Supplementary Material

Chamber investigation of the formation and transformation of secondary organic aerosol in mixtures of biogenic and anthropogenic volatile organic compounds

Aristeidis Voliotis^{1,*}, Mao Du^{1,*}, Yu Wang^{1,*}, Yunqi Shao^{1,*}, M. Rami Alfarra^{1,2,‡}, Thomas J. Bannan¹, Dawei Hu¹, Kelly Pereira³, Jaqueline F. Hamilton³, Mattias Hallquist⁴, Thomas F. Mentel⁵, Gordon McFiggans¹

¹Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK

²National Centre for Atmospheric Science (NCAS), University of Manchester, Manchester, M13 9PL, UK

³Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, YO10 5DD, UK

⁴Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, Gothenburg SE-412 96, Sweden

⁵Institut für Energie und Klimaforschung, IEK-8, Forschungszentrum Jülich, Jülich, Germany

[‡] now at Environment & Sustainability Center, Qatar Environment & Energy Research Institute, Doha, Qatar

* these authors all made equal contribution to the work and manuscript

Correspondence to: Gordon McFiggans (g.mcfiggans@manchester.ac.uk)

Figure S1: NO_2 , NO and O_3 time series in all single and mixed VOC systems (example representative experiments)

Figure S2: Leighton ratios in all systems and O_3 concentrations in all *o*-cresol containing systems. (a) Leighton ratio in all non-*o*-cresol containing systems, (b) Leighton ratio in all *o*-cresol containing systems, (c) O_3 concentrations calculated assuming PSS in the *o*-cresol containing systems, (d) measured O_3 concentrations from O_3 analyser in all *o*-cresol containing systems, (e) corrected O_3 concentrations based on CIMS *o*-cresol signal in all *o*-cresol containing systems.

Figure S3: Total particle wall loss corrected particle component mass ratios in each system showing inorganic and organic component evolution. Panel a) shows the increase in SOA:inorg and b) shows the decrease in SO_4^{2-} : NO_3^{-} , throughout the experiment in each system coloured consistently with Figure 2 and 3. Note that NH_4^+ was found to ion balance the sum of NO_3^{-} : SO_4^{2-} in all experiments within measurement uncertainty

Figure S4: SOA particle mass yield as a function of total absorptive mass, including the remaining inorganic seed mass, in the single precursor \Box -pinene and *o*-cresol experiments at all initial concentrations. Error bars represent the propagated uncertainties in all measurements and in the particle wall loss corrections applied.

Figure S5: Expanded plot of yield data for the o-cresol / isoprene mixture (with 2-product yield curves o-cresol single VOC experiment). Yields "predicted" from the linear combination of yields from the individual VOC experiment using equation 4 are shown for the mixture.

Figure S6: Trajectory of AMS f_{44} vs f_{43} in all systems