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Key Points 17 

• Unforced variability of the climate system, primarily ENSO, plays a key role in the 18 

occurrence of extreme events in a warming world. 19 

• Uncertainty of unforced variability becomes smaller as one looks at larger regions or at a 20 

global perspective. 21 

• Increases of heat wave indices are significant between 1.5°C and 2.0°C of warming and 22 

the risk of facing extreme heat events is higher in low GDP regions. 23 

24 
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Abstract 25 

 This study investigates the impact of global warming on heat and humidity extremes by 26 

analyzing 6-hourly output from 28 members of the Max Planck Institute Grand Ensemble driven 27 

by forcing from a 1%/year CO2 increase. We find that unforced variability drives large changes 28 

in regional exposure to extremes in different ensemble members, and these variations are mostly 29 

associated with ENSO variability. However, while the unforced variability of the climate can 30 

alter the occurrence of extremes regionally, variability within the ensemble decreases 31 

significantly as one looks at larger regions or at a global population perspective. This means that, 32 

for metrics of extreme heat and humidity analyzed here, forced variability of the climate is more 33 

important than the unforced variability at global scales. Lastly, we found that most heat wave 34 

metrics will increase significantly between 1.5°C and 2.0°C, and that low GDP regions shows 35 

significant higher risks of facing extreme heat events compared to high GDP regions. 36 

Considering the limited economic adaptability of population to heat extremes, this reinforces the 37 

idea that the most severe impacts of climate change may fall mostly on those least capable to 38 

adapt.   39 
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1. Introduction 40 

 The long-term goal of the 2015 Paris agreement is to keep the increase in global 41 

temperature well below 2°C above pre-industrial levels, while pursuing efforts and limit the 42 

warming to 1.5°C. Given that no one lives in the global average, however, understanding how 43 

these global average thresholds translate into regional occurrences of extreme heat and humidity 44 

is of great value (Harrington et al., 2018). Previous studies have reported that regional extreme 45 

heat events will not only be more frequent, but also more extreme in a warmer world. This was 46 

discussed in various assessment and reports such as US National Climate assessment and those 47 

by IPCC (Melillo et al., 2014;Wuebbles et al., 2017;Hoegh-Guldberg et al., 2018;Masson-48 

Delmotte et al., 2018) and it is expected to have significant impacts on human society and health. 49 

More importantly, previous studies have analyzed the risk (Quinn et al., 2014;Sun et al., 50 

2014;Lundgren et al., 2013), exposure (Dahl et al., 2019;Ruddell et al., 2009;Liu et al., 51 

2017;Luber and McGeehin, 2008), vulnerability (Chow et al., 2012;Wilhelmi and Hayden, 2010) 52 

and susceptibility (Arbuthnott et al., 2016) of population in the current and warmer climates. 53 

Many criteria and indices have been used to assess extreme heat, such as the absolute 54 

increase of maximum temperature from the reference period (Wobus et al., 2018), risk ratio of 55 

population’s exposure to heat (Kharin et al., 2018), and heat wave magnitude index (Russo et al., 56 

2017). In this study, we utilize four locally defined heat wave indices from Fischer and Schär 57 

(2010) and Perkins et al. (2012) of duration, frequency, amplitude, and mean. We also focus on 58 

consecutive-day extremes, which are known to cause more harm than single-day events 59 

(Baldwin et al., 2019;Simolo et al., 2011;Tan et al., 2010). In addition, because the combined 60 

effect of temperature and humidity is known to affect human health by reducing the body’s 61 

ability to cool itself through perspiration, wet-bulb temperature is frequently analyzed (Kang and 62 
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Eltahir, 2018). Wet-bulb temperature is also closely associated with moist thermodynamics that 63 

drives the heatwave (Schwingshackl et al., 2021;Zhang et al., 2021), so we will analyze wet-bulb 64 

temperature also.  65 

Climate extremes are always a combination of long-term forced climate change acting in 66 

concert with unforced variability (Deser et al., 2012).  Thus, characterizing and quantifying both 67 

long-term change due to external forcing and the unforced variability of the climate system is 68 

crucial in assessing the future risk of extreme events. There have been numerous studies that link 69 

dominant modes of unforced variability to extreme events. For example, previous studies have 70 

investigated temperature connections with El Niño Southern Oscillation (ENSO) (Thirumalai et 71 

al., 2017;Meehl et al., 2007), the Pacific Decadal Oscillation (PDO) (Birk et al., 2010) , the 72 

Atlantic Multidecadal Oscillation (AMO) (Zhang et al., 2020;Mann et al., 2021).  The effect of 73 

climate extremes on different populations depends on numerous factors, including the level of 74 

economic development, with impacts of heat extremes being more severe in less economically 75 

developed countries (Diffenbaugh and Burke, 2019;Harrington et al., 2016;King and Harrington, 76 

2018;de Lima et al., 2021). For example, as temperatures go up, increased energy demand to 77 

cool buildings will be required (Parkes et al., 2019;Sivak, 2009) in metropolitan area.  But this 78 

requires resources to both install air conditioning and then operate it. The greater impacts of 79 

extreme heat in economically less developed region in a warmer climate has been discussed in 80 

multiple studies (Marcotullio et al., 2021;Russo et al., 2019). 81 

In this paper, a single-model initial-condition ensemble of 28 simulations of a global 82 

climate model (GCM) are used to quantify heat and humidity extremes in a warmer world.  We 83 

use population data to look at population risk for mortality events in daytime (Mora et al., 2017) 84 

and nighttime (Chen and Lu, 2014). We also utilize per capita gross domestic product (GDP per 85 
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capita) data to investigate how climate change impacts extreme heat events on different levels of 86 

economic status. To quantify the impact on energy demand, we also quantify changes in cooling 87 

degree days and warming degree days. 88 

 89 

2. Data 90 

2.1. MPI-GE ensembles 91 

  Simulation data in this study come from an ensemble of runs of the Max-Plank Institute 92 

Earth System Model collectively known as the MPI Grand Ensemble (MPI-GE) project (Maher 93 

et al., 2019). Each of the 28 ensemble members branches from different points of a 2000-year 94 

pre-industrial control run and are integrated for 150 years, forced by CO2 concentration 95 

increasing at 1% per year (hereafter, 1% runs).  Because the radiative forcing scales as the log of 96 

CO2 concentration, the 1% runs feature radiative forcing that increases approximately linearly in 97 

time. We analyze 6-hourly output with 1.875° × 1.875° spatial resolution, which is the original 98 

resolution of the model output, for land areas between 60°N and 60°S. Our analysis will focus on 99 

2-meter temperature (hereafter, t2m) and 2-meter dew point temperature (d2m), from which 2-100 

meter relative humidity (rh) and wet-bulb temperature (w2m) are calculated using the methods of 101 

Davies-Jones (2008) with a predesigned module, HumanIndexMod (Buzan et al., 2015). 102 

 Unforced variability in the climate system generates uncertainties in the projection of the 103 

climate by impacting the dynamic component of the climate, especially for extreme events (Kay 104 

et al., 2015;Thompson et al., 2015). One way to analyze the impact of unforced variability in 105 

climate system is to use an initial-condition ensemble. Each members of initial-condition 106 

ensemble are generated by perturbating the initial conditions of single climate model. This 107 

perturbation will then propagate to generate different sequence of climate, such as ENSO, PDO, 108 
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etc. (Deser et al., 2012;Kay et al., 2015). In this paper, we use the ensemble to allow us to 109 

estimate the impact of unforced variability on temperature extremes. 110 

 Since the model used only considers CO2 forcing without aerosols, and it represents a 111 

continuously warming climate, one might question if the model simulation accurately represents 112 

the real climate. To judge the fidelity of the simulations, we compare 15 years (2003-2017) of 113 

ERA-Interim reanalysis data (Dee et al., 2011) from the European Centre for Medium Range 114 

forecast (ECMWF) with 15 years of the MPI-GE 1% ensemble which have the same ensemble- 115 

and global-average temperatures (years 39-53); in the rest of the paper, we will refer to these as 116 

the reference periods.  In both data sets, we then calculate 90th percentile and mean t2m and w2m 117 

for each grid points. This calculation was done for each member of the model ensemble. For 118 

each of the 4 values (90th percentile t2m/w2m and mean t2m/w2m), we determine if the values 119 

from the reanalysis fall into the spread of 28 ensemble members of the 1% runs. For each grid 120 

point, if the reanalysis value falls within the ensemble spread, we mask out the grid point; if not, 121 

we plot how far the reanalysis value is from the closest member of the 1% ensemble (Figure 1).  122 

Generally, the 1% runs overpredicts t2m and w2m in Northern hemisphere, and 123 

underpredicts in Southern hemisphere, except for India. This difference is consistent with the 124 

fact that the 1% models do not contain aerosol forcing, which should lead to biases of the sign 125 

seen in Fig. 1.  The w2m shows larger area of differences than t2m, which suggests that there are 126 

larger biases in the dew point, which is needed in the calculation (Davies-Jones, 2008). The area-127 

weighted averages of these differences are -0.08°C, -0.03°C, -0.04°C, and -0.11°C globally for 128 

90th percentile t2m, mean t2m, 90th percentile w2m, and mean w2m respectively, which means 129 

that the model is, on average, underpredicting land temperature. Breaking down to Northern and 130 

Southern hemisphere, the bias is 0.20°C, 0.21°C, 0.15°C, 0.14°C in NH and -0.64°C, -0.54°C, -131 
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0.36°C, and -0.44°C, confirming that the model is overpredicting temperature in NH land and 132 

underpredicting in SH land.  133 

To quantify the impact of the biases in Fig. 1 on the occurrence of heat extremes, we will 134 

perform sensitivity tests on the calculations by adding to each grid point of each member of the 135 

ensemble the average differences between the ensemble average t2m and w2m and the 136 

reanalysis.  By evaluating how much our results change, we come up with an estimate of the 137 

impact of model biases on our results.  As we will show later, these biases have little impact on 138 

the results of the paper. 139 

 140 

2.2. Global population and GDP per capita data 141 

 Global population data from the NASA Socioeconomic Data and Applications Center 142 

(SEDAC, 2018) are used to weight the heat wave indices by population. The data represent the 143 

population in year 2015 at 30′′ × 30′′ spatial resolution, and we re-gridded to the 1.875° × 144 

1.875° grid of the MPI model by summing the values in grid boxes surrounding the MPI grid 145 

centers. In our population-weighted calculations, we assume that the relative distribution of 146 

population remains fixed into the future. 147 

 Gridded GDP per capita data (Kummu, 2019) over 1990-2015 are used to estimate the 148 

risk of heat extreme events for different levels of wealth. These data are re-gridded from the 149 

original 5′′ × 5′′ spatial resolution to the MPI model’s resolution of 1.875° × 1.875° by 150 

averaging the GDP inside the grid box. When doing this average, per capita GDP was weighted 151 

by population and also averaged over the 1990-2015 period.  We assume that the relative 152 

percentile of GDP per capita for each grid point is fixed into the future, so changes in climate 153 

risk are due to exposure to warmer climate extremes, not changes in relative per capita wealth. 154 
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 155 

3. Method of analysis 156 

3.1. Global warming 157 

 Global warming is defined as the global and annual average temperature increase 158 

compared to the average of first 5 years of the 1% run. We find that ensemble- and global-159 

average t2m reaches 1.5°C, 2°C, 3°C and 4°C occur in years 59, 76, 108, and 133 years, 160 

respectively, and reaches 4.6°C at the end of the 150-year run. The increase of global average 161 

temperature is nearly linear for both t2m and w2m, consistent with a linear ramping of the 162 

forcing (Buzan and Huber, 2020). 163 

 The focus on the paper will be on heat extremes at 1.5°C, 2°C and 3°C. The 1.5°C and 164 

2°C thresholds are the limits described in the Paris Agreement, while 3°C is the warming we are 165 

presently on track for (Hausfather and Peters, 2020).   166 

 167 

3.2. Heat wave indices 168 

 Identification of heat waves is done in several steps. First, for each grid point, we smooth 169 

a daily maximum temperature (determined form 6-hourly temperatures) using a 15-day moving 170 

window for the first 5 years of 1% runs, which is the period before significant warming has 171 

occurred. Then, the 90th percentile of smoothed daily maximum temperature for the first 5 years 172 

was calculated at each grid point (Fischer and Schär, 2010). This value is used as a threshold for 173 

the heat waves at that grid point. Then we calculate the heat wave days, defined as days that 174 

exceed the threshold for three or more consecutive days (Baldwin et al., 2019). 175 

We then define four indices to represent the characteristics of these heat waves. To 176 

determine the occurrence of events, heat wave duration (HWD; longest heat wave of the year) 177 
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and heat wave frequency (HWF; total number of heat wave days in a year) are calculated. From 178 

an intensity perspective, heat wave amplitude (HWA; maximum temperature during heat wave 179 

days during a year) and heat wave mean (HWM; mean temperature during heat wave days in a 180 

year) are selected. These indices are also calculated in an analogous fashion for wet bulb 181 

temperature (w2m), since wet-bulb temperature is arguably more relevant for human health (Heo 182 

et al., 2019;Morris et al., 2019;Buzan and Huber, 2020).  These indices are summarized in Table 183 

l. 184 

 185 

3.3. Deadly days and tropical nights 186 

Heat wave thresholds are different for each grid point because they are based on pre-187 

industrial temperatures at that grid point. Combined with regional differences in the ability to 188 

adapt, this means that heat waves in different regions may have different implications for human 189 

society. We therefore also count the number of days each year with daily maximum w2m above 190 

26°C, which we refer to as “deadly days”.  We note that other values could be chosen (Liang et 191 

al., 2011), with higher values occurring less frequently but having more significant impacts.  192 

This value is based on the analysis of Mora et al. (2017), who demonstrated that w2m of about 193 

24°C is the threshold which fatalities from heat-related illness occur. However, since we find that 194 

there are some regions that already experience over 9 months of 24°C w2m events per year, we 195 

increase this threshold to 26°C in our analysis. We could have chosen higher w2m values, but 196 

any choice in this range is associated with negative impacts, so we have chosen a value near the 197 

bottom of the range where mortality occurs in order to maximize the signal in the model runs. 198 
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A warm nighttime minimum temperature can be as important as a high maximum 199 

temperature for human health and mortality (Argaud et al., 2007;Patz et al., 2005), so we define 200 

“tropical nights” as a daily minimum t2m over 25°C (Lelieveld et al., 2012). 201 

 202 

3.4. Cooling degree days and heating degree days 203 

 To assess the economic and energy impact of heat extremes, cooling degree days (CDD) 204 

and heating degree days (HDD) are calculated. CDD and HDD are metrics of the energy demand 205 

to cool and heat buildings. For each grid point, annual CDD is calculated by subtracting 18°C 206 

from the daily average temperature and summing only the positive values over the year. HDD is 207 

the absolute value of the sum of the negative values. Previous studies reported that CDD and 208 

HDD are closely related to energy consumption (Sailor and Muñoz, 1997). 209 

 210 

4. Results 211 

4.1. Impact of unforced variability of climate on regional heat extremes 212 

To investigate the impact of unforced variability on more regional heat extremes, we take 213 

the 15 largest cities by population (Fig. 2a) and determine the number of deadly days and 214 

tropical nights over time by averaging the 3×3 grid points surrounding the city, only including 215 

the land grid points. Figure 2b-d depicts the ensemble averaged number of deadly days and 216 

tropical nights, as well as the spread between the ensemble members. The error bars in Figure b-217 

d show the highest and lowest values of the extremes.  218 

This difference within the ensemble is the result of unforced variability. For all 15 cities, 219 

average spread in the number of deadly days at 1.5°C, 2.0°C, 3.0°C, and 4.0°C of global 220 

warming between the ensemble members with maximum and minimum numbers are 14.3, 15.1, 221 
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20.6, and 21.9 days per year. For tropical nights, the spreads are 29.3, 27.7, 29.1, and 26.7 days 222 

per year. So, on average, unforced variability can change the number of extreme days and nights 223 

by a few weeks per year. There is no significant variance of ensemble spread between the cities 224 

except for cities with very low ensemble-averaged values (e.g., Mexico City at 1.5°C warming) 225 

or very high values (e.g., tropical nights in Manila at 4.0°C warming). However, for the cities 226 

that do not see large increase in extreme temperatures (e.g., New York City), this represents a 227 

very large fraction of the predicted change of extremes, while for cities that experience much 228 

larger increase (e.g., Manila), it represents a smaller percentage. 229 

As discussed in Section 2.1, we examine the sensitivity of our results to potential biases 230 

of the model by recalculating the deadly days and tropical nights using model data after adding 231 

in the bias estimated by comparison to the reanalysis. The average difference of deadly days in 232 

the sensitivity test (absolute difference) at 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming is 2.1, 2.5, 233 

5,5, and 7.6 days per year when averaged over 15 cities. The standard deviation of difference 234 

calculated between the cities is 2.5, 3.4, 6.7, and 9.7 days at each level of warming. For tropical 235 

nights, sensitivity test produced differences of 3.6, 3.6, 5.3, and 3.5 days per year at each level of 236 

warming, with standard deviations within the ensemble of 3.6, 4.9, 6.9, and 1.8 days.  Thus, 237 

model biases are unlikely to have a large impact on our results. 238 

Previous work has attempted to distinguish the origin and mechanisms of unforced 239 

variability of temperature and temperature extremes (Meehl et al., 2007;Zhang et al., 2020;Birk 240 

et al., 2010). To probe the statistical modes of variability affecting this ensemble spread and to 241 

identify the underlying physical mechanisms, empirical orthogonal function (EOF) analysis 242 

(North, 1984) was performed on the detrended and normalized time series of deadly days and 243 

tropical nights for the 15 cities. For each city, the 28 ensemble members are concatenated 244 
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together (total of 28×150 years) in order for all ensemble to share the same EOF. In this way, we 245 

aim to find the dominant drivers of unforced variability that impacts heat extremes in the largest 246 

cities around the world.  247 

The first three EOF patterns for each city are plotted in Fig. 3 as bars. The first EOF 248 

mode of deadly days shows large values for Delhi, Shanghai, Dhaka, and Karachi, while cities in 249 

other regions show lower values. The second and third EOFs for deadly days show more 250 

variability between the cities. The first EOF for tropical nights (Fig. 3d) show large positive 251 

values for cities in the India-Pakistan region, with other cities showing smaller magnitude 252 

changes. The second EOF shows large negative values in Cairo, Istanbul, and Manila, while the 253 

third EOF for tropical nights shows more variability between the cities.  254 

The PC time series are projected onto detrended annual sea surface temperature (SST) 255 

anomalies. This allows us to investigate how heat extreme events in 15 major cities are 256 

associated with global modes of unforced variability. Maps of correlation coefficients are also 257 

plotted in Fig. 3. Characteristic patterns for ENSO (Trenberth, 2020), PDO (Deser and 258 

Trenberth, 2016), and AMO (Trenberth and Zhang, 2021) are calculated for each ensemble using 259 

all 150-year of SSTs, and the pattern is averaged over ensembles to come up with a single 260 

ENSO, PDO, and AMO SST pattern for the ensemble. Then, those patterns are compared with 261 

the PC projection on SST to see how PC projected SST resembles the patterns of unforced 262 

variability. Correlation coefficients between the standard climate indices and PC projected SST 263 

is shown on lower panel of Fig. 3 as numbers. All of the projections of deadly day PCs and 264 

projections of the first two modes of tropical nights shows patterns similar to El Niño-Southern 265 

Oscillation (ENSO) and Pacific Decadal Oscillation (PDO).   266 



13 

 

Power spectra of the PCs are calculated individually for each ensemble member, and then 267 

the ensemble average is plotted Figure 4. Overall, the spectra of the deadly day PCs look very 268 

much like the spectrum for ENSO, and it notably does not have the ~20-year peak of the PDO 269 

spectrum. This tells us that, in this model at least, the variability in the occurrence of deadly days 270 

in these large cities is strongly regulated by ENSO. This may be a consequence of the fact that 271 

these large cities are mostly located near ocean and at lower latitudes. The third deadly day PC 272 

has lower correlations with ENSO or PDO index, so it is harder to draw firm conclusions about 273 

the mechanism behind it. Also, higher modes of EOFs are unlikely to refer to a single mode of 274 

climate due to the orthogonality constraints between each mode.  The tropical night PCs also 275 

show peaks at ENSO periods (Fig. 4b) suggesting that, like deadly days, tropical night variability 276 

is controlled by ENSO.    277 

 278 

4.2. Cluster analysis and population risk of heat wave indices 279 

 We calculate HWD, HWF, HWA, and HWM for both t2m and w2m each year at each 280 

grid point, which generates eight different 150-year time series for each of the 28 ensemble 281 

members. Each time series at each grid point is regressed vs. time, yielding a slope and the 282 

intercept for each time series in all 28 ensemble members. The 16 variables (8 [heat wave 283 

indices] × 2 [slope, intercept]) are then utilized as a predictor variable for K-means clustering 284 

(Likas et al., 2003) to categorize the spatial variation of heat waves using the Euclidean distance 285 

of its predictor variables (16 variables). With slope and intercept, we can characterize the heat 286 

indices of each grid point with response to CO2 forcing (slope) and climatology (intercept). The 287 

number of clusters in this study is set to 6, using the elbow method (Syakur et al., 2018). When 288 

using 5 clusters, we find that two clusters (the light and dark blue regions in Figure 5a) merge, 289 
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and when using 7 clusters, we find that one cluster (the dark blue region in Figure 5a) divides 290 

into two separate clusters.  291 

Figure 5a shows the cluster value that most ensembles assigned to each grid point and it 292 

shows distinct geographical characteristics, as summarized in Table 2 (the result of clustering 293 

shows little difference between individual ensemble members).  As might be expected from how 294 

we calculated the 16 variables for clustering, each cluster shows a different evolution of heat 295 

extremes in warmer world (Figure 6).  Although the warming signal is largest in the polar 296 

regions (Figure 5b), the largest increases of HWD and HWF are found at lower latitudes (in 297 

cluster 1 and 2 on Figure 6a-d). This is mostly due to low variability in these regions compared 298 

to polar regions, making it easier for a trend to exceed the heatwave threshold.  299 

These results are insensitive to potential model biases.  Sensitivity tests show that adding 300 

the bias to the model changes HWD, HWF, deadly days, and tropical nights, by less than 5% for 301 

all metric and clusters. For HWA and HWM, the difference caused by adding the bias was less 302 

than 1°C for all metric and clusters, suggesting that the impact of model biases is small in this 303 

analysis. 304 

For HWA and HWM, the rate of increase is similar for all clusters, with increases of 305 

HWAt2m and HWAw2m of 1.45°C per degree of global average warming and 0.85°C per degree of 306 

global average warming, respectively, and HWMt2m and HWMw2m of 0.66°C per degree of 307 

global average warming and 0.47°C per degree of global average warming, respectively (Figure 308 

6e-h). The exception is HWAt2m in cluster 6.  The large increase of HWAt2m in this region is 309 

connected to the strong global warming signal in high latitudes that has been predicted for 310 

decades and now observed (Stouffer and Manabe, 2017). 311 
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Turning to deadly days (Fig. 6i), we find a substantial increase occurs in cluster 1 after 312 

2.0°C of warming; this is important because it gives additional support for the Paris Agreement’s 313 

aspirational goal of limiting global warming to 2.0°C. Almost all increases in deadly days are in 314 

low latitudes (cluster 1, 2, and 3). For tropical nights, low latitudes and deserts (cluster 4) 315 

contribute most of the increase.  Figure 6 also shows the spread in within the ensemble for each 316 

metric and cluster. We find that the spread for a cluster is generally small compared to the 317 

change over time as well as the difference between the clusters.  318 

 We also generated indices weighted by global population. Heat wave indices for the 95th 319 

percentile of population (meaning 5% of the population is exposed to higher values), 90th 320 

percentile of population, and median of the population are depicted in Figure 7. Figure 7a shows 321 

that with 3°C of warming, 5% of the Earth’s population will experience heat waves lasting 122 322 

days (standard deviation between ensemble members: 1𝜎 = 17 days), 10% of the population will 323 

experience heat waves of 94 days (1𝜎 = 7 days), and half of the population will experience heat 324 

waves around 50 days (1𝜎 = 4 days).  These are large increases over present-day values of 50, 325 

42, and 21 days.  The average of the standard deviation between the ensemble members 326 

(calculated every year and then averaged), are 10.6, 6.2 and 3.7 days for the 95th, 90th percentile 327 

and median, respectively. This is significantly smaller than values from the analyses of cities in 328 

Figure 2, where the unforced variability makes larger differences in the occurrence of heat 329 

waves.   330 

The rate of increase of HWFw2m in Fig. 7d shows a rapid increase until global average 331 

warming reaches about 2.5°C. Given that the planet has already warmed about 1°C above pre-332 

industrial, this suggests that the world should presently be experiencing a rapid increase of wet-333 

bulb extreme frequency, particularly in the tropics. This is related to the increased slope in 334 
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Figure 6, in which cluster 1 and 2’s values of HWDw2m and HWFw2m increase rapidly until 3.0°C 335 

and 2.0°C of global warming. At warmer temperatures, HWDw2m and HWFw2m reach a plateau, 336 

since values over 300 days per year means there is little room for additional increase. For 337 

HWAt2m/w2m and HWMt2m/w2m, the increase is mostly linear. Also note that, at 3°C of global 338 

warming, the 90th percentile of population weighted HWAw2m reaches over 29°C, which while 339 

not immediately fatal to humans may nevertheless indicate great difficulty for even a developed 340 

society to adapt to. 341 

Currently, 10% of the total population faces more than 45 deadly days and 181 tropical 342 

nights per year. This grows to 65 and 195 days, respectively, at 1.5°C warming. With 2°C of 343 

global warming, 10% of the population will face about 3 months of deadly days and 7 months of 344 

tropical nights every year, and this increase to 4 months and 8 months in 3°C of warming. Also, 345 

with 3°C of global warming, 5% of the population will be in an environment where 8 months 346 

and 10 months in a year is a deadly days and tropical night. Our sensitivity tests suggest that 347 

model bias generates less than 5% differences for HWD, HWF, deadly days, and tropical nights 348 

for all metrics and percentile of population at every level of global warming, except when the 349 

metrics are near-zero. Potential model biases also generate small differences in HWA and HWM, 350 

with less than 1°C difference in all metrics for every period. Furthermore, with 3°C of global 351 

warming, the minimum ensemble member of deadly days is above the maximum ensemble of the 352 

present-day reference (0.87°C) for all population percentiles (5%, 10%, and 50%). This occurs at 353 

2°C for tropical nights. Details of ensemble spread are also shown in Table 3. 354 

It is notable that, although there is a large spread between the ensemble members in each 355 

city (Figure 2), the spread in the clusters (Figure 6) and population-weighted metrics (Figure 7) 356 

is not as large. This emphasizes that the effect of unforced variability might be large at small 357 
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scales but, as the region expands, the impact of unforced variability decreases. This is also found 358 

in Table 3, where in each case, the standard deviation between ensembles is less than 20% of the 359 

average, except in a few cases. This indicates that unforced variability will generally play a 360 

minor role in determining global exposure to temperature above thresholds, although different 361 

people may be affected in different realizations of unforced variability. 362 

In addition, with 1.5°C of global warming, the lowest ensemble of the 90th percentile of 363 

HWDt2m, HWDw2m, and HWFt2m exceeds the highest ensemble of the same metric in the current 364 

climate (red lines in Figure 7). With 2°C of warming, the minimum ensemble of HWDt2m/w2m, 365 

HWFt2m/w2m, HWMw2m, and tropical nights exceed the maximum ensemble of the current climate, 366 

and with 2.5°C of warming, the minimum ensemble of all metrics exceeds the maximum 367 

ensemble of the same metric in the current climate. Thus, this model predicts that the occurrence 368 

of extremes will soon be able to exceed values likely possible in our present climate for these 369 

metrics.  370 

 371 

4.3. Analysis on GDP per capita 372 

 It is well-known that not everyone is equally vulnerable to extreme weather, with rich, 373 

relatively more developed communities having more resources to deal with extreme events than 374 

poorer communities. In that context, global gridded GDP per capita is used to calculate average 375 

risk at each level of wealth. The ensemble-average result is depicted in Figure 8, which shows 376 

the absolute number of deadly days and tropical nights as well as the increase in number of 377 

deadly days and tropical nights that each level of economic level experience relative to the 378 

reference period warming of 0.87°C. This plot assumes that the relative distribution of 379 

population and GDP remains fixed through time.  Our sensitivity tests show that the model bias 380 
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yields small differences in the results, with less than 5% difference in both the absolute number 381 

of extreme events as well as the changes in extremes. 382 

 For each level of warming, we find that the lower GDP regions will experience not only 383 

higher absolute numbers of extreme temperature days but also the largest increases. For deadly 384 

days, the increase is largest between 10th to 40th percentile of GDP, and for tropical nights, the 385 

increase is largest below the 30th percentile of GDP. The regions that contribute the most for the 386 

low GDP percentiles are Southeast Asia, including Myanmar, Laos, and Cambodia, and Tropical 387 

Africa, including Republic of the Congo, Kenya, Uganda, Ethiopia, and Sudan, which are in 388 

clusters 1 and 2 in our cluster analysis (Figure 5). The maximum difference of heat wave days 389 

between the ensembles is less than 25% for all GDP and global warming levels.  390 

 391 

4.4. Energy demand on large cities 392 

 Annual CDD and HDD have been calculated for the 15 cities in section 4.1. Both CDD 393 

and HDD are calculated by averaging the CDD and HDD values of 3×3 grid points surrounding 394 

each city, including only land grid points. CDD and HDD values are then averaged for 5 years 395 

after global warming reaches each levels of threshold. Fig. 9 shows the percent change of CDD 396 

and HDD at 1.5°C, 2.0°C, 3.0°C, and 4.0°C relative to the reference period CDD and HDD 397 

values. This was done for each city, and for each ensemble member. At 1.5°C, 2.0°C, 3.0°C, and 398 

4.0°C warming, CDDs in the 15 cities increase by an average of 9%, 22%, 54% and 70%.  Our 399 

sensitivity tests show that the application of the average model bias yields changes of less than 400 

1% in these numbers. This suggests an enormous increase in energy required for cooling.  401 

In contrast, average energy demand on cold days (HDD) decreases by 21%, 36%, 59%, 402 

and 65% in cities considered, compared to present day, partially offsetting the increase in energy 403 
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required for cooling. Mania shows 0% change in HDD for all period, since Manila does not 404 

experience HDD days in present or future periods. Sensitivity tests also show less than a 1% 405 

difference in HDD change due to model biases. 406 

 407 

5. Conclusion 408 

In this study, we found that extreme heat events will become more frequent and severe in 409 

a warming world. We find that both forced and unforced variability play a key role in extreme 410 

heat events, highlighting the necessity of considering both contributions to extreme heat. We also 411 

look at population weighted, and GDP sorted statistics of extreme heat in warmer world.  412 

Our results show that ENSO is the dominant mode of unforced variability impacting the 413 

occurrence of extreme heat and humidity events and that events tend to be synchronous in the 414 

world’s largest 15 cities. But while the impact of unforced variability might be significant 415 

regionally and temporarily, it becomes less important when one looks at larger aggregate 416 

regions.  417 

Looking at global population-weighted statistics, we found that with 1.5°C of global 418 

average warming, over 10% of population will face heat waves of 45°C temperature, and 28°C 419 

wet bulb temperatures. And 5% of the population will face more than 105 days of deadly days 420 

and 232 tropical nights per year. With 3°C of warming, which we are currently on track for, 10% 421 

of the population will experience over 132 days of deadly days and over 232 days of tropical 422 

nights per year. And 10% of population will face 47°C temperature and 30°C wet bulb 423 

temperature. Given these two metrics have important implications for human mortality, such 424 

increases may have significant impact on human health globally.  425 
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Sorting heat and humidity events by wealth, we confirm that increasing frequency and 426 

severity of extreme events will fall mostly on the poorer people. To further investigate some 427 

economic impacts of increasing heat extremes, cooling degree days (CDD) and heating degree 428 

days (HDD) are calculated for the world’s 15 largest cities. Energy demand for cooling (CDD) 429 

increases by average of 9% on 1.5°C and 54% on 3.0°C of warming, while energy demand for 430 

heating (HDD) decreases by 21% and 59%. Since CDD is known to have a piecewise linear 431 

relationship with the energy consumption, with slope increasing with higher CDD (De Rosa et 432 

al., 2014;Shin and Do, 2016), increasing CDD in a warmer world could be one of the factors 433 

driving increased economic inequity from global warming related heat extremes, due to relative 434 

high cost and need for energy in poorest countries. 435 

Uncertainties in this analysis include our use of gridded 6-hourly climate model output. 436 

More detailed analysis could be done with climate simulations with higher temporal and spatial 437 

resolution. The model has biases relative to measurements, potentially due to the fact that there 438 

are no aerosols in the forcing, which is another source of uncertainty. This was tested by adding 439 

the difference between the ensemble average and the reanalysis data to the model fields and 440 

recomputing the heat wave indices.  In general, the impact of this bias was not important. In 441 

future analyses, this could be better resolved with use of multi-model ensembles or detailed bias-442 

correction of the model.  443 

Another uncertainty is that our runs are continuously warming, and it is possible that an 444 

equilibrium world at any given temperature may experience different occurrence of extremes 445 

than in the runs in this paper.  Additionally, since an increasing proportion of the population is 446 

expected to live in dense metropolitan areas, there is also the possibility that actual heat and 447 

humidity extremes that populations experience could be more severe than the gridded data due to 448 
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local phenomena such as the urban heat island effect (Murata et al., 2012). Statistical or 449 

dynamical downscaling could be used for a more detailed analysis (Dibike and Coulibaly, 450 

2006;Wood et al., 2004). Also, land models with capacity to decompose urban and rural 451 

environment could be applied in same context (Bonan et al., 2002;Dickinson et al., 2006). Also, 452 

this study could gain further insights by considering changing population and socioeconomic 453 

distribution in the future. Overall, however, none of these things are expected to change the 454 

broad conclusions of this study that global warming will lead to increased exposure to extremes 455 

in heat and humidity. 456 
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 673 

 674 

Figure 1. Difference of 1% CO2 runs compared with ERA-Interim in same level of global 675 

warming (0.87°C). The grid points where ERA-Interim falls within the ensemble spread of 1% 676 

runs are masked with gray, while other grid points show the difference between the nearest 677 

ensemble member and ERA-Interim for (a) 90th percentile of 15-year daily average t2m, (b) 678 

mean of 15-year daily average t2m, (c) 90th percentile of 15-year daily average w2m, and (d) 679 

mean of 15-year daily average w2m. 680 

  681 
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 682 

Figure 2. (a) Location of 15 largest cities in the world and the number of annual heat extremes at 683 

(b) 1.5, (c) 2.0, (d) 3.0, and (e) 4.0°C of global warming. Orange (purple) bars represent the 684 

ensemble average annual number of deadly days (tropical nights), averaged 5 years after each 685 

level of warming is exceeded. Number of heat extreme days are calculated by averaging 3×3 686 

land-only grid covering the selected city. Error bars represent the values of maximum and 687 

minimum ensemble members.  688 
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 689 

Figure 3. First three EOFs of annual values of deadly days (a, b, c) and tropical nights (d, e, f) in 690 

the world’s 15 largest cities. For each panel, the bar graph shows the EOF pattern of the number 691 

of heat extreme days per year. Contour plots shows the SST pattern associated with the EOF 692 

mode, obtained by projecting each mode of PC onto SST anomalies. Ensemble members are 693 

averaged to yield the SST pattern. Pattern correlation with major modes of climate variability 694 

(ENSO, PDO, AMO) are also shown, as discussed in the text. 695 

696 
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 697 

Figure 4. Frequency power spectrum of ENSO, PDO, and PC of first three EOF modes for (a) 698 

deadly days and (b) tropical nights. ENSO is calculated with the Niño 3.4 Index, and PDO is 699 

calculated as a leading EOF of SST anomaly in North Pacific basin. Monthly SST data is used 700 

for both ENSO and PDO, and then each index is averaged over the year to have consistency with 701 

deadly days and tropical nights. 702 

  703 
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 704 

 705 
Figure 5. (a) Clustered regions via K-means clustering. Characteristics of each cluster are listed 706 

in Table 2. (b) Zonal average of temperature increases at the time of 0.87°C (our reference 707 

period), 1.5°C, 2°C, and 4°C of global warming compared to pre-industrial baseline in the 1% 708 

runs. Temperatures are averaged over a 5-year period after each warming threshold is exceed in 709 

the model. 710 

 711 
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 712 

Figure 6. Evolution of each index averaged over each cluster. Colors are consistent with Figure 713 

5 and Table 2. Values of each metric are calculated by averaging the grid points that belongs to 714 

each cluster. This was done for each ensemble member and then the ensemble average is plotted. 715 

Vertical lines with dots show the maximum and minimum of 28 ensemble members at each 716 

threshold of warming to represent the spread between the ensemble members. 717 
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 718 

 719 

Figure 7. Changes of population-weighted heat wave indices as a function of global average 720 

warming. Each line denotes one ensemble member for different percentiles of population. 721 

 722 
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 723 

Figure 8. Increase in (a) deadly days and (b) tropical nights compared to the reference period 724 

(0.87°C warming), binned by percentile of GDP per capita at selected levels of warming 725 

compared to reference climate (calculated by subtracting reference values, shown as heatmap), 726 

averaged over the population within the GDP percentile (for example, averaged over population 727 

in 0~10 percentile of GDP), and over all ensemble members for 5-year window after each level 728 

of warming first occurs. Green text inside the heatmap represent the absolute number of deadly 729 

days and tropical nights in each level of warming. 730 
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 732 

Figure 9. Change (in percentage) of ensemble averaged cooling degree days (CDD; red) and 733 

heating degree days (HDD; blue) compared to the reference climate (0.87°C) in the 1% CO2 734 

experiments at the time they reach the global mean temperature thresholds of (a) 1.5°C, (b) 735 

2.0°C, (c) 3.0°C, and (d) 4.0°C, respectively. Error bars represent the standard deviation of CDD 736 

and HDD values between the ensemble members.  737 

  738 
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Table 1. Explanation of heat wave indices used in this study. 739 

Acronym Index Definition Units 

HWDt2m/w2m Heat wave duration 
Length of longest period of consecutive 

heat wave days in a year 
# days 

HWFt2m/w2m Heat wave frequency 
Total number of heat wave days in a 

year 
# days 

HWAt2m/w2m Heat wave amplitude 
Maximum temperature over all heat 

wave days in a year 
°C 

HWMt2m/w2m Heat wave mean 
Average temperature over all heat wave 

days in a year 
°C 

Deadly Days Deadly Days 
Daily maximum wet-bulb temperature 

over 26°C 
# days 

Tropical Nights Tropical Nights Daily minimum temperature over 25°C # days 

CDD Cooling degree days 
Sum of positive values after removing 

18°C from daily average temperature 
°C days 

HDD Heating degree days 

Absolute value of sum of negative 

values after removing 18°C from daily 

average temperature 

°C days 

  740 
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Table 2. Percentage area and major regions belonging to each cluster. Clusters are identified 741 

only for the global land areas.   742 

Cluster Color 

Area 

percentage 

(%) 

Major regions Cluster name 

1 Maroon 2.95 
Indonesia, Malaysia, 

Cameroon, Gabon 
Tropical West Pacific 

2 Orange 12.34 

Northern South 

America, Central 

Africa 

Tropical Africa and America 

3 Pink 22.70 

India, Southeast Asia, 

Eastern South America, 

Southeast U.S. 

Sub-Tropical Asia and 

America 

4 Green 21.55 
Northern Africa, 

Middle East, Australia 
Deserts 

5 Sky blue 7.69 Himalayas, Andes Mountain Range 

6 Blue 32.75 
Canada, Northwest 

U.S., Russia 
Sub-Polar Region 

  743 
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Table 3. Number of deadly days each percentile of global population faces with reference period 744 

(0.87°C), 1.5°C, 2°C, 3°C, and 4°C global warming from the pre-industrial condition. Standard 745 

deviations between the ensembles (1𝜎) are also shown. 746 

  Global Warming 

 Population 0.87°C 1.5°C 2.0°C 3.0°C 4.0°C 

Deadly 

Days 

95th p. 85 (± 7) 105 (± 10) 125 (± 7) 161 (± 12) 229 (± 15) 

90th p. 45 (± 5) 65 (± 10) 86 (± 8) 132 (± 12) 198 (± 12) 

50th p. 0.3 (± 0.1) 1.5 (± 1.3) 5 (± 2) 23 (± 4) 63 (± 5) 

Tropical 

Nights 

95th p. 211 (± 11) 232 (± 14) 253 (± 13) 306 (± 17) 358 (± 3) 

90th p. 280 (± 7) 195 (± 9) 205 (± 9) 232 (± 12) 277 (± 14) 

50th p. 15 (± 4) 27 (± 7) 41 (± 6) 71 (± 6) 102 (± 4) 
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