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Abstract. Surface ozone concentrations increased in many regions of China from 2015 to 2019. While the central role of 11 

meteorology in modulating ozone pollution is widely acknowledged, its quantitative contribution remains highly uncertain. 12 

Here, we use a data-driven machine learning approach to assess the impacts of meteorology on surface ozone variations in 13 

China for 2015 to 2019, considering the months of highest ozone pollution from April to October. To quantify the importance 14 

of various meteorological driver variables, we apply non-linear random forest regression (RFR) and linear ridge regression 15 

(RR) to learn the relationships between meteorological variability and surface ozone in China, and contrast the results to those 16 

obtained with the widely used multiple linear regression (MLR) and stepwise MLR. We show that RFR outperforms the three 17 

linear methods when predicting ozone using local meteorological predictor variables, as evident from its higher coefficients 18 

of determination (R2) with observations (0.5 to 0.6 across China) when compared to the linear methods (typically R2=0.4-0.5). 19 

This implies the importance of non-linear relationships between local meteorological factors and ozone, which are not captured 20 

by linear regression algorithms. In addition, we find that including non-local meteorological predictors can further improve 21 

the modelling skill of RR, particularly for southern China where the averaged R2 increases from 0.47 to 0.6. Moreover, this 22 

improved RR shows a higher averaged meteorological contribution to the increase trend of ozone pollution in that region, 23 

pointing towards an elevated importance of large-scale meteorological phenomena for ozone pollution in southern China. 24 

Overall, RFR and RR are in close agreement concerning the leading meteorological drivers behind regional ozone pollution.  25 

In line with expectations, our analysis underlines that hot and dry weather conditions with high sunlight intensity are strongly 26 

related to high ozone pollution across China, thus further validating our novel approach. In contrast to previous studies, we 27 

also highlight surface solar radiation as a key meteorological variable to be considered in future analyses. By comparing our 28 

meteorology-based predictions with observed ozone values between 2015 and 2019, we estimate that almost half of the 2015-29 

2019 ozone trend across China might have been caused by meteorological variability. These insights are of particular 30 

importance given possible increases in the frequency and intensity of weather extremes such as heatwaves under climate 31 

change. 32 
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1 Introduction 33 

Over the last decade, Chinese policymakers have been successfully implementing air pollution control policies and 34 

strategies, such as The Clean Air Action Plan in 2013 (Chinese State Council, 2013), to reduce harmful air pollutants. As a 35 

result, annual mean concentrations of fine particulate matter (PM2.5) have been reduced by 30% to 50% from 2013 to 2018 in 36 

China (Zhai et al., 2019), alongside significant decreases in anthropogenic emissions of air pollutants and ozone precursors 37 

such as nitrogen oxides (NOx) and carbon monoxide (CO) with 21% and 23% reductions, respectively, from 2013 to 2017 38 

(Zheng et al., 2018). However, summertime surface ozone concentrations have still been increasing from 2013 to 2019 at a 39 

rate of about 1.9 ppb yr-1 on average across China, with a faster rate of 3.3 ppb yr-1 in the North China Plain (Li et al., 2020), 40 

highlighting the urgent need for a better understanding of how ozone pollution could be addressed effectively. 41 

Surface ozone is an air pollutant that can induce severe harm to both human health and ecosystems (Lefohn et al., 2018; 42 

Lelieveld et al. 2015). In the troposphere, it is primarily produced through photochemically induced reaction chains involving 43 

volatile organic compounds (VOCs), NOx and CO (Monks et al., 2015; Jacob, 2000). It is well-known that the effectiveness 44 

of ozone production is strongly dependent on the atmospheric chemical regime (e.g., Squire et al., 2015, Archibald et al., 2020), 45 

in which ozone production is mainly controlled by the abundance of NOx or VOCs. Many urban and industrial regions in China 46 

have been identified and categorized as being within the VOC-limited regime (Ou et al., 2016; Wang et al., 2017). Under these 47 

circumstances, surface ozone reductions may require tighter controls on VOCs emissions together with continuous reductions 48 

in NOx, while significant reductions in NOx emissions without simultaneous and adequate controls on VOCs could lead to 49 

increased ozone pollution in the short term (Wang et al., 2019). Notably, the total emissions of nonmethane volatile organic 50 

compounds (NMVOCs) have actually increased by 11% in 2017 compared to 2010 (Zheng et al., 2018). Another factor might 51 

be the role of the large reductions in PM2.5, especially during the period of 2013 to 2017, because fewer particles could reduce 52 

the aerosol sink of ozone-producing radicals such as hydroperoxyl (HO2) (Li et al., 2019a). However, the quantitative 53 

contribution to the increases of ozone from HO2 uptake on aerosol remains uncertain (e.g., Tan et al., 2020), and it is likely 54 

that this effect has become less important as PM2.5 concentrations continue to decline (X. Chen et al., 2021; Li et al., 2019b). 55 

In conjunction with the effects of changing ozone precursor emissions, the effect of meteorological conditions on ozone 56 

concentrations should always be considered. It is well-known that ozone variations are strongly co-determined by 57 

meteorological factors such as incoming solar radiation, temperature, humidity, atmospheric stagnation, and precipitation (e.g., 58 

Otero et al., 2018; Zhang et al., 2018; Lu et al., 2019a). For example, solar radiation is pivotal to the photochemical production 59 

and destruction of ozone (Finlayson-Pitts and Pitts, 2000). Higher surface temperatures, and in general tropospheric 60 

temperatures, change the chemical reaction rate of many ozone-relevant chemical reactions and will affect biogenic emissions 61 

of VOCs such as isoprene and monoterpenes which are also important ozone precursors (Lu et al., 2019a; Doherty et al., 2013; 62 

Guenther et al., 1993; Xie et al., 2008; Archibald et al. 2020). Work by Lu et al. (2019b) further indicated that hotter and drier 63 

weather conditions were the main drivers for background ozone increase in 2017 in major city clusters of China. Similarly, 64 

Ma et al. (2019) suggested that high biogenic VOCs emissions and meteorological conditions indicative of heatwaves such as 65 
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high temperature, low wind speed, and no precipitation can elevate ozone pollution in the North China Plain (NCP). 66 

Furthermore, studies by Wang et al. (2021) and Pu et al. (2017) also found enhanced ozone concentrations during heatwaves 67 

in the Pearl River Delta (PRD) and Yangtze River Delta (YRD). Such links between meteorology and ozone pollution provide 68 

clear evidence for the necessity to quantify the influence of meteorological factors or even climate change on ozone pollution 69 

in China (e.g., Lu et al., 2019a; Meehl et al. 2018). Characterizing the major meteorological drivers behind ozone variations 70 

in different regions of China will also be crucial for achieving effective mitigation of ozone pollution now and under future 71 

changes in climate. 72 

To quantify the importance of meteorological drivers, previous studies such as Li et al. (2019a) and Han et al. (2020) 73 

adopted stepwise multiple linear regression (MLR) to derive linear relationships between meteorological factors and measured 74 

surface ozone concentrations across China. Both of these studies demonstrated the significant skill of stepwise MLR in 75 

modelling ozone and in quantifying the driver-response relationships. Nevertheless, a key limitation of stepwise MLR or 76 

conventional MLR is that these methods are not able to accurately capture non-linearity, which is a severe constraint given 77 

that non-linear relationships between meteorological factors and ozone, e.g., between temperature and ozone, are to be 78 

expected (e.g., Pu et al., 2017; Gu et al., 2020; Archibald et al., 2020). In addition, MLR can suffer from a severe loss in 79 

predictive skill and reliability in settings where a large number of (collinear) meteorological factors are considered as predictors 80 

(cf., the curse of dimensionality in high-dimensional regression problems; Nowack et al., 2021; Bishop, 2006). Although the 81 

stepwise MLR approach adopted by Li et al. (2019a) can overcome collinearity and overfitting to some extent (i.e., because 82 

only a few predictors that are particularly strongly influencing ozone concentrations are kept) it is inevitable that many relevant 83 

meteorological factors will be excluded from the final MLR predictions using such an approach. 84 

In order to capture any non-linear relationships between many meteorological factors and ozone and to overcome the 85 

potential limitations of considering collinearity and high-dimensional settings in MLR, we will use a machine learning 86 

approach as the next logical step to advance such controlling factor analyses of ozone pollution. Specifically, we will adopt 87 

random forest regression (RFR) (e.g., Grange et al., 2018; Stirnberg et al., 2021) as a non-linear approach and contrast the 88 

results to a linear statistical learning approach that is also robust in high-dimensional settings in the form of ridge regression 89 

(RR) (e.g., Nowack et al., 2018). Both RFR and RR will also be compared with more conventional statistical methods such as 90 

MLR and stepwise MLR. 91 

Our paper is structured as follows. In Sect. 2, we describe the data used in this study and the modelling framework of the 92 

two machine learning algorithms, namely, RFR and RR. In Sect. 3, the performances of RFR and RR will be discussed first 93 

and then compared to those achieved with MLR and stepwise MLR. We then summarize the most important meteorological 94 

drivers for surface ozone as identified by RFR and RR. Finally, we conduct a trend analysis of recent surface ozone changes 95 

in China, and use our method to estimate the contribution of meteorological effects. 96 
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2 Methods 97 

2.1 Surface ozone and meteorological data 98 

The surface air quality measurement data used in this study were obtained from https://quotsoft.net/air/ (Wang, X. L., 99 

2021; last accessed: 13 July 2021) which is a mirror of the data from the China Ministry of Ecology and Environment (MEE). 100 

For the purposes of quantifying ozone pollution severity, we use the maximum daily 8-hour rolling mean (MDA8) ozone 101 

calculated following the guidelines by the Ministry of Environmental Protection of the People’s Republic of China (MEP, 102 

2012). The calculation selects the maximum value from the 8-hour rolling means of ozone for each station between 08:00 and 103 

24:00 on each day. To be considered, each station must have a valid 14 hours data record of 8-hour rolling means of ozone 104 

within 08:00 to 24:00 on a respective day, otherwise, MDA8 ozone is not calculated for that day. Previous studies (e.g., Li et 105 

al., 2020; Li et al., 2019a; Han et al., 2020) have focused on ozone pollution during the boreal summer months i.e., June, July, 106 

and August (JJA) as the season with the most frequent occurrence of extreme ozone episodes in China. In this work, we extend 107 

this analysis period to include the months from April to October to account for the fact that the seasonality of ozone does not 108 

follow a uniform pattern across China. For example, peak ozone concentrations are often found during autumn in the PRD 109 

region (Gao et al., 2020; see Fig. S1 in the Supplementary Material). In addition, we further constrain our analysis to the period 110 

2015 to 2019 to maintain greater consistency of the ozone data throughout our analysis period as the MEE included far fewer 111 

measurement stations prior to 2015. In order to maintain consistency and reliability of all ozone data from stations within the 112 

study period, only those stations with over 80% temporal coverage of MDA8 ozone data record in each year are selected. For 113 

quality assurance of the data, we further examined each station’s MDA8 ozone variation individually and noticed that 114 

measurements from some stations appeared to show a less reliable data record than others. This was for example evident from 115 

extended periods of non-fluctuating ozone levels (see Fig. S2), or from sudden unusual MDA8 spikes, usually followed by 116 

periods of suppressed ozone variability (see Fig. S3). According to our best judgement, such abrupt changes or unrealistically 117 

low variability are unlikely to reflect actual ozone pollution profiles. Data from stations that showed such unusual time 118 

evolutions were excluded from our analysis as to avoid the inclusion of unrealistic artefacts. The list of stations that are not 119 

used in this study is summarized in Table S1. 120 

To study regional meteorological drivers of ozone, we distinguish four regions of particularly high population density 121 

known as Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Sichuan Basin (Sichuan), 122 

using definitions frequently used in previous studies (e.g., Li et al., 2019a; Han et al., 2020). The boundaries of these four 123 

regions are adjusted to ensure that stations in each region have similar topography and equivalent elevation. The four regions 124 

are also known as the target areas for air pollution reduction in Chinese government plans (MEE; 125 

http://www.mee.gov.cn/hjzl/dqhj/cskqzlzkyb/ last access: 1 December 2021; Li et al., 2019a). The locations of stations within 126 

the four regions are indicated by red dots in Fig. 1. 127 

 128 

https://quotsoft.net/air/
http://www.mee.gov.cn/hjzl/dqhj/cskqzlzkyb/
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Figure 1. Elevation height (m) and locations of all ground-based stations and the four megacity cluster regions, BTH (blue box; 114° 130 
E-120° E, 36° N-40.62° N), YRD (orange box; 117° E-123° E, 29.458° N-33.238° N), PRD (green box;112° E-116° E, 21° N-24.111° 131 
N), Sichuan Basin (black box; 102.8° E-107.061° E, 28.2° N-31.976° N). Red (blue) dots indicate the locations of stations within 132 
(outside) the four regions. 133 

For the meteorological data, we use the gridded ERA5 reanalysis product (Hersbach et al., 2020) available at 134 

https://cds.climate.copernicus.eu/ (last accessed: 11 November 2021). Specifically, we use hourly data for a total of 11 135 

meteorological variables at 0.25°×0.25° spatial resolution, namely, the temperature at 2 m (T2), boundary layer height (BLH), 136 

mean sea level pressure (SLP), surface solar radiation downward (SSRD), relative humidity at 1000 hPa (RH), total 137 

precipitation (TP), zonal wind at 10 m (U10), meridional wind at 10 m (V10), zonal wind at 850 hPa (U850hPa), meridional 138 

wind at 850 hPa (V850hPa) and vertical velocity at 850 hPa (W850hPa) for the same time period as for the ozone station data. 139 

Then the MDA8 ozone data are spatially averaged within the dimensions of each ERA5 grid cell to obtain the best possible 140 

spatial match between the station-based ozone data and the large-scale meteorological factor data. 141 

The variables of T2, BLH, SLP, RH, TP, U10, V10 can also be found as predictors in the controlling factor analyses 142 

from the studies of Han et al. (2020) and Li et al. (2019a). Surface solar radiation downward (SSRD) is included in this study 143 

instead of adding a cloud coverage term as done by Han et al. (2020) and Li et al. (2019a). Essentially, we consider SSRD to 144 

more directly characterize the local photochemical environment for ozone production and loss than cloud coverage. Zonal and 145 

meridional wind at 10 m may be important for the dispersion of ozone’s precursors on a local scale. Both zonal and meridional 146 

winds at 850 hPa are adopted in this study in order to encompass the effect of transport of more polluted or cleaner air from 147 

remote regions. Wind at 850 hPa is less likely to be affected by orography than wind at 10 m altitude, and it is thus better 148 

suited for considering the effect of larger-scale transport and dispersion. Additionally, we represent the role of vertical transport 149 

of air masses by including vertical velocity at 850 hPa as another factor. 150 

https://cds.climate.copernicus.eu/
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2.2 Data pre-processing 151 

Prior to modelling ozone, we pre-processed the meteorological data by averaging the raw hourly data over different 152 

periods each day and this process is summarised in Table 1. The averaging periods were not the same for all meteorological 153 

variables. For example, T2, SSRD, SLP, RH, and W850hPa are averaged between local time (UTC+8:00) 06:00 to 18:00 each 154 

day. The average of these hours is sufficient to cover all daytime hours when ozone is photochemically produced from April 155 

to October. Total precipitation is calculated by summing up all hourly accumulated precipitation (m) from 06:00 to 18:00. For 156 

zonal and meridional wind at 10 m and 850 hPa, data are averaged over 06:00 to 12:00, which covers the main hours that may 157 

have potential fresh emission of precursors and transport or dispersion of precursors or ozone. Boundary layer height (BLH) 158 

is averaged over 00:00 to 12:00 for the consideration of both potential night-time emission of industrial activities when the 159 

boundary layer is still low and transportation emission during morning rush hours. Through this process, raw hourly 160 

meteorological data can be converted to a daily format, temporally matching with MDA8 ozone data. Finally, both ozone data 161 

and meteorological data are deseasonalized. Specifically, for MDA8 ozone and the converted daily meteorological variables, 162 

we first calculate 15-day moving window averages centered on the particular calendar date from 2015 to 2019. We then take 163 

the difference between each day’s MDA8 ozone or daily meteorological variables and these 15-day averages to obtain daily 164 

anomalies, creating smooth time series of deseasonalized MDA8 ozone and deseasonalized meteorological variables. 165 

 166 

Table 1. Summary of the meteorological controlling factor variables and the respective times of day considered in their averages. 167 
The motivation behind each selected time period is provided in the main text. Note: a positive zonal wind means westerly; positive 168 
meridional wind means southerly; positive vertical velocity means downward motion.  169 

Acronyms Names and units of variables  Average period 

T2 temperature at 2 m (K) 06:00 to 18:00 

SSRD surface solar radiation downward (J m-2) 06:00 to 18:00 

SLP mean sea level pressure (Pa) 06:00 to 18:00 

RH relative humidity (%) 06:00 to 18:00 

BLH boundary layer height (m) 00:00 to 12:00 

U10 zonal wind at 10m (m s-1) 06:00 to 12:00 

V10 meridional wind at 10m (m s-1) 06:00 to 12:00 

TP total precipitation (m) 06:00 to 18:00 (sum) 

U850hPa zonal wind at 850 hPa (m s-1) 06:00 to 12:00 

V850hPa meridional wind at 850 hPa (m s-1) 06:00 to 12:00 

W850hPa vertical velocity at 850 hPa (Pa s-1) 06:00 to 18:00 
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2.3 Machine learning methods for modelling MDA8 ozone 170 

To model the relationships between meteorological variables and MDA8 ozone concentrations in China, we use two 171 

regression algorithms, a non-linear approach known as random forest regression (RFR) and a linear approach called ridge 172 

regression (RR). Within our framework, the predictors are the deseasonalized meteorological variables from ERA5 and the 173 

dependent variable is the deseasonalized ground-based MDA8 ozone. For RR, both the deseasonalized meteorological 174 

variables and the deseasonalized ozone time series are standard-scaled (normalized to zero mean and unit standard deviation)  175 

to avoid an imbalance of factors in the regularization part of the RR cost function (Nowack et al., 2018). 176 

Both RFR and RR have been extensively described elsewhere (e.g., Nowack et al., 2018; Grange et al., 2018; Mansfield 177 

et al., 2020; Nowack et al., 2021) and it is beyond the scope of this study to provide an in-depth description. Briefly, RFR is 178 

based on learning an ensemble of decision trees, where each individual tree splits data into groups until reaching certain pre-179 

set definitions for data ‘purity’ (Breiman, 2001; Grange et al., 2018). RR is a least-squares linear regression method augmented 180 

by L2-regularization with the goal to avoid overfitting in high-dimensional regression settings, especially in regression 181 

problems with strong collinearity (McDonald, 2009). Both RFR and RR are known to handle collinearity comparatively well 182 

(e.g., Dormann et al. 2013), which is key given that many meteorological variables such as temperature and solar radiation are 183 

correlated with each other. To assess whether these two machine learning algorithms can improve the accuracy of ozone 184 

modelling compared to conventional statistical methods, we will contrast our results to multiple linear regression (MLR) which 185 

may not be highly capable of handling collinearity and overfitting and stepwise MLR. For MLR, we simply adopt the same 186 

modelling framework of RFR and RR; all 11 meteorological variables are ingested into MLR as predictors. For stepwise MLR, 187 

we adopted a similar approach as Li et al. (2019a): we start with 11 deseasonalized meteorological variables as predictors in 188 

MLR and remove one predictor at a time based on the smallest significance of the regression coefficient in each new subset of 189 

predictors until there are only 3 meteorological predictors left. These 3 predictors are considered to be important predictors 190 

and are used in the final model of stepwise MLR for modelling deseasonalized MDA8 ozone. 191 

2.4 Training, testing and cross-validation in machine learning 192 

Supervised machine learning approaches such as the two algorithms we use here require distinct training, validation and 193 

testing phases to tune the relevant hyperparameters (explained in detail below) and to validate the skill of the resulting 194 

predictive functions on new, unseen data not used in the training and tuning process (e.g., Bishop, 2006). During the training 195 

phase, both predictors (i.e., deseasonalized meteorological variables) and dependent variables (i.e., deseasonalized MDA8 196 

ozone) are available and each machine learning regression algorithm is fit to this dataset, assuming different combinations of 197 

values for the hyperparameters of each algorithm. The best objective estimate for the combination of hyperparameters is then 198 

found in the validation step by predicting ozone values for a validation dataset not used at the training stage (e.g., for a different 199 

year in the data record). During the testing phase, the trained and validated algorithm is used operationally to make new 200 

predictions for ozone values given a new dataset for the meteorological variables as input to the machine learning function. 201 
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These test set predictions can then be used to measure the “out-of-sample” skill of the algorithm in predicting ozone pollution 202 

given certain meteorological conditions. In this study, we split the 5-years of data (2015 to 2019) systematically into 203 

training/validation and testing datasets one at a time and in a rotating fashion. Specifically, 4 of these 5 years are classified as 204 

training/validation data, leaving 1 year for testing. To ensure that we are measuring the true predictive performance and 205 

relationships, our predictive results and model evaluations are only conducted for the test data, which has not been used at the 206 

training and validation stages. This process rotates until ozone data for each year have been assigned once as test data so that 207 

all 5 years of data can be predicted by RFR and RR.  208 

Machine learning regressions such as RFR and RR optimize their predictive performance by tuning certain sets of 209 

hyperparameters. To determine the most suitable set of hyperparameters, we use a statistical cross-validation method. 210 

Specifically, , the 4-year training/validation set is further split into four folds (one year per fold). We then run a grid search 211 

over pre-defined combinations of hyperparameters by training on three folds and predicting on the fourth fold in a classic 4-212 

fold cross-validation procedure. We finally select the best-estimated set of hyperparameters on the basis of the average 213 

validation data prediction performance as measured by the coefficient of determination (i.e., the R2 regression score function 214 

which is one of the metrics used in sklearn; see https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html, 215 

last access: 13 April 2022), and refit model coefficients using this set of hyperparameters for the entire 4 years of 216 

training/validation data. We note that we avoid a ‘leave-one-out’ cross-validation method (in which only one daily sample is 217 

the test dataset at a time) as we expect autocorrelation in our data (i.e., MDA8 ozone may share similarity in adjacent dates), 218 

which, intuitively, could lead to an overestimate of our predictive skill if testing data immediately follows training data points. 219 

The ranges of hyperparameters we search over for both RFR and RR are set as follows. For RFR, the maximum depth for 220 

trees growing is iterated in a step of 1 from 8 to 15. The maximum percentage of features and maximum samples (with the 221 

bootstrap method) is set from 20% to 90% and 30% to 80% with 10% incremental steps, respectively. The total tree number 222 

for the forest is set at 200 as a compromise between model complexity and runtime. Optimizations further showed that the 223 

minimum samples per leaf is best set to 3 in our RFRs so that we finally kept this value constant in our grid searches. In terms 224 

of RR, the regularization strength is iterated over a range of 1 to 199 with an incremental step of 2, which appeared to 225 

encapsulate the best solution in each case. A detailed explanation of these hyperparameters for RFR and RR is for example 226 

provided in Nowack et al. (2021). 227 

2.5 Identifying and quantifying importance of meteorological drivers 228 

Both RFR and RR can enable the identification of the most important meteorological drivers for MDA8 ozone and can 229 

help to quantitatively evaluate their relative importance. For RFR, we here measure the importance of each meteorological 230 

predictor through a metric called Gini importance. A greater Gini importance implies a greater influence of a particular 231 

predictor (i.e., the deseasonalized meteorological variable) on the dependent variable (i.e., deseasonalized MDA8 ozone) (e.g., 232 

Menze et al., 2009; Zhao et al., 2019, Kuhn-Régnier et al., 2021). Since we train the RFR five times given each possible set of 233 

4-year training/validation data, we average the Gini importance scores for each meteorological predictor across all five runs 234 

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
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for our final discussion below. For RR, similar to MLR, the importance of each predictor is evaluated by the magnitude of 235 

each predictor’s averaged slope (linear regression coefficient) across all 4-year training/validation datasets, which represents 236 

the linear effect of each predictor on ozone, given that all predictors are standard-scaled (see Sect. 2.3). 237 

3 Results and discussion 238 

3.1 Machine learning performances for modelling ozone using local meteorological predictors 239 

It is important to first assess how well the selected machine learning algorithms can model ozone by using only 240 

meteorological variables as predictors. Therefore, we adopt the coefficient of determination (R2) as a standard metric for the 241 

evaluation of prediction performance, which assesses the goodness-of-fit for the linear regression between the deseasonalized 242 

MDA8 ozone data and the predicted values (e.g., Han et al., 2020). As mentioned above, to measure the true predictive skill 243 

of the machine learning functions, we only compare our predictions for out-of-sample test data that are not used during 244 

training/validation stages against the deseasonalized measured MDA8 ozone data. 245 

To begin with, the predictors used by RFR and RR are only the local meteorological variables, i.e., each ERA5 grid 246 

point’s meteorological variables are used as predictors to model the averaged deseasonalized MDA8 ozone for that particular 247 

grid location. The average prediction performance of RFR and RR by comparing predictions across all test years against the 248 

deseasonalized measured MDA8 ozone data across China is illustrated in Fig. 2. 249 

 250 
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Figure 2. Coefficient of determination (R2) between deseasonalized observational MDA8 ozone and deseasonalized predicted values 251 
in random forest regression (a) and ridge regression (b). The skill is only measured for the respective test datasets. Each dot 252 
represents the center of the ERA5 grid location, within which station values for MDA8 ozone are averaged. 253 

Overall, the model performance of RFR generally surpasses the one of RR over most regions of China, with higher R2 254 

values in grid locations within the Sichuan Basin, YRD, PRD and other regions of southeast China. R2 values for RFR generally 255 

range from 0.5 to 0.6 across China while RR reaches R2 values from 0.4 to 0.5. RFR and RR perform similarly over the central 256 

region of BTH, while in the northern region of BTH (e.g., Beijing), R2 values are still found to be higher in RFR than RR. The 257 

averaged R2 across all ERA5 grid locations within BTH, YRD, PRD, and Sichuan Basin is 0.46, 0.56, 0.53 and 0.57 258 

respectively for RFR, which are all higher than the equivalent R2 for RR (BTH: 0.41, YRD: 0.48, PRD: 0.47, Sichuan Basin: 259 

0.53). 260 

In order to examine whether RR can improve the model performance by addressing overfitting, we also applied MLR 261 

with all 11 meteorological predictors and the stepwise MLR approach with the 3 most important meteorological factors in the 262 

final MLR for comparison. Although most R2 values across China for these three linear regressions (i.e., RR, MLR and 263 

stepwise MLR) are within the same range of 0.4 to 0.5, stepwise MLR shows the worst performance with consistently lower 264 

R2 values across China, and more of these values fall in a lower range of 0.3 to 0.4. Moreover, the averaged R2 values for 265 

stepwise MLR in BTH, YRD, PRD and Sichuan Basin are found to be lower at 0.39, 0.45, 0.43 and 0.52, respectively (see 266 

Fig. S4b in Supplement for the spatial distribution of R2 values). This suggests that the stepwise MLR approach may carry a 267 

risk of not including all important meteorological predictors in the regression model. However, RR does not show noticeable 268 

improvements over MLR, as evident from similar regionally averaged R2 values (see Table 2 and Fig. S4a), suggesting that 269 

the problem of collinearity is still limited given the use of 11 meteorological predictors. The enhanced performance of RFR 270 

compared to RR may therefore be attributed to the ability of RFR to model non-linear relationships between local 271 

meteorological variables and ozone, indicating that a flexible machine learning approach, such as RFR that can capture non-272 

linearity, is more suitable to reflect relationships between local meteorological factors and ozone. 273 

3.2 Predictive skill using additional non-local meteorological predictors 274 

Weather systems that affect ozone (e.g., high-pressure systems) usually take in large spatial domains, driving regional 275 

temperature anomalies and suppressing or accelerating airflow in certain directions. Consequently, it seems intuitive that a 276 

meteorological controlling factor framework for ozone might benefit from including additional non-local information in the 277 

regressions, i.e., if we were to consider surrounding meteorological context information that is not just limited to the predicted 278 

ozone grid point in question (Ceppi and Nowack 2021).  279 

We thus ran a second version of our controlling factor analysis to investigate the spatially wider effect that meteorology 280 

may have on a two-dimensional (2D) domain of meteorological variables. This is possible since both RR and RFR better 281 

address collinearity and overfitting in high-dimensional regression settings than simple non-regularized MLR approaches, 282 

meaning that the additional information included in the regressions might well outweigh the cost of adding more predictors.  283 
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In detail, for each ozone target grid point, we include a meteorological context by adding each meteorological variable 284 

within a 7.5°×7.5° rectangle domain around the center of this target grid point to the set of model predictors, i.e., all the 285 

meteorological variables from the ERA5 0.25° × 0.25° grids within this 7.5°×7.5° rectangular domain are used as individual 286 

predictors in the regression models. This adds potentially important information about the larger-scale meteorological situation 287 

to our predictions, but also significantly increases the dimensionality (number of predictors) of our regression problem and 288 

increases the number of collinear predictors. Indeed, we find that through the additional L2-regularization in RR with 2D 289 

expansion (denoted as RR-2D), its predictions by far outperform its MLR-2D equivalent which now suffers from severe 290 

overfitting (compare R2 values in Fig. 3a and 3b). Noteworthy, with the increase of dimensionality in RR-2D, the regularization 291 

strength now is adjusted to larger values starting from 103 to 109 with a factor of 1.42 incremental increase at each step, which 292 

is much higher than the regularization strength set in RR with only local predictors. Such a large increase in range is due to 293 

the consideration of adding a large number of meteorological predictors within the 2D domain, and it ensures that the best 294 

solution with the most suitable regularization strength for each run can be well covered within this range. The overall R2 values 295 

for RR-2D range from 0.5 to 0.6 while R2 in MLR-2D ranges from 0.3 to 0.4; MLR-2D is overall worse than MLR with only 296 

local meteorological predictors in terms of R2. It is well-known that RFR may not be as effective at handling multi-collinearity 297 

in very high dimensional settings as RR (e.g., Dormann et al., 2013) and its training time also increases exponentially with the 298 

number of predictors. We thus only ran RFR with 2D expansion (denoted as RFR-2D) for the southern Chinese PRD region, 299 

where we found a particularly large R2-value improvement after including non-local predictors in RR-2D (R2=0.60) as 300 

compared to local RR (R2=0.47), and even non-linear local RFR (R2=0.53). These results highlight the apparent importance 301 

of large-scale meteorological phenomena in this region. However, we find that RFR-2D improves the average R2 value (0.57) 302 

relative to RR and RFR with only local predictors, but does not perform better than RR-2D. 303 
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 304 

Figure 3 Coefficient of determination (R2) between deseasonalized observational MDA8 ozone and deseasonalized predicted values 305 
of MDA8 ozone in ridge regression (RR) with 2D expansion (a) and MLR with 2D expansion (b).  306 

For clarity, Table 2 summarizes the averaged R2 in each region by all machine learning methods including RFR, RR, 307 

MLR, stepwise MLR, RR-2D, MLR-2D and RFR-2D. In summary, RFR and RR-2D are overall the two machine learning 308 

algorithms with the highest R2 in these four regions, while MLR and RR are equivalent.  309 

Table 2. Averaged R2 in the four regions by different machine learning algorithms, namely RFR, RR, MLR and stepwise MLR with 310 
only local meteorological predictors, RR-2D, MLR-2D with additional two-dimensional (2D) non-local meteorological variables and 311 
RFR-2D which is only conducted for PRD region. In general, with only local meteorological variables, RFR performs the best with 312 
the highest averaged R2 in four regions. RR-2D and RFR-2D show improvement over the PRD region compared to RFR.  313 

Method BTH YRD PRD Sichuan 

RFR 0.46 0.56 0.53 0.57 

RR 0.41 0.48 0.47 0.53 

MLR 0.41 0.48 0.47 0.53 

stepwise MLR 0.39 0.45 0.43 0.52 

RR-2D 0.47 0.54 0.60 0.58 

MLR-2D 0.31 0.35 0.42 0.43 

RFR-2D - - 0.57 - 
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3.3 Regionally averaged prediction skill 314 

In order to assess the performance of the algorithms in modelling the regional average ozone, we further compared our 315 

regionally-averaged machine learning predictions by RFR, RR and RR-2D against observations for each of the four selected 316 

regions in China (Fig. 4), whereas previously we compared regional averages based on predictions for individual grid points 317 

whose R2 values were subsequently averaged within each region. For this purpose, we averaged all 0.25° × 0.25° grid point 318 

observations and model results within each region first and then compared the resulting time series for each test dataset directly. 319 

The results for each region are shown in Figure 4, where the goal for the predictions is to fall as close as possible to the 1:1-320 

line, in combination with a high R2-value (coefficient of determination). With only local meteorological predictors, RFR still 321 

outperforms RR regarding both R2 and slope (closer to 1) in all four regions. This can likely be attributed to the ability of RFR 322 

to capture non-linearity as well. 323 

Using this calculation method, the regional R2
 values are much higher; for RFR regional R2 in BTH, YRD, PRD and 324 

Sichuan Basin are 0.71, 0.75, 0.7 and 0.83. The higher values can be partially explained by the fact that individual grid points 325 

are more prone to the effect of local emissions and related local uncertainties, whereas larger regional averages can smooth 326 

out some of these local effects. For instance, stations that are located relatively close to an emission source may be more 327 

influenced by the NOx-titration effect which may lower ozone levels (Sillman, 1999). This effect can be more significant in 328 

some urban areas (Li et al., 2017) or stations affected by fresh emissions of NOx from power plants (X. Zhang et al., 2021). 329 

Nearby emission of precursors may also be the dominant factor in driving ozone changes in regular weather conditions. Ozone 330 

production in these stations may be less sensitive to meteorological drivers but more influenced by local emissions.  331 
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 332 

Figure 4 (a)-(d) Comparison of regional averages of deseasonalized MDA8 ozone between model predictions and observations for 333 
RFR, (e)-(h) RR and (i)-(l) RR-2D. Linear fits between predicted and observed data are indicated by blue lines; red lines are the 334 
ideal 1:1 lines. The values for both models and observations are averaged over all ERA grid points in each region. Each graph 335 
contains information of the linear regression with slope and R2 value (coefficient of determination). 336 

In summary, all machine learning methods show high skill in modelling meteorologically driven ozone variability. 337 

However, similar to results by Han et al. (2020), all linear fits of predicted versus observed ozone values in all regions for both 338 

RFR and RR have slopes lower than 1, suggesting a systemic underprediction of ozone for the highest observed ozone levels 339 

(higher than the deseasonalized zero mean) and overpredictions of ozone for low ozone pollution regimes (lower than the 340 

deseasonalized zero mean). As previously mentioned, such a mismatch may - at least to a degree - arise from non-341 

meteorological factors such as the effect of precursor emissions, which are not taken into account here given the assumption 342 

that certain but not all emissions are related to the meteorological factors. Although regionally averaged prediction skill is less 343 

affected by local emissions, it will not be completely free from such effects. The increase of the magnitude of the slopes in 344 
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RR-2D (closer to 1) also suggests that considering non-local meteorological variables may help improve the performance of 345 

ozone pollution controlling factor analyses, even if non-linearity is not intrinsically taken into account. 346 

3.4 Quantifying the importance of meteorological predictors 347 

We next aim to quantify how important each local meteorological predictor is for ozone pollution across China. For RR, 348 

we use the regression slope as a standard metric to measure how important of each the meteorological predictor on ozone 349 

pollution. A large positive value for the slope (regression coefficient) of a meteorological predictor indicates that the predictor 350 

has a strong positive effect on ozone levels and vice versa. Since each set of 4-year training data is learned from independently, 351 

we will show averaged results. For RFR, we measure each predictor’s importance through Gini importance (see Sect. 2.5). 352 

The highest absolute value for both the RR slope or RFR Gini importance is interpreted as the most important meteorological 353 

driver variable identified through our data-driven learning procedure. Note that Gini importance only allows to measure 354 

relative influences of predictor variables on ozone variability, but not the sign of the influence, i.e., a high value of Gini 355 

importance score is not able to determine whether the predictor has a positive or negative effect on ozone. 356 

The Gini importance scores estimated by RFR and the slopes learned by RR for each region are shown in Fig. 5. Both 357 

Gini importance scores and slopes are initially estimated for every ERA5 grid location within each region and then averaged 358 

across the entire region and across all five learned regression functions. 359 

 360 

 361 
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Figure 5 (a)-(d) Average Gini feature importance scores of each meteorological variable for RFR in each region. (e)-(h) Average 362 
slopes of each meteorological variable for RR in each region. The red bars indicate the range of importance scores/slopes found 363 
across the five regression models learned to predict the left-out test years. 364 

In general, both RFR and RR show good agreement in terms of identifying the dominant meteorological drivers for each 365 

region. The temperature at 2 m is found to be the most important meteorological driver for ozone in BTH, followed by surface 366 

solar downward radiation, albeit the relative difference between these two variables differs more clearly for RFR, which might 367 

be caused by non-linearity in the ozone-temperature relationship (Supplementary Fig. S5). Temperature was also identified as 368 

the most important meteorological variable in BTH by Li et al. (2019a) using MLR. Moreover, a more pronounced positive 369 

correlation between daily maximum temperature and MDA8 ozone is found in northern regions of China (Fig. 6a), which is 370 

consistent with the findings of these two machine learning algorithms. As temperature is identified as the key meteorological 371 

factor in BTH, more severe ozone pollution with increasing  temperature is expected and may be caused by increased rates of 372 

chemical kinetics for ozone’s production (e.g., Lu et al., 2019a), the contribution of biogenic emissions (e.g., Ma et al., 2019) 373 

and anthropogenic emissions such as solvent evaporation which may be intensified in hot weather (e.g., Song et al., 2019; Qi 374 

et al., 2017).  375 

For both YRD and Sichuan, surface solar radiation is most important determinant of ozone variations, with RR slopes 376 

again indicating the expected positive relationship between sunny, clear-sky days and high ozone pollution. Furthermore, 377 

surface solar radiation is found to be central in BTH, PRD by RFR and RR. Given that Li et al. (2019a; 2020) and Han et al. 378 

(2020) did not consider this meteorological variable in their analyses, we recommend that it could be used more generally in 379 

the future. High solar radiation stimulates the photochemical environment, which has been suggested as one of the key 380 

mechanisms in YRD by Pu et al. (2017). From a large-scale meteorological point of view, such clear-sky conditions in YRD 381 

that may enhance severe ozone pollution in this region may be modulated by the western Pacific subtropical high (WPSH) 382 

(Shu et al., 2016; Chang et al., 2019; Shu et al., 2020). In the Sichuan Basin, with complex terrain that can complicate 383 

atmospheric circulation, ozone pollution is often associated with the occurrence of high-pressure systems associated with clear-384 

sky conditions and high temperatures (Ning et al., 2020), which is also identified by both RFR and RR. 385 

A distinct difference in the weather-ozone coupling relationships is found for PRD, where relative humidity is the dominant 386 

meteorological driver. Specifically, a negative slope of RH in RR suggests that drier conditions are strongly favorable for 387 

peak ozone concentrations in PRD. As one of many possible effects of humidity, ozone may be more destroyed through the 388 

photolysis reaction of O3 + hv → O(1D) + O2 as O(1D) can subsequently react with H2O, forming OH through reaction of 389 

O(1D) + H2O → 2OH, which will be enhanced in environments with high humidity (Wang et al., 2013; Young et al., 2013). 390 

In addition, despite more OH may be available given high humidity, OH can react with NO2, forming HNO3 in highly NOx-391 

polluted regions, which ultimately leads to less efficient O3 formation by competing with the oxidation of VOC and CO with 392 

OH (Lu et al., 2019a). The negative correlation between humidity and ozone in the PRD region has been identified by 393 

previous studies (W. Zhang et al., 2021; Yang et al., 2021; Hua et al., 2008), and the high humidity environment in southern 394 

China may be the result of moisture marine air masses transported from tropical region, the South China Sea and western 395 
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Pacific (W. Zhang et al., 2021; Ding and Chan, 2005). For a non-linear learning framework using RFR, the second most 396 

important meteorological driver in PRD is again the level of surface solar radiation. Interestingly, meridional wind at 850 397 

hPa is key to ozone occurrence in PRD, and it is negatively correlated with average MDA8 ozone. More specifically, the 398 

regional average of MDA8 ozone in PRD is negatively correlated with the meridional wind at 850 hPa from the South China 399 

Sea (Fig. 6b), indicating strong marine air inflow may have a significant cleaning and dispersion effect on ozone and its 400 

precursors in PRD. Furthermore, the negative correlation also expands to the northeast areas of the PRD, suggesting lower 401 

ozone in PRD given strong southerly wind in these areas, which may hinder the transport of ozone and its precursors to 402 

PRD. This finding is consistent with the backward trajectories and numerical modelling analysis by Qu et al. (2021).403 

 404 

Figure. 6 (a) Spearman correlation between daytime (06:00 to 18:00) averaged temperature at 2 m and MDA8 ozone from 2015 to 405 
2019 from April to October. (b) Correlation coefficients between the regional average of MDA8 ozone in PRD and the daytime (06:00 406 
to 12:00) meridional wind at 850 hPa at each ERA5 grid point from April to October of 2015 to 2019. A positive value of meridional 407 
wind indicates southerly wind. 408 

Additionally, previous studies (Jiang et al., 2015; Z. Chen et al., 2021; Qu et al., 2021; Wei et al., 2016) also indicate the 409 

importance of vertical downward transport of ozone in southern region of China due to the impact of typhoons. The effect of 410 

such a downward transport may not be well captured by regressions with only local meteorological predictors as it is a larger-411 

scale meteorological phenomenon. Therefore, we refer back to our two-dimensional (2D) approach for RFR in the PRD region 412 

first introduced and described in Sect. 3.2. We show the Gini feature importance scores for this 2D domain approach in Fig. 413 

7(a). Since we have multiple values of the feature importance for each meteorological variable in this set-up (i.e., one for each 414 

grid point in the 2D predictor domain), we sum up Gini scores for all grid points within the expanded domain for each 415 

meteorological variable; and this summed value is denoted as the importance for that particular meteorological variable. As 416 
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illustrated in Fig. 7 (a), the relative feature importance of vertical velocity at 850hPa (W850hPa) increases compared to RFR 417 

using only local predictors (see Fig. 5b), likely reflecting the larger-scale influences of downward transport of air masses in 418 

the PRD region. Other key meteorological drivers (RH, surface solar radiation and meridional wind at 850 hPa) remain in a 419 

similar order to what was identified by purely local regressions. The model performance is slightly improved by adding the 420 

2D information with an increase of R2 to 0.73 (from 0.70) in comparison to the original RFR without 2D expansion. However, 421 

we note that the R2 in RFR-2D for PRD region (Fig. 7b) is 0.73 which is slightly less than the R2 using RR-2D (0.76), and the 422 

slope of the linear fit between the predictions from RR-2D and the observations is closer to 1 (Fig. 4j) when compared to RFR-423 

2D (Fig. 7b). The higher R2 from RR-2D may be attributed to RR’s ability to extrapolate the extreme high/low anomalies of 424 

observed ozone, while the prediction range of RFR-2D is more constrained by the range of anomalies from the training data. 425 

For example, RR-2D can better predict the extreme low anomaly of observed ozone on 2015-Oct-4 (Fig. S6). Nevertheless, 426 

there could be a trade-off in the feature of extrapolation of RR. For instance, in terms of slope, the seemingly better slope (i.e., 427 

closer to 1) from RR-2D (Fig. 4j) may be partly due to its limitation of over- and underpredicting some extreme high/low 428 

anomalies, which can be illustrated by outliers from linear fit in Fig. 4j. This can be exemplified by the overprediction of ozone 429 

anomaly on 2015-Apr-14 by RR-2D (also see Fig. S6). Such effects of over- or underpredictions under extrapolation can to a 430 

degree compensate the bias in the predicted vs. observed slope, bringing it closer to the 1:1 line.  431 

 432 

Figure 7. (a) Average PRD Gini feature importance score of each meteorological variable if the RFR regressions include non-local 433 
predictors within a 7.5° longitude × 7.5° latitude domain around the predicted grid point; the bar representations are consistent 434 
with Figure 5. (b) Linear fit between RFR-2D predictions and observations in PRD (blue line). The red line equals the ideal 1:1 435 
relationship. 436 

Across China, we found that there is a consistency in the identification of the three most important meteorological drivers 437 

by RFR and RR: temperature, surface solar radiation and RH (Fig.8). Overall, there is a distinctive distribution pattern of the 438 
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3 major meteorological drivers in China. The temperature at 2 m is dominant over northeast China, covering BTH and 439 

expanding to the northern region of China. Most areas in the mid-latitude regions of China, including East China (e.g., YRD) 440 

and the Sichuan Basin, show surface solar radiation as the main meteorological driver for ozone, suggesting the necessity of 441 

including this variable for analyses. The dominance of surface solar radiation gradually expands northward and southward 442 

from this region while being overtaken by temperature in the north and relative humidity in the south. Ozone in southern China 443 

is primarily driven by relative humidity. Such a distinctive spatial distribution of meteorological drivers may be related to the 444 

characteristics of regional climatology. For instance, as described above, regions in southern China such as PRD are 445 

particularly influenced by variations in incoming moist air masses, leading to the importance of humidity surpassing 446 

temperature and surface solar radiation. The relatively drier northern regions do not have such changeable humidity conditions, 447 

making temperature and surface solar radiation the key meteorological factors driving ozone. 448 

 449 

Figure 8 (a)-(c) Most important meteorological drivers at each grid location from April to October of 2015 to 2019 as identified by 450 
Gini importance using RFR. (d)-(f) The same but using absolute magnitudes for the slopes of RR. Variables as labelled. Relative 451 
humidity (RH) dominates in the South and South-East, surface solar downward radiation (SSRD) primarily in the Central China 452 
and Eastern China, and temperature at 2 m (T2) in the North and North-East China. 453 

3.5 Anthropogenic and meteorological contributions to surface ozone trends from 2015 to 2019 454 

Finally, we explore how our new approach could be used to study the quantitative influence of meteorology on historical 455 

ozone variability and trends in China. To facilitate a comparison to previous work, we use a similar method as Li et al. (2020) 456 
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to establish estimates for observed surface ozone trends in China. We note that our exercise is somewhat limited by the slightly 457 

shorter period considered here, i.e., from 2015 to 2019, instead of starting from earlier years. Given this very short period, we 458 

are aware that any long-term trend analysis is explorative and has to be interpreted carefully, as will also become evident from 459 

low statistical significance in many detected trends. We nevertheless attempt such an analysis to demonstrate how our method 460 

can be used in such contexts and to also evaluate if any statistically significant trends are robust after accounting for 461 

meteorological influences.  462 

For trend analyses, we first convert MDA8 ozone concentrations from mass concentrations (μg m-3) to volume mixing 463 

ratios (ppbv). We then average MDA8 ozone over April to October or summertime for each year for both observational data 464 

and model results predicted by our three machine learning-based regressions (RFR, RR and RR-2D) and MLR. Both stepwise 465 

MLR and MLR-2D are not included in the trend analyses here since these two algorithms show overall weak performances in 466 

modelling ozone (see Table 2). The predictions can be considered as a quantitative estimate for the influence of meteorology 467 

on the ozone record during the study period. The residual (true ozone signal minus meteorological predictions) will for example 468 

be mainly reflective of anthropogenic contributions but will also inevitably contain some uncertainties related to the accuracy 469 

of the controlling factor regressions. 470 

Table 3 summarizes the regionally averaged observed trends from 2015 to 2019, which is estimated by ordinary linear 471 

regression in the four regions. We additionally list our meteorologically estimated trends and the residual trends. Overall, the 472 

three machine learning methods and MLR provide relatively similar estimates of meteorologically driven trends in BTH, YRD 473 

and Sichuan Basin, while we find indications that the meteorologically driven trend in PRD may be underestimated by only 474 

using local meteorological factors; using RR-2D we estimate a meteorologically driven trend of 0.84 ppbv a-1 during April to 475 

October from 2015 to 2019, while RFR, RR and MLR with only local meteorological predictors provide estimates of 0.1 ppbv 476 

a-1, 0.003 ppbv a-1 and 0.04 ppbv a-1, respectively. Given the better prediction skill in RR-2D for this region (see Table 2 and 477 

Fig. 4), this further suggests the importance of spatial meteorological phenomena for ozone trend attribution exercises in the 478 

PRD region. 479 

In terms of the raw observed trends, both BTH and PRD show significant increases in ozone pollution (p<0.05) from 480 

April to October for 2015 to 2019. We note that the observed trend in PRD is only significant if the months from April to 481 

October are considered, whereas there is no significant trend (p=0.93) if only examining months in summertime (JJA). This 482 

may be attributed to the ozone’s seasonality in PRD where the highest ozone pollution occurs during autumn and the 483 

particularly high ozone anomaly during September and October in 2019 (Fig. S7b). We underline that anthropogenic 484 

contribution (i.e., the residual) may be overestimated in PRD if only local meteorological factors are considered, given that 485 

residuals of RFR, RR and MLR increase compared to RR-2D. For BTH, the positive ozone trend is found to be higher during 486 

summertime at 3.20 ppbv a-1 (p=0.05) than if the whole April to October period (2.53 ppbv a-1, p<0.05) is considered. Moreover, 487 

estimated by RFR, the meteorologically driven trend in BTH is also higher at 0.74 ppbv a-1 (p<0.1) during summertime than 488 

if the whole April to October period is considered (0.45 ppbv a-1; p=0.14). The April-to-October residual trends in BTH 489 

estimated by all four algorithms are all greater than 2 ppbv a-1 (p<0.1), indicating an elevated importance of anthropogenic 490 
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drivers in BTH. There are no significant observed trends in YRD and Sichuan. However, meteorological factors in both of 491 

these regions appear to have a stronger influence on the trends of ozone according to these four algorithms. Additionally, all 492 

four of the methods also agree on meteorologically driven negative trends in Sichuan while positive trends are found for YRD. 493 

Table 3. Observational, meteorological and residual trends of regional averaged MDA8 ozone (ppbv a-1) from 2015 to 2019 for both 494 
April to October and Northern Hemisphere summertime (June, July, August). Values within the brackets are the p values for each 495 
trend. Trends and p values are in bold given p values smaller than 0.1. 496 

  2015-2019 Apr. to Oct. 2015-2019 Summer 

Method Regions Observed Meteorological Residual Observed Meteorological Residual 

RFR 

BTH 2.53 (0.02) 0.45 (0.14) 2.08 (0.04) 3.2 (0.05) 0.74 (0.08) 2.46 (0.06) 

PRD 1.18 (0.02) 0.1 (0.88) 1.08 (0.08) -0.12 (0.93) -0.75 (0.14) 0.64 (0.58) 

Sichuan -0.34 (0.57) -0.75 (0.04) 0.42 (0.32) 0.01 (0.99) -0.91 (0.34) 0.92 (0.11) 

YRD 0.87 (0.36) 1.38 (0.04) -0.51 (0.48) 1.53 (0.15) 1.35 (0.07) 0.17 (0.81) 

RR 

BTH 2.53 (0.02) 0.37 (0.17) 2.17 (0.03) 3.2 (0.05) 0.54 (0.18) 2.66 (0.05) 

PRD 1.18 (0.02) 0.003 (0.997) 1.18 (0.09) -0.12 (0.93) -1.13 (0.11) 1.01 (0.39) 

Sichuan -0.34 (0.57) -0.84 (0.05) 0.51 (0.18) 0.01 (0.99) -0.84 (0.4) 0.85 (0.06) 

YRD 0.87 (0.36) 1.41 (0.04) -0.54 (0.43) 1.53 (0.15) 1.38 (0.09) 0.14 (0.86) 

RR-2D 

BTH 2.53 (0.02) 0.47 (0.35) 2.06 (0.09) 3.2 (0.05) 0.7 (0.33) 2.5 (0.11) 

PRD 1.18 (0.02) 0.84 (0.31) 0.34 (0.58) -0.12 (0.93) -0.33 (0.62) 0.21 (0.81) 

Sichuan -0.34 (0.57) -0.86 (0.02) 0.52 (0.25) 0.01 (0.99) -0.68 (0.46) 0.69 (0.21) 

YRD 0.87 (0.36) 1.45 (0.08) -0.58 (0.47) 1.53 (0.15) 1.63 (0.02) -0.10 (0.91) 

MLR 

BTH 2.53 (0.02) 0.37 (0.19) 2.16 (0.02) 3.2 (0.05) 0.55 (0.19) 2.65 (0.05) 

PRD 1.18 (0.02) 0.04 (0.96) 1.14 (0.12) -0.12 (0.93) -1.1 (0.14) 0.98 (0.4) 

Sichuan -0.34 (0.57) -0.86 (0.05) 0.53 (0.16) 0.01 (0.99) -0.86 (0.4) 0.87 (0.05) 

YRD 0.87 (0.36) 1.42 (0.05) -0.55 (0.43) 1.53 (0.15) 1.42 (0.08) 0.1 (0.9) 

 497 

Finally, we aim to calculate trends on a ERA5 grid-by-grid point basis. Although both RFR and RR-2D show overall 498 

better skill in modelling ozone across China, RR-2D exhibited particularly increased predictive skill in southern China. 499 

Therefore, for assessing meteorologically-driven trends of MDA8 ozone across all ERA5 grid locations in China, we will only 500 

be examining the results for RR-2D. Fig. 9 shows trends during April to October from 2015 to 2019 across China. Overall, the 501 

observed average trend across China is 1.1 ppbv a-1. The meteorologically driven trend of RR-2D gives the average at 0.5 ppbv 502 

a-1 across China, which is around 45% of the total trend. From Fig. 9 (a), most regions in eastern China show a positive trend 503 

and the magnitudes of increase are more apparent in areas within and nearby BTH, where the ozone pollution increased at an 504 

average rate of 2.6 ppbv a-1
 across all grids within BTH. We find that the positive trend in those particular regions may be less 505 

driven by meteorological factors but indeed might be the result of anthropogenic influences on air pollution (e.g., Liu and 506 
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Wang, 2020). In YRD, meteorologically driven positive trends are in general the highest in eastern China (average at 1.47 507 

ppbv a-1 across all grids in YRD), which is close to the regionally averaged result by RR-2D (1.45 ppbv a-1, p=0.08) in Table 508 

3. Observed trends in Sichuan are a mixture of both increases and decreases, but meteorologically driven trends are all negative 509 

within this region. In PRD, meteorological factors likely played a more central role in driving the recent positive trends in 510 

ozone pollution according to our analysis. 511 

 512 

 513 

Figure. 9 Trends of MDA8 ozone during April to October from 2015 to 2019. (a) shows the observed trends. (b) shows the mean 514 
meteorologically driven trends of MDA8 ozone according to RR-2D. (c) shows the trends of residuals (approximating anthropogenic 515 
effects). The trends are estimated by the slopes of an ordinary linear regressions fitting each year’s April-October MDA8 average 516 
ozone values from 2015 to 2019. 517 

4 Conclusion 518 

Ozone pollution in China can be strongly influenced by meteorological conditions. This study examines the major 519 

meteorological drivers for ozone pollution across China during months with particularly high ozone pollution (i.e., April to 520 

October, from 2015 to 2019) using a controlling factor framework and two machine learning algorithms, namely random forest 521 

regression (RFR) and ridge regression (RR). 522 

The results obtained with RFR and RR are also compared with conventional approaches i.e., multiple linear regression 523 

(MLR) and stepwise MLR, using consistent out-of-sample cross-validation methods. When considering local meteorological 524 

factors only, RFR outperforms the linear approaches RR and MLR, which in turn perform better than stepwise MLR that uses 525 

only the three locally most significant meteorological factors. The better performance of RFR is for example evident from the 526 

overall increase in predicted versus observed coefficients of determination (R2) ranging from 0.5 to 0.6, as compared to 0.4 to 527 

0.5 for the three linear regressions. Stepwise MLR attains the lowest averaged R2 of all these methods across China. Within 528 

the context of using only local meteorological predictors in the regressions, a major advantage of RFR is its ability to model 529 

non-linear relationships between meteorological variables and ozone (e.g., often observed between temperature and ozone). In 530 
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addition, we tested how the consideration of larger-scale meteorological controlling factors improves our predictive 531 

performance. MLR noticeably suffers from the “curse of dimensionality” due to the large increase in the number of predictors 532 

when we included additional meteorological information spanning a 7.5°×7.5° domain around the target grid point for ozone 533 

pollution (the majority of R2 values fall to a lower range of 0.3 to 0.4). In contrast, RR can deal well with this increase in the 534 

number of predictors subject to an objective cross-validation approach for its hyperparameter tuning. In particular, despite not 535 

directly considering non-linearity, we find an improvement of model performance in RR with additional 2-dimensional 536 

predictors, which even outperforms RFR, especially in southern China, indicating the importance of considering a wider 537 

meteorological context in future controlling factor analyses of this kind. 538 

A key advantage of our approach is that both RFR and RR allow for a straightforward interpretation of the predictive 539 

models (explainable machine learning). Reassuringly, we find a good agreement regarding the identification of the dominant 540 

local meteorological drivers for each region. In general, ozone pollution in northern China such as in the Beijing-Tianjin-Hebei 541 

(BTH) region is predominantly driven by temperature fluctuations while ozone in southern China like in Pearl River Delta 542 

(PRD) region is particularly strongly controlled by humidity, possibly due to the important role of humid weather in preventing 543 

significant ozone pollution episodes in this region. Besides, we observe a strong influence in PRD of air exchange with pristine 544 

marine regions, leading to a greater influence of large-scale wind directions, e.g., through the transport of clean marine air into 545 

the region, or through air stagnation and ozone accumulation under large-scale sinking atmospheric motion. Surface solar 546 

radiation plays a major role in general due to its importance in setting the conditions for ozone photochemistry, which is 547 

particularly dominant in the Yangtze River Delta (YRD) and Sichuan Basin. Our work thus highlights that surface solar 548 

radiation might be a key predictor to consider in future controlling factor analyses. In summary, hot, dry and sunny weather 549 

tends to provide more favorable conditions for ozone pollution in China, which is not entirely unexpected but carries important 550 

implications for future changes in air pollution under climate change, while simultaneously considering the pivotal role of 551 

targeted emission control strategies on ozone precursors. 552 

In terms of ozone trends, we find a linear MDA8 ozone increase of about 1.1 ppbv a-1 on average during April to October 553 

from 2015 to 2019 across China. Regionally, these trends can be more than twice as large as in BTH. The largest positive 554 

trends may be mostly attributed to non-meteorological factors such as changes in precursors emissions. However, 555 

meteorologically driven trends on average shows increases at 0.5 ppbv a-1 across China, equalling almost 50% over the period 556 

considered here, and it is thus estimated to be a more important factor, especially in southern China and the YRD region. The 557 

importance of large-scale meteorological phenomena is highlighted in southern China as a higher averaged meteorological 558 

contribution to the increase trend of ozone in PRD is estimated by RR with non-local meteorological predictors. Meteorology 559 

appears to have amplified negative ozone trends in the Sichuan Basin region during 2015-2019. However, it is recommended 560 

to maintain continuous emission control strategies in this region in order to counter the occurrence of more unfavorable weather 561 

conditions for ozone mitigation. 562 
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