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The feedback from Dr. Khosrawi and Anonymous Referee #2 is greatly appreciated, and changes 
have been made to the manuscript accordingly. Please see below our point-by-point response (in 
blue) to all comments (in black). Quoted text from the revised manuscript is in italic. A “tracked-
changed” version of the manuscript is attached to this document. 
 
Response to the Editor’s review 
 
P2, L55: “climate as well” should read “as well as climate” 
This sentence has been changed to: “..moreover, it could contribute to a more reasonable 
assessment of the O3 impacts on vegetation (e.g., Mills et al., 2011; Lombardozzi et al., 2015; 
Mills et al., 2018b; Ducker et al., 2018; Ronan et al., 2020; Fu et al., 2022), which is also relevant 
to the budgets of other greenhouse gases, weather, and climate.” 
 
P2, L58: replace as “as well” by “and” 
Changed as suggested. 
 
P3, L66: aboveground → above ground (space is missing) 
Changed to “above-ground”, which is consistent with the use in Section 2.4 (L281). 
 
P5, L141: “Same as in Huang et al. (2021)” should read “As in Huang et al. (2021)” 
Changed as suggested. 
 
P6, L178: What is “TV”? At least once the variables should be introduced with their long names. 
“TV” is defined in the following sentence: “TV, Pair, eair, and esat(TV) are canopy temperature, 
surface air pressure, vapor pressure at the leaf surface, and saturation vapor pressure inside leaf, 
respectively”. 
 
P7, L209: Chen97? I think here are more details needed. 
This has been introduced in detail in Niu et al. (2011) and Section S1 of Huang et al. (2021), which 
are now cited here. 
 
P7, L215: Add “The” so that it reads “The Sprinkler scheme was…….” 
Changed as suggested. 
 
P7, L220: Abbreviation “GVF” not introduced. 
“GVF” is defined at L166: “green vegetation fraction (GVF) does not come from…”. 
 
P8, L239: Same with “PAR” 
“PAR” is defined at L187-188: “…PAR represents the photosynthetically active radiation per unit 
LAI”. 
 
P8, L241-242: Sentence grammatically not correct. Please rephrase. 
This sentence now reads: “The Wesely-scheme related results that are new from this study and 
those from Huang et al. (2021) are compared (Table 1)”. 
 
P8, L244: equations (14) → Eq. (14) 
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Changed as suggested. 
 
P9, L256: equations (13) and (15) → Eq. (13) and (15) 
Changed as suggested. 
 
P9, L262: I would suggest to put GPP in parentheses. 
We have modified this sentence to more clearly list the focused surface flux variables, and now 
“GPP” is in parentheses.   
 
P10, L281ff: Sentence too long and complicated. I would suggest to either split the sentence into 
two sentences or to make a bullet list. 
GPP from SMAP L4C and the two GPP proxies are now introduced as 2) and 3), respectively. 
 
P10, L298: equations (17) and (18) → Eq. (17) and (18) 
We changed “equation” to “Eq.” throughout the paper. 
 
P12, L371-372: Abbreviations L4C and FLUXCOM introduced? 
“L4C” stands for “level 4 carbon”, which is defined in Section 2.4 (L282). According to key 
references of FLUXCOM data products, FLUXCOM does not seem to have a long name. 
 
P13, L392: Same here with “SIF” and “ACT” 
“SIF” and “ACT” stand for “solar-induced chlorophyll fluorescence” and “Atmospheric Carbon 
and Transport”, respectively, which are defined in Sections 2.4 (L284-285) and 2.2 (L176), 
respectively. 
 
P14, L420: equation 2 → Eq. (2) 
We changed “equation(s)” to “Eq(s).” throughout the paper. 
 
P14, L421: Figure 5g-l → Fig. 5 g-l 
P14, L430: Figure 8 → Fig. 8 
We changed “Figure” to “Fig.” throughout the paper, except when it appears at the beginning of a 
sentence or a figure/table caption.  
 
P15, L471: Abbreviation “CASTNET” not introduced 
“CASTNET” stands for “Clean Air Status and Trends Network”, as first introduced in Section 2.4 
(L278). 
 
P16, L479: Check sentence. Sounds grammatically not correct. 
This long sentence has been broken into two. 
 
P16, L487: Abbreviation “MLM” and “GEM” not introduced. 
“MLM” is short for “multilayer model”, as defined in Section 2.4 (L289). “Noah-GEM” is now 
written as “Noah-Gas Exchange Model”. Also note that, when discussing factual data used in the 
MLM calculations, we changed “conditions in the 2000s” to “conditions in the 2000s” for clarity. 
 
P17, L535: “beta”? 
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We changed “2016beta” to “2016 beta”, the latter of which is consistent with the use in Huang et 
al. (2021). 
 
P18, L568: EF? Abbreviation not introduced. 
“EF” stands for “evaporative fraction”, which was first defined in Section 3.2.1. In the revised 
version it is introduced at the beginning of Section 2.4 (L264). 
 
P19, L589: Figures → Fig. And space are missing. 
We changed “Figures” to “Figs.” throughout the paper, except when it appears at the beginning of 
a sentence or a figure/table caption. And “12(c,d)” has been changed to “12(c, d)”. 
 
P19, L599: RBL/RYL? Abbreviation not introduced. 
“RBL” and “RYL”, which are short for “Relative Biomass Loss” and “Relative Yield Loss”, 
respectively. Please see their definitions in Section 2.4 (L306). 
 
P21, L653: Abbreviation “AQMEII4” not introduced. 
The full name of AQMEII4 is now given: “Air Quality Model Evaluation International Initiative 
Phase 4”. 
 
Generally throughout the manuscript “or/and” should read “and/or”. 
Changed as suggested. 
 
Response to Anonymous Referee #2’s report 
 
This paper improves our understanding of the role of soil moisture in ozone deposition variability, 
while offering a new tool to assess how this connection changes into the future with climate and 
shifts in anthropogenic emissions. It is a good fit for ACP that moves the science forward. The 
sole remaining suggestion that I have is unrelated to the manuscript's conceptual basis, core 
arguments or evidentiary support. Acknowledging that the authors have already improved the 
figures in this revision, I believe there are some places where the figures would be more effective, 
and more accessible, if the numbers/text were made larger (for example, the right-side colorbars 
for Figs 2-4 and 14,15). More broadly, the authors have been thorough in addressing my concerns 
with the original draft, and I believe that this version is acceptable for publication in its current 
form. 
Thank you for the overall positive feedback. We have revised Figs. 2-4, 14, 15, and S2 according 
to this comment.  
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Abstract. Ozone (O3) dry deposition is a major O3 sink. As a follow-up study of Huang et al. (2021), we quantify the impact 

of satellite soil moisture (SM) on model representations of this process when different dry deposition parameterizations are 15 

implemented, based on which the implications for interpreting O3 air pollution levels and assessing the O3 impacts on human 

and ecosystem health are provided. The SM data from NASA’s Soil Moisture Active Passive mission are assimilated into the 

Noah-Multiparameterization land surface model within the NASA Land Information System framework, semicoupled with 

Weather Research and Forecasting model with online Chemistry regional-scale simulations covering the southeastern US. 

Major changes in the used modeling system include enabling the dynamic vegetation option, adding the irrigation process, and 20 

updating the scheme for the surface exchange coefficient. Two dry deposition schemes are implemented, i.e., the Wesely 

scheme and a “dynamic” scheme, in the latter of which dry deposition parameterization is coupled with photosynthesis and 

vegetation dynamics. It is demonstrated that, when the “dynamic” scheme is applied, the simulated O3 dry deposition velocities 

vd, their stomatal and cuticular pathways, as well as the total O3 fluxes Ft are overall larger; vd and Ft are 2–3 times more 

sensitive to the SM changes due to the data assimilation (DA). Further, through case studies at two forested sites with different 25 

soil types and hydrological regimes, we highlight that, applying the Community Land Model-type of SM factor controlling 

stomatal resistance (i.e., β factor) scheme in replacement of the Noah-type β factor scheme reduced the vd sensitivity to SM 

changes by ~75% at one site while doubled this sensitivity at the other site. Referring to multiple evaluation datasets, which 

may be associated with variable extents of uncertainty, the model performance of vegetation, surface fluxes, weather, and 

surface O3 concentrations, shows mixed responses to the DA, some of which display land cover dependency. Finally, using 30 

model-derived concentration- and flux-based policy relevant O3 metrics as well as their matching exposure-response functions, 

the relative biomass/crop yield losses for several types of vegetation/crops are estimated to be within a wide range of 1–17%. 

Their sensitivities to the model’s dry deposition scheme and the implementation of SM DA are discussed. 
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1 Introduction 

Ground-level ozone (O3) is a regulated secondary air pollutant harmful to human and ecosystem health (Fleming et al., 2018; 35 

Mills et al., 2018a,b). It is closely connected with O3 at higher altitudes where O3 plays a more important role in the Earth’s 

climate system by trapping infrared radiation and absorbing ultraviolet radiation (e.g., Lacis et al., 1990). To better protect 

human health and public welfare, in 2015, the US primary and secondary National Ambient Air Quality Standards were 

lowered from 75 ppbv to 70 ppbv, in the format of daily maximum 8-h average (MDA8). Several other O3-exposure based 

metrics have also been applied and/or proposed to assess O3 impacts on vegetation, such as the accumulated O3 exposure over 40 

given thresholds (e.g., SUM40, SUM60, and AOT40), the averaged O3 exposure during daylight hours (e.g., M7 and M12), 

and the sigmoidal-weighted W126 cumulative exposure (e.g., Fredericksen et al., 1996; van Dingenen et al., 2009; 

Hemispheric Transport of Air Pollution, 2010, and references therein; Avnery et al., 2011; Hollaway et al., 2012; Huang et al., 

2013; Lapina et al., 2014; Mills et al., 2007, 2018a,b). To help comply with the tighter air quality standards, an improved 

understanding of the individual processes affecting the (near-)surface O3 concentrations and exceedances is demanded. Many 45 

O3-related processes are highly sensitive to environmental and/or biophysical conditions (e.g., Steinkamp and Lawrence, 2011; 

Strode et al., 2015; Jiang et al., 2018; Huang et al., 2021, and references therein). These O3-related processes include dry 

deposition of O3 and its precursors, which is a major sink for near-surface O3 and depends on dry deposition velocities (vd) 

and the deposited chemicals’ concentrations (Baublitz et al. 2020; Huang et al., 2021). As recognized in numerous studies, 

accurately estimating dry deposition fluxes is critical to understanding O3 budgets and exceedances in the past, present, and 50 

future (e.g., Stevenson et al., 2006; Griffiths et al., 2021); moreover, it could contribute to a more reasonable assessment of 

the O3 impacts on vegetation (e.g., Mills et al., 2011; Lombardozzi et al., 2015; Mills et al., 2018b; Ducker et al., 2018; Ronan 

et al., 2020; Fu et al., 2022), which is also relevant to the budgets of other greenhouse gases, weather, and climate. 

 

Ozone uptake by plants is generally higher in warm/growing seasons and during the daytime when O3 concentrations and vd 55 

values peak. As introduced in Huang et al. (2021) and references therein, over the land, surface resistance rc, which is composed 

of stomatal–mesophyll (rs–rm), cuticular (rlu), in-canopy, and ground resistance terms, often exerts the strongest effects on the 

magnitude and variability of vd. vd also includes the aerodynamic resistance (ra) and quasi-laminar sublayer resistance (rb) 

terms.  

 60 

Soil moisture (SM) and its variability impact vd in the following ways: 1) SM can play a key role in controlling the opening 

and closing of plants’ stomata as well as the mesophyll functioning (Egea et al., 2011; Baillie and Fleming, 2019), and thus it 

can directly affect the rs and rm terms of vd; 2) SM is closely linked with vegetation attributes, such as the growing-season 

above-ground biomass, which is often expressed as leaf area index (LAI) or vegetation optical depth (VOD) and controls the 

stomatal and cuticular uptake of O3-related species; and 3) SM as well as vegetation conditions can affect multiple vd terms 65 

through its interactions with other environmental conditions (e.g., temperatures, radiation, precipitation and humidity fields) 
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that modulate these vd terms, and such effects are generally stronger over transitional climate zones located between dry and 

wet climates. The SM impacts on vd and atmospheric states through the above-mentioned pathways are likely to continue to 

grow in future. This is because, according to Intergovernmental Panel on Climate Change (2021), the occurrence and severity 

of droughts, some of which are characterized by surface and/or column-averaged SM deficits, are projected to increase over 75 

many US regions under warmer future environments. Better understanding the potentially enhanced SM dependency of dry 

deposition and weather conditions under the changing climate is important because O3 stress, together with heat, water, as well 

as other stresses, can pose more complex threats to plant health than single stress alone (Otu-Larbi et al., 2020). 

 

Single-point models and three-dimensional chemical transport models have long been used to estimate vd values and their 80 

responses to climate change. In the widely-used, empirical Wesely scheme (Wesely, 1989), vd is sensitive to only a few 

meteorological variables, with SM and plants’ physiological effects ignored. In previous studies, Wesely scheme based vd 

fluxes as well as their various terms from different global, regional, and point-scale modeling systems were intercompared 

and/or evaluated with vd and rs observations from sparsely-distributed sites (e.g., Val Martin et al., 2014; Hardacre et al., 2015; 

Clifton et al., 2017; Silva and Heald, 2018; Wu et al., 2018; Lin et al., 2019) in terms of their magnitude and variability. Studies 85 

such as Hardacre et al. (2015) show that, even when similar (Wesely and Wesely-like) vd schemes were applied, various models 

behaved differently in calculating vd, reflecting the impacts of land use/land cover (LULC) and meteorological fields which 

depend on the individual models’ configurations (e.g., scales, inputs). In almost all above-cited studies, large model-model 

and model-observation discrepancies (i.e., by a factor of 2 or more) have been found in places, suggesting the strong needs of 

diagnosing and addressing issues in the models’ configurations and dry deposition parameterizations.  90 

 

Revised or alternative dry deposition schemes have been applied in an increasing number of global- and regional-scale 

modeling studies. In some of these works, stomatal conductance is calculated based on the one big-leaf, multiplicative 

algorithms that are more complicated than the Wesely (1989) approach, in the way that the empirical maximum stomatal 

conductance is adjusted by more factors, including water availability and vegetation attributes (e.g., Anav et al., 2018; Falk 95 

and Søvde Haslerud, 2019). In others, vd calculations are coupled with photosynthesis and vegetation phenology (e.g., Val 

Martin et al., 2014; Wu et al., 2018; Lin et al., 2019; Wong et al., 2019; Clifton et al., 2020), which in this paper are frequently 

referred as “dynamic” schemes. Such types of modifications have been the recommended directions for improving the 

estimates of vd as well as the vd and O3 responses to climate change, in that they have been demonstrated to be capable of 

enhancing the dynamics of the modeled vd and reducing their systematic biases. However, results based on such updated vd 100 

schemes are still associated with variable extents of uncertainty due to limitations in model parameterizations (related to 

structures, empirical parameters and stress functions) and/or configurations. In some existing works that applied the “dynamic” 

schemes, such uncertainty was quantified and addressed by simply scaling the fluxes resulting from the “dynamic” schemes 

towards flux measurements available at very limited locations during non-recent time periods (e.g., Val Martin et al., 2014). 

These types of modified dry deposition schemes still require further investigations and optimizations, which can be approached 105 
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by: 1) quantifying the sensitivities of process-based model variables to SM and other environmental and/or biophysical 

variables for various LULC and soil types; 2) improving model representations of processes central to SM states and land-

atmosphere interactions, such as including irrigation and other human activities, tuning physics schemes (e.g., those related to 110 

the surface exchange coefficient, CH) in land surface models (LSMs), and using available observations to constrain (some of) 

the key land variables in models; and 3) including a wide range of observations and/or observation-derived carbon, water, and 

energy fluxes as well as vegetation states in model evaluation for broad geographical regions. Furthermore, it is important to 

explicitly connect the progress in dry deposition modeling with the impact assessments of O3 and other air pollutants on 

ecosystem health, productivity, and diversity.  115 

 

A regional-scale land modeling and SM data assimilation (DA) framework coupled with weather and atmospheric chemistry 

modeling by the Weather Research and Forecasting model with online Chemistry (WRF-Chem) is implemented in this work. 

Using this tool, we quantify and discuss the responses of vd and its key components as well as O3 concentrations and plant 

uptake to SM changes due to the DA, for different soil texture, LULC and crop types. The central parts of this work rely on 120 

the Noah-Multiparameterization (MP, Niu et al., 2011) LSM with dynamic vegetation that enables the implementation of a 

modified “dynamic” dry deposition scheme. This implemented “dynamic” scheme couples the rs calculation with 

photosynthesis for sunlit and shaded leaves and the rlu calculation with vegetation phenology. With this modified scheme, both 

the indirect (i.e., via changing weather and vegetation fields) and direct effects of SM on dry deposition are considered in this 

modeling system. Results based on this modified and the WRF-Chem default Wesely schemes are compared and evaluated 125 

with independent datasets. As an extended work of Huang et al. (2021), here we continue to focus on the southeastern US 

during summer 2016 for which period prior Noah- and Wesely-based model calculations were conducted and aircraft 

observations are available. This manuscript introduces the applied two dry deposition schemes in Section 2. It then presents 

SM and vegetation states (Section 3.1), surface fluxes and weather fields (Section 3.2) from this Noah-MP based modeling 

system, in comparison with those from Huang et al. (2021). Discussions on O3 concentrations and fluxes based on all related 130 

WRF-Chem simulations are also connected with the assessment of O3 impacts on societies, ecosystem health, and crop yield 

(Section 3.3). Summary and suggestions on future directions are provided in Section 4. 

2 Methods 

2.1 Modeling and DA experiments design 

The modeling tools and DA experiment design of this study were largely consistent with the Huang et al. (2021) study: we 135 

conducted model simulations over the southeastern US in a semi-coupled Land Information System (LIS)/WRF-Chem system 

without and with the assimilation of the enhanced SM retrievals from NASA’s Soil Moisture Active Passive (SMAP; 

Entekhabi et al., 2010) mission. Two dry deposition schemes (details in Section 2.3), were applied in cases without and with 

the SM DA. The 12 km/63 vertical layer Lambert conformal grid, atmospheric/land initialization and SM DA methods were 
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adapted from our previous study based on the Noah LSM. Major model input datasets, physics and chemistry schemes were 

kept similar as before except a few aspects relevant to the upgrade of LSM from Noah to Noah-MP (version 3.6) and the 

implementation of an irrigation scheme to be introduced in Section 2.2.   

 

As in Huang et al. (2021), the LULC and soil texture type inputs of our coupled modeling system were based on the 145 

International Geosphere-Biosphere Programme-modified Moderate Resolution Imaging Spectroradiometer (Table S1) and the 

State Soil Geographic datasets, respectively. Crop type data from Monfreda et al. (2008) were used in the irrigation scheme 

and the assessment of the O3 impacts on vegetation (Fig. 1b), which are roughly consistent with the 2016 records from the US 

Department of Agriculture National Agricultural Statistics Service for several major crops such as maize, soybean and wheat 

(https://nassgeodata.gmu.edu/CropScape, last access: 8 November 2021). In Section 3 of this paper, model results are 150 

summarized and/or discussed by groups of grid-dominant LULC and soil type that are shown in Fig. 1(a, d). The original 20 

LULC types were grouped into urban and non-urban areas, and for vegetation-dominant areas, into forests, croplands, and 

shrub/grasslands, following the criteria introduced in Table S1. The grid-dominant LULC groups for vegetated regions used 

in our analysis are vastly similar to independently-developed data products, e.g.: a dataset derived from the European Space 

Agency–Climate Change Initiative Land Cover project (https://gwis.jrc.ec.europa.eu/apps/country.profile/overview/USA, last 155 

access: 8 November 2021), and the 2016 National Land Cover Database (Wickham et al., 2021). Urban-dominant grid cells 

are well aligned with dense population areas (Fig. 1c) based on the Gridded Population of the World version 4.11 (NASA 

Socioeconomic Data and Applications Center, 2018). Grid-scale discrepancies exist between the used LULC input and 

independent LULC products, which, however, are not anticipated to considerably impact the results averaged by LULC groups. 

Three groups of soil are highlighted, namely sand/loamy sand, loam and clay. The original sand and loamy sand categories are 160 

combined because of their high sand fractions 

(http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&fract&methods, last access: 10 December 2021).   

2.2 Physics and configurations of the Noah-MP LSM 

The Noah-MP LSM includes a number of improvements from Noah, and one of the enhanced features in Noah-MP is that it 

contains a separate canopy layer that explicitly computes photosynthetically active radiation, canopy temperature, and related 165 

energy, water, and carbon fluxes so that it facilities a dynamic vegetation model. A modified two‐stream radiation transfer 

scheme was used to compute fractions of sunlit and shaded leaves and their absorbed solar radiation. The Ball-Berry type of 

rs scheme (e.g., Ball et al., 1987) was applied as required by the dynamic vegetation option. When this option is used, green 

vegetation fraction (GVF) does not come from an input dataset as in Huang et al. (2021) but is related to LAI based on (1):  

													GVF = 1 − e!".$%&'(                        (1) 170 

Niyogi and Raman (1997) concluded that Ball-Berry along with two other physiological schemes, performed better on rs than 

the multiplicative Jarvis type which has been frequently used with the prescribed vegetation option. Specifically, it helps better 

capture the variance in rs and is more responsive to environmental changes. As described in Appendix B of Niu et al. (2011), 
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this scheme relates stomatal resistance rs,i of sunlit and shaded leaves i to the photosynthesis rates (Ai) per unit LAI of sunlit 

and shaded leaves i separately: 
)
*!,#
= 𝑚 +#

,$#%

-$#%
-!$&	(/0)

𝑃23* + 𝑔435    (2) 180 

where Cair is CO2 concentration at the leaf surface. For our study period this was set at 400 ppmv according to the median 

value of Atmospheric Carbon and Transport (ACT)-America B-200 aircraft near-surface (i.e., >900 hPa) CO2 observations, 

which is close to the global monthly-mean CO2 concentrations in August 2016 

(https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_gl.txt, last access: 8 November 2021); TV, Pair, eair, and esat(TV) are 

canopy temperature, surface air pressure, vapor pressure at the leaf surface, and saturation vapor pressure inside leaf, 185 

respectively; gmin and m are land cover dependent empirical parameters. Ai is determined by Eqs. (3)–(6): 

𝐴3 = 𝐼67min	(𝐴8 , 𝐴9,3 , 𝐴7)                (3) 

𝐴8 =
(8#!8())0*$+

8#;<(();
,#
-,
)
                              (4) 

𝐴9,3 = =8#!8()>?.@AB+C#
8#;%8()

                       (5) 

𝐴7 = 0.5𝑉42D                                   (6) 190 

where Igs is a TV-dependent growing season index, AC, AL,i, and AS are carboxylase-limited, light‐limited, and export‐limited 

photosynthesis rates per unit LAI, respectively; ci and oi are CO2 concentrations inside leaf cavity which is about 0.7 times of 

the atmospheric CO2 concentration and atmospheric O2 concentration, respectively. PAR represents the photosynthetically 

active radiation per unit LAI. ccp is the CO2 compensation point and it equals to 0.5 <(
<,
0.21𝑜3 , where Kc and Ko are the 

Michaelis‐Menton constants for CO2 and O2, respectively, varying with TV; 𝛼 is the quantum efficiency. 195 

Vmax represents the maximum rate of carboxylation, expressed as: 

𝑉42D =	𝑉42D%$𝛼E42D
./012
34 𝑓(𝑁)𝑓(𝑇𝑉)𝛽      (7) 

where Vmax25 is maximum carboxylation rate at 25°C; f(TV) is a function that mimics thermal breakdown of metabolic 

processes; f(N) is a foliage nitrogen factor; and β is the SM factor controlling rs, which presents strong dependencies on soil 

type and hydrological regime. In this study model results based on the Noah and the Community Land Model (CLM, versions 200 

4.5 and earlier) types of β schemes are compared (Table 1), the latter of which is known to often result in sharper and narrower 

ranges of variation with SM than the former does. The Noah and CLM types of β parameterizations are based on Eqs. (8) and 

(9), respectively: 

𝛽 = ∑
∆G#
G%,,&

H%,,&
3I) min	(1.0, J5#6,#!J7#5&

J%89!J7#5&
)                                                       (8) 

𝛽 = ∑
∆G#
G%,,&

H%,,&
3I) minA1.0,

K7#5&!K#
K7#5&!K!$&B , 𝑤ℎ𝑒𝑟𝑒	𝜓3 = 𝜓72L(

J5#6,#
J!$&

)!M          (9) 205 

𝜃N3O,3, 𝜃P3NL, 𝜃*-Q, and 𝜃72L are SM at soil layer i, wilting point, reference and saturated SM, respectively. Nroot and zroot are the 

numbers of soil layers containing roots and total depth of root zone, respectively. 𝜓3, 𝜓P3NL, and 𝜓72L are matric potential at 
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soil layer i, wilting and saturated matric potential, respectively, and b is Clapp-Hornberger parameter. Major parameters for 210 

the calculations of β in both schemes are soil type dependent. 

 

Other Noah-MP configurations which can affect the modeled land state and flux variables include: the three-layer snowpack 

physics and the CLASS snow surface albedo; the Jordan scheme for partitioning precipitation into rainfall and snowfall; the 

Niu-Yang-2006 frozen soil permeability and supercooled liquid water option; the Simple Groundwater Model runoff scheme; 215 

and the Monin‐Obukhov CH scheme, which is based on more general Monin-Obukhov similarity theory, and unlike Noah’s 

default Chen97 scheme (Niu et al., 2011; and Section S1 of Huang et al., 2021), accounts for the zero-displacement height. 

Being affected by stability correction and additional effects of planetary boundary layer height on friction velocity, it is likely 

that the Monin‐Obukhov scheme can result in either weaker or greater CH (i.e., less or more efficient ventilation of the land 

surface) than the Chen97 scheme during the daytime in summer (Niu et al., 2011; Yang et al., 2011).  220 

 

Irrigation process was included in all Noah-MP based simulations in this study. The benefit of including irrigation relies on 

the choice and parameterization of the irrigation scheme, as well as the LSM model’s inputs (Lawston et al., 2015). The 

sprinkler scheme was chosen as it was reported as the prevalent irrigation method in 2015 across the US and many of the states 

within our model domain (Dieter et al., 2018). Irrigation was triggered over irrigated land in growing season within local 225 

morning times (6–10 am) when rootzone SM drops below 50% of the soil field capacity. The irrigated land was determined 

by the model’s LULC input and irrigation intensity information in Salmon et al. (2015), and the rootzone area was derived 

from the maximum root depth, which varies by crop type and GVF.  

2.3 Wesely and dynamic O3 dry deposition schemes 

Dry deposition velocity 𝑣R is estimated based on the resistance analogy approach: 230 

𝑣R =	
)

*$;*:;*(
                               (10)     

𝑟2 and 𝑟M are aerodynamic resistance and quasi-laminar sublayer resistance, respectively, sensitive to surface properties such 

as surface roughness, and follow the Monin‐Obukhov similarity theory. Over the land, surface resistance 𝑟8 , the major 

component of 𝑣R, is classified into stomatal–mesophyll resistance (𝑟7– 𝑟4), cuticular resistance (𝑟NS), in-canopy resistance (𝑟R8 

and 𝑟8N), and ground resistance (𝑟28 and 𝑟67): 235 

𝑟8 =	
)

3
%!;%*

; 3
%5<

; 3
%=(;%(5

; 3
%$(;%>!

               (11)     

where 𝑟R8 is resistance for gas-phase transfer affected by buoyant convection in the canopy when sunlight heats the (near-) 

surface, 𝑟8N is resistance for leaves, twigs, bark, and others in the lower canopy, 𝑟28  is resistance for transfer that depends mostly 

on canopy structure, and 𝑟67 is resistance for soil, leaf litter, snow, and others at the ground surface. 

 240 
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Two deposition schemes, namely the Wesely and a dynamic scheme, were applied in this study, in which 𝑟7 and 𝑟NS are treated 

differently. In the Wesely scheme, 𝑟7 and 𝑟NS are calculated based on (12) and (13): 

𝑟! = #
𝑟" $1 + '

#$$
%&$.((

#

) *
)$$

*!()$,*!)+
."#$
.%

, 0	°C ≤ 𝑇! ≤ 40	°C

~9999, 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔	𝑚𝑎𝑠𝑠	𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟	𝑡ℎ𝑟𝑜𝑢𝑔ℎ	𝑠𝑡𝑜𝑚𝑎𝑡𝑎	𝑠𝑡𝑜𝑝𝑠, 𝑇! > 40	°C	or < 0	°C
		                                    (12) 245 

𝑟NS =
*5<,*#?

)"02T;Q4
+ 1000𝑒!/!!?, for dry surfaces according to humidity and precipitation fields                          (13) 

Where the LULC- and season-dependent constants 𝑟3 and 𝑟NS,435 represent the minimum stomatal and cuticular resistances, 

respectively, which are subject to uncertainty; G and 𝑇7 are radiation and surface temperature, respectively, whose definitions 

are different than those of PAR and TV in Eqs. (2)–(7); 𝐷T1U and 𝐷D are molecular diffusivities for water vapor and trace gas 

x (e.g., O3), respectively; H, which is sensitive to surface temperature, represents the Henry’s law constant for the focused 250 

trace gas; and 𝑓" is a reactivity factor for oxidation. The Wesely-scheme related results that are new from this study and those 

from Huang et al. (2021) are compared (Table 1). 

 

As expressed in Eq. (14), in the dynamic scheme, 𝑟7 used in dry deposition modeling was taken from what’s calculated from 

Noah-MP’s dynamic vegetation model, and thus considers the physiological process of leaf responses to photosynthesis rate, 255 

humidity and CO2 concentrations. The direct effects of SM, as reflected in the β formula, as well as other environmental 

variables, are included in this method, and this work quantifies the impact of the β factor configurations in Noah-MP (Table 

1) on the dynamic-scheme-related results. 

𝑟7 = (*!,!<?5#&9!<?5#&;*!,!@$=8=9!@$=8=
9+V

) WA1B
W+

                            (14) 

where 𝑟7,7S5N3L	and 𝑟7,7X2R-R are computed based on Eqs. (2)–(7), 𝐿7S5N3L and 𝐿7X2R-R are proportional to the sunlit and shaded 260 

fractions of canopy, respectively, calculated based on the modified two‐stream radiation transfer scheme.   

In the dynamic scheme, 𝑟NS for dry surfaces is modified from the Wesely formula by considering its LAI dependency: 

𝑟NS =
*5<,*#?

9+V	×	()"02T;Q4)
+ 1000𝑒!/!!?	                                   (15) 

In both the Wesely and the dynamic schemes, 𝑟R8 is sensitive to surface radiation, and 𝑟4 is expressed as: 

𝑟4 =	 )
A

C444;)""Q4
                                                                    (16) 265 

Similar to the 𝑟NS calculations in Eqs. (13) and (15), to approximate an effect that coldness sometimes reduces the uptake, 

1000𝑒!/!!? is added to LULC- and season-dependent constants to derive 𝑟67 and 𝑟8N. It is worth mentioning that the direct 

effects of water stress on mesophyll resistance have been recognized (e.g., Egea et al., 2011). Yet, in neither scheme we applied, 

such effects have been incorporated into the 𝑟4	formula as a part of the 𝑣R calculation. 
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2.4 Model evaluation, analysis, and O3 impact assessments 

For the cases listed in Table 1, we quantify the impacts of SM DA on the modeled SM, vegetation dynamics, surface fluxes, 275 

meteorological and surface O3 fields during the 16–28 August 2016 period. The focused surface fluxes are: gross primary 

productivity (GPP) which is integrated by LAI from A in Eqs. (2)–(3), energy fluxes and their partitioning in the format of 

evaporative fraction (EF = daily latent heat/(daily latent heat + daily sensible heat)), dry deposition flux and individual vd terms 

for O3 particularly the 𝑟7 and 𝑟NS related. The SM DA impacts on most of these model fields are expressed as daily and/or 

daytime (around 13:00–24:00 UTC) averaged absolute or relative changes referring to the results from the no-DA cases. For 280 

O3 dry deposition fluxes, we also conducted linear regression analyses to determine the relationships between the relative flux 

changes versus the relative changes in column-averaged initial SM due to the DA. Results of O3 dry deposition fluxes and the 

regression analyses (i.e., slopes and their standard errors, correlation coefficient r values, and p values) are summarized by 

grouped LULC types defined in Fig. 1a. Case studies were also conducted at two low-elevation forested sites where we 

investigated in detail the diurnal and daily variability of O3 dry deposition fluxes from various model cases and an independent 285 

dataset.  

 

A variety of data products were utilized in this study to assess the model performance in no-DA and DA cases (Table 2). Many 

of these evaluation datasets have been applied and introduced in detail in Huang et al. (2021), which are: 1) National Centers 

for Environmental Prediction Global Surface Observational Weather Data as well as weather data collected onboard the NASA 290 

B-200 aircraft during the ACT-America campaign; 2) hourly surface O3 measurements at the US Environmental Protection 

Agency Clean Air Status and Trends Network (CASTNET) and Air Quality System (AQS) sites; and 3) daily, 0.5°×0.5° 

FLUXCOM latent and sensible heat fluxes. New evaluation datasets used in this work include: 1) VOD retrievals from the 9 

km enhanced SMAP product, which indicates the attenuation of microwave signals by vegetation, proportional to above-

ground canopy biomass, and was used together with a 10-day average Copernicus Global Land Service GVF product to derive 295 

GVF for the focused 13-day period; 2) daily GPP estimates from the 9 km SMAP level 4 carbon (L4C) product version 6, 

developed based on the SMAP L4 surface (0–5 cm) and rootzone (0–100 cm) SM together with satellite LULC and vegetation 

datasets; 3) two independent GPP proxies (Whelan et al., 2020) of satellite-derived solar-induced chlorophyll fluorescence 

(SIF) data (Yu et al., 2019) and the Portable Flask Package (Sweeney et al., 2015) carbonyl sulfide (OCS) measurements 

collected onboard the B-200 and C-130 aircraft during the ACT-America campaign, with the OCS data being analyzed together 300 

with other airborne trace gas (e.g., benzene) measurements during this campaign to help distinguish the influences of 

combustion sources from plant CO2 uptake on the observed OCS distributions; and 4) vd data from two selected CASTNET 

sites, estimated using a multilayer model (MLM, not supported by CASTNET as of 2017) version 3.0 which has known 

limitations and biases against eddy covariance flux measurements as well as vd estimated using other methods (e.g., Finkelstein 

et al., 2000; Saylor et al., 2014; Wu et al., 2018). The known limitations of MLM and how they may affect our model 305 

Deleted:  (i.e.,

Deleted: , 

Deleted: ,

Deleted: equations

Deleted: ,310 
Deleted: ), meteorological and surface O3 fields during the 16–28 
August 2016 period. 

Deleted: or/

Deleted: Figure

Deleted: , which was supplemented by315 

Deleted: and 

Deleted:  were analyzed together with the OCS data

Deleted: 3



 

10 
 

comparisons with the CASTNET vd data are discussed. Our O3 dry deposition results are also compared with eddy covariance 

measurements reported in independent works for similar climate and/or LULC types during other time periods.  320 

 

This study also evaluates how the SM DA affected the assessments of surface O3 impacts on human and ecosystem health. 

Specifically: 1) MDA8 O3 fields over urban and nonurban terrestrial regions were investigated linked to their respective 

population ranges; and 2) the LULC-specific Phytotoxic Ozone Dose above the critical level of 𝑦 nmol m-2 s-1 (PODy) as well 

as the crop-specific AOT40, which are defined in Eqs. (17) and (18), were evaluated. 325 

𝑃𝑂𝐷[	(mmol	𝑚!%) 	= 	∑[(𝐹7 − 𝑦) ×
\@""
)"D

], for hourly daytime stomatal uptake 𝐹7 >𝑦 nmol m-2 s-1            (17) 

AOT40	(ppmh) = ∑[(𝐶 − 0.04)] for hourly daytime O3 concentration 𝐶 >0.04 ppmv                                (18) 

According to Convention on Long-Range Transboundary Air Pollution (CLRTAP, 2017), the stomatal O3 uptake 𝐹7 needed in 

PODy calculations was derived based on Eq. (19): 

𝐹7 = 𝐶	(𝑛𝑚𝑜𝑙	𝑚!\) 	×	𝑔7	 ×	
*(

).\	×	)$"	×]
E
<	;	*(

              (19) 330 

where 𝑔7	, 𝐿, and 𝑢 are stomatal conductance, leaf width (0.04 m in this work) and surface wind speed, respectively. 

 

The calculated PODy and AOT40 were used to estimate the Relative Biomass Loss (RBL) or Relative Yield Loss (RYL) for 

several types of vegetation or crops based on dose-response functions reported in literature (Table 3, CLRTAP, 2017; Mills et 

al., 2007, 2018a). Our 13-day WRF-Chem model results were linearly-extrapolated to approximately three months to derive 335 

the PODy and AOT40 fields. While we assess the uncertainty due to such linear extrapolations by relating our 13-

day/extrapolated surface O3 and flux results to seasonal (e.g., averaged for three consecutive months) conditions in 2016, we 

focus on qualitatively interpreting the results and discussing their implications. The outcome from this analysis is also 

compared with the findings from several independent O3 impact assessment studies for different time periods.  

3 Results and discussions 340 

3.1 Modeled SM and vegetation fields 

Figure 2 compares the horizontal and vertical gradients of the model’s initial SM conditions from the Noah_D and CLM_D 

cases defined in Table 1, in which the Noah and CLM types of β factor schemes were applied. At the surface layer (0–10 cm 

belowground), both cases produced SM horizontal gradients that resemble the Noah-based results presented in Huang et al. 

(2021). They are moderately correlated with the column-averaged SM fields (r=0.875 and 0.871, respectively), and the mean 345 

differences in column-averaged and surface SM from the Noah_D and CLM_D cases are 0.003 and -0.006 m3 m-3, respectively. 

Kumar et al. (2009) have found that, compared to other LSMs such as the Catchment (based on which the SMAP L4 datasets 

are produced), the 4-soil-layer Noah and 10-soil-layer CLM LSMs display successively weaker surface-subsurface coupling 
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strengths, and the weakest coupling strength of CLM was primarily attributed to its significantly larger number of soil layers. 

The slightly weaker surface-subsurface correlations in the CLM_D case than in the Noah_D from this work, both are based on 

a 4-soil-layer Noah-MP modeling system, indicate the minor role of the LSM physics, in particular the β factor scheme, in 

controling the vertical coupling strength of SM conditions.  355 

 

The modeled SM fields from the Noah_D and CLM_D differ on grid scale, particularly in the subsurface zones (Fig. 2a, b). 

For example, in sand-dominant regions that were experiencing drought conditions during this period (e.g., Florida and the 

Texas-Oklahoma border regions, where simulated SM is mostly under 0.2 m3 m-3), column-averaged SM values from the 

CLM_D case are notably smaller than those from the Noah_D case. These results contrast with those reported by Niu et al. 360 

(2011), in which cases Noah-MP with the CLM-type β factor consumed less soil water, resulting in smaller SM variability 

than did the Noah-type β factor during drought periods. In their cases focusing on loam and clay soil that have higher wilting 

points when the CLM-type β factor scheme was applied, plant transpiration ceased to save soil water under drought conditions. 

Our results can be explained by the steeper CLM-type β–SM curve than the Noah-type β–SM curve for low SM, sand-dominant 

areas, as illustrated in Fig. 3a of Niu et al. (2011). For such conditions, Noah-MP with the CLM-type β factor produces stronger 365 

evapotranspiration (ET) and consumes more soil water, resulting in drier soil. For wet regions where SM values exceed 0.4 

m3 m-3, such as Louisiana and Arkansas, the CLM- and Noah-type β values are close to 1.0 and insensitive to soil type and SM 

variations; therefore, SM and ET produced from the Noah_D and CLM_D cases do not diverge. These findings corroborate 

the conclusions by Yang et al. (2011) that the degree of the β impacts on the SM–ET relationship should depend on the soil 

type and hydrological regime, and they are important for understanding the vegetation and surface flux results to be presented 370 

in the later parts of this paper. 

 

Referring to the SMAP SM data, in general, surface SM produced by the no-DA modeling systems show wet biases in non-

forested regions and dry biases over the forests for the study period. These SMAP–model discrepancies were successfully 

reduced by the DA for all vegetated LULC groups (Fig. S1, left), leading to overall slightly drier soil in DA-enabled 375 

simulations. For both the Noah_D and CLM_D cases, the DA adjusted the modeled SM fields across the entire soil columns, 

demonstrating that observational information at the surface was propagated into deep soil layers. The SM responses to the DA 

as a function of soil layer from the Noah_D and CLM_D cases are roughly similar but different at small spatial scales, which 

reflect the controls of the β factor scheme on the surface-subsurface coupling strengths of the used modeling/DA system. With 

the SMAP DA enabled, the r values between column-averaged and surface SM from the Noah_D and CLM_D cases increased 380 

to 0.902 and 0.897, respectively. 

 

The satellite-derived GVF fields (methods introduced in Fig. S2 caption) transition from low-to-moderate (<0.6) to high (>0.8) 

values from the western (mostly shrub/grasslands) to the central and eastern parts (forests/croplands dominant) of the study 

region, and such spatial gradients are highly correlated with the SMAP VOD retrievals (Fig. 3a, d). The Noah_D and CLM_D 385 
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cases both moderately well reproduced these spatial patterns. Major differences between these cases are found in dry sandy 

regions, where, as discussed in previous paragraphs, more soil water was consumed for ET and plant growth in the CLM_D 

case and therefore higher GVF values are given. Overall, the DA adjustments to the modeled GVF and SM fields are positively 

correlated (Fig. S1, right), and the relative changes in GVF are smaller. While the SM changes in the Noah_D and CLM_D 

cases are of close magnitudes, GVF responded more strongly in the CLM_D case except for sandy regions. Referring to the 395 

satellite-derived GVF fields which are also subject to large uncertainty (as discussed in Fig. S2 caption), the modeled 

vegetation fields are more effectively improved by the DA over sparsely vegetated regions such as the South-Central Plains. 

The DA also remarkably reduced the model–satellite mismatches over some of the dense vegetation regions such as the 

southwestern Ohio. The likely degraded model performance over certain dense vegetation areas can be partially explained by 

weaknesses related to the SM-vegetation growth feedbacks (more details in Fig. S1 caption) in the dynamic vegetation model 400 

parameterizations which need to be identified and addressed in future work. It is also suggested that jointly assimilating satellite 

SM and vegetation phenology products such as the VOD retrievals needs to be experimented which may maximize the positive 

DA impacts on multiple land variables and their atmospheric feedbacks.  

3.2 Modeled fluxes and weather conditions 

3.2.1 Carbon/energy fluxes and weather conditions 405 

Figure 4 compares the spatial distributions of the period-mean WRF-Chem carbon and energy fluxes with SMAP L4C and 

FLUXCOM products which contain observation information, and Table 4 summarizes WRF-Chem and observation-derived 

flux results by three LULC groups. The observation-derived products indicate the highest GPP and EF over croplands. Without 

the DA, the Noah-MP related cases outperformed the Noah related P1_W case on simulating EF, especially over 

shrub/grassland and cropland regions. This indicates that, from Noah to Noah-MP, the multiple updates in LSM physics related 410 

to rs, irrigation and CH, are beneficial. Larger GPP and EF values are found in CLM_D than in Noah_D, most of these larger 

values match better with the SMAP L4C and FLUXCOM data. The DA led to increased EF over shrub/grasslands in all model 

cases as well as over croplands in the Noah_D case, bringing the model results closer to the FLUXCOM data. The EF values 

were unfavorably reduced by the DA in the CLM_D and P1_W cases over croplands and in all model cases over forests, 

reflecting the challenges of satellite SM DA over regions with dense vegetation and/or affected by human activities, which 415 

have also been reported and discussed in previous studies (e.g., Huang et al., 2021). For the Noah_D and CLM_D cases, this 

may also be due to the possibly degraded vegetation performance discussed in Section 3.1. The modeled GPP in the CLM_D 

cases were lowered by the DA overall, which helped reduce the model–SMAP L4C discrepancies over forests and croplands. 

In the Noah_D case, GPP was improved by the DA over forests and (slightly) over shrub/grasslands. Based on the evaluation 

statistics, for this case, the CLM-type β factor scheme is shown slightly superior to the Noah type. Note that the quality of the 420 

SMAP L4C and FLUXCOM products may also be strongly LULC dependent, e.g., it has been known that the uncertainty of 

SMAP L4C data is generally larger for highly productive plant functional types (Kimball et al., 2020). Such evaluation, 
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therefore, has demonstrated the critical role of LULC type in understanding the model performance of carbon and energy 

fluxes and its responses to satellite SM DA.  430 

 

Additional datasets were also utilized to help understand terrestrial carbon uptake, including satellite SIF and ACT-America 

aircraft OCS as well as its vertical gradients (Fig. S3). Consistent with the SMAP L4C and WRF-Chem based results, the 

largest SIF values are shown over croplands, especially maize and soybean fields in Illinois and Indiana, 2–3 times as high as 

those over shrub/grasslands in the South-Central Plains. All these datasets suggest moderate-to-high terrestrial carbon uptake 435 

around the Lower Mississippi croplands and the forests/croplands near the Texas-Oklahoma border, which is supported by the 

large OCS drawdowns (i.e., the free tropospheric-near surface gradients far exceeded 60 pptv) along with other trace gas 

measurements taken onboard the B-200 and C-130 aircraft.  

 

In general, the modeled EF fields as well as their directions of changes due to the DA resemble those of latent heat flux and 440 

relative humidity (RH), which are opposite to those of sensible heat and surface temperatures (Figs. 5 and S4). The model 

overall well reproduced the observed spatiotemporal variability of 2 m air temperature (T2) and RH, as well as FLUXCOM 

latent and sensible heat fluxes. The diagnostic 2 m weather fields and their responses to the DA strongly correlate with the 

model’s surface-level results. The Noah-MP related cases reacted more strongly to the DA than the Noah-related cases, with 

the responses in the CLM_D case larger than in the Noah_D case except for dry, sandy regions, which can be attributed to 445 

combined effects of the used CH and stomatal resistance schemes. It is important to note that diagnostic temperature and 

humidity variables are represented differently in Noah and Noah-MP and thus are not directly comparable. Specifically, in 

Noah, T2 is an explicit function of surface temperature, air density, specific heat of dry air at constant pressure, and 2 m surface 

exchange coefficient for heat, and 2 m specific humidity is a function of surface specific humidity, upward moisture flux at 

the surface, air density and 2 m surface exchange coefficient for moisture; whereas in Noah-MP, they are expressed as functions 450 

of temperatures and water vapor for vegetated land and bare soil being weighed by their respective fractions. We therefore 

focus on quantitatively evaluating and intercomparing prognostic model weather variables (i.e., the model-level air temperature 

and humidity) against ACT-America aircraft observations (Fig. 6). For air temperature, at all altitudes and near the surface 

(i.e., ≥800 hPa), the CLM_D case responded most strongly to the DA, and the DA-enabled CLM_D case outperformed the 

Noah_D and P1_W cases. This performance is qualitatively consistent with the model’s sensible heat performance referring 455 

to the FLUXCOM data. As for humidity, despite the most significant DA improvements in CLM_D, the Noah-MP related 

cases did not perform as well as the Noah related cases, which is also found in the model’s latent heat performance in 

comparison with the FLUXCOM data. However, note that the model’s humidity performance is more strongly related to that 

of rs and vd in the Noah-MP based cases via the direct impacts of humidity on rs calculations (Eq. 2). The solar radiation fields 

from all model cases, which play vital roles in controlling the land-atmosphere exchanges of water and trace gases, do not 460 

differ remarkably and their responses to the DA are negligible (e.g., Fig. 5g–l). This indicates that the DA impacts on the 

modeled surface fluxes resulted primarily from the changes in the modeled SM, humidity, surface/canopy temperatures, as 
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well as vegetation fields. In many cases these primary contributing factors to the DA impacts are interdependent, and their 

relative contributions vary by location and time.   

3.2.2 Ozone dry deposition velocities and fluxes 470 

Figure 7 presents the period-mean, daily-averaged vd and dry deposition flux Ft (i.e., vd multiplied by concentration at the 

surface level, Wesely, 1989) for O3 from all model cases, along with their responses to the SMAP DA. The daytime averages 

of these fields have similar spatial gradients but of larger magnitudes (not shown in figures). Table 5 summarizes for three 

LULC groups the daily- and daytime-averaged results. The modeled stomatal–mesophyll and cuticular conductances, as well 

as their diurnal variability are indicated in Fig. 8. All model cases produced lower vd and Ft values over shrub/grasslands than 475 

over forests and croplands, qualitatively consistent with results from many existing model- and measurement-based studies 

(e.g., Val Martin et al., 2014; Hardacre et al., 2015; Silva and Heald, 2018; Lin et al., 2019). The results from Noah_W and 

P1_W, both of which are based on the same scheme (Wesely), are generally similar, with minor differences largely attributed 

to different surface temperature fields (Figs. 5 and S4). The WRF-Chem modeled vd and Ft fluxes were more strongly affected 

by the upgrade from the Wesely to the dynamic scheme: i.e., with the updated scheme, they show enhanced magnitudes, 480 

stronger spatial variability, as well as more intensive responses to the DA, especially over forests and croplands. These results 

can be mainly explained by the fact that the stomatal–mesophyll and cuticular resistances in the dynamic scheme are sensitive 

to more environmental and biophysical variables, accounting for both the direct and indirect (i.e., via influencing the weather 

fields and plants’ physiology) effects of SM on vd. vd from the Noah_D and CLM_D cases, as well as its major term stomatal–

mesophyll conductance, shows strong correlations with the modeled GPP, latent heat, and EF fields which have been discussed 485 

in earlier sections. Comparing the cases that implemented the CLM- and Noah-type β schemes, O3-related fluxes resulting 

from the former configuration are of notably larger magnitude, spatial variability and absolute changes due to the DA. The SM 

impacts on the modeled vd and Ft were further quantified using linear regression analyses between the relative changes in the 

modeled O3 fluxes due to the DA versus those in column-averaged SM initial conditions. All regression models yielded low p 

values (i.e., <<0.01), suggesting good Δvd~ΔSM and ΔFt~ΔSM relationships. The regression slopes, all with standard errors 490 

of <0.01%, are summarized in barplots (Fig. 9) by three LULC groups for all model cases in Table 1. For all LULC groups, 

the slopes based on the two cases that implemented the dynamic scheme are 2–3 times larger than those from the two cases 

using the Wesely scheme, and the slopes differ most strongly among the cases over forests and croplands. The low r values 

(<0.5) associated with several regression models reflect the stronger nonlinear relationships between the changes in the studied 

O3 fluxes and SM. These results emphasize the importance of better understanding and representing in models the SM control 495 

on plants’ stomatal behaviors which regulate the land-atmosphere exchanges of water, energy, and trace gases. The earlier 

evaluation of the period-mean GPP and EF across the domain have demonstrated some advantages of using the CLM-type β 

scheme, and that the DA more effectively improved the model performance in sparsely vegetated shrub/grassland regions. 

These conclusions are likely also applicable to the modeled O3 dry deposition process, particularly its stomatal–mesophyll 

pathway.  500 
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In all no-DA and DA cases, the diurnal variability of O3-related surface fluxes shows clear LULC dependency. Over the 505 

shrub/grassland and forests/croplands regions, the daytime averaged vd values are 24–31% and 35–50% higher than the 24 h 

mean, respectively, while the daytime averaged Ft results are 40–50% and 42–63% higher than the 24 h mean, respectively 

(Table 5). Such vd diurnal cycles are a result of the strongest diurnal variability in stomatal–mesophyll conductance (i.e., its 

daytime mean values are approximately twice as high as the 24 h mean for all LULC types) being balanced out by weak diurnal 

variability associated with other vd terms. As the most diurnally variable vd component, stomatal–mesophyll conductance, on 510 

average, contributes less substantially to vd for shrub/grassland areas (24 h/daytime: up to ~30%/40%) than for 

forests/croplands (24 h/daytime: up to ~50%/66%), which helps explain the weaker diurnal variability in the modeled vd over 

shrub/grasslands. The stronger diurnal cycles in Ft than in vd reflect the impacts of higher daytime O3 surface concentrations 

used in the Ft calculations. The DA did not dominantly intensify or dampen the diurnal cycles of these fluxes for any given 

grouped LULC type. Whether the DA improved the estimated diurnal cycles of fluxes for various LULC types remains to be 515 

evaluated, which can benefit from independent observation-constrained flux products of broad spatial coverage and subdaily 

variability. 

 

A detailed analysis was then conducted at two forest CASTNET sites with different soil types and hydrological regimes. The 

modeled vd and Ft from various cases are compared with the operational MLM-based calculations produced at a Florida site 520 

SUM156 and a Virginia site PED108 (Figs. 10a, b, e, f and S5; Table 6) where many/most/all MLM assumptions apply. The 

dominant soil types at these sites are sand and loam, and the column-averaged SM values from various model cases are 

approximately 0.15 and 0.20 m3 m-3, respectively. These various datasets show that stomatal–mesophyll conductance, vd, and 

Ft sharply increase soon after sunrise, reaching their daily maxima in late morning or early afternoon. The slight declines in 

fluxes around midday based on some simulations can result from the water and heat stresses which cause stomata closures 525 

(Fig. 10c, d). The water stress starts to get relieved since the mid-afternoon at the SUM156 site under the influences of 

convective precipitation whereas persists throughout the afternoon at the PED108 site (Fig. 10g, h). This helps shape the 

slightly different afternoon flux dynamics at these two locations. Without the DA, at both sites, the highest daytime fluxes 

were produced from the CLM_D case, followed by the Noah_D and Noah_W cases, which are 2–3 times as high as the MLM-

estimated. The fluxes from all WRF-Chem cases during the nighttime are close, up to >80% lower than their daytime maxima, 530 

contributed mostly by ra, rb and non-stomatal rc pathways as stomatal–mesophyll conductance is shown negligible (Fig. 10c, 

d). Despite the uncertainty possibly introduced by the limitations of the Monin‐Obukhov similarity theory, our nighttime vd 

results are close to flux observations at European forest sites during both dry and wet periods in the past decades (Lin et al., 

2020). They are, however, dramatically higher than the MLM-based results that are nearly zero. Wu et al. (2018) compared vd 

observations with single-point model calculations based on the operational MLM, Wesely, and the Noah-Gas Exchange Model 535 

photosynthesis-based scheme, at a Canadian mixed forest site dominated by sand-like soil. Their diverse model results are 

qualitatively consistent with our findings at the SUM156 and PED108 sites. The remarkably lower vd values from the 
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operational MLM calculations can be partially attributed to its simplified approaches of calculating ra and rb using wind speed 

and direction, as well as the empirical approach of calculating rs which is subject to errors in the season- and LULC-dependent 545 

ri. The possible uncertainty in MLM vd can also be explained by the lack of continuous, accurate model input data. Specifically, 

the factual data such as plant and canopy attributes used in the MLM calculations are outdated, which, according to the 

CASTNET database, represent the conditions in the 2000s; and based on the little day-by-day variability found in the MLM 

vd data during the study period which contrasts with our WRF-Chem results (Fig. S5), it is likely that many but not all of these 

are filled historical average vd values due to the lack of meteorological measurements that are needed in the MLM calculation. 550 

Additionally, based on the surface heterogeneity within the WRF-Chem grids that these sites fall in, representation errors are 

estimated to be pronounced when comparing the point-scale MLM fluxes with our 12 km WRF-Chem results. 

 

Within the respective ranges of the modeled SM at these two sites, β factors based on the CLM-type scheme are both larger 

than those based on the Noah-type β scheme (referring to Niu et al., Fig. 3), which helps explain the higher and more variable 555 

model fluxes from the CLM_D case than the Noah_D case without the DA. At SUM156, despite the strongest SM decrease 

(~0.04 m3 m-3) by the DA in case CLM_D, the modeled fluxes responded least strongly to the DA, in part due to the flattened 

CLM-type SM–β curves in contrast to the linear Noah-type SM–β function for sand within the 0.12–0.16 m3 m-3 SM range. 

At PED108, the modeled SM values from all model cases were lowered by the DA by ~0.02 m3 m-3. The stronger reactions of 

fluxes (i.e., vd, Ft, and their stomatal–mesophyll portions) to the DA from the CLM_D case than those from the Noah_D case 560 

can be partially explained by the steep CLM-type SM–β curve versus the linear Noah-type SM–β relationship for loam within 

the 0.18–0.22 m3 m-3 SM range. Our case studies at these two sites with the same type of LULC emphasize the importance of 

soil type and hydrological regimes for understanding SM controls on dry deposition, which was often omitted or 

underdiscussed in previous dry deposition studies. It is noted that the effectiveness of SM DA in improving the accuracy of 

land surface states and fluxes at point scale is dependent on the representativeness of the assimilated satellite SM data for these 565 

sites which is expected to increase with the resolutions of the model and the assimilated satellite land product. 

3.3 Policy-relevant O3 metrics and implications for O3 impact assessments 

3.3.1 MDA8 and implications for O3 health impacts 

Figure 11 illustrates the impacts of the choice of dry deposition scheme and SM DA on WRF-Chem modeled surface MDA8 

O3. During the study period, several warmer- and drier-than-normal Atlantic states experienced high MDA8 at times (i.e., ≥60 570 

ppbv, which can negatively affect lung function, and at ≥70 ppbv, cause respiratory symptoms and other adverse effects, 

Fleming et al., 2018, and references therein). Numerous populated urban centers reside in these areas. The levels of MDA8 

are shown to be much lower (i.e., <40 ppbv) over the southern part of the domain, including several major urban/suburban 

regions such as the Texas Triangle, which was frequently influenced by passing cold fronts and tropical systems from the Gulf 

of Mexico. 575 
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All model cases reproduced the observed MDA8 spatial patterns (Fig. 12a) moderately well. Referring to observations at AQS 580 

and CASTNET sites, their domain wide mean RMSEs all fall within 6–8.5 ppbv (Fig. 12b). We first intercompare the MDA8 

levels from all no-DA cases. Positive and negative differences between the results from Noah_W and P1_W, both of which 

implemented the Wesely scheme, are almost equally distributed across the domain, with the MDA8 from the former case 

associated with negligibly lower RMSEs (i.e., <0.02 ppbv on average) referring to AQS and CASTNET observations (Figs. 

11k and 12b). The differences between these two cases are largely due to the impact of the chosen LSM on the model’s 585 

meteorological fields, particularly temperatures, which affected the simulations of various O3-related processes including dry 

deposition. As Figs. 11(i, j) and 12b show, replacing Wesely with the dynamic dry deposition scheme considerably lowered 

the calculated MDA8 levels in majority of the model grids, as well as their associated RMSEs (i.e., by >0.5 ppbv on average) 

relative to surface observations. These reductions in MDA8 are of comparable magnitudes with those due to updating 

anthropogenic emissions from the National Emission Inventory 2014 to 2016 beta (Huang et al., 2021). Comparing the 590 

implementations of the CLM- and Noah-type β schemes, the former led to stronger reductions in the modeled MDA8 fields 

and their associated uncertainty. These results reflect the impacts of the faster O3 removal via dry deposition in the dynamic 

scheme related cases, as well as the different model meteorology. Our findings are qualitatively consistent with the conclusions 

from several global-scale modeling experiments that compared the Wesely and dynamic schemes (e.g., Val Martin et al., 2014; 

Lin et al., 2019).  595 

 

In all model cases, the DA reduced surface and subsurface SM in many of the grids, leading to enhanced MDA8 (Fig. 11e–h). 

The responses of the period-mean MDA8 to the DA from the Noah_W and P1_W cases are mostly within ±4 ppbv. When the 

dynamic dry deposition scheme was applied, the modeled MDA8 responded several times more strongly to the DA (i.e., by 

up to 6 ppbv and 8 ppbv in the Noah_D and CLM_D cases, respectively), especially over nonurban regions where surface 600 

MDA8 on average are several ppbv lower than in urban grids. In urban grids where population densities are ~25 times higher 

than in nonurban grids (Fig. 1c), the DA impacts on MDA8 reach 3–4 ppbv in places, under the controls of the local-to-regional 

circulation patterns (Fig. 13a, e). As the no-DA cases are positively biased against surface observations in many places, 

corresponding to the DA-induced surface O3 changes, the overall model performance of MDA8 was not improved, or much 

degraded, by the DA. Over limited areas such as the South-Central Plains, the modeled MDA8 decreased due to the DA by up 605 

to >2 ppbv, corresponding to improved performance. The no-DA and DA results based on different LSMs and dry deposition 

schemes confirm that drier soil conditions exacerbate O3 air pollution, which, together with heat stress, threatens human health. 

Such O3–SM relationships have also been demonstrated by Falk and Søvde Haslerud (2019) and Anav et al. (2018) using other 

chemical transport models and multiplicative dry deposition schemes. Our Noah_W and P1_W related results indicate the 

influences of SM on air quality via its feedbacks to weather; and results from the Noah_D and CLM_D cases provide valuable 610 

information regarding both the indirect (i.e., via adjusting vegetation phenology and weather conditions) and direct SM effects 

on O3. The complex SM impacts on O3 dry deposition as well as surface O3 concentrations based on the coupled 
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photosynthesis–rs calculations rely heavily on the application of water stress function (β scheme), soil properties and 

hydrological regime. The WRF-Chem results from this case indicate that, to more accurately simulate MDA8, improving land 

DA must be combined with strong efforts to identify other sources of uncertainty in O3 modeling (e.g., emissions, chemistry, 

and extra-regional pollution contributions) and reduce their negative impacts on model performance. 

3.3.2 Implications for O3 vegetation impact assessments using concentration- and flux-based metrics  625 

Both O3 flux- and concentration-based metrics have been applied to assess O3 impacts on vegetation as well as the associated 

economic loss. Estimating the plants’ stomatal O3 uptake Fs is the basis for constructing flux-based O3 impact assessments. 

Figure 14 illustrates the period-mean daytime Fs fields based on all WRF-Chem no-DA cases as well as their responses to the 

SM DA. Box-and-whisker plots in Fig. 13(b, f) summarize these results by three LULC groups. The averaged Fs values for all 

three LULC groups exceed their respective critical levels (i.e., 1 nmol m-2 s-1 for forest and grasslands; and 3 nmol m-2 s-1 for 630 

crops). As a major contributor to O3 dry deposition flux during the daytime, Fs fields appear to be closely correlated in space 

and time with the surface humidity and flux fields (e.g., GPP, latent heat and EF, as well as vd), which differ distinctly from 

the surface O3 concentration fields. For example, Fs hotspots are shown over some low O3 concentration areas including the 

humid, Lower Mississippi River regions, and the lowest Fs values occur in certain high O3 concentration regions strongly 

affected by urban pollution (e.g., Georgia) and pollution transport from upwind US states and/or the stratosphere (e.g., western 635 

Kansas and Oklahoma, as discussed in Huang et al., 2021). The changes in Fs and surface O3 concentrations due to the DA 

show opposite directions, i.e., drier soil enhances surface O3 concentrations whereas slows down the plants’ stomatal O3 uptake 

(Figs. 11e–h and 14e–h). This comparison highlights how the choice of O3 metrics can affect the assessment of O3 vegetation 

impacts under the changing climate. As emphasized by Mills et al. (2018a) and Ronan et al. (2020), flux-based metrics have 

evident advantages over concentration-based metrics. To conduct reliable impact assessments using these flux-based metrics, 640 

accurate information on stomatal and non-stomatal fluxes as well as the various environmental and biophysical variables that 

they are sensitive to become increasingly important. 

 

An assessment of O3 vegetation impacts was conducted based on the results from various model cases and different metrics, 

namely PODy (where y is LULC-dependent critical level) and AOT40. For this demonstration, the 13-day model results were 645 

linearly extrapolated to approximately three months. This also assumed similar DA adjustments to SM dynamics (driven by 

factors such as clouds/radiation, rainfall, and irrigation for cropland-dominant regions) at seasonal time scale. Based on the 

seasonal variability of surface O3 and surface fluxes in the study region in 2016 (Fig. S6), the linearly scaled PODy and AOT40 

values are overall underestimated referring to the 2016 peak AOT40 and surface fluxes occurring during April-May-June and 

June-July-August, respectively. These overall underestimations may be invalid if the (sub)seasonal variability of surface O3 650 

and surface fluxes of other years was referred to. We therefore focus on discussing the results qualitatively and highlighting 

their implications for O3 impact assessments using long-term records. Statistics of the derived PODy and AOT40 fields are 

summarized by O3 sensitive LULC and crop types in Fig. 13(c, d, g, h). Figs. 15 and 12(c, d) present the estimated AOT40 
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fields, the evaluation of them, as well as their responses to the SM DA for cropland-dominant grids. The highs and lows in 

AOT40-related results are found over maize and wheat dominant fields, respectively. Among the three focused LULC types, 660 

the highest and lowest PODy values are estimated for forests and grasslands, respectively. Largely driven by daytime peak O3 

concentrations, the spatial variability and biases (referring to AQS and CASTNET observations) of the model-derived AOT40 

fields, as well as their responses to the DA, match the MDA8-based (Fig. 11). In contrast, the spatial variability of PODy and 

Fs aligns well, so are their responses to the DA. Both PODy and AOT40 reacted several times more intensively in the cases 

that implemented the dynamic dry deposition scheme, especially the CLM_D case. 665 

 

For selected LULC and crop types, the WRF-Chem derived PODy and AOT40 fields were used together with dose-response 

functions in literature to evaluate the RBL/RYL due to O3 exposure and uptake. As reported in Fig. 13(c, g), with the SM DA 

enabled, the mean RBLs based on Noah_D and CLM_D derived PODy are 0.05–0.08, 0.01–0.02, and 0.04 for deciduous forest, 

grasslands and wheat, respectively, which are >33% lower than the Noah_W and P1_W based RBL estimates. It is shown that, 670 

in response to the DA which lowered SM in many places, the Noah_W and P1_W based RBL estimates did not drop as strongly 

as the Noah_D and CLM_D based, and even increased by 0.01 for grasslands and wheat. For wheat, one of the most O3-

sensitive crops, the estimated RYL values based on the PODy and AOT40 approaches differ by up to a factor of 2–3, and the 

DA had contrasting effects on these estimates (Fig. 13c, d, g, h). The PODy- and AOT40-based RYL values differ more 

significantly when the model-derived PODy and AOT40 fields came from the Noah_D and CLM_D cases. Using the model-675 

derived AOT40 and different AOT40 dose-response functions (Mills et al., 2007, 2018a, Table 3), the estimated RYLs and 

their changes due to the DA are nonnegligible (Fig. 13d, h). Our estimated RBL/RYL results for various LULC and crop types 

mostly fall within the ranges reported in previous studies which applied model-derived O3 metrics and dose-response functions 

(e.g., Avnery et al., 2011; Mills et al., 2007, 2018a). Our results emphasize that the selected O3 impact assessment metrics for 

various LULC/crop types and their matching dose-response functions, as well as the model results used to derive the chosen 680 

O3 metrics which are sensitive to dry deposition schemes and SM, all introduce uncertainty to the estimated O3 impacts on 

vegetation. The widely-used dose-response functions are considered appropriate for studying North America and Europe, but 

they may not be applicable to other regions (Emberson et al., 2009). Therefore, updating and developing dose-response 

relationships for a larger number of vegetation types in different regions of the world are needed, which may require new 

experiments to be conducted. Yue and Unger (2014) and Lombardozzi et al. (2015) as well as follow-on investigations 685 

parameterized the O3 impacts on several types of vegetation using the relationships between cumulative O3 uptake and O3 

damage factors for photosynthesis and conductance from empirical and experimental studies. Based on multidecadal model 

simulations, they reported <20% changes of biomass, GPP, and energy fluxes due to O3, which are roughly consistent with 

our RBL/RYL results in Fig. 13. Such approaches that dynamically assess the impacts of O3 along with other factors (e.g., 

non-O3 pollutants and environmental stresses), as highlighted in Emberson et al. (2018), will be considered in future work.  690 

 

Deleted: Figure

Deleted: Figure

Deleted: Figure

Deleted: Figure695 

Deleted: Figure



 

20 
 

We note that, revising the dry deposition scheme and constraining the modeled SM fields with observations would not only 

better be combined with adding O3 injury to vegetation but also multistress impacts on biogenic emissions. Considering O3 

injury to vegetation would affect more evidently longer-term climate simulations via feedbacks to biomass, surface fluxes, 

weather and weather-driven emissions. As for biogenic emissions, Fig. S7 shows SM anomalies during the study period 700 

determined by our Noah-MP modeling system as well as drought stress activity factor γd estimated from β of a multiyear, 

independent CLM (version 4.5) simulation by Jiang et al. (2018). Based on these, we estimate that, depending on soil type, 

hydrological regime, as well as β configurations, omitting the direct impacts of water stress on biogenic emissions, may have 

introduced larger uncertainty (i.e., >30%) to biogenic emission and O3 modeling over several states experiencing drier-than-

normal conditions, particularly South Carolina, Georgia, and Alabama. Quantitatively understanding the interplay between 705 

these processes and O3 pollution levels is recommended for more accurate air quality modeling and O3 impact assessments. 

4 Summary and suggestions on future directions 

This paper described a follow-up study of Huang et al. (2021). It presented how the choice of O3 dry deposition scheme affected 

our evaluation of SMAP SM DA impacts on coupled WRF-Chem modeling over the southeastern US in August 2016. In new 

Noah-MP LSM related simulations, two dry deposition schemes were implemented, namely the WRF-Chem default Wesely 710 

scheme and a dynamic scheme, in the latter of which the calculation of vd (particularly its stomatal and cuticular terms) was 

modified to be coupled with photosynthesis and vegetation phenology. We showed that dry deposition parameterizations 

significantly affected the modeled O3 dry deposition process, as well as its response to the DA. Comparing the no-DA cases, 

it was found that, when the dynamic scheme was applied, overall, the modeled O3 dry deposition velocities and fluxes were 

larger and surface O3 concentrations were lower. The modeled O3 fluxes responded 2–3 times more strongly to the SM changes 715 

due to the DA, which can be mainly explained by the fact that both the direct and indirect (i.e., via influencing weather and 

vegetation fields) effects of SM on O3 dry deposition modeling are considered in the dynamic scheme. Depending on soil type 

and hydrological regime, the selection of SM factor controlling rs (i.e., β factor, a key variable representing the direct effects 

of SM on the modeled surface fluxes) scheme can strongly affect the quantitative results. The Wesely-scheme derived dry 

deposition results driven by meteorological fields from Noah-MP and Noah (from Huang et al., 2021) LSM based WRF-Chem 720 

simulations displayed much smaller differences than those due to updating the dry deposition parameterizations. While we 

note that accounting for physiological effects in dry deposition modeling can be beneficial, the Ball-Berry rs scheme applied 

in land surface and dry deposition modeling in this work needs to be compared with other semi-empirical rs schemes, for a 

better understanding of their respective strengths and weaknesses. Alternative schemes include the Medlyn scheme which has 

been integrated into the CLM version 5. Model intercomparison efforts such as the ongoing Air Quality Model Evaluation 725 

International Initiative Phase 4 activity (Galmarini et al., 2021) can also help determine areas for improvement in commonly-

used dry deposition modeling approaches for studying 2016 and other years, over North America and other regions of the 

world.  
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By analyzing the model responses to the SM DA from these various cases, we conclude that, in coupled modeling systems that 

consider the direct and indirect influences of SM on O3 dry deposition, the accuracy of SM is particularly critical to dry 

deposition and O3 modeling, as well as the scientific analyses and impact assessments based on model simulations. The 

usefulness of SM DA for improving the modeled state and flux variables was evaluated by multiple observation(-derived) data 735 

products. Referring to in situ measurements, key meteorological variables relevant to vd calculations such as surface 

temperature and humidity are shown to be improved by the DA by up to ~9%. Referring to satellite(-derived) datasets which 

may be associated with high uncertainty, the model performance of vegetation phenology, GPP, as well as energy fluxes and 

their partitioning, showed mixed, LULC-dependent reactions to the DA. According to the evaluation statistics, for this case, 

the CLM-type β factor scheme was slightly superior to the Noah-type one. The modeled carbon and energy fields as well as 740 

their DA-related changes, correlated strongly with the modeled vd fields, implying that the DA impacts on the accuracy of vd 

were also possibly complicated which is difficult to verify due to the lack of high-accuracy, independent vd evaluation datasets, 

a point that has also been brought up in previous dry deposition modeling works (e.g., Baublitz et al., 2020; Clifton et al., 

2020). Observation(-derived) vd datasets covering diverse LULC types nested in broad geographical regions and through more 

recent periods are in strong need. In places, the likely ineffectiveness of SM DA on vegetation and surface fluxes can not only 745 

be attributed to the quality of satellite SM retrievals and the used DA approach as discussed in previous Noah LSM based DA 

experiments, but also shortcomings in the Noah-MP LSM and its dynamic vegetation scheme regarding its surface-subsurface 

coupling and representation of SM-vegetation growth feedbacks. Continued efforts on advancing land measurement/retrieval 

skills, identifying and addressing deficits in LSMs as well as practicing multivariate land DA are recommended in future work. 

 750 

This study also demonstrated that, model-driven assessments of O3 impacts on human health and various types of vegetation 

can be significantly affected by the applied O3 dry deposition scheme, the implementation of land DA, the chosen O3 metrics 

and their matching exposure-response functions. Various model cases showed that, the DA impacts on MDA8 were more 

evident in nonurban areas where the mean MDA8 was ~5 ppbv lower and the averaged population density is <1/25 of those in 

urban areas. Using concentration- and flux-based metrics AOT40 and PODy, the mean RYLs of maize, soybean, and wheat 755 

fell within ranges of 0.01–0.04, 0.10–0.17, and 0.04–0.14, respectively. The multiple no-DA and DA cases helped us better 

understand the indirect and/or direct effects of SM on O3 dry deposition process, which have important implications for O3 

impact assessments. It is also recognized that, the DA often exacerbated the positive surface O3 biases in free-running systems 

which has been a common issue shared by numerous regional and global models for this study region/season. It is necessary 

to combine land DA with efforts to identify, quantify, and reduce other sources of uncertainty in O3 modeling. These should 760 

include reasonably representing the impacts of O3 along with other factors on vegetation, the direct impacts of water stress on 

biogenic emissions of volatile organic compounds and nitrogen species, as well as the reduction of photolysis reaction rates 

and the modification of vertical transport due to the presence of foliage (Li et al., 2016; Jiang et al., 2018; Makar et al., 2017).  
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Code and data availability 765 

Dry deposition related updates to LIS/WRF-Chem since Huang et al. (2021) are undergoing reporting processes via NASA’s 

New Technology Reporting System (https://invention.nasa.gov). Observations and observation-derived evaluation data sets 

emphasized in this work but not in Huang et al. (2021) can be found at the following locations: 

https://land.copernicus.eu/global/products/fcover (Copernicus Global Land Service, 2020, last access: 10 April 2022) 

https://doi.org/10.5067/L6C9EY1O8VIC (Kimball et al., 2021), https://doi.org/10.7927/H49C6VHW (NASA Socioeconomic 770 

Data and Applications Center, 2018), https://www-air.larc.nasa.gov/cgi-bin/ArcView/actamerica.2016 (NASA, 2020, last 

access: 8 November 2021), https://java.epa.gov/castnet/clearsession.do (US Environmental Protection Agency, 2021, last 

access: 8 November 2021), and https://doi.org/10.3334/ORNLDAAC/1696 (Yu et al., 2019).  
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Tables 1065 

Table 1: Model cases and their configurations relevant to the discussions of this study.  

Case 
name 

Land 
surface 
model 

Stomatal 
resistance 
scheme 

SM factor 
controlling 
𝑟7 (β) 

Surface exchange 
coefficient for heat 
(CH) scheme 

Irrigation 
scheme 

Dry deposition 
scheme Note 

Noah_D Noah-MP Ball-Berry Noah-type Monin‐Obukhov Sprinkler Dynamic 

new in 
this 
study 

CLM_D Noah-MP Ball-Berry 
CLM 
(version 
4.5)-type 

Monin‐Obukhov Sprinkler Dynamic 

Noah_W Noah-MP Ball-Berry Noah-type Monin‐Obukhov Sprinkler Wesely 

P1_W Noah Jarvis Noah Chen97 not included Wesely from  
Part 1 

 

Table 2: Evaluation datasets relevant to this study, along with their key attributes. References of these products can be 
found in the data availability sections of this work and Huang et al. (2021).  

Measurement platform, 
network or name of 
dataset 

Measured or 
derived 
variable 

Type of 
dataset 

Spatial 
resolution 

Temporal resolution; 
coverage of the used 
dataset 

Note 

SMAP VOD satellite 
retrieval 

9 km  twice-daily; morning 
time data during 
August 2015–2019 

new in this study, 
but available in the 
SMAP enhanced 
product introduced 
in part 1 

SMAP L4C GPP observation 
derived 

9 km daily; April–
September 2016 new in this study 
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OCO-2 SIF observation 
derived 

0.05°×0.05° approximately 
biweekly; April–
September 2016 

NASA B-200 and C-130 
aircraft  

OCS flask 
observation 

variable variable; 16–28 
August 2016 

CASTNET O3 dry 
deposition 
velocity 
vd[ozone] 

modeled  at the SUM156 
and PED108 
sites 

hourly; 16–28 
August 2016 

O3 flux 
Ft[ozone] 

modeled 
multiplied 
by observed 

European Space Agency 
PROBA-V, via the 
Copernicus Global Land 
Service  

GVF satellite 
retrieval 

1 km ten-day average; 
August 2015–2019 used as a model 

input in part 1 

Land and water surface 
reports operationally 
collected by the National 
Centers for 
Environmental Prediction; 
and NASA B-200 aircraft 

air 
temperature 
and humidity 

in situ 
observation 

variable variable; 16–28 
August 2016 

also used as 
evaluation datasets 
in part 1 AQS and CASTNET surface O3 

concentration 
in situ 
observation 

variable hourly; April–
September 2016 

FLUXCOM latent and 
sensible heat  

observation 
derived 

0.5°×0.5° daily; April–
September 2016 

Acronyms: AQS: Air Quality System; CASTNET: Clean Air Status and Trends Network; GPP: gross primary productivity; 1070 
GVF: green vegetation fraction; L4C: level 4 carbon; OCO-2: Orbiting Carbon Observatory-2; OCS: carbonyl sulfide; 
PROBA-V: Project for On-Board Autonomy-Vegetation; SIF: solar-induced chlorophyll fluorescence; SMAP: Soil Moisture 
Active Passive; VOD: vegetation optical depth. 
 

Table 3: Dose-response functions used to estimate the LULC- and crop-specific Relative Yield Losses (i.e., 1 - Relative 1075 
Yield, RY) due to O3 exposure and uptake, along with their references. 

LULC 
type 

Crop 
type 

Dose-response function (references) 
Based on Phytotoxic Ozone Dose above the 
critical level y nmol m-2 s-1 (PODy, in mmol m-

2) 

Based on AOT40 in ppmh 

Deciduous 
Forest / RY= −0.0154 POD1 + 1.012 (CLRTAP, 2017) / 

Grasslands / RY= −0.0074 POD1 + 0.982 (CLRTAP, 2017) / 

Croplands 

Maize / RY = −0.0036 AOT40 + 1.02 (Mills et al., 2007) 
Soybean / RY = −0.0116 AOT40 + 1.02 (Mills et al., 2007) 
Wheat RY= −0.0064 POD3 + 0.9756  

(Mills et al., 2018a; CLRTAP, 2017) 
RY = −0.0161 AOT40 + 0.99 (Mills et al., 2007) 
RY=−0.009 AOT40 + 0.969 (Mills et al., 2018a) 
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Table 4: Evaluation of daily-averaged WRF-Chem gross primary productivity and evaporative fraction, referring to 
the SMAP L4C and FLUXCOM datasets. 

Flux variable  
(unit) 

LULC type Reference datasets 
(observation-
derived) 

Model case 
Noah_D CLM_D P1_W 

No DA DA No DA DA No DA DA 
Gross primary 
productivity  
(g m-2 d-1) 

forests 7.39 7.88 7.08 9.06 6.94 
/ shrub/grass 5.11 3.28 3.29 4.74 3.89 

croplands 8.94 7.64 7.40 9.77 8.13 
Evaporative 
fraction 
(unitless) 

forests 0.75 0.65 0.60 0.67 0.60 0.66 0.63 
shrub/grass 0.67 0.53 0.58 0.57 0.61 0.48 0.48a 
croplands 0.79 0.67 0.67a 0.71 0.68 0.63 0.62 

aThe increases from no-DA cases, which led to improved model performance, are <0.005.  1080 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: The 24 h and daytime mean O3 deposition velocity (vd[ozone]) and flux (Ft[ozone]) for three LULC groups. 

LULC 
type/Model 
case 

Noah_D CLM_D Noah_W P1_W 
No DA DA No DA DA No DA DA No DA DA 

 24 h mean vd[ozone] (cm s-1) 
Forests 0.64 0.56 0.68 0.51 0.54 0.53 0.49 0.48 
Shrub/Grass 0.48 0.45 0.53 0.45 0.47 0.48 0.46 0.46 
Croplands 0.62 0.54 0.67 0.54 0.58 0.58 0.56 0.56 
 24 h mean Ft[ozone] (nmol m-2 s-1) 
Forests 7.11 6.38 7.47 6.35 6.31 6.24 5.75 5.68 
Shrub/Grass 4.79 4.48 5.21 4.54 4.76 4.79 4.62 4.63 
Croplands 6.90 6.11 7.39 6.06 6.69 6.64 6.44 6.42 
 Daytime mean vd[ozone] (cm s-1) 
Forests 0.94 0.80 1.02 0.71 0.79 0.77 0.70 0.69 
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Shrub/Grass 0.63 0.56 0.72 0.58 0.61 0.63 0.58 0.58 
Croplands 0.88 0.74 0.99 0.73 0.83 0.83 0.80 0.79 
 Daytime mean Ft[ozone] (nmol m-2 s-1) 
Forests 11.51 10.04 12.25 8.99 10.05 9.93 9.04 8.88 
Shrub/Grass 6.91 6.32 7.77 6.43 6.83 6.99 6.52 6.49 
Croplands 10.99 9.42 12.04 9.31 10.61 10.57 10.17 10.07 

 

Table 6: Period-mean (16–28 August 2016) soil moisture and surface fluxes at two CASTNET sites shown in Fig. 1d. 
Standard deviations calculated based on the hourly O3 dry deposition velocity vd[ozone] and flux Ft[ozone] results are also 
included. Daytime is defined as approximately 8:00–19:00 local standard time.  

CASTNET sites  
(soil type; LULC type; elevation/terrain) 

SUM156, Florida  
(sand; forest; 16 m/flat) 

PED108, Virginia  
(loam; forest; 149 m/rolling) 

Modeled soil moisture initial condition,  
column-averaged (m3 m-3) 

No DA DA No DA DA 

Noah_D 0.15 0.12 0.22 0.20 
CLM_D 0.16 0.12 0.20 0.18 
SMAP L4C daily gross primary productivity (g m-2 d-1) 7.30 8.10 
Modeled daily gross primary productivity (g m-2 d-1) No DA DA No DA DA 
Noah_D 4.70 3.83 7.42 5.45 
CLM_D 5.84 5.88 10.10 4.51 
CASTNET (MLM-calculated) daytime vd[ozone] (cm s-1) 0.39 ± 0.15 0.39 ± 0.18 
Modeled daytime vd[ozone] (cm s-1) No DA DA No DA DA 
Noah_D 0.68 ± 0.13 0.64 ± 0.11 0.84 ± 0.23 0.65 ± 0.14 
CLM_D 0.73 ± 0.13 0.74 ± 0.14 1.01 ± 0.29 0.50 ± 0.09 
Noah_W 0.63 ± 0.11 0.61 ± 0.10 0.78 ± 0.22 0.75 ± 0.22 
CASTNET daytime Ft[ozone] (nmol m-2 s-1) 3.81 ± 2.02 5.02 ± 2.83 
Modeled daytime Ft[ozone] (nmol m-2 s-1) No DA DA No DA DA 
Noah_D 7.23 ± 1.71 6.91 ± 1.56 12.21 ± 3.88 9.67 ± 2.45 
CLM_D 7.60 ± 1.74 7.63 ± 1.84 14.27 ± 5.01 7.67 ± 1.88 
Noah_W 6.81 ± 1.56 6.64 ± 1.45 11.74 ± 3.74 11.18 ± 3.56 
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Figures 

 
Figure 1: (a) Grid-dominant land use/land cover types grouped from the original 20-category model input (Fig. 1c in 
Huang et al., 2021) based on the method in Table S1; (b) grid-dominant crop type over cropland-dominant regions; 1085 
(c) gridded population density in 2015; (d) highlighted grid-dominant soil types of sand/loamy sand, loam, and clay 
which are most relevant to discussions in this paper. The original soil type input from the State Soil Geographic 
database is shown in Fig. S1 in Huang et al. (2021). Locations of the two CASTNET sites for the case studies are denoted 
in green. 
 1090 

 

Figure 2: Period-mean (16–28 August 2016) WRF-Chem (a, b) column-averaged and (c, d) surface-layer soil moisture 
fields at initial times and (e–h) their relative changes in % due to the SMAP DA. Results based on the Noah_D and 
CLM_D cases are shown in (a, c, e, g) and (b, d, f, h), respectively.  1095 
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Figure 3: Period-mean (16–28 August 2016) green vegetation fraction (a) derived from the Copernicus Global Land 
Service product and the SMAP morning-time (AM) vegetation optical depth (VOD) using the method described in Fig. 
S2; (b, c, e, f) based on WRF-Chem calculations as well as their responses to the SMAP DA. Results from the Noah_D 1105 
and CLM_D cases are shown in (b, c) and (e, f), respectively. Period-mean SMAP AM VOD is shown in (d). In (a, d), 
grey indicates missing data over terrestrial regions. 
 

 

1110 
Figure 4: Period-mean (16–28 August 2016) WRF-Chem calculated (b–e) gross primary productivity (GPP); and (g–j) 
evaporative fraction as well as their responses to the SMAP DA. Results based on the Noah_D and CLM_D cases are 
shown in (b, d, g, i) and (c, e, h, j), respectively. Period-mean SMAP L4C GPP and FLUXCOM evaporative fraction 
are shown in (a) and (f), respectively, which are also used to evaluate the model results (Table 4).  
 1115 
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Figure 5: Period-mean (16–28 August 2016) WRF-Chem calculated daytime (a–c) surface air temperature and (g–i) 
surface radiation as well as (d–f, j–l) their responses to the SMAP DA. Results based on the Noah_D, CLM_D, and 1120 
P1_W cases are shown in (a, d, g, j), (b, e, h, k), and (c, f, i, l), respectively. Overall, the weather fields from Noah_D and 
Noah_W (not shown in figures) cases are nearly the same. Grey lines in (a) indicate the B-200 flight paths over the 
southeastern US during the 2016 ACT-America campaign. 
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 1125 
Figure 6: Evaluation of (a) air temperature and (b) water vapor mixing ratios from 
several WRF-Chem simulations with the B-200 aircraft observations during the 2016 
ACT-America campaign. The RMSEs are summarized in barplots based on model 
comparisons against observations at all altitudes and near the surface (i.e., ≥800 hPa). 
Colored texts above the barplots indicate the SMAP DA impacts on RMSEs. The B-200 1130 
flight paths are indicated in Fig. 5a. 
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 1135 
Figure 7: Period-mean (16–28 August 2016) WRF-Chem (a–d) O3 dry deposition velocity and (i–l) O3 dry deposition 
flux, as well as (e–h, m–p) the impacts of SMAP DA on these model fields. Results are shown for (a, e, i, m) Noah_D, 
(b, f, j, n) CLM_D, (c, g, k, o) Noah_W, and (d, h, l, p) P1_W cases, averaged throughout the day.  
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Figure 8: Period-mean (16–28 August 2016) WRF-Chem (a–h) stomatal–mesophyll and (i–p) cuticular conductances 
over terrestrial regions that do not belong to the urban category in Fig. 1a. Results are shown for (a, e, i, m) Noah_D, 
(b, f, j, n) CLM_D, (c, g, k, o) Noah_W, and (d, h, l, p) P1_W no-DA cases, averaged (a–d, i–l) throughout the day and 
(e–h, m–p) during the daytime. 1145 
 

 

 
Figure 9: (a) Regression slopes of the relative changes of O3 dry deposition velocity vd versus the relative changes of 
column-averaged soil moisture initial conditions (SM IC) due to the SMAP DA, summarized by three LULC groups 1150 
for all model cases listed in Table 1. The r values of these regression analyses and the standard errors of slopes (%, 
scaled by 1000) are indicated in (b) and (c), respectively. The p values for all regression analyses are <<0.01. Regression 
results for the relative changes of O3 deposition flux versus the relative changes of SM IC are similar (not shown in 
figures).  
 1155 
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Figure 10: Period-mean (16–28 August 2016) diurnal cycles of (a, b) O3 dry deposition velocity vd and (e, f) O3 dry 1160 
deposition flux Ft based on the CASTNET dataset (in black solid lines) and their WRF-Chem counterparts (in purple, 
blue and brown lines) at the (a, c, e, g) SUM156 and (b, d, f, h) PED108 sites whose locations are shown in Fig. 1d. (c, 
d) and (g, h) indicate the diurnal variability of WRF-Chem stomatal–mesophyll conductance gsm and column-averaged 
soil moisture (normalized) at these two sites, respectively. The grey vertical lines in (g, h) denote the initial times of 
WRF-Chem. WRF-Chem results from the no-DA and DA cases are indicated in solid and dashed lines, respectively. 1165 
Additional time series plots indicating the daily variability of these fluxes are shown in Fig. S5. 
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Figure 11: Period-mean (16–28 August 2016) WRF-Chem (a–d) surface MDA8 O3 fields and (e–h) their responses to 1170 
the SMAP DA. Results based on the Noah_D, CLM_D, Noah_W, and P1_W cases are shown in (a, e), (b, f), (c, g) and 
(d, h), respectively, and the differences between the Noah-MP related cases and the P1_W case are shown in (i–k).  
 

Figure 12: (a) Period-mean (16–28 August 2016) observed surface MDA8 O3 and (c) AOT40 in cropland-dominant 1175 
model grids derived from surface observations during 16–28 August 2016. The RMSEs of modeled MDA8 and model-
derived AOT40 from various WRF-Chem cases referring to (a) and (b) are summarized in (c) and (d), respectively. 
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Figure 13: Box-and-whisker plots of WRF-Chem (a) MDA8 O3; (b) daytime stomatal O3 uptake Fs[ozone]; (c) derived 
PODy; and (d) derived AOT40, summarized by LULC and crop types from all DA-enabled cases. The impacts of the 1180 
SMAP DA on these model fields are shown in (e–h). Red filled circles indicate the mean values. The mean relative 
biomass/crop yield losses estimated based on all DA-enabled cases, as well as the SMAP DA impacts on these values, 
are included in (c, d, g, h) in blue text. The crop yield losses for wheat, estimated based on the derived AOT40 and two 
dose-response functions (M07: Mills et al., 2007; M18: Mills et al., 2018a) are included in (d, h). 
 1185 

Figure 14: Period-mean (16–28 August 2016) WRF-Chem (a–d) daytime stomatal O3 uptake Fs[ozone] fields over 
terrestrial regions that do not belong to the urban category in Fig. 1a and (e–h) their responses to the SMAP DA. 
Results based on the (a, e) Noah_D, (b, f) CLM_D, (c, g) Noah_W, and (d, h) P1_W cases are shown. 
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Figure 15: WRF-Chem based AOT40, derived from the modeled surface O3 fields during 16–28 August 2016, as well 
as their responses to the SMAP DA.  (a, e), (b, f), (c, g), and (d, h) show results derived from the Noah_D, CLM_D, 1195 
Noah_W, and P1_W cases, respectively, in cropland-dominant model grids. 
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