates when global average 317 

warming exceeds 1-1.5°C. Given that the planet has already warmed about 1°C above pre-318 

industrial, this suggests that the world may be on the cusp of a rapid increase in wet-bulb 319 

extremes. This is related to the increased slope in Figure 7, in which cluster 1 and 2’s values of 320 

HWDw2m and HWFw2m increase rapidly between 1.5C and 2.5°C of global warming.  At warmer 321 

temperatures, HWDw2m and HWFw2m reach a plateau, since values over 300 days per year means 322 

there is little room for additional increase. For HWAt2m/w2m and HWMt2m/w2m, the increase is 323 

mostly linear. Also note that at 4°C of global warming, HWAw2m reaches 30°C, which while not 324 

immediately fatal to humans may nevertheless indicate great difficulty for even a developed 325 

society to adapt to. 326 

Currently, 5% of the total population faces more than 180 deadly days and 302 tropical 327 

nights per year. This grows to 204 and 333 days, respectively, at 1.5°C warming. With 2°C of 328 

global warming, half of the population will face 2 months of deadly days every year and with 329 

2.5°C of global warming, and 5% of the population will be in an environment where every day in 330 

a year is a tropical night. With 2°C of global warming, the minimum ensemble member of 331 

deadly days and tropical nights is above the maximum ensemble of the current climate. Further 332 

details are also shown in Table 3. 333 

It is notable that, although there is a large spread between the ensemble members in each 334 

city (Figure 3), the spread in the clusters (Figure 7) and population-weighted metrics (Figure 8) 335 
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is not as large. This emphasizes that the effect of unforced variability might be large in small 336 

regions, but as the region expands, opposite signs of variability cancel, so area-average 337 

variability decreases. This is also found in Table 3, where in each case, the standard deviation 338 

between ensembles is less than 10% of the average. This indicates that internal variability will 339 

play a minor role in determining global exposure to temperature thresholds, although different 340 

people may be affected in different climate realizations. 341 

In addition, with 1.5°C of global warming, the lowest ensemble of the 90th percentile of 342 

HWDt2m, HWDw2m, and HWFt2m exceeds the highest ensemble of the same metric in the current 343 

climate (red lines in Figure 8). With 2°C of warming, the minimum ensemble of HWFw2m, 344 

HWAt2m, HWAw2m, and HWMw2m exceed the maximum ensemble of the current climate, and 345 

with 2.5°C of warming, the minimum ensemble of all metrics exceeds the maximum ensemble of 346 

the same metric in the current climate. Thus, this model predicts that the occurrence of extremes 347 

will soon be able to exceed values likely possible in our present climate. 348 

 349 

4.3. Analysis on GDP per capita 350 

 It is well-known that not everyone is equally vulnerable to extreme weather, with rich, 351 

developed countries having more resources to deal with extreme events. In that context, global 352 

gridded GDP per capita is used to calculate average risk at each level of wealth. The ensemble-353 

average result is depicted in Figure 9, which shows the increased number of deadly days and 354 

tropical nights that each level of economic level experience relative to today’s current level of 355 

global warming. This plot assumes that the distribution of population and GDP remains fixed 356 

through time.  357 
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 With 0.5°C increase of global warming, population in lowest 10% of GDP will face 28 358 

more deadly days and 22 more tropical nights increasing compared to present day. In contrast, 359 

the richest 10% will experience 5 and 3 more deadly days and tropical nights for the same 360 

warming. At 3°C above current temperatures (about 4°C above preindustrial temperatures), the 361 

population with the lowest 10% of GDP will experience154 and 162 more days of deadly days 362 

and tropical nights compared to today’s climate. On the other hand, population with the highest 363 

10% of GDP will experience an increase of 26 and 30 days for the same warming. The regions 364 

that contribute the most for the low GDP percentiles are Tropical Africa, including Republic of 365 

the Congo, Kenya, Uganda, Ethiopia, and Sudan, which are in clusters 1 and 2 in our cluster 366 

analysis. The maximum difference of heat wave days between the ensembles is less than 25% for 367 

all GDP and global warming levels.  368 

 369 

4.4. Energy demand on large cities 370 

 Annual CDD and HDD have been calculated for the 15 cities in section 4.1. Fig. 10 371 

shows the percent change of CDD and HDD at 1.5°C, 2.0°C, 3.0°C, and 4.0°C relative to the 372 

pre-industrial CDD and HDD values (average of first 5 year of 1% CO2 runs). This was done for 373 

each city, and for each ensemble member. In 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming, CDD in 374 

15 cities increases by 26%, 38%, 60%, and 82%. This suggests an enormous increase in energy 375 

required for cooling. In contrast, energy demand on cold days (HDD) decreases by 51%, 60%, 376 

68%, and 75%, compared to pre-industrial baseline, suggesting a partially offsetting decrease in 377 

energy required for heating. The spread between the ensemble members is small compared to the 378 

average of the ensembles, except for Moscow.  379 
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Large percentage increases in CDD for Moscow is the result of low pre-industrial CDD 380 

values, so that (relatively) small increases in CDD correspond to large fractional changes, as well 381 

as large differences between ensemble members. The ensemble spread of HDD in Moscow is 382 

also large, compared to other cities. This is not due to low values of HDD – Moscow has highest 383 

HDD value among 15 cities (4062 days °C per year in pre-industrial condition) — but rather that 384 

unforced variability of the climate is more important for HDD than CDD values for Moscow.   385 

 386 

5. Conclusion 387 

In this study, we found that extreme heat events will become more frequent and severe in 388 

a continuously warming world. In a warmer world, duration, frequency, amplitude, and mean of 389 

extreme heat and humidity events increase, especially in low-latitude regions. In some of the 390 

regions, wet bulb temperature will reach upper 20s, which is above the level that significantly 391 

impact human mortality. We also find and quantify the impact of forced change and unforced 392 

variability on the extreme heat events.  393 

Our results show that ENSO is the dominant mode of unforced variability impacting the 394 

occurrence of extreme heat and humidity events and that events tend to be synchronous in 15 395 

large cities we chose. But while the impact of unforced variability might be significant 396 

regionally, it narrows down when one looks at larger aggregate regions.  397 

Looking at the population-weighted stats, we found that with 1.5°C of global average 398 

warming, over 10% of population will face heat waves of 42°C temperature, and 27°C wet bulb 399 

temperatures. With 4°C warming, 10% of population will face 45°C temperature and 29°C wet 400 

bulb temperature. Also, even with 1.5°C of warming, which is about 0.5°C higher than the 401 

current level, 5% of the population will face more than 200 days of deadly days and over 300 402 
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days of tropical nights per year. With 4°C of warming, 10% of the population will experience 403 

over 300 days of deadly days and over 330 days of tropical nights per year. Given these two 404 

metrics are based on human mortality, this may have significant impact on human health 405 

globally.  406 

Sorting heat and humidity events by wealth, we found that increasing frequency and 407 

severity of extreme events will fall mostly on the poorest people. Given underdeveloped 408 

countries’ lack of ability to endure climate extremes, and that they have contributed the least to 409 

climate change, this introduces a profound moral dimension to the problem. To further 410 

investigate the economic impacts of increasing heat extremes, cooling degree days (CDD) and 411 

heating degree days (HDD) are calculated for 15 large cities. Energy demand for cooling (CDD) 412 

increases by average of 26% on 1.5°C and 82% on 4.0°C of warming, while energy demand for 413 

heating (HDD) decreases by 51% and 75%. Since CDD is known to have a conditionally linear 414 

relationship with the energy consumption, with slope increasing with higher CDD (De Rosa et 415 

al., 2014;Shin and Do, 2016), increasing CDD in a warmer world could be one of the factors 416 

driving increased economic inequity from global warming related heat extremes, due to high cost 417 

and demand for energy in poorest countries. 418 

Uncertainties in this analysis include our use of gridded 6-hourly climate model output. 419 

Another uncertainty is that our runs are continuously warming, and it is possible that an 420 

equilibrium world at any given temperature may experience different occurrence of extremes 421 

than in the runs in this paper.  Additionally, since an increasing proportion of the population lives 422 

in dense metropolitan areas, there is also the possibility that actual heat and humidity extremes 423 

that populations experience could be more severe than the gridded data due to local phenomena 424 

such as the urban heat island effect (Murata et al., 2012). Statistical or dynamical downscaling 425 
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could be used for a more detailed analysis (Dibike and Coulibaly, 2006;Wood et al., 2004). This 426 

was not done in this study because the model we used is already bias-corrected, so another 427 

downscaling would affect the consistency of the model. However, better understanding and 428 

evaluation of the actual temperatures people are projected to experience would be a useful next 429 

step. 430 
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 603 

 604 

Figure 1. (a) Annual average temperature (t2m) for 150-yr 1% runs, calculated for land and 605 

near-land ocean areas. Green dots show the historical record of ERA-Interim for the 606 

corresponding global warming levels. (b) Same as (a), but for wet-bulb temperature (w2m). (c, d) 607 

same as (a, b), but for the bias-corrected 1% runs. 608 
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 610 

Figure 2. Histogram of (a, c) 2m temperature and (b, d) wet bulb temperature error (MPI minus 611 

ERA) between ERA-Interim and 1% MPI runs with the same global average temperature. The 612 

error of the (a, b) 15-year 90th percentile and (c, d) median are shown. (e, f) The percentage of 613 

unforced variability (maximum ensemble member – minimum ensemble member) against 614 

absolute value of the average difference with reanalysis.  615 
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 617 

Figure 3. (a) Location of 15 selected cities and spread of heat extremes between ensemble 618 

members in (b) 1.5, (c) 2.0, (d) 3.0, and (e) 4.0°C of global warming. Ensemble with smallest 619 

heat extreme days are deducted from the ensemble with most heat extreme days to calculate the 620 

spread. Number of heat extreme days are calculated by averaging 3×3 grid covering the selected 621 

city. 622 
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 623 

Figure 4. First three EOFs of deadly days (a, b, c) and tropical nights (d, e, f) in 15 cities. Heat 624 

extremes in 15 cities are linearly detrended and normalized before EOF analysis. For each panel, 625 

the bar graph shows the EOF pattern of the number of heat extremes days per year. Contour plots 626 

shows the SST pattern associated with the EOF mode, obtained by projecting each mode of PC 627 

onto SST anomalies. Ensemble members are averaged to yield the SST pattern. Pattern 628 

correlation with major modes of climate variability (ENSO, PDO, AMO) are also shown, as 629 

discussed in the text. 630 
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 632 

Figure 5. Frequency power spectrum of ENSO, PDO, and PC of first three EOF modes for (a) 633 

deadly days and (b) tropical nights. ENSO is calculated with the Niño 3.4 Index, and PDO is 634 

calculated as a leading EOF of SST anomaly in North Pacific basin. Monthly SST data is used 635 

for both ENSO and PDO, and then each index is averaged over the year to have consistency with 636 

deadly days and tropical nights. 637 
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 639 

 640 
Figure 6. (a) Clustered regions via K-means clustering. (b) Zonal average of temperature 641 

increases at the time of 0.87°C (current climate), 1.5°C, 2°C, and 4°C of global warming 642 

compared to pre-industrial baseline in the 1% runs. Temperatures are averaged over a 5-year 643 

period after each warming threshold is observed. 644 
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 646 

Figure 7. Evolution of each index averaged over each cluster. Values of each metric are 647 

calculated by averaging grid points belonging to each cluster separately for each ensemble. 648 

Vertical lines with dots show the maximum and minimum of 28 ensemble members at each 649 

threshold of warming to represent the spread between the ensemble. 650 
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 652 

Figure 8. Changes of population-weighted heat wave indices at each level of global warming. 653 

Each line denotes one ensemble member for percentile of population. 654 
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 656 

Figure 9. Increase in (a) Deadly Days and (b) Tropical Nights compared to our present climate, 657 

binned by percentile of GDP per capita at selected levels of warming compared to present day, 658 

averaged over the population within the GDP percentile (for example, averaged over population 659 

in 0~10 percentile of GDP), and over all ensemble members for 5-year window after each level 660 

of warming first occurs. Blue text inside the heatmap represent the absolute of Deadly Days and 661 

Tropical Nights in each level of warming above present day. 662 
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 664 

Figure 10. CDD (red bar) and HDD (blue bar) values at each levels of global warming, divided 665 

by the pre-industrial CDD and HDD for 15 selected cities. Error bars show the standard 666 

deviation between the ensemble members. 667 
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Table 1. Explanation of heat wave indices used in this study. 669 

Acronym Index Definition Units 

HWDt2m/w2m Heat wave duration 
Length of longest period of consecutive 

heat wave days in a year 
# days 

HWFt2m/w2m Heat wave frequency 
Total number of heat wave days in a 

year 
# days 

HWAt2m/w2m Heat wave amplitude 
Maximum temperature over all heat 

wave days in a year 
°C 

HWMt2m/w2m Heat wave mean 
Average temperature over all heat wave 

days in a year 
°C 

Deadly Days Deadly Days 
Daily maximum wet-bulb temperature 

over 24°C 
# days 

Tropical Nights Tropical Nights Daily minimum temperature over 25°C # days 

CDD Cooling degree days 
Sum of positive values after removing 

18°C from daily average temperature 
°C days 

HDD Heating degree days 

Absolute value of sum of negative 

values after removing 18°C from daily 

average temperature 

°C days 

  670 

https://doi.org/10.5194/acp-2021-109
Preprint. Discussion started: 22 February 2021
c© Author(s) 2021. CC BY 4.0 License.



36 

 

Table 2. Percentage area and major regions belonging to each cluster. Clusters are identified 671 

only for the global land areas.   672 

Cluster Color 

Area 

percentage 

(%) 

Major regions Cluster name 

1 Maroon 2.95 
Indonesia, Malaysia, 

Cameroon, Gabon 
Tropical West Pacific 

2 Orange 12.34 

Northern South 

America, Central 

Africa 

Tropical Africa and America 

3 Pink 22.70 

India, Southeast Asia, 

Eastern South America, 

Southeast U.S. 

Sub-Tropical Asia and 

America 

4 Green 21.55 
Northern Africa, 

Middle East, Australia 
Deserts 

5 Sky blue 7.69 Himalayas, Andes Mountain Range 

6 Blue 32.75 
Canada, Northwest 

U.S., Russia 
Sub-Polar Region 
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Table 3. Number of deadly days each percentile of global population faces with 0.87°C (current 674 

period), 1.5°C, 2°C, 3°C, and 4°C global warming from the pre-industrial condition. Standard 675 

deviations between the ensembles (1𝜎) are also shown. 676 

  Global Warming 

 Population 0.87°C 1.5°C 2.0°C 3.0°C 4.0°C 

Deadly 

Days 

95th p. 180 (± 13) 204 (± 14) 228 (± 15) 297 (± 15) 349 (± 6) 

90th p. 148 (± 8) 170 (± 9) 190 (± 13) 244 (± 11) 292 (± 10) 

50th p. 31 (± 3) 44 (± 6) 58 (± 5) 84 (± 4) 105 (± 4) 

Tropical 

Nights 

95th p. 302 (± 14) 333 (± 9) 350 (± 4) 364 (± 1) 365 (± 0) 

90th p. 217 (± 9) 241 (± 13) 262 (± 10) 306 (± 16) 345 (± 7) 

50th p. 32 (± 5) 47 (± 7) 61 (± 5) 94 (± 6) 122 (± 5) 
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