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Key Points 17 

• Unforced variability of the climate system, primarily ENSO, plays a key role in the 18 

occurrence of extreme events in a warming world. 19 

• Uncertainty of internalunforced variability is shown to reducebecomes smaller as one looks 20 

at larger regions or at a global perspective by using the large Ensembles. 21 

• Increases of heat wave indices are significant between 1.5°C and 2.0°C of warming and 22 

the risk of facing extreme heat events is higher in low GDP regions. 23 

24 
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Abstract 25 

 This study investigates the impact of global warming on heat and humidity extremes by 26 

analyzing 6-hourly output from 28 members of the Max Planck Institute Grand Ensemble driven 27 

by forcing from a 1%/year CO2 increase. We find that unforced variability drives large changes 28 

in regional exposure to extremes in different ensemble members, and these variations are mostly 29 

associated with ENSO variability. However, while the unforced variability of the climate can 30 

alter the occurrence of extremes regionally, variability within the ensemble decreases 31 

significantly as one looks at larger regions or at a global population perspective. This means that, 32 

for metrics of extreme heat and humidity analyzed here, forced variability of the climate is more 33 

important than the unforced variability at global scales. Lastly, we found that most heat wave 34 

metrics will increase significantly between 1.5°C and 2.0°C, and that low GDP regions shows 35 

significant higher risks of facing extreme heat events compared to high GDP regions. 36 

Considering the limited economic adaptability of population to heat extremes, this reinforces the 37 

idea that the most severe impacts of climate change may fall mostly on those least capable to 38 

adapt.   39 



3 

 

 

1. Introduction 40 

 The long-term goal of the 2015 Paris agreement is to keep the increase in global 41 

temperature well below 2°C above pre-industrial levels, while pursuing efforts and to limit the 42 

warming to 1.5°C. Given that no one lives in the global average, however, understanding how 43 

these global average thresholds translate into regional occurrences of extreme heat and humidity 44 

is of great value (Harrington et al., 2018). VariousPrevious studies have reported that regional 45 

extreme heat events and heat waves will not only be more frequent, but also more extreme in a 46 

warmer world. This was discussed in various assessment and reports such as US National 47 

Climate assessment and those by IPCC (Melillo et al., 2014;Wuebbles et al., 2017;Hoegh-48 

Guldberg et al., 2018;Masson-Delmotte et al., 2018) and it is reported to have significant impacts 49 

on human society and health and it is expected to have significant impacts on human society and 50 

health. More importantly, previous studies have analyzed the risk (Quinn et al., 2014;Sun et al., 51 

2014;Lundgren et al., 2013), exposure (Dahl et al., 2019;Ruddell et al., 2009;Liu et al., 52 

2017;Luber and McGeehin, 2008), vulnerability (Chow et al., 2012;Wilhelmi and Hayden, 2010) 53 

and susceptibility (Arbuthnott et al., 2016) of population in the current and warmer climates. 54 

Many criteria and indices have been used to assess extreme heat, such as the absolute 55 

increase of maximum temperature from the reference period (Wobus et al., 2018), risk ratio of 56 

population’s exposure to heat (Kharin et al., 2018), and heat wave magnitude index (Russo et al., 57 

2017). In this study, we utilize four locally defined heat wave indices from Fischer and Schär 58 

(2010) and Perkins et al. (2012) of duration, frequency, amplitude, and mean. We also focus on 59 

consecutive-day extremes, which are known to cause more harm than single-day events 60 

(Baldwin et al., 2019;Simolo et al., 2011;Tan et al., 2010). In addition, because the combined 61 

effect of temperature and humidity is known to affect human health by reducing the body’s 62 
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ability to cool itself through perspiration, wet-bulb temperature is frequently analyzed (Kang and 63 

Eltahir, 2018) and we will do so here.  64 

Climate extremes are always a combination of long-term forced climate change acting in 65 

concert with unforced variability (Deser et al., 2012).  Thus, characterizing and quantifying both 66 

long-term change due to external forcing and the unforced variability of the climate system is 67 

crucial in assessing the future risk of extreme events. There have been numerous studies that 68 

linkslink dominant modes of unforced variability to extreme events. Temperature connections 69 

with El Niño Southern Oscillation (ENSO) (Thirumalai et al., 2017;Meehl et al., 2007), the 70 

Pacific Decadal Oscillation (PDO) (Birk et al., 2010) , Atlantic Multidecadal Oscillation (AMO) 71 

(Zhang et al., 2020) have been investigated from the previous studies.  The effect of climate 72 

extremes on different populations depends on the level of economic development, with impacts 73 

of heat extremes being more severe in less economically developed countries  , the Atlantic 74 

Multidecadal Oscillation (AMO) (Zhang et al., 2020;Mann et al., 2021) have been investigated 75 

in the previous studies.  The effect of climate extremes on different populations depends on 76 

numerous factors, including the level of economic development, with impacts of heat extremes 77 

being more severe in less economically developed countries (Diffenbaugh and Burke, 78 

2019;Harrington et al., 2016;King and Harrington, 2018). For example, as temperatures go up, 79 

increased energy demand to cool buildings will be required (Parkes et al., 2019;Sivak, 2009).  80 

But this requires resources to both install air conditioning and then run it. in metropolitan area.  81 

But this requires resources to both install air conditioning and then operate it. The greater 82 

impacts of extreme heat in economically less developed region in a warmer climate has been 83 

discussed in multiple studies (Marcotullio et al., 2021;Russo et al., 2019). 84 
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In this paper, a single-model initial-condition ensemble of 28 runssimulations of a global 85 

climate model (GCM) isare used to quantify heat and humidity extremes in a warmer world.  We 86 

use population data to look at population risk as well as thresholds for mortality events in 87 

daytime (Mora et al., 2017) and nighttime (Chen and Lu, 2014).(Chen and Lu, 2014). We also 88 

utilize per capita gross domestic product (GDP per capita) data to investigate how climate 89 

change impacts extreme heat events on different levels of economic status during extreme 90 

events. To quantify the impact on energy demand, we also quantify changes in cooling degree 91 

days and warming degree days. 92 

The rest of the paper will focus on the following topics: Section 2 describes the model 93 

and data used, Section 3 explains the bias-correction method, as well as explaining the metrics 94 

used. Section 4 describes the results of the calculations and associated heat wave events in the 95 

warmer world as well as the role of unforced variability on extreme heat events. Section 5 96 

summarizes the results and suggests directions for the future work. 97 

 98 

2. Data 99 

2.1. MPI-GE ensembles 100 

  Simulation data in this study come from an ensemble of runs of the Max-Plank Institute 101 

Earth System Model collectively known as the MPI Grand Ensemble (MPI-GE) project (Maher 102 

et al., 2019). Each of the 28 ensemble members branches from different points of a 2000-year 103 

pre-industrial control run and goare integrated for 150 years, forced by CO2 concentration 104 

increasing at 1% per year (hereafter, 1% runs).  Because the radiative forcing scales as the log of 105 

CO2 concentration, the 1% runs feature radiative forcing that increases approximately linearly in 106 

time. We analyze 6-hourly output with 1.875° × 1.875° spatial resolution, which is the original 107 



6 

 

 

resolution of the model output, for land and near-land ocean areas between 60°N and 60°S. Our 108 

analysis will focus on 2-meter temperature (hereafter, t2m) and 2-meter dew point temperature 109 

(d2m), from which 2-meter relative humidity (rh) and wet-bulb temperature (w2m) are 110 

calculated using the equationsmethods of (!!! INVALID CITATION !!! ). 111 

 Unforced variability in the climate system generates uncertainties in the projection of the 112 

climate by impacting the dynamic component of the climate, especially for extreme events (Kay 113 

et al., 2015;Thompson et al., 2015). One way to analyze the impact of unforced variability in 114 

climate system is to use an initial-condition ensemble. Each members of initial-condition 115 

ensemble are generated by perturbating the initial conditions of single climate model. This 116 

perturbation will then propagate to generate different sequence of climate, such as ENSO, PDO, 117 

etc. (Deser et al., 2012;Kay et al., 2015). In this paper, we use the ensemble to allow us to 118 

estimate the impact of unforced variability on temperature extremes. 119 

 We also analyze a 100-member ensemble of runs of the same model with historical 120 

forcing (hereafter, historical runs), which simulates the years 1850-2005.  We also analyze runs 121 

with RCP8.5 forcing, which simulate the years 2006-2100. Like the 1% runs, each historical 122 

ensemble member and it’s RCP 8.5 extension branches from a different point in the same 2000-123 

year control run.  This historical and RCP8.5 ensemble only has monthly average fields.  124 

 Since the model used only considers CO2 forcing without aerosols, and it represents a 125 

continuously warming climate, one might question if the model simulation accurately represents 126 

the real climate. To judge the fidelity of the simulations, we compare 15 years (2003-2017) of 127 

ERA-Interim reanalysis data (Dee et al., 2011) from the European Centre for Medium Range 128 

forecast (ECMWF) with 15 years of the MPI-GE 1% ensemble which have the same ensemble- 129 

and global-average temperatures (years 39-53); in the rest of the paper, we will refer to these as 130 
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the reference periods.  In both data sets, we then calculate 90th percentile and mean t2m and w2m 131 

for each grid points. This calculation was done for each member of the model ensemble. For 132 

each of the 4 values (90th percentile t2m/w2m and mean t2m/w2m), we determine if the values 133 

from the reanalysis fall into the spread of 28 ensemble members of the 1% runs. For each grid 134 

point, if the reanalysis value falls within the ensemble spread, we mask out the grid point; if not, 135 

we plot how far the reanalysis value is from the closest member of the 1% ensemble (Figure 1).  136 

Generally, the 1% runs overpredicts t2m and w2m in Northern hemisphere, and 137 

underpredicts in Southern hemisphere, except for India. This difference is consistent with the 138 

fact that the 1% models do not contain aerosol forcing, which should lead to biases of the sign 139 

seen in Fig. 1.  The w2m shows larger area of differences than t2m, which suggests that there are 140 

larger biases in the dew point, which is needed in the calculation (Davies-Jones, 2008). The area-141 

weighted averages of these differences are -0.08°C, -0.03°C, -0.04°C, and -0.11°C globally for 142 

90th percentile t2m, mean t2m, 90th percentile w2m, and mean w2m respectively, which means 143 

that the model is, on average, underpredicting land temperature. Breaking down to Northern and 144 

Southern hemisphere, the bias is 0.20°C, 0.21°C, 0.15°C, 0.14°C in NH and -0.64°C, -0.54°C, -145 

0.36°C, and -0.44°C, confirming that the model is overpredicting temperature in NH land and 146 

underpredicting in SH land.  147 

To quantify the impact of the biases in Fig. 1 on the occurrence of heat extremes, we will 148 

perform sensitivity tests on the calculations by adding to each grid point of each member of the 149 

ensemble the average differences between the ensemble average t2m and w2m and the 150 

reanalysis.  By evaluating how much our results change, we come up with an estimate of the 151 

impact of model biases on our results.  As we will show later, these biases have little impact on 152 

the results of the paper. 153 
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 154 

2.2. Global population and GDP per capita data 155 

 Global population data from the NASA Socioeconomic Data and Applications Center 156 

(SEDAC, 2018) are used to weight the heat wave indices by population. The data represent the 157 

population in year 2015 at 30′′ × 30′′ spatial resolution, and we averaged and re-gridded to the 158 

1.875° × 1.875° grid of the MPI model by summing the values in grid boxes surrounding the 159 

MPI grid centers. In our population-weighted calculations, we assume that the relative 160 

distribution of population remains fixed into the future. 161 

 Gridded GDP per capita data (Kummu, 2019) over 1990-2015 are used to estimate the 162 

risk of heat extreme events for different levels of wealth. These data are regriddedre-gridded 163 

from the original 5′′ × 5′′ spatial resolution to the MPI model’s resolution of 1.875° × 1.875° by 164 

averaging the GDP inside the grid box. When averaging the GDPdoing this average, per capita 165 

GDP has been multipliedwas weighted by population to estimate the total GDP. Data were 166 

thenand also averaged over the 1990-2015 period.  We assume that the relative percentile of 167 

GDP per capita for each grid point is assumed to be fixed into the future, so changes in climate 168 

risk are due to exposure to warmer climate extremes, not changes in relative per capita wealth. 169 

 170 

3. Method of analysis 171 

3.1. Global warming 172 

 Global warming is defined as the global and annual average temperature increase 173 

compared to the average of first 5 years of the 1% run. We find that ensemble- and global-174 

average t2m reaches 1.5°C, 2°C, 3°C and 4°C occur in years 59, 76, 108, and 133 years, 175 

respectively, and reaches 4.596°C at the end of the 150-year run. The increase of global average 176 
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temperature is nearly linear for both t2m and w2m (Figure 1a and 1b),, consistent with a linear 177 

ramping of the forcing. 178 

 179 

3.2. Bias-correction of 1% runs 180 

 Many GCMs have systematic biases in surface temperature, and various attempts have 181 

been made to correct them (e.g. Li et al. (2010);Thrasher et al. (2012)). In our analysis, we are 182 

mainly interested in the spatial pattern of warming, and to judge the fidelity of that in the MPI-183 

ESM 1.1 model, we compare the 1% runs with ERA-Interim reanalysis data (Dee et al., 2011) 184 

from European Centre for Medium-range Weather Forecast (ECMWF). To do this, we compared 185 

the period 2003-2017 in the ERA-interim with a 15-year period in the 1% runs (years 39-53) 186 

with the same ensemble- and global-average absolute temperature. The ensemble and area-187 

averaged bias for land and near-land ocean areas archived in the 6-hourly dataset is near zero for 188 

t2m, but underestimates w2m over this period by 0.18°C (Figure 1).  189 

But while the ensemble- and area-averaged t2m bias is near zero, the difference is not 190 

zero at all grid points of individual ensemble members.  Figures 2a and 2b show the difference in 191 

the 90th percentile value of t2m and w2m at each grid point calculated over the 15-year period in 192 

the model ensemble minus the 90th percentile value at the same grid point in the ERA-Interim.  193 

Figures 2c and 2d show the difference in median values.   194 

This bias is not the result of unforced variability — it is consistent in all ensemble 195 

members. To show this, we calculate at each grid point the difference between the highest and 196 

lowest 90th percentile temperature in the ensemble divided by the ensemble average 90th 197 

percentile temperature bias between reanalysis data the ensemble, computed where the bias is 198 

greater than 2°C (Figure 2e).  We also do the same for the median temperature (Figure 2f). The 199 
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disagreement between the ensembles is at most 37% of the bias in the same region, and the 200 

average is 13% (Figures 2e, f). In other words, the systematic bias of the model compared to 201 

reanalysis exceeds the spread within the ensemble.  202 

The CDF-t method (Michelangeli et al., 2009) is used to bias correct each ensemble 203 

member of the 1% runs. CDF-t method finds the transformation function that maps the 204 

cumulative density function (CDF) of a GCM to the CDF of a historical reanalysis data in a 205 

reference period, which is year 39-53 in 1% runs and 2003-2017 for ERA-Interim reanalysis 206 

data. This function is then applied to the 1% runs to generate bias-corrected fields. For the values 207 

that fall outside the limits of the CDFs in the reference period, linear extrapolation is used. CDF-t 208 

is known to realistically correct the temperature and precipitation output of GCMs, especially for 209 

extreme events (Vrac et al., 2012;Watanabe et al., 2012). 210 

Bias correction via CDF-t is done for t2m and d2m, and then rh and w2m are calculated 211 

with these bias-corrected fields. The bias is reduced significantly for all regions for both t2m and 212 

w2m (Figures 1c, 1d, 2a-2d). The bias in w2m is mostly caused by the small remaining biases in 213 

t2m and d2m, which are amplified in the w2m calculation. Hereafter, ‘1% runs’ will refer to the 214 

bias-corrected 1% runs. 215 

Since the 1% runs are CO2-only forcing, without aerosol forcing, one might wonder 216 

whether the temperature extremes estimated by these models would apply to a world with a more 217 

realistic forcing that includes aerosols. To determine this, we have compared monthly average 218 

and monthly maximum temperatures from an ensemble of 100 RCP 8.5 scenario runs from the 219 

MPI-GE to the same quantities estimated from the 1% ensemble.  If we compare the ensembles 220 

at points in time when they have 1.5, 2, 3, and 4°C of ensemble- and global-average warming, 221 

we find very small regional differences — the regional ensemble averaged maximum and mean 222 
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temperature difference was less than 0.5°C in all regions. Alternatively, since we bias-corrected 223 

the 1% CO2 runs to reanalysis data, which contains aerosol forcing, our bias-corrected 1% CO2 224 

runs can be understood as a continuously warming climate driven by CO2, with effect of aerosols 225 

fixed at 2003-2017 period. 226 

 227 

 The focus on the paper will be on heat extremes at 1.5°C, 2°C and 3°C. The 1.5°C and 228 

2°C thresholds are the limits described in the Paris Agreement, while 3°C is the warming we are 229 

presently on track for (Hausfather and Peters, 2020).   230 

 231 

3.32. Heat wave indices 232 

 Identification of heat waves is done in several steps. First, for each grid point, we smooth 233 

a daily maximum temperature (determined form 6-hourly temperatures) using a 15-day moving 234 

window for the first 5 years of 1% runs, which is the period before significant warming has 235 

occurred. This was done at each grid points, followed by a framework from Fischer and Schär 236 

(2010). Then, also for each grid pointThen, the 90th percentile of smoothed daily maximum 237 

temperature for the first 5 years was calculated. at each grid point (Fischer and Schär, 2010). 238 

This value is used as a threshold for the heat waves. After calculating the threshold, at that grid 239 

point. Then we calculate the heat wave days, defined as days that exceedsexceed the threshold 240 

for three or more consecutive days (Baldwin et al., 2019). 241 

We then define four indices to represent the characteristics of these heat waves. To 242 

determine the occurrence of events, heat wave duration (HWD; longest heat wave of the year) 243 

and heat wave frequency (HWF; total number of heat wave days in a year) are calculated. From 244 

an intensity perspective, heat wave amplitude (HWA; maximum temperature during heat wave 245 
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days during a year) and heat wave mean (HWM; mean temperature during heat wave days in a 246 

year) are selected. These indices are also calculated in an analogous fashion for wet bulb 247 

temperature (w2m), since wet-bulb temperature is arguably more relevant for human health (Heo 248 

et al., 2019;Morris et al., 2019;Buzan and Huber, 2020).  These indices are summarized in Table 249 

l. 250 

 251 

3.43. Deadly days and tropical nights 252 

Heat wave thresholds are different for each grid point because they are based on pre-253 

industrial baselinetemperatures at that grid point. Combined with regional differences in the 254 

ability to adapt, this means that heat waves in different regions may have different implications 255 

for human society. We therefore also count the number of days each year with daily maximum 256 

w2m above 2426°C, which we refer to as “deadly days”.  We note that other values could be 257 

chosen, with higher values occurring less frequently but having more significant impacts.  This 258 

value is consistent withbased on the analysis of Mora et al. (2017), who demonstrated that this is 259 

the threshold above which fatalities from heat-related illness occur.  w2m of about 24°C is the 260 

threshold which fatalities from heat-related illness occur. However, since we find that there are 261 

some regions that already experience over 9 months of 24°C w2m events per year, we increase 262 

this threshold to 26°C in our analysis. We could have chosen higher w2m values, but any choice 263 

in this range is associated with negative impacts, so we have chosen a value near the bottom of 264 

the range where mortality occurs in order to maximize the signal in the model runs. 265 

A warm nighttime minimum temperature can be as important as a high maximum 266 

temperature for human health and mortality (Argaud et al., 2007;Patz et al., 2005), so we define 267 

“tropical nights” as a daily minimum t2m over 25°C (Lelieveld et al., 2012). 268 
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 269 

3.54. Cooling degree days and heating degree days 270 

 To assess the economic and energy impact of heat extremes, cooling degree days (CDD) 271 

and heating degree days (HDD) are calculated. CDD and HDD are metrics of the energy demand 272 

to cool and heat buildings. For each grid point, annual CDD is calculated by subtracting 18°C 273 

from the daily average temperature and summing only the positive values over the year. HDD is 274 

the absolute value of the sum of the negative values. Although energy demand could be highly 275 

linked to the culture, wealth, population of the region and other meteorological conditions rather 276 

than the daily mean temperature, previousPrevious studies reported that CDD and HDD are 277 

closely related to energy consumption (Sailor and Muñoz, 1997). 278 

 279 

4. Results 280 

4.1. Impact of unforced variability of climate on regional heat extremes 281 

To investigate the impact of unforced variability on more regional heat extremes, we 282 

selecttake the 15 largelargest cities spread around the worldby population (Fig. 3a). Figure 3b-d 283 

shows the maximum spread in2a) and determine the number of deadly days and tropical nights 284 

withinover time by averaging the 3×3 grid points surrounding the city, only including the land 285 

grid points. Figure 2b-d depicts the ensemble — i.e., the difference averaged number of deadly 286 

days and tropical nights, as well as the spread between the ensemble member withmembers. The 287 

error bars in Figure b-d show the highest and lowest values of extreme events (deadly days, 288 

tropical nights) minus the member with the lowest — at a year when ensemble- and global-289 

average temperature reaches the thresholdextremes.  290 
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This difference within the ensemble is the result of unforced variability and we see that it 291 

varies considerably among the cities. For example, Moscow shows a small spread within the 292 

ensemble members for both deadly days and tropical nights for all periods of global warming. 293 

This is because, even with 4°C of warming, Moscow experiences a maximum of only 8 deadly 294 

days and 25 tropical nights per year. In contrast, with 3°C of warming, a warmer city such as 295 

Kinshasa experiences 148 more deadly days in some ensembles than others, and 55 more tropical 296 

nights.. For all 15 cities, average spread in the number of deadly days at 1.5°C, 2.0°C, 3.0°C , 297 

and 4.0°C of global warming between the ensemble members with maximum and minimum 298 

numbers is 53.5, 53.2, 63are 14.3, 15.1, 20.6, and 56.821.9 days per year. For tropical nights, the 299 

spreads are 29.3, 27.7, 29.1, and 26.7 days per year. For tropical nights, the spread is 50.4, 50.3, 300 

50.9, and 52.2 days per year. So, on average, unforced variability can change the number of 301 

extreme days and nights by about two months per yeara few weeks per year. There is no 302 

significant variance of ensemble spread between the cities except for cities with very low 303 

ensemble-averaged values (e.g., Mexico City at 1.5°C warming) or very high values (e.g., 304 

tropical nights in Manila at 4.0°C warming). However, for the cities that do not see large 305 

increase in extreme temperatures (e.g., New York City), this represents a very large fraction of 306 

the predicted change of extremes, while for cities that experience much larger increase (e.g., 307 

Manila), it represents a smaller percentage. 308 

As discussed in Section 2.1, we examine the sensitivity of our results to potential biases 309 

of the model by recalculating the deadly days and tropical nights using model data after adding 310 

in the bias estimated by comparison to the reanalysis. The average difference of deadly days in 311 

the sensitivity test (absolute difference) at 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming is 2.1, 2.5, 312 

5,5, and 7.6 days per year when averaged over 15 cities. The standard deviation of difference 313 
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calculated between the cities is 2.5, 3.4, 6.7, and 9.7 days at each level of warming. For tropical 314 

nights, sensitivity test produced differences of 3.6, 3.6, 5.3, and 3.5 days per year at each level of 315 

warming, with standard deviations within the ensemble of 3.6, 4.9, 6.9, and 1.8 days.  Thus, 316 

model biases are unlikely to have a large impact on our results. 317 

Previous work has attempted to distinguish the origin and mechanisms of unforced 318 

variability fromof temperature and temperature extremes (Meehl et al., 2007;Zhang et al., 319 

2020;Birk et al., 2010). To probe the physical mechanisms statistical modes of variability 320 

affecting this spread of ensemblesensemble spread and to identify the underlying physical 321 

mechanisms, empirical orthogonal function (EOF) analysis (North, 1984) was performed 322 

separately on the detrended and normalized time series of deadly days and tropical nights for the 323 

15 cities across the ensemble. We. For each city, the 28 ensemble members are concatenated 324 

together (total of 28×150 years) in order for all ensemble to share the same EOF. In this way, we 325 

aim to find the dominant drivers of unforced variability that impacts representativeheat extremes 326 

in the largest cities around the world.  327 

The first three EOF patterns for each city are plotted in Fig. 43 as bars. The first EOF 328 

mode of deadly days per year in 15 cities show similar signs for all cities except Istanbul and 329 

Kinshasa, where the magnitude of the EOF is small for both cities. This means that, if one of the 330 

cities is hot, then the others also tend to be hot.shows large values for Delhi, Shanghai, Dhaka, 331 

and Karachi, while cities in other regions show lower values. The second and third EOFs for 332 

deadly days showsshow more variability between the cities. The EOFsfirst EOF for tropical 333 

nights (Fig. 4d, 4e, 4f) shows more variability3d) show large positive values for cities in the 334 

India-Pakistan region, with higher number of other cities showing smaller magnitude changes. 335 

The second EOF shows large negative values in Cairo, Istanbul, and Manila, while the third EOF 336 
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for tropical nights in someshows more variability between the cities associated with lower values 337 

in others.  338 

The PC time series are projected onto detrended annual sea surface temperature (SST) 339 

anomalies. This allows us to investigate how heat extreme events in 15 major cities are 340 

associated with global modes of internal variability. This is also plotted in Fig. 4. All of the 341 

projections of deadly day PCs and projections of the first two modes of tropical nights shows 342 

patterns similar to El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO).  343 

Characteristic patterns for ENSO, PDO, and AMO are calculated for each ensemble using all 344 

150-year of SSTs, and the pattern is averaged over ensembles to come up with a single ENSO, 345 

PDO, and AMO SST for the ensemble. Then, those patterns are compared with the PC projection 346 

on SST. Correlation coefficients between the standard climate indices and PC projected SST is 347 

shown on lower panel of Fig. 4.unforced variability. Maps of correlation coefficients are also 348 

plotted in Fig. 3. Characteristic patterns for ENSO (Trenberth, 2020), PDO (Deser and 349 

Trenberth, 2016), and AMO (Trenberth and Zhang, 2021) are calculated for each ensemble using 350 

all 150-year of SSTs, and the pattern is averaged over ensembles to come up with a single 351 

ENSO, PDO, and AMO SST pattern for the ensemble. Then, those patterns are compared with 352 

the PC projection on SST to see how PC projected SST resembles the patterns of unforced 353 

variability. Correlation coefficients between the standard climate indices and PC projected SST 354 

is shown on lower panel of Fig. 3 as numbers. All of the projections of deadly day PCs and 355 

projections of the first two modes of tropical nights shows patterns similar to El Niño-Southern 356 

Oscillation (ENSO) and Pacific Decadal Oscillation (PDO).   357 

Power spectra of the PCs are calculated individually for each ensemble member, and then 358 

the ensemble average is plotted in Figure 54. Overall, the spectra of the deadly day PCs look 359 
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very much like the spectrum for ENSO, butand it notably does not have the ~20-year peak of the 360 

PDO spectrum.  This tells us that, in this model at least, the variability in the occurrence of 361 

deadly days in these large cities is strongly regulated by ENSO. This may be a consequence of 362 

the fact that these large cities are mostly located near ocean and at lower latitudes. The third 363 

deadly day PC has lower correlations with ENSO or PDO index and a peak at both the ENSO 364 

period a slightly longer period than ENSO, about 10 years, so it is harder to draw firm 365 

conclusions about the mechanism behind it.   366 

Also, higher modes of EOFs are unlikely to refer to a single mode of climate due to the 367 

orthogonality constraints between each mode.  The tropical night PCs also show peaks at ENSO 368 

periods (Fig. 5b4b) suggesting that, like deadly days, tropical night variability is controlled by 369 

ENSO.  However, the PC-projected SST of the third EOF of tropical nights shows high values 370 

near Northern Africa and East Asian region, suggesting that this EOF represents the effect of 371 

ENSO on tropical night variability in this region.    372 

 373 

4.2. Cluster analysis and population risk of heat wave indices 374 

 We calculate HWD, HWF, HWA, and HWM for both t2m and w2m each year at each 375 

grid point, which generates eight different 150-year time series for each of the 28 ensemble 376 

members. Each time series at each grid point is regressed vs. time, yielding a slope and the 377 

intercept for each time series in all of the 28 ensemble members. The 16 variables (8 [heat wave 378 

indices] × 2 [slope, intercept]) are then utilized as a predictor variable for K-means clustering 379 

(Likas et al., 2003) to categorize the spatial variation of heat waves. K-means clustering aims to 380 

classify the observations (grid point over land) into clusters using the Euclidean distance of its 381 

predictor variables (16 variables). With slope and intercept, we can characterize the heat indices 382 
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of each grid point with response to CO2 forcing (slope) and climatology (intercept). The number 383 

of clusters (K) in this study is set to 6, using the elbow method (Syakur et al., 2018). When using 384 

5 clusters, we find that two clusters (the light and dark blue regions in Figure 5a) merge, and 385 

when using 7 clusters, we find that one cluster (the dark blue region in Figure 5a) divides into 386 

two separate clusters.  387 

Figure 6a5a shows the cluster value that most ensembles assigned to each grid point and 388 

it shows distinct geographical characteristics, as summarized in Table 2 (the result of clustering 389 

shows little difference between theindividual ensemble members).  As might be expected from 390 

how we calculated the 16 variables for clustering, each cluster shows a different evolution of 391 

heat extremes in warmer world (Figure 76).  Although the warming signal is largest in the polar 392 

regions (Figure 6b5b), the largest increases of HWD and HWF are observedfound at lower 393 

latitudes (in cluster 1 and 2 on Figure 7a6a-d). This is mostly due to low variability in these 394 

regions compared to polar regions, making it easier for a trend to exceed the heatwave threshold.  395 

These results are insensitive to potential model biases.  Sensitivity tests show that adding 396 

the bias to the model changes HWD, HWF, deadly days, and tropical nights, by less than 5% for 397 

all metric and clusters. For HWA and HWM, the difference caused by adding the bias was less 398 

than 1°C for all metric and clusters, suggesting that the impact of model biases is small in this 399 

analysis. 400 

For HWA and HWM, the rate of increase is similar for all clusters, with increases of 401 

HWAt2m and HWAw2m of 3.5 and 2.2°C, respectively (Figure 7e-h).1.45°C per degree of global 402 

average warming and 0.85°C per degree of global average warming, respectively, and HWMt2m 403 

and HWMw2m of 0.66°C per degree of global average warming and 0.47°C per degree of global 404 

average warming, respectively (Figure 6e-h). The exception is HWAt2m in cluster 6.  The large 405 
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increase of HWAt2m in this region is connected to the strong global warming signal in high 406 

latitudes that has been predicted for decades and now observed (Stouffer and Manabe, 2017). 407 

Turning to deadly days (Fig. 7i6i), we find a substantial increase occurs in cluster 1 after 408 

1.52.0°C of warming; this is important because it gives additional support for the Paris 409 

Agreement’s aspirational goal of limiting global warming to 1.52.0°C. Almost all of the 410 

increases in deadly days are in low latitudes (cluster 1, 2, and 3). For tropical nights, low 411 

latitudes as well asand deserts (cluster 4) contribute most of the increase.  These regions also 412 

show more rapid increases when global average warming exceeds 1.5-2°C. 413 

Figure 76 also shows the spread in within the ensemble for each metric and cluster. We 414 

find that the spread for a cluster is generally smaller than small compared to the 415 

differenceschange over time as well as the difference between the clusters. This suggests that the 416 

differences obtained are not due to interannual variability. 417 

 We also generated indices weighted by global population. Heat wave indices for the 418 

90th95th percentile of population (meaning 105% of the population is exposed to higher values)), 419 

90th percentile of population, and median of the population are depicted in Figure 87. Figure 420 

8a7a shows that with 43°C of warming, 105% of the Earth’s population will experience heat 421 

waves lasting 131122 days, (standard deviation between ensemble members: 1𝜎 = 17 days), 10% 422 

of the population will experience heat waves of 94 days (1𝜎 = 7 days), and half of the population 423 

will experience heat waves around 6450 days long.(1𝜎 = 4 days).  These are large increases over 424 

present-day values of 35 days50, 42, and 1721 days.  Notably, theThe average of the standard 425 

deviation between the ensembles during 150-yr periodensemble members (calculated every year 426 

and then averaged), are 10.6.7 days, 6.2 and 3.47 days for the 95th, 90th percentile and median, 427 

respectively. This is significantly smaller than values from the regional analyses of cities in 428 
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Figure 32, where the unforced variability can make a huge differencemakes larger differences in 429 

the occurrence of heat waves.   430 

The rate of increase of HWDw2m and HWFw2m in Fig. 8 accelerates when7d shows a rapid 431 

increase until global average warming exceeds 1-1reaches about 2.5°C. Given that the planet has 432 

already warmed about 1°C above pre-industrial, this suggests that the world mayshould presently 433 

be on the cusp of experiencing a rapid increase inof wet-bulb extremes.extreme frequency, 434 

particularly in the tropics. This is related to the increased slope in Figure 76, in which cluster 1 435 

and 2’s values of HWDw2m and HWFw2m increase rapidly between 1.5Cuntil 3.0°C and 2.50°C of 436 

global warming.  At warmer temperatures, HWDw2m and HWFw2m reach a plateau, since values 437 

over 300 days per year means there is little room for additional increase. For HWAt2m/w2m and 438 

HWMt2m/w2m, the increase is mostly linear. Also note that, at 43°C of global warming, the 90th 439 

percentile of population weighted HWAw2m reaches 30over 29°C, which while not immediately 440 

fatal to humans may nevertheless indicate great difficulty for even a developed society to adapt 441 

to. 442 

Currently, 510% of the total population faces more than 18045 deadly days and 302181 443 

tropical nights per year. This grows to 20465 and 333195 days, respectively, at 1.5°C warming. 444 

With 2°C of global warming, half10% of the population will face 2about 3 months of deadly 445 

days and 7 months of tropical nights every year and , and this increase to 4 months and 8 months 446 

in 3°C of warming. Also, with 2.53°C of global warming, and 5% of the population will be in an 447 

environment where every day 8 months and 10 months in a year is a deadly days and tropical 448 

night. With 2Our sensitivity tests suggest that model bias generates less than 5% differences for 449 

HWD, HWF, deadly days, and tropical nights for all metrics and percentile of population at 450 

every level of global warming, except when the metrics are near-zero. Potential model biases 451 
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also generate small differences in HWA and HWM, with less than 1°C difference in all metrics 452 

for every period. Furthermore, with 3°C of global warming, the minimum ensemble member of 453 

deadly days and tropical nights is above the maximum ensemble of the current climate. Further 454 

detailspresent-day reference (0.87°C) for all population percentiles (5%, 10%, and 50%). This 455 

occurs at 2°C for tropical nights. Details of ensemble spread are also shown in Table 3. 456 

It is notable that, although there is a large spread between the ensemble members in each 457 

city (Figure 32), the spread in the clusters (Figure 76) and population-weighted metrics (Figure 458 

87) is not as large. This emphasizes that the effect of unforced variability might be large inat 459 

small regions,scales but, as the region expands, opposite signsthe impact of variability cancel, so 460 

area-averageunforced variability decreases. This is also found in Table 3, where in each case, the 461 

standard deviation between ensembles is less than 1020% of the average., except in a few cases. 462 

This indicates that internalunforced variability will generally play a minor role in determining 463 

global exposure to temperature above thresholds, although different people may be affected in 464 

different climate realizations of unforced variability. 465 

In addition, with 1.5°C of global warming, the lowest ensemble of the 90th percentile of 466 

HWDt2m, HWDw2m, and HWFt2m exceeds the highest ensemble of the same metric in the current 467 

climate (red lines in Figure 87). With 2°C of warming, the minimum ensemble of HWFw2m, 468 

HWAt2m, HWAw2mHWDt2m/w2m, HWFt2m/w2m, HWMw2m, and HWMw2mtropical nights exceed the 469 

maximum ensemble of the current climate, and with 2.5°C of warming, the minimum ensemble 470 

of all metrics exceeds the maximum ensemble of the same metric in the current climate. Thus, 471 

this model predicts that the occurrence of extremes will soon be able to exceed values likely 472 

possible in our present climate. for these metrics.  473 

 474 
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4.3. Analysis on GDP per capita 475 

 It is well-known that not everyone is equally vulnerable to extreme weather, with rich, 476 

relatively more developed countriescommunities having more resources to deal with extreme 477 

events than poorer communities. In that context, global gridded GDP per capita is used to 478 

calculate average risk at each level of wealth. The ensemble-average result is depicted in Figure 479 

98, which shows the increasedabsolute number of deadly days and tropical nights as well as the 480 

increase in number of deadly days and tropical nights that each level of economic level 481 

experience relative to today’s current level of globalthe reference period warming of 0.87°C. 482 

This plot assumes that the relative distribution of population and GDP remains fixed through 483 

time.  Our sensitivity tests show that the model bias yields small differences in the results, with 484 

less than 5% difference in both the absolute number of extreme events as well as the changes in 485 

extremes. 486 

 With 0.5°C increase For each level of global warming, population in lowest 10% of we 487 

find that the lower GDP will face 28 more deadly days and 22 more tropical nights increasing 488 

compared to present day. In contrast, the richest 10% regions will experience 5 and 3 morenot 489 

only higher absolute numbers of extreme temperature days but also the largest increases. For 490 

deadly days and tropical nights for the same warming. At 3°C above current temperatures (about 491 

4°C above preindustrial temperatures),, the population with the lowest 10%increase is largest 492 

between 10th to 40th percentile of GDP will experience154, and 162 more days of deadly days 493 

andfor tropical nights compared to today’s climate. On, the other hand, population with the 494 

highest 10% of GDP will experience an increase of 26 and 30 days foris largest below the same 495 

warming30th percentile of GDP. The regions that contribute the most for the low GDP 496 

percentiles are Southeast Asia, including Myanmar, Laos, and Cambodia, and Tropical Africa, 497 
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including Republic of the Congo, Kenya, Uganda, Ethiopia, and Sudan, which are in clusters 1 498 

and 2 in our cluster analysis. (Figure 5). The maximum difference of heat wave days between the 499 

ensembles is less than 25% for all GDP and global warming levels.  500 

 501 

4.4. Energy demand on large cities 502 

 Annual CDD and HDD have been calculated for the 15 cities in section 4.1. Both CDD 503 

and HDD are calculated by averaging the CDD and HDD values of 3×3 grid points surrounding 504 

each city, including only land grid points. CDD and HDD values are then averaged for 5 years 505 

after global warming reaches each levels of threshold. Fig. 109 shows the percent change of 506 

CDD and HDD at 1.5°C, 2.0°C, 3.0°C, and 4.0°C relative to the pre-industrialreference period 507 

CDD and HDD values (average of first 5 year of 1% CO2 runs).. This was done for each city, 508 

and for each ensemble member. InAt 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming, CDDCDDs in the 509 

15 cities increases by 26%, 38%, 60%, and 82%.increase by an average of 9%, 22%, 54% and 510 

70%.  Our sensitivity tests show that the application of the average model bias yields changes of 511 

less than 1% in these numbers. This suggests an enormous increase in energy required for 512 

cooling. In contrast, energy demand on cold days (HDD) decreases by 51%, 60%, 68%, and 513 

75%, compared to pre-industrial baseline, suggesting a partially offsetting decrease in energy 514 

required for heating. The spread between the ensemble members is small compared to the 515 

average of the ensembles, except for Moscow.  516 

Large percentage increases in CDD for Moscow is the result of low pre-industrial CDD 517 

values, so that (relatively) small increases in CDD correspond to large fractional changes, as well 518 

as large differences between ensemble members. The ensemble spread of HDD in Moscow is 519 

also large, compared to other cities. This is not due to low values of HDD – Moscow has highest 520 
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HDD value among 15 cities (4062 days °C per year in pre-industrial condition) — but rather that 521 

unforced variability of the climate is more important for HDD than CDD values for Moscow.   522 

In contrast, average energy demand on cold days (HDD) decreases by 21%, 36%, 59%, 523 

and 65% in cities considered, compared to present day, partially offsetting the increase in energy 524 

required for cooling. Mania shows 0% change in HDD for all period, since Manila does not 525 

experience HDD days in present or future periods. Sensitivity tests also show less than a 1% 526 

difference in HDD change due to model biases. 527 

 528 

5. Conclusion 529 

In this study, we found that extreme heat events will become more frequent and severe in 530 

a continuously warming world. In a warmer world, duration, frequency, amplitude, and mean of 531 

extreme heat and humidity events increase, especially in low-latitude regions. In some of the 532 

regions, wet bulb temperature will reach upper 20s, which is above the level We find that 533 

significantly impact human mortality. We also find and quantify the impact ofboth forced change 534 

and unforced variability on theplay a key role in extreme heat events, highlighting the necessity 535 

of considering both contributions to extreme heat events. We also look at population weighted, 536 

and GDP sorted statistics of extreme heat in warmer world.  537 

Our results show that ENSO is the dominant mode of unforced variability impacting the 538 

occurrence of extreme heat and humidity events and that events tend to be synchronous in the 539 

world’s largest 15 large cities we chose. But while the impact of unforced variability might be 540 

significant regionally and temporarily, it narrows downbecomes less important when one looks 541 

at larger aggregate regions.  542 
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Looking at theglobal population-weighted statsstatistics, we found that with 1.5°C of 543 

global average warming, over 10% of population will face heat waves of 4245°C temperature, 544 

and 2728°C wet bulb temperatures. With 4°C warming, 10% of population will face 45°C 545 

temperature and 29°C wet bulb temperature. Also, even with 1.5°C of warming, which is about 546 

0.5°C higher than the current level,And 5% of the population will face more than 200105 days of 547 

deadly days and over 300 days of232 tropical nights per year. With 43°C of warming, which we 548 

are currently on track for, 10% of the population will experience over 300132 days of deadly 549 

days and over 330232 days of tropical nights per year. And 10% of population will face 47°C 550 

temperature and 30°C wet bulb temperature. Given these two metrics are based on have 551 

important implications for human mortality, thissuch increases may have significant impact on 552 

human health globally.  553 

Sorting heat and humidity events by wealth, we foundconfirm that increasing frequency 554 

and severity of extreme events will fall mostly on the poorestpoorer people. Given 555 

underdeveloped countries’ lack of ability to endure climate extremes, and that they have 556 

contributed the least to climate change, this introduces a profound moral dimension to the 557 

problem. To further investigate thesome economic impacts of increasing heat extremes, cooling 558 

degree days (CDD) and heating degree days (HDD) are calculated for the world’s 15 largelargest 559 

cities. Energy demand for cooling (CDD) increases by average of 269% on 1.5°C and 8254% on 560 

43.0°C of warming, while energy demand for heating (HDD) decreases by 5121% and 7559%. 561 

Since CDD is known to have a conditionallypiecewise linear relationship with the energy 562 

consumption, with slope increasing with higher CDD (De Rosa et al., 2014;Shin and Do, 2016), 563 

increasing CDD in a warmer world could be one of the factors driving increased economic 564 
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inequity from global warming related heat extremes, due to relative high cost and demandneed 565 

for energy in poorest countries. 566 

Uncertainties in this analysis include our use of gridded 6-hourly climate model output. 567 

More detailed analysis could be done with climate simulations with higher temporal and spatial 568 

resolution. The model has biases relative to measurements, potentially due to the fact that there 569 

are no aerosols in the forcing, which is another source of uncertainty. This was tested by adding 570 

the difference between the ensemble average and the reanalysis data to the model fields and 571 

recomputing the heat wave indices.  In general, the impact of this bias was not important. In 572 

future analyses, this could be better resolved with use of multi-model ensembles or detailed bias-573 

correction of the model.  574 

Another uncertainty is that our runs are continuously warming, and it is possible that an 575 

equilibrium world at any given temperature may experience different occurrence of extremes 576 

than in the runs in this paper.  Additionally, since an increasing proportion of the population 577 

livesis expected to live in dense metropolitan areas, there is also the possibility that actual heat 578 

and humidity extremes that populations experience could be more severe than the gridded data 579 

due to local phenomena such as the urban heat island effect (Murata et al., 2012). Statistical or 580 

dynamical downscaling could be used for a more detailed analysis (Dibike and Coulibaly, 581 

2006;Wood et al., 2004). This was not done in this study because the model we used is already 582 

bias-corrected, so another downscaling would affect the consistency of the model. However, 583 

better understanding and evaluation of the actual temperatures people are projected to experience 584 

would be a useful next stepAlso, this study could gain further insights by considering changing 585 

population and socioeconomic distribution in the future. Overall, however, none of these things 586 
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are expected to change the broad conclusions of this study that global warming will lead to 587 

increased exposure to extremes in heat and humidity. 588 
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 803 

 804 

 805 

Figure 1. (a) Annual average temperature (t2m) for 150-yr 1% Difference of 1% CO2 runs, 806 

calculated for land and near-land ocean areas. Green dots show the historical record of  807 

compared with ERA-Interim for the corresponding in same level of global warming levels. (b) 808 

Same as (a), but for wet-bulb temperature (w2m). (c, d) same as (a, b), but for the bias-corrected 809 

1% runs. 810 
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 812 

Figure 2. Histogram of (a, c) 2m temperature and (b, d) wet bulb temperature error (MPI minus 813 

ERA) between (0.87°C). The grid points where ERA-Interim and 1% MPI runs with the same 814 

global average temperature. The error of the (a, b) 15-year falls within the ensemble spread of 815 

1% runs are masked with gray, while other grid points show the difference between the nearest 816 

ensemble member and ERA-Interim for (a) 90th percentile and (c, d) median are shown. (e, f) 817 

The percentage of unforced variability (maximum ensemble member – minimum ensemble 818 

member) against absolute value of the 15-year daily average t2m, (b) mean of 15-year daily 819 

average t2m, (c) 90th percentile of 15-year daily average difference with reanalysis. w2m, and (d) 820 

mean of 15-year daily average w2m. 821 
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 823 

 824 

Figure 32. (a) Location of 15 selectedlargest cities in the world and spreadthe number of annual 825 

heat extremes between ensemble members inat (b) 1.5, (c) 2.0, (d) 3.0, and (e) 4.0°C of global 826 

warming. Ensemble with smallest heat extreme days are deducted from the ensemble with most 827 

heat extreme days to calculate the spread.Orange (purple) bars represent the ensemble average 828 

annual number of deadly days (tropical nights), averaged 5 years after each level of warming is 829 

exceeded. Number of heat extreme days are calculated by averaging 3×3 land-only grid covering 830 

the selected city. Error bars represent the values of maximum and minimum ensemble members.  831 
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 833 

Figure 43. First three EOFs of annual values of deadly days (a, b, c) and tropical nights (d, e, f) 834 

in 15the world’s 15 largest cities. Heat extremes in 15 cities are linearly detrended and 835 

normalized before EOF analysis. For each panel, the bar graph shows the EOF pattern of the 836 

number of heat extremesextreme days per year. Contour plots shows the SST pattern associated 837 

with the EOF mode, obtained by projecting each mode of PC onto SST anomalies. Ensemble 838 

members are averaged to yield the SST pattern. Pattern correlation with major modes of climate 839 

variability (ENSO, PDO, AMO) are also shown, as discussed in the text. 840 

841 
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 843 

Figure 54. Frequency power spectrum of ENSO, PDO, and PC of first three EOF modes for (a) 844 

deadly days and (b) tropical nights. ENSO is calculated with the Niño 3.4 Index, and PDO is 845 

calculated as a leading EOF of SST anomaly in North Pacific basin. Monthly SST data is used 846 

for both ENSO and PDO, and then each index is averaged over the year to have consistency with 847 

deadly days and tropical nights. 848 
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 851 

 852 

Figure 65. (a) Clustered regions via K-means clustering. Characteristics of each cluster are listed 853 

in Table 2. (b) Zonal average of temperature increases at the time of 0.87°C (current climateour 854 

reference period), 1.5°C, 2°C, and 4°C of global warming compared to pre-industrial baseline in 855 

the 1% runs. Temperatures are averaged over a 5-year period after each warming threshold is 856 

observedexceed in the model. 857 
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 860 

Figure 76. Evolution of each index averaged over each cluster. Colors are consistent with Figure 861 

5 and Table 2. Values of each metric are calculated by averaging the grid points belongingthat 862 

belongs to each cluster separately. This was done for each ensemble member and then the 863 

ensemble average is plotted. Vertical lines with dots show the maximum and minimum of 28 864 
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ensemble members at each threshold of warming to represent the spread between the ensemble 865 

members. 866 

 867 

 868 
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 869 

Figure 87. Changes of population-weighted heat wave indices at each levelas a function of 870 

global average warming. Each line denotes one ensemble member for percentiledifferent 871 

percentiles of population. 872 
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 874 

 875 

Figure 98. Increase in (a) Deadly Daysdeadly days and (b) Tropical Nightstropical nights 876 

compared to our present climate,the reference period (0.87°C warming), binned by percentile of 877 

GDP per capita at selected levels of warming compared to present day,reference climate 878 
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(calculated by subtracting reference values, shown as heatmap), averaged over the population 879 

within the GDP percentile (for example, averaged over population in 0~10 percentile of GDP), 880 

and over all ensemble members for 5-year window after each level of warming first occurs. 881 

BlueGreen text inside the heatmap represent the absolute number of Deadly Daysdeadly days 882 

and Tropical Nightstropical nights in each level of warming above present day. 883 
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 886 

Figure 10. 9. Change (in percentage) of ensemble averaged cooling degree days (CDD (; red 887 

bar) and heating degree days (HDD (; blue bar) values ) compared to the reference climate 888 

(0.87°C) in the 1% CO2 experiments at each levels of the time they reach the global warming, 889 

divided by the pre-industrial CDD and HDD for 15 selected cities.mean temperature thresholds 890 

of (a) 1.5°C, (b) 2.0°C, (c) 3.0°C, and (d) 4.0°C, respectively. Error bars showrepresent the 891 

standard deviation of CDD and HDD values between the ensemble members.  892 
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Table 1. Explanation of heat wave indices used in this study. 894 

Acronym Index Definition Units 

HWDt2m/w2m Heat wave duration 
Length of longest period of consecutive 

heat wave days in a year 
# days 

HWFt2m/w2m Heat wave frequency 
Total number of heat wave days in a 

year 
# days 

HWAt2m/w2m Heat wave amplitude 
Maximum temperature over all heat 

wave days in a year 
°C 

HWMt2m/w2m Heat wave mean 
Average temperature over all heat wave 

days in a year 
°C 

Deadly Days Deadly Days 
Daily maximum wet-bulb temperature 

over 2426°C 
# days 

Tropical Nights Tropical Nights Daily minimum temperature over 25°C # days 

CDD Cooling degree days 
Sum of positive values after removing 

18°C from daily average temperature 
°C days 

HDD Heating degree days 

Absolute value of sum of negative 

values after removing 18°C from daily 

average temperature 

°C days 
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Table 2. Percentage area and major regions belonging to each cluster. Clusters are identified 896 

only for the global land areas.   897 

Cluster Color 

Area 

percentage 

(%) 

Major regions Cluster name 

1 Maroon 2.95 
Indonesia, Malaysia, 

Cameroon, Gabon 
Tropical West Pacific 

2 Orange 12.34 

Northern South 

America, Central 

Africa 

Tropical Africa and America 

3 Pink 22.70 

India, Southeast Asia, 

Eastern South America, 

Southeast U.S. 

Sub-Tropical Asia and 

America 

4 Green 21.55 
Northern Africa, 

Middle East, Australia 
Deserts 

5 Sky blue 7.69 Himalayas, Andes Mountain Range 

6 Blue 32.75 
Canada, Northwest 

U.S., Russia 
Sub-Polar Region 
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Table 3. Number of deadly days each percentile of global population faces with 0.87°C 899 

(currentreference period (0.87°C), 1.5°C, 2°C, 3°C, and 4°C global warming from the pre-900 

industrial condition. Standard deviations between the ensembles (1𝜎) are also shown. 901 

  Global Warming 

 Population 0.87°C 1.5°C 2.0°C 3.0°C 4.0°C 

Deadly 

Days 

95th p. 
180 (± 

1385 (± 7) 

204 (± 

14105 (± 

10) 

228 (± 

15125 (± 

7) 

297 (± 

15161 (± 

12) 

349 (± 

6229 (± 

15) 

90th p. 
148 (± 845 

(± 5) 

170 (± 965 

(± 10) 

190 (± 

1386 (± 8) 

244 (± 

11132 (± 

12) 

292 (± 

10198 (± 

12) 

50th p. 
31 (± 0.3 

(± 0.1) 

44 (± 61.5 

(± 1.3) 

58 (± 5 (± 

2) 
8423 (± 4) 

105 (± 463 

(± 5) 

Tropical 

Nights 

95th p. 

302 (± 

14211 (± 

11) 

333 (± 

9232 (± 

14) 

350 (± 

4253 (± 

13) 

364 (± 

1306 (± 

17) 

365 (± 

0358 (± 3) 

90th p. 
217 (± 

9280 (± 7) 

241 (± 

13195 (± 

9) 

262 (± 

10205 (± 

9) 

306 (± 

16232 (± 

12) 

345 (± 

7277 (± 

14) 

50th p. 
32 (± 515 

(± 4) 
4727 (± 7) 

61 (± 541 

(± 6) 
9471 (± 6) 

122 (± 

5102 (± 4) 
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