

1 **Investigation of New Particle Formation mechanisms and aerosol processes**

2 **at the Marambio Station, Antarctic Peninsula.**

3 Lauriane Lucie Josette Quéléver¹, Lubna Dada^{1,2,3}, Eija Asmi^{4,5}, Janne Lampilahti¹, Tommy Chan¹,
4 Jonathan Ferrara⁴, Gustavo Copes⁴, German Pérez-Fogwill⁴,
5 Luis Barreira⁵, Minna Aurela⁵, Douglas Worsnop^{1,6},
6 Tuija Jokinen^{1,7}, and Mikko Sipilä¹

7 ¹ Institute for Atmospheric and Earth System Research / INAR-Physics, P.O. Box 64, FI-00014 University of
8 Helsinki, Finland.

9 ² Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais,
10 Sion, 1951, Switzerland

11 ³ Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland

12 ⁴ Servicio Meteorológico Nacional / SMN, Av. Dorrego, 4019, Buenos Aires, Argentina

13 ⁵ Finnish Meteorological Institute / FMI, Erik Palmenin aukio 1, FI-00560 Helsinki, Finland

14 ⁶ Aerodyne Research, Inc. Billerica, MA 01821, USA

15 ⁷ The Cyprus Institute, The Climate & Atmosphere Research Centre (CARE-C), P.O. Box 27456 Nicosia,
16 Cyprus

17 *Corresponding Author:*

18 Lauriane L. J. Quéléver (lauriane.quelever@helsinki.fi), Mikko Sipilä (mikko.sipila@helsinki.fi)

19 **Abstract**

20 Understanding chemical processes leading to the formation of atmospheric aerosol particles is crucial
21 to improve our capabilities in predicting the future climate. However, those mechanisms are still inadequately
22 characterized, especially in polar regions. In this study, we report observations of neutral and charged aerosol
23 precursor molecules and chemical clusters composition (qualitatively and quantitatively), as well as air ions
24 and aerosol particle number concentrations and size distributions from the Marambio research station (64°15'S
25 - 56°38'W), located North of the Antarctic Peninsula. We conducted measurements during the austral summer,
26 between 15 January and 25 February 2018. The scope of this study is to characterize New Particle Formation
27 (NPF) event parameters and connect our observations of gas phase compounds with the formation of secondary
28 aerosols to resolve the nucleation mechanisms at the molecular scale. NPF occurred on 40 % of measurement
29 days. All NPF events were observed during days with high solar radiation, mostly with above freezing tem-
30 peratures and, with low relative humidity. The averaged formation rate for 3 nm particles (J_3) was 0.686 cm^{-3}
31 s^{-1} and the average particle growth rate ($GR_{3.8-12 \text{ nm}}$) was 4.2 nm h^{-1} . Analysis of neutral aerosol precursor
32 molecules showed measurable concentrations of iodic acid (IA), sulfuric acid (SA) and methane sulfonic acid
33 (MSA) throughout the entire measurement period with significant increase of MSA and SA concentrations
34 during NPF events. We highlight SA as a key contributor to NPF processes, while IA and MSA would likely
35 only contribute to particle growth. Mechanistically, anion clusters containing ammonia/ dimethylamine
36 (DMA) and SA were identified, suggesting significant concentration ammonia and DMA as well. Those spe-
37 cies are likely contributing to NPF events since SA alone is not sufficient to explain observed nucleation rates.

38 Formatted: Finnish

39 Formatted: Finnish

40 Field Code Changed

41 Formatted: Finnish

42 Field Code Changed

43 Formatted: Finnish

44 Formatted: Finnish

45 Formatted: Finnish

46 Commented [QLLJ1]: RC2 >> SC1

47 Deleted: , which are typically representative of the pre-indus-

48 trial era in climate models.

49 Deleted: (i.e., 13 NPF events were recorded during 35 days).

50 Deleted: sunny days

51 Deleted: (i.e., sufficient radiation),

52 Deleted:

53 Deleted: ($RH < 80\%$).

54 Deleted: average concentrations of 5.17×10^5 , 1.18×10^6 , 2.06×10^5 molecules cm^{-3} , respectively.

55 Deleted: significantly increased

56 Deleted: of dimethylamine (DMA)-bisulfate (2SA) as well as numerous ammonium-(bi)sulfate clusters

57 Deleted: , with the latter at mass-to-charge ratios (m/z) larger

58 Deleted: All of which suggests elevated concentration of both ammonia and amines in the atmosphere.

60 Here, we provide evidence of the marine origin of the measured chemical precursors and discuss their potential
61 contribution to the aerosol phase. ↴

62 1 Introduction

63 Atmospheric aerosol particles impact the planetary energy budget and radiation balance by influencing
64 cloud optical properties and cloud lifetime (IPCC, 2013). Even though they are crucial for regulating the climate,
65 aerosol particles remain insufficiently characterized, especially in remote regions (Schmale et al., 2019).
66 Understanding the atmospheric processes in places where anthropogenic influence is minimal, such as polar
67 regions, is important for characterizing the pre-industrial-like atmosphere. At the same time, polar environments
68 are significantly impacted by human-induced climate change and are warming twice as fast as the global
69 average (Stuecker et al., 2018). Additionally, polar ecosystems and landscapes are more and more being
70 disturbed by increasing average temperatures that further affect emissions of trace gases into the atmosphere.
71

72 Aerosol particles have been observed and characterized in many places in the Arctic and Antarctica (Shaw,
73 1979; Shaw, 1988; Asmi et al., 2010; Kerminen et al., 2018; Sipilä et al., 2016; Dall’Osto et al., 2017; Jokinen
74 et al., 2018; Dall’Osto et al., 2018; Herenz et al., 2019; Baccarini et al., 2020; Dall’Osto et al., 2019; Beck et
75 al., 2021; Brean et al., 2021). Antarctic primary particles, mainly originating from sea spray or blowing snow,
76 only weakly contribute to total particle number concentration (Lachlan-Cope et al., 2020). Modelling studies
77 have estimated that primary particles would only contribute to ~2 % of the total particle count that the ground
78 level in Antarctica (Merikanto et al., 2009). Secondary formation of aerosol particles, on the other hand, is
79 believed to be the principal contributor to cloud condensation nuclei (CCN), especially in the Antarctic pen-
80 insula were models showed contributions varying from 75% up to 100 % (Jokinen et al., 2018; Kerminen et
81 al., 2018; Merikanto et al., 2009). These secondary aerosols originate from nucleation of gas phase molecules,
82 typically condensing oxidation products of locally or regionally emitted vapors. Once formed, neutral or
83 charged molecular clusters can grow by condensation of gases to sizes where they can act as CCN. The process
84 of aerosol nucleation followed by subsequent growth is called new particle formation (NPF). Only a few studies
85 have observed nucleation mode particles (sub-10 nm) from Antarctica - including oceanic, coastal, and
86 continental areas - (Asmi et al., 2010; Virkkula et al., 2009; Järvinen et al., 2013; Kyrö et al., 2013; Weller et
87 al., 2015; Jokinen et al., 2018; Kerminen et al., 2018; Lachlan-Cope et al., 2020; Brean et al., 2021) and only
88 two of those report molecular clusters forming from precursor gases in coastal sites (Jokinen et al., 2018; Brean
89 et al., 2021).

90 Previously identified aerosol precursor vapors include sulfuric acid (e.g., Kulmala et al., 2013; Sipilä et al.,
91 2010), iodic acid (Sipilä et al., 2016; Baccarini et al., 2020) and iodous acid (He et al., 2021), or highly oxy-
92 genated organic molecules (e.g., HOMs, Ehn et al., 2014; Bianchi et al., 2019; Kirkby et al., 2016). On the
93 other hand, nucleating ion clusters such as bisulfate ions with sulfuric acid and ammonia (e.g., Kirkby et al.,

Deleted: Our observations highlight the importance of the Antarctic Ocean, water, and ice ecosystems interacting with the land fauna – the plausible sources of the principal precursor molecules hereby investigated – for secondary aerosol formation.

Page Break

Formatted: Line spacing: 1,5 lines

Commented [QLLJ4]: RC2>>TC1

Deleted: pcc

Commented [QLLJ5]: RC1 >> C1

Deleted:

Commented [QLLJ6]: RC1 >>C1

Commented [QLLJ7]: RC2>>TC3

Commented [QLLJ8]: RC2 >> TC3

Commented [QLLJ9]: RC2 >> TC3

105 2011; Yan et al., 2018; Jokinen et al., 2018; Beck et al., 2021), bisulfate ions and neutral sulfuric acid with
106 dimethyl amine (DMA, Kürten et al., 2014), were previously identified to participate in aerosol formation
107 processes.

108
109 At Marambio, [Aboa](#) and Princess Elisabeth coastal Antarctic stations, air mass trajectories during NPF events
110 indicated a dominant role of the Southern Ocean as a source of aerosol particles, which chemical aerosol
111 composition analysis confirmed by the abundancy of e.g., marine-originated sulfates (Asmi et al., 2010;
112 Herenz et al., 2019; Jokinen et al., 2018). These studies suggest that NPF is linked to sulfur-containing com-
113 pounds originating from dimethyl sulfide ((CH₃)₂S, DMS). At the Antarctic coast, oceanic DMS concentra-
114 tions are the highest during December to January [\(i.e., austral summer\)](#) with concentration that could exceed
115 15 nM within the upper 10 m layer of the ocean around the Peninsula compared to a yearly average of ~5 nM
116 (Lana et al., 2011). DMS has two well-known oxidation products formed from gas-phase reaction with OH
117 radicals: sulfuric acid (H₂SO₄, SA, formed via sulfur dioxide, SO₂) and methane sulfonic acid (CH₃SO₃H,
118 MSA), which can then initiate particle formation and subsequent particle growth [\(Barnes et al., 2006;](#)
119 [Mardyukov and Schreiner, 2018\).](#)

Commented [QLLJ10]: RC1>>C2

Deleted: ABOA

Commented [QLLJ11]: RC1 >> C3

120
121 Iodic acid (IA) was also found to significantly contribute to NPF in marine and polar environments (Sipilä et
122 al., 2016; Baccarini et al., 2020; He et al., 2021). Although the chemical production of iodic acid is not fully
123 resolved, IA results from the oxidation of reactive iodine (He et al., 2021) – in the form of I₂, HIO, or inter-
124 mediate I - itself sourcing from algae/phytoplankton emissions contained within the sea water/ice/snow and
125 exchanged into the atmosphere (Saiz-Lopez and Von Glasow, 2012). At the Antarctic Peninsula, the Weddell
126 Seaside – that undergoes consistent and recurrent phytoplankton bloom episodes every early spring - is a po-
127 tential reservoir for iodic acid emissions, especially due to slower ice retreat during the [austral](#) summer and
128 colder sea surface temperature than the Southern Ocean on the north and west-side of the [peninsula](#) [\(Atkinson](#)
129 [et al., 2012; Von Berg et al., 2020\).](#)

Commented [QLLJ12]: RC1>>C3

Commented [QLLJ13]: RC1>>C5b

130
131 This work aims at characterizing the gas-phase aerosol precursors naturally emitted from the marine/ice ecosys-
132 tem and from the Antarctic continent with comprehensive gas phase and aerosol measurements performed at
133 the Marambio research station, Antarctica. We present [our results characterizing](#) atmospheric NPF events ob-
134 served in the Antarctic Peninsula [\(in section 3.2\)](#). [There, we provide an extensive analysis of number size](#)
135 [distributions of atmospheric aerosols and naturally charged ions, from ~1 nm to 800 nm. We also report the](#)
136 [formation rates \(J\) and growth rates \(GR\) of the observed particle formation events. Our core analysis](#) [\(in](#)
137 [section 3.3\)](#) [describes gas-phase composition and NPF precursors by mass spectrometry measurements of the](#)
138 [concentration of SA, MSA and IA](#) [\(cf. section 3.3.1\)](#) [and by identifying the composition of ambient ions pre-](#)
139 [sent during NPF events](#) [\(cf. section 3.3.2\)](#). [Finally, in chapter 4, we](#) combine our results for the chemical
140 [composition of both gas- and aerosol-phases to discuss sources of precursor vapors producing secondary aer-](#)
141 [osol in the Antarctic Peninsula.](#)

Deleted: a characterization

Deleted: of

Deleted: W

Deleted: W

Commented [QLLJ14]: RC2 >> TC4

147
148 **2 Methods**

149
150 **2.1 Measurement site**

152 In-situ atmospheric gas- and particle-phase measurements were performed at the Argentinian Antarctic
153 Station Marambio ($64^{\circ}15'S$ - $56^{\circ}38'W$) located on the Seymour Island in the northeastern-most part of the
154 Antarctic Peninsula. Geographically (cf. Fig. 1), the island is on the north edge of the Weddell Sea. The station
155 is operated year-round, with extensive scientific and logistic activities during the austral summer. The cam-
156 paign instrumentation was located inside a laboratory container, specifically designed for continuous atmos-
157 pheric composition measurements, sufficiently away (approx. 800 m) from the station main buildings and
158 ideally placed fore-wind from the airstrip to avoid interfering contamination signals in our measurements.
159 Comprehensive measurements of atmospheric composition and meteorology have been carried out in this lo-
160 cation since 2013. A description of the Marambio station surroundings, the measurement container, and some
161 previous results can be found in earlier publications, e.g., Asmi et al. (2018).

Commented [QLLJ15]: RC1>> C3

Commented [QLLJ16]: RC2 >> SC2

Formatted: Line spacing: 1,5 lines, Keep with next

162
163 *Figure 1: Map of the Antarctic Peninsula, a), with zoom in the north sector, b), and in the Seymour Island with the Marambio station, in c). The measurement location is indicated by the red pin.*

Formatted: Line spacing: 1,5 lines

Deleted: ¶

Formatted: Indent: First line: 0 cm, Line spacing: 1,5 lines

Formatted: Line spacing: 1,5 lines

169 The austral summer campaign in 2018 for measuring the precursors contributing to NPF at the Ma-
170 rambio station was planned for the warm season, when the probability of NPF occurrence is high (Fiebig et
171 al., 2014; Kerminen et al., 2018). The aim was to characterize NPF events, formation, and growth parameters,
172 and resolve the aerosol chemical precursors from their source to their chemical pathways leading to nucleation.
173 We measured concentrations of size segregated aerosol particles (~ 1 – 800 nm diameter) from 19 January to
174 23 February and chemical information of possible gas-phase precursors from 30 January to 20 February, con-
175 tinuously (whenever possible).

176

177 2.3 Instrumentation

178

179 *Measurements of aerosols and their gas-phase precursors*

180

181 We deployed a large suite of instruments, briefly described below. Instrument principles and opera-
182 tions are given in detail in the *Supplementary Information*.

183

184 (1) The chemical composition and concentration of neutral molecules was measured by a nitrate-based Chem-
185 ical Ionization Atmospheric Pressure interface Time Of Flight (CI-APi-TOF, Tofwerk A.G.) mass spectrom-
186 eter (Jokinen et al., 2012). Its high-resolution analysis identifies and quantifies potential ambient gas-phase
187 aerosol precursors, such as SA, MSA, IA, or HOMs. In some instances, we used the APi-TOF to directly
188 measure atmospheric ions (i.e., naturally charged anions or cations), allowing only atmospheric ions to enter
189 the instruments (i.e., with no added chemical ionization) (cf. *Supplementary information*).

190

191 (2) A nano Condensation Nucleus Counter (nCNC) combining a Particle Size Magnifier (PSM, Airmodus
192 Ltd.) with a Condensation Particle Counter (CPC, Airmodus Ltd.) was employed to measure nano-particle
193 concentration in the diameter range from 1 nm to 3 nm. The instrumentation and data inversions are extensively
194 described in Vanhanen et al. (2011), Kangasluoma et al. (2016), Chan et al. (2020) and Lehtipalo et al. (2022)
195 (cf. *Supplementary information*).

196

197 (3) A Neutral cluster and Air Ion Spectrometer (NAIS, Airel Ltd., Mirme and Mirme, 2013) provided number
198 size distributions of neutral particles and naturally charged atmospheric clusters in the size range from 2 to 42
199 nm and from 0.8 to 42 nm, respectively. NAIS is well described in the literature and was operated according
200 to the instructions of Manninen et al., 2016. (cf. *Supplementary information*).

201

202 (4) Aerosol particle size distributions were measured with a Differential Mobility Particle Sizer (DMPS): a
203 Vienna-type Differential Mobility Analyzer (DMA) for particle size separation (Wiedensohler et al., 2012),
204 followed by a Condensation Particle Counter (CPC; TSI model 3772) for particle counting. The particle size
205 distribution was measured in 25 separate size bins at a 6-minute time resolution. This measurement has been

206 carried out continuously since the year 2013 but only data measured during the summer 2018 campaign are
207 presented here. (cf. *Supplementary information*).

208
209 The CI-APi-TOF, nCNC and NAIS were operated with individual (horizontal) inlet lines with a minimum
210 length (1 m, 0.8 m, and 0.9 m, respectively) to minimize losses of nanoparticles. The DMPS was operated in
211 the station's common inlet (PM10, Asmi et al., 2018) and equipped with an additional PM₁ cyclone to prevent
212 super micron particles from entering the setup.

213
214 ***Ancillary measurements***

215
216 Meteorological parameters were measured on the roof of the measurement container and recorded on
217 a data logger (QML201L, Vaisala Ltd.) since 2013. Measured parameters include temperature and relative
218 humidity (HMP155, Vaisala Ltd.), atmospheric pressure (PTB220, Vaisala Ltd.), wind speed and wind direc-
219 tion (ultrasonic anemometer: Thies 2D, Thies Clima), and radiation (pyranometer: CMP11, Kipp&Zonen).

220
221
222 ***Chemical composition of the aerosol phase***

223
224 Aerosol samples for chemical analysis were collected using a virtual impactor (VI, Loo and Cork,
225 1988), in which particles were divided to two size fractions (fine ($DP < 2.5 \mu\text{m}$) and coarse ($2.5 \mu\text{m} < DP <$
226 $10 \mu\text{m}$)). Flow rate of the VI was $16.7 \text{ L}\cdot\text{min}^{-1}$, of which $15 \text{ L}\cdot\text{min}^{-1}$ is used to collect the fine particles and the
227 remaining $1.7 \text{ L}\cdot\text{min}^{-1}$ is used for collection of the coarse particles. Particles were collected on 47-mm Teflon
228 filters. Sampling time was one week. Collected filters were stored on petri slides and kept in a freezer (-18
229 $^{\circ}\text{C}$) until analysis.

Deleted:)

Deleted:

230
231 The mass concentrations of sodium (Na⁺), ammonium (NH₄⁺), potassium (K⁺), magnesium (Mg²⁺), calcium
232 (Ca²⁺), chloride (Cl⁻), nitrate (NO₃⁻), sulphate (SO₄²⁻), methane sulfonic acid (MSA) and oxalate were deter-
233 mined from the filter substrates. Cation and anion analyses were done simultaneously with two ion chroma-
234 tography systems (Dionex ICS-2000). Filters were extracted in 10 mL of Milli-Q water with 10-min gentle
235 rotation just before chemical analysis. The uncertainty of the IC analysis was estimated according to the anal-
236 ysis of standards as 5 % to 10 %, depending on the ion analyzed. In this study chemical composition of the
237 fine particles is only presented.

238
239 **2.4 Characteristics of New Particle Formation events**

240
241 NPF events were identified based on the appearance of particles in the nucleation mode (3 - 25 nm)
242 showing signs of growth (e.g., particles reaching $> 10 \text{ nm}$). A classification method was originally proposed

245 by Dal Maso et al. (2005) based on DMPS data. In this study, we combined both DMPS and NAIS data to
246 extend our observations to smaller sizes (Dada et al., 2018).

247
248 Condensation sink (CS, s^{-1}), which is a measure of how rapid precursor vapor concentrations are lost to pre-
249 existing particles, was calculated using the particle number size distribution measured by the DMPS following
250 the method proposed by Kulmala et al. (2012).

251
252 Growth rates (GR) of particles between 3.8 nm to 12 nm were calculated using the 50 % appearance time
253 method (Lehtipalo et al., 2014; Dada et al., 2020). Formation rates ($J_{1.5}, J_3, J_5$, and J_{10}) were calculated using
254 the balance equation where the change in concentration of particles inside a size bin is equivalent to the
255 sources (J_{Dp}) minus the available sinks ($F_{Coag} + F_{Growth}$), as in Kulmala et al. (2012).

$$256 (1) J_{Dp} = \frac{dN_{Dp}}{dt} + CoagS_{Dp} \cdot N_{Dp} + \frac{GR}{\Delta_{Dp}} \cdot N_{Dp}$$

257 where Dp represents the lower diameter of the bin, N_{Dp} is the particle number concentration inside the size bin,
258 and GR is the growth rate of particles out of the bin. Δ_{Dp} is the difference between the upper and lower ends of
259 the size bin of interest.

260
261 The coagulation sink ($CoagS_{Dp}$) is a measure of how rapid freshly formed particles of diameter Dp are lost to
262 pre-existing particles [by collision or coalescence](#) and is calculated as follows:

$$263 (2) CoagS_{Dp} = \int K(Dp, Dp') n(Dp') dDp' \cong \sum_{Dp=Dp}^{Dp'=maxK} K(Dp, Dp') N_{Dp'}$$

264
265 where $K(Dp, Dp')$ is the coagulation coefficient of particle sizes Dp and Dp' , those inside the bin of J_{Dp} and
266 those of pre-existing particles, respectively. N_{Dp} is the number concentration of the pre-existing particles.

267
268 In this work, the formation rates of 1.5 nm particles ($J_{1.5}$) were calculated using nCNC data in the size range of
269 1.5 nm to 3 nm. Formation rates J_3, J_5 and J_{10} were calculated using NAIS data (total particle mode – using the
270 DMA of negative voltage) at the size ranges of 3 - 7 nm, 5 - 9 nm, and 10 - 14 nm, respectively. During events
271 when the GR could not be calculated (i.e., four events in total) – due to the absence of continuous growth
272 within the size ranges -, a median growth rate calculated of all the events occurring in the same month was
273 used to estimate the formation rate as described by Kulmala et al. (2022).

274
275 In addition, the charged particle formation rates ($J_{1.5}^+ and J_2^+$) were calculated using ion number concentra-
276 tion measured by NAIS in both polarities, whenever possible, to determine the contribution of ion induced
277 nucleation to the overall formation rate, according to the following equation:

Deleted:Page Break.....

Formatted: Normal, Left, Line spacing: 1,5 lines, Font Alignment: Auto

Formatted: Line spacing: 1,5 lines

Commented [QLLJ17]: RC2 >> SC3

Commented [QLLJ18]: RC1>>C6

283 (3)
$$J_{Dp}^{\pm} = \frac{dN_{Dp}^{\pm}}{dt} + CoagS_{Dp} \cdot N_{Dp}^{\pm} + \frac{GR}{\Delta Dp} \cdot N_{Dp}^{\pm} + \alpha \cdot N_{Dp}^{\pm} \cdot N_{<Dp}^{\pm} - \chi \cdot N_{Dp} \cdot N_{<Dp}^{\pm}$$

284

285 where N_{Dp}^{\pm} is the concentration of ion in a given size range with a lower limit of 1.5 or 2 nm (depending on the J associated size range) and the upper limit ΔDp being larger than that. The coefficient α is the ion-ion recombination coefficient and χ is the ion-aerosol attachment coefficient. α and χ were $1.6 \times 10^6 \text{ cm}^{-3} \cdot \text{cm}^{-1}$ and $0.01 \times 10^6 \text{ cm}^{-3} \cdot \text{s}^{-1}$, respectively (Kulmala et al., 2012).

286

287 **3 Results**

288

289 **3.1 Ambient conditions: Meteorological parameters**

290

291 Ambient meteorological conditions during the campaign are presented in Figure 2. Many sunny days are observed, occurring with above-zero degrees Celsius ambient temperatures, high radiation, and relative 292 humidity below 75 %. Even though the measurement site belongs to the Antarctic continent, its position - at 293 relatively high latitude ($64^{\circ}15'S$) - gives daily solar cycles with zero radiation during the short summer 294 nighttime periods (cf. Fig. 2b). During daytime, higher radiation enhances photo-active emissions from the 295 sea/land ecosystems and promotes atmospheric photochemistry. This is expected to lead to day-time appearance 296 of gas-phase molecules and/or molecular clusters of condensing vapors that can lead to new particle 297 formation and/or aerosol growth. Furthermore, since temperatures above freezing also lead to ice melting (es- 298 pecially in the Weddell Sea area), they are likely to enhance chemical fluxes between thinning ice, ocean, and 299 air (Notz, 2009). These clear sky, warm, sunny days during summertime are known to be optimal weather 300 conditions for NPF to occur in the mid-latitude regions (Dada et al., 2017) and in the Arctic (e.g., Beck et al., 301 2021) and Antarctic regions (Weller et al., 2015; Jokinen et al., 2018; Baccarini et al., 2020; Brean et al., 302 2021). Analysis of winds (cf. Fig. 2e) revealed that periods of the highest temperature are seen when wind is 303 blowing from north, bringing warmer air across from the Southern Ocean. Predominant winds were seen from 304 North-Northwest and South-Southwest sectors. The strongest winds were recorded from the South (180°), also 305 driving primarily cold air from the continental plateau, agreeing with Asmi et al. (2018).

296

297

298

299

300

301

302

303

304

305

306

307

308

309

Formatted: Font: (Default) Times New Roman

Formatted: Justified, Line spacing: 1,5 lines

Formatted: Font: (Default) Times New Roman

Deleted: .

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman

Deleted:

Formatted: Font: (Default) Times New Roman

Formatted: Line spacing: 1,5 lines

Deleted: 1

Deleted: 1

Commented [QLLJ19]: RC1>>C7
RC2 >>TC5

Deleted: er

Deleted: 1

316
 317 **Figure 2:** Time series of meteorological parameters: a) temperature (dark blue), dew point (light blue), b) global radiation (orange), c)
 318 relative humidity (light green), d) atmospheric pressure (blue green), e) wind direction (dark blue bars) and wind speed (medium blue
 319 line). The data are presented with a 10-min resolution and reference time set as local standard, UTC-3.

Deleted: ¶

Commented [QLLJ20]: RC2>> TC6

Deleted: 1

Deleted: (

Deleted: (

Deleted: (

Deleted: (

Deleted: (

327 **3.2 Observation & Characterization of NPF events**

328

329 A total of 13 NPF events (occurring on 12 days) were observed during the 35-day summer campaign.

330 Figure 3a shows the continuous size distribution series over the total measurement period from NAIS mea-
331 surement (size range: 1.8 – 42 nm) and Figure 3b combined the data from nCNC (size shown: 1.2 – 2.7 nm),
332 the NAIS (2.7 nm - 12 nm), and the DMPS (12 nm – 800 nm). Daily number size distribution plots are shown
333 for the 12 event days separately in [the Supplementary Information](#) (Fig. S3) as well as continuous size distri-
334 bution series for ion mode (Fig. S4).

Deleted: 2

Deleted: 2b

Deleted: s

Formatted: Font: Italic

335

336

337

338 **Figure 3.** a) Number size distribution from NAIS measurement from 1.8 nm to 42 nm over the whole measurement campaign and b) combined size distribution of aerosol particle from 1.2 nm to 800 nm for 3-7 February 2018. The last surface plot combines data from
339 nCNC (1.2 - 2.7 nm), NAIS (particle mode, 2.7 - 12 nm) and DMPS (12-800 nm), whenever the data were available and according to
340 DMPS data flag (only unpolluted data are shown from the DMPS measurements).

Deleted: 2

341

342 During each of the NPF events observed during the campaign, high population of sub-3 nm aerosol particles
343 were seen with concentration larger than 10^4 cm^{-3} . The particles were observed to grow to Aitken mode size
344 range (25 - 100 nm) but rarely reached the accumulation mode sizes (i.e., $> 100 \text{ nm}$) (cf. Fig. 3b). Strong NPF
345 events were identified before midday - local time - (66 % of events), lasting longer than events occurring later
346 in the afternoon. Afternoon events (33 % of the total events) never lasted longer than 2.5 hours. NPF events

Deleted: 2

Deleted: 1

354 did vary from day to day: On certain days, growth of the particles was interrupted by abrupt changes in wind
355 direction - resulting in an inability to retrieve a growth or a formation rate within reasonable uncertainty (e.g.,
356 28 January) -; on other days multiple NPF events were observed (e.g., 16 February); or NPF events appeared
357 to have a bumped shape - appearing sporadically - resembling those observed in the Arctic by Beck et al.
358 (2021) as the events observed on 28 January and 6 February.

Commented [QLLJ21]: RC2>>TC7

Deleted: ed

Commented [QLLJ22]: RC2>>TC8

359
360 Formation rates were calculated for particle sizes of 1.5, 2, 3, 5 and 10 nm particles, as summarized in Table
361 1. These formation rates were calculated for the smallest possible particles but also for bigger sizes to ease the
362 comparison with the literature. ↓

Commented [QLLJ23]: RC2 >> SC5

Deleted:Page Break.....

Formatted: Line spacing: 1,5 lines

363
364 Formation rates of 1.5 nm particles (i.e., $J_{1.5}$) were surprisingly high, reaching the maximum rates of 9.2, 10.0,
365 or even $19 \text{ cm}^{-3} \text{ s}^{-1}$, on Feb. 11th, 10th and 3rd, respectively. These significantly high values are comparable to
366 those calculated for highly vegetated rural location or even urban areas (e.g., Deng et al., 2020; Kontkanen et
367 al., 2016; Yu et al., 2014), which is surprising due to the remote nature of the environment at our measurement
368 site. For example, formation rates for 1.5 nm particle on the order of $0.030 - 0.013 \text{ cm}^{-3} \text{ s}^{-1}$ were estimated for
369 the Aboa research station on the other side of the Weddell Sea in East Antarctica (Jokinen et al. 2018). A recent
370 study observing nucleation phenomena at the peninsula close by our measurement location (Brean et al., 2021)
371 found a remarkably high $J_{1.7}$ value reaching up to $3.07 \text{ cm}^{-3} \text{ s}^{-1}$ but still lower than our observed values. Alt-
372 ough the formation rates at 1.5 nm are higher than those reported previously, the rates for larger particles
373 (i.e., J_3, J_5, J_{10}) are comparable with the previously reported studies. This discrepancy between formations rates
374 of 1.5 nm particles and of bigger particles could be attributed to favorable nucleation conditions (i.e., sufficient
375 nucleating vapors) but a lack of condensable vapors contributing to particle growth which, in all, reduces the
376 probability of particle survival. ↓

Commented [QLLJ24]: RC1>>C2

Deleted: ABOA

Deleted:

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Deleted: owing to the low survival probability of the particles...

Commented [QLLJ25]: RC2 >> SC6

Deleted: This could be attributed to sufficient precursor vapors favoring nucleation, while insufficient ones required for fast growth to larger sizes.

377
378 The nucleation rates for 3 nm particles in our study ranged from $0.13 \text{ cm}^{-3} \text{ s}^{-1}$ to $3 \text{ cm}^{-3} \text{ s}^{-1}$, which were, on
379 average, also significantly higher than $0.03 \text{ cm}^{-3} \text{ s}^{-1} < J_3 < 0.14 \text{ cm}^{-3} \text{ s}^{-1}$ reported from Jokinen et al. (2018)
380 study or from Kecorius et al. (2019) who showed J_3 values from $0.080 \text{ cm}^{-3} \text{ s}^{-1}$ to $0.319 \text{ cm}^{-3} \text{ s}^{-1}$ during a polar
381 cruise in the Arctic. On the other hand, our observation agrees with the J_{10} reported by Kyrö et al. (2013)
382 ranging from 0.003 to $0.3 \text{ cm}^{-3} \text{ s}^{-1}$, with $0.006 \text{ cm}^{-3} \text{ s}^{-1} < J_{10} < 0.37 \text{ cm}^{-3} \text{ s}^{-1}$ in our case.

383
384 Additionally, to account for ion induced nucleation, we calculated the formation rates for charged ions of 1.5
385 nm ($J^{+/-}_{1.5}$) separately using the ion concentrations measured with the (N)AIS in ion mode. The formation rates
386 for positive 1.5 ions, $J^{+}_{1.5}$, ranged from 3.6×10^{-4} to $8.3 \times 10^{-2} \text{ cm}^{-3} \text{ s}^{-1}$ and $J^{-}_{1.5}$ was from 2.2×10^{-3} to $5.4 \times 10^{-2} \text{ cm}^{-3} \text{ s}^{-1}$. Our results are significantly lower than the maximum $J_{1.5}$ of $0.33 \text{ cm}^{-3} \text{ s}^{-1}$ reported in Beck et al.
387 (2021) or from Kyrö et al. (2013) who showed $0.02 \text{ cm}^{-3} \text{ s}^{-1} < J_{1.6} < 4.2 \text{ cm}^{-3} \text{ s}^{-1}$ - in two coastal Antarctic sites,
388 but in the range reported from the Arctic ocean by Kecorius et al. (2019, e.g., $0.026 \text{ cm}^{-3} \text{ s}^{-1} < J_{1.6} < 0.060 \text{ cm}^{-3} \text{ s}^{-1}$). In comparison to 1.5 nm-neutral particle formation rates, the ion formation rates do not represent a major

400 contribution (ratio $J_{neutral}/J_{ion} \sim 10^3$), implying that the relatively high neutral nucleation rates are not primarily
401 due to ion-mediated nucleation.

402
403 Particle growth rates were calculated for 3.8 nm to 12 nm diameter size or alternatively up to 11 nm and 8 nm
404 for event #1 and event #13, respectively, whenever the shape of the number size distribution was continuously
405 increasing. Averages for each event are also presented in Table 1. Similarly to formation rates of the smallest
406 particles, the growth rates were remarkably higher ($1.2 \text{ nm h}^{-1} < GR < 10.9 \text{ nm h}^{-1}$) than previously reported
407 for other Antarctic sites. In comparison, Weller et al. (2015) reported growth rates from 3 to 25 nm particles
408 ranging from 0.06 to 0.9 nm h^{-1} at Neumayer III station, Jokinen et al. (2018) showed $0.26 \text{ nm h}^{-1} < GR < 1.30$
409 nm h^{-1} at ~~Aboa~~ and Brean et al. (2021) published growth rates for 4.5 - 10 nm particles of 0.41 nm h^{-1} to 0.58
410 nm h^{-1} measured at the Peninsula. Additionally, Kerminen et al. (2018) reviewed aerosol characterization from
411 many different field studies and indicated an upper growth rate estimation of 5.5 nm h^{-1} (as 95th percentile) in
412 Antarctic sites versus 4.1 nm h^{-1} in Arctic environments. Recent Arctic studies by Kecorius et al. (2019)
413 reported $0.62 \text{ nm h}^{-1} < GR_{(3-7 \text{ nm})} < 4.25 \text{ nm h}^{-1}$ while Collins et al. (2017) reported averaged growth rates of
414 $4.3 \pm 4.1 \text{ nm h}^{-1}$.
415

Commented [QLLJ26]: RC2>>TC9

Commented [QLLJ27]: RC1>>C2

Deleted: ABOA

417 **Table 1:** Summary of NPF event classification, formation and growth parameters calculated during the Marambio austral summer campaign. The pollution flag is determined based on DMF
 418 according to NILU/EBAS format classification at the start time of the event (when data available, 000: clean data, 189: data coming from a possibly polluted sector (e.g., station main building
 419 599: suspected pollution from unknown source). All formation rates are averaged between the start and end of the characterized events.

420

421

#	Date (dd/mm)	Start Time (SLT*, hh.mm)	Duration (hh.mm)	Flag (DMPS)	Formation Rates ($J_{size} \text{ cm.s}^{-1}$)					Condensation Sink (s^{-1})	Growth Rates (cm.s$^{-1}$)
					$J_{1.5}$ ($J_{1.5}^-/J_{1.5}^+$)	(J_2^-/J_2^+)	J_3	J_5	J_{10}		
1	19/01	14.35	0.55	189	-	-	-	-	-	-	$9.7 \pm 3.2 \text{ (G)}$
2	24/01	18.30	2.26	-	- (1.3e ⁻² / 1.2e ⁻²)	(1.2e ⁻² / 1.9e ⁻²)	6.0e ⁻¹	3.3e ⁻²	6.1e ⁻³	-	2.4 ± 0.1
3	25/01	14.00	2.25	000	- (1.2e ⁻² / 9.8e ⁻³)	(4.9e ⁻¹ / 6.9e ⁻¹)	1.2	4.7e ⁻¹	3.7e ⁻¹	7.5e ⁻⁴	10.9 ± 2
4	27/01	18.50	2.06	189	4.3 (3.6e ⁻⁴ / 3.6e ⁻³)	(6.5e ⁻³ / 2.0e ⁻²)	6.9e ⁻¹	7.2e ⁻¹	1.8e ⁻¹	3.8e ⁻⁴	-
5	28/01	9.13	7.25	000	3.6 (8.5e ⁻³ / 6.7e ⁻³)	(1.9e ⁻² / 3.4e ⁻²)	1.6e ⁻¹	4.8e ⁻²	1.2e ⁻²	2.2e ⁻⁴	-
6	03/02	8.13	7.04	~000	19.0 (3.4e ⁻² / 2.5e ⁻²)	(2.9/4.0)	3.0	5.5e ⁻¹	2.9e ⁻¹	1.1e ⁻³	2.4 ± 0.1
7	05/02	8.35	6.36	000	1.5 (7.2e ⁻³ / 5.2e ⁻³)	(3.9e ⁻³ / 4.3e ⁻³)	1.8e ⁻¹	1.3e ⁻¹	6.8e ⁻²	1.3e ⁻³	1.6 ± 0.1
8	06/02	9.35	4.25	000	1.1 (8.3e ⁻² / 5.4e ⁻²)	(2.7/1.7)	1.3e ⁻¹	9.0e ⁻³	1.2e ⁻²	4.8e ⁻⁴	2.4 ± 1.1
9	10/02	11.16	3.52	~000	10.0 (4.2e ⁻³ / 2.2e ⁻³)	(1.8e ⁻¹ / 2.1e ⁻¹)	8.3e ⁻¹	3.6e ⁻¹	3.6e ⁻²	3.7e ⁻⁴	-
10	11/02	10.27	6.16	000	9.2 (-/-)	(1.3 / 8.9e ⁻¹)	9.2e ⁻¹	3.5e ⁻¹	2.1e ⁻¹	4.0e ⁻⁴	-
11	12/02	10.40	5.40	189	- (8.1e ⁻³ / 1.9e ⁻²)	(4.1e ⁻¹ / 5.9e ⁻¹)	2.1	2.7	1.8e ⁻¹	2.2e ⁻³	1.2 ± 0.1
12	16/02	11.18	6.03	599	3.7 (5.9e ⁻² / 3.2e ⁻²)	(7.2e ⁻² / 4.3e ⁻²)	5.9e ⁻¹	4.0e ⁻¹	1.2e ⁻¹	2.4e ⁻⁵	3.6 ± 0.1
13					-	-	-	-	-	-	2.2 ± 2.9 (G)

* Standard local time, UTC -3

** Growth rates were calculated ideally from 3.8 nm to 12 nm. If the growth on that range cannot be determined in that range, the specific range is indicated in subscript as Gr_{x-x} .

423 **3.3 Chemical composition of the gas-phase precursor molecules**

424 **3.3.1 Gas-phase contribution to NPF**

Formatted: Header distance from edge: 1,25 cm, Footer distance from edge: 1,25 cm

425
426 Measurements utilizing nitrate based chemical ionization mass spectrometry (CI-APi-TOF) detected
427 gas-phase molecules and molecular clusters that have affinity for proton transfer with nitrate reagent ion. These
428 included SA, MSA, and IA, detected as HSO_4^- and $\text{HNO}_3\text{HSO}_4^-$ (m/z 96.9601 Th and 159.9557 Th), CH_3SO_3^-
429 and $\text{HNO}_3\text{CH}_3\text{SO}_3^-$ (m/z 94.9808 Th and 157.9765 Th), IO_3^- and $\text{HNO}_3\text{IO}_3^-$ (m/z 174.8898 Th and 237.8854
430 Th), respectively. Concentrations were calculated from high resolution peak fitting and reported below. The
431 time series of those compounds during the whole campaign, according to the data availability of the CI operation,
432 are shown in Figure 4.

Deleted: 3

433
434 The measured gas-phase concentrations of the species of interest showed maxima of $\sim 2.6 \times 10^7$ molecules cm^{-3} ,
435 $\sim 2.3 \times 10^7$ molecules cm^{-3} and $\sim 3.6 \times 10^6$ molecules cm^{-3} for the total SA, MSA, and IA concentrations,
436 respectively. The three gas-phase compounds seemed to evolve with roughly similar behavior, likely due to
437 favorable weather conditions promoting atmospheric chemical reactions and especially by enhancing photo-
438 chemical oxidation reactions within a stable boundary layer. A significant and simultaneous increase in SA,
439 MSA, IA concentrations was observed during peaking radiation time ~~close to noon-time – coinciding with~~
440 ~~local zenith time, i.e., solar noon that is slightly later than midday~~, and prior to many NPF events, though to
441 a smaller extent for IA. This clearly demonstrates the diurnal nature of the emission of those species, and their
442 transport – especially for SA and IA – as shown in Figure 5. Additionally, it is worth mentioning that even
443 though the MSA concentrations were on average higher than those of SA, event days correlated strongly with
444 peaking SA concentration (then becoming higher than MSA concentration) while IA – whose concentration
445 remained unchanged independently of NPF occurrence – was significantly lower than SA or MSA concentra-
446 tions.

Deleted: at

Commented [QLLJ28]: RC1 >> C9

Deleted: 4

451
452 **Figure 4:** High resolution time series of H_2SO_4 (SA, red), CH_4SO_3 (MSA, orange), HIO_3 (IA, green). Numbers specified on the top of
453 the figure refer to the event number as introduced in the NPF analysis (Cf. Table 1). The data are averaged to 10 min with local time
454 (UTC -3). Note that the missing points are due to switch of the measurement mode and / or data availability.

Deleted: 3

455
456
457 **Figure 5:** Statistical diurnal time series of H_2SO_4 (SA, red), CH_4SO_3 (MSA, orange), HIO_3 (IA, green) observed during non-event days
458 a) and event days b). The solid lines represent the median hourly average concentrations, the dotted lines are the concentration means
459 and the colored shaded areas show data points within the 25th and the 75th percentiles. Nighttime is represented by the gray-shaded area
460 with median theoretical sunsets and sunrises occurring during the campaign. The actual sunset and sunrise values could vary approx.
461 +/-. 1.25 hours from the beginning to the end of the campaign.

Deleted: 4

Deleted: (

Deleted: (

462
463 Figure 5 shows the diurnal variations of SA, MSA and IA for event b) and non-event days a), separately. In
464 both figures, we could see a clear rise in concentrations of SA, MSA and IA throughout the day, with maxima
465 observed at midday. While both MSA and SA concentrations are on average increasing after sunrise, IA con-
466 centration started to increase already during nighttime, shortly after 01:00 SLT, suggesting that strong photo-
467 chemistry conditions (i.e., direct solar radiation) might not be necessary to produce the observed IA agreeing

Deleted: 4

Deleted: (

Deleted: (

Commented [QLLJ29]: RC2>>TC10

476 with He et al. (2021). Earlier studies have shown that IA ~~is~~ even anticorrelated with (still omnipresent) solar
477 radiation in more continental Antarctica (Jokinen et al., 2018). It is likely that even very low levels of solar
478 radiation would be sufficient to saturate the iodic acid production (Beck et al., 2021). Distinctively, a clear
479 difference in the statistical series can be seen between event and non-event days, with more than doubled SA
480 concentrations ~~at zenith-time (factor of 2.25)~~. MSA concentrations are only slightly higher in the morning and
481 afternoon – with an apparent drop occurring from 14:00 to 16:00 – although the starting concentrations ~~at~~
482 sunrise and sunset are also smaller, depicting strong concentration variability as compared to non-event days.
483 On the other hand, IA is on average lower during event-days – e.g., from $\sim 4.5 \times 10^5$ molecules cm^{-3} vs $\sim 3 \times$
484 10^5 molecules cm^{-3} , with a factor of 1.5 smaller at zenith-time. This last observation indicates that IA is likely
485 not a key contributor to particle formation, while the duo SA-MSA could influence the aerosol phase as already
486 suggested by Beck et al. (2021), Hodshire et al. (2019) and Willis et al. (2016).

Commented [QLLJ30]: RC2>>TC11

Commented [QLLJ31]: RC2>>TC12

Commented [QLLJ32]: RC2>>TC13

Deleted: .

Deleted: .

3.3.2 Molecular characterization of aerosol / ion precursors: Study case ~~on~~ Feb 16th

Commented [QLLJ33]: RC2>>TC14

Deleted: f

Deleted: 5

Deleted: (

Deleted: (

Deleted: (

Deleted: (

Deleted: (

505
506 **Figure 4:** Overview of Aerosol formation event on February 16th, 2018. a) Number size distribution from NAIS measurements (Particle
507 mode). b) Concentrations of particles modes (cluster: sub- 3 nm – medium light blue, nucleation: 3 – 25 nm – light blue, Aitken: 25 –
508 100 nm – medium dark blue, accumulation: 100 – 1000 nm – dark blue). Note that the missing points for Aitken and Accumulation
509 mode are due to data filtering from suspected pollution from the DMPS data set. c) Formation rate estimation for $J_{1.5}$ (neutral – light
510 blue, (-) – blue green, (+) – green), J_2 ((-) – orange, (+) – yellow), J_3 (medium light blue), J_5 (medium dark blue) and J_{10} (dark blue).
511 Note that the formation rate calculation depends on the condensation/coagulation sinks calculated from the DMPS data. d) High reso-
512 lution time series of H_2SO_4 (red), CH_4SO_3 (orange), HIO_3 (green). Note that the data gap is due to ion mode of API-measurement. All
513 data are averaged / estimated with a 10 min time resolution, with standard local time (UTC -3) as clock reference.

514 A clear NPF episode occurred from about 11:15 in the morning until sunset with a net increase of cluster and
515 nucleation mode particle concentrations. Close to noontime all trace gases of interest were significantly

523 increasing (Fig. 6d). MSA increased by almost a factor of 10 by 13:00 ($[\text{MSA}]_{t=13.00} = 1.3 \times 10^6 \text{ molecules cm}^{-3}$) and by more than 2 orders of magnitude at 16:00 ($[\text{MSA}]_{t=17.30} = 9.6 \times 10^6 \text{ molecules cm}^{-3}$) as compared by
524 the minimum baseline of $\sim 2 \times 10^5 \text{ molecules cm}^{-3}$ for both MSA and SA. SA maximum concentration was
525 $6.5 \times 10^6 \text{ molecules cm}^{-3}$, also observed at 13:00.

Deleted: 5d

526 IA concentrations were fluctuating throughout the day with maximum concentrations of $\sim 2.05 \times 10^5 \text{ molecules cm}^{-3}$ and $\sim 2.35 \times 10^5 \text{ molecules cm}^{-3}$, respectively around 05:30 – 06:30 and shortly after 13:00. The net
527 increase of all these gas-phase species occurred quasi-simultaneously as the increase of formation rate of the
528 smallest particles and ions (Fig. 6c), occurring around noon. Interestingly, several sudden, short-lasting in-
529 creases for all SA, MSA, and IA concentrations were seen even before 13:00, matching bumps in nucleation
530 mode particles around 09:00 and 11:00 and one to two orders of magnitudes increase of cluster mode particles
531 at 11:00. The high concentrations of SA, MSA (and possibly IA) likely trigger the observed aerosol processes
532 (i.e., nucleation and/or growth of particles).

Deleted: 5

533 We investigated the mass spectrum further and show a complementary mass spectrum in Figure S2. Any highly
534 oxygenated organic molecules, HOMs (Bianchi et al., 2019; Ehn et al., 2014) could be reliably resolved from
535 the mass spectra analysis. We estimate that the total oxidized organic contribution, possibly condensable
536 HOM, did not exceed $5.5 \times 10^6 \text{ molecules cm}^{-3}$, between 16:30 and 17:30; assuming mass spectral peaks found
537 above 200 Th with positive mass defect could be HOMs (*cf. Supplementary*). However, the actual HOM con-
538 tribution is likely to be only a fraction of this estimation. Therefore, it is unlikely that HOM significantly
539 contributed to nucleation or growth of newly formed particles.

540 Specifically for this event, we complemented the CI-APi-TOF measurement with negative APi-TOF ambient
541 measurement mode, from 14:52 to 15:53, as reported in Table S1. By showing the divergence of the exact
542 molecular mass of a detected ion in high resolution from its integer mass (i.e., defined as mass defect), a mass
543 defect plot illustrates the mass defect of selected ions (in y-axis) over a studied mass range (in x-axis). Com-
544 pared to a typical mass spectrum this has the advantage to show the most significant ion population at once,
545 rather independently of signal intensity which is then scaled by the marker size, easing the identification of
546 e.g., clustering mechanisms as further discussed. There, each point of the mass defect plot corresponds to a
547 unique atomic composition. An example of such representation is shown in Figure 6, for the study case of 16
548 February

Formatted: Font: 11 pt, Not Italic

Commented [QLLJ34]: RC2 >> SC7

Deleted: A mass defect (i.e., divergence of ion exact mass to charge from the unit resolution to the mass to charge ratio of this same ion – determined by the sum of atomic masses of individual atoms contained in the charged molecular cluster) plot from the measurement is depicted in Figure 6. ¶

555
556 **Figure 7:** Mass defect plot for (-) API-TOF measurements, on 16 February from 14.52 to 15.52. The figure type represents the deviation
557 of high resolution fitted peaks **exact mass** normalized to the unit mass detected for each peak y-axis - e.g. $\text{Br}_{\text{exact mass}} = 78.9189$, Br_{unit}
558 mass = 79, $\text{Br}_{\text{mass defect}} = -0.0811$ – while the x-axis represents the mass range (m/z). Data average is 1 hour for each spectrum to improve
559 the **signal to noise** ratio and the peak shape statistics.

560 The API-TOF ion mode showed TIC maximum values around 50 ions s^{-1} , detecting only ions that are naturally
561 charged. The highest signals (i.e., intensity shown by marker sizes, cf. Fig. 7) are bisulfate and its multimers
562 $(\text{H}_2\text{SO}_4)_{0.4}\text{HSO}_4^-$, respectively at m/z = 96.9601, m/z = 194.9275, m/z = 292.8949 and m/z = 390.8622. Along
563 with SA multimers, successive addition of sulfuric acid and ammonia NH_3 formed clusters represented with
564 the light-blue dots, within the mass range 400 – 1250 Th. These sulfuric acid (bisulfate) - ammonia clusters
565 were found with up to 10 additions of H_2SO_4 and 9 NH_3 on top of the HSO_4^- core ion. In line with previous field
566 observations (e.g., Schobesberger et al., 2015; Bianchi et al., 2016; Jokinen et al., 2018; Yan et al., 2018; Beck
567 et al., 2021; Sipilä et al., 2021) and laboratory studies (e.g., Kirkby et al., 2011; Schobesberger et al., 2015)
568 showed that ammonia is detected only in clusters with 3 or more H_2SO_4 molecules around the HSO_4^- core.

569
570 The numerous clusters containing both sulfuric acid and ammonia, as well as the high intensity of the respec-
571 tive cluster signal (depicted by the marker size in Figure 6) suggest a high concentration of such ion group in
572 the gas-phase which also could indicate an ion induced nucleation driven by the ternary system SA-ammonia-(
573 water). Similar to observations made by Jokinen et al. (2018) in East Antarctica as well as measured in multiple
574 other locations around the globe (e.g., Bianchi et al., 2016; Yan et al., 2018; Beck et al., 2021; Sipilä et al.,
575 2021).

Deleted: 6

Deleted: (a)

Commented [QLLJ35]: RC2 >> SC7

Commented [QLLJ36]: RC2 >> TC15

Deleted: noise to signal

Deleted: 6

Deleted: The observed presence of ammonia with sulfuric acid in the measured gas-phase ions with relatively high intensity, suggests that the

Deleted: was

Commented [QLLJ37]: RC2 >> SC8

590 Additional clusters containing SA and dimethyl amine ((CH₃)₂NH, DMA), principally as
591 (H₂SO₄)₂.(CH₃)₂NH.HSO₄⁻ (m/z = 337.9527) and as (H₂SO₄)₃.(CH₃)₂NH.HSO₄⁻ (m/z = 435.9210) but also one
592 larger cluster, (H₂SO₄)₇.(CH₃)₂NH.HSO₄⁻ (m/z = 827.7893) was identified. Similarly to the finding of Brean et
593 al. (2021) who detected various SA-amine clusters around the peninsula, SA-DMA-H₂O driven nucleation
594 could also occur leading to formation ~~rate~~ significantly higher than those observed in the SA-NH₃-H₂O system
595 (Kürten et al., 2014; Almeida et al., 2013). In fact, as shown in laboratory studies, (negative) ion composition
596 from API-TOF analysis likely matches the cluster composition of the neutral clusters in NPF (Schobesberger
597 et al., 2013). The appearance of DMA in the SA dimer and trimer suggests sufficient DMA to trigger nucleation;
598 while the NH₃ in larger clusters is consistent with much higher NH₃ gas concentrations that then dominate
599 nano-particle growth. This highlights that DMA is 1000 times more effective than NH₃ for nucleation; so that
600 sub-ppt DMA and 100 – 1000 ppt levels (and above) of NH₃ could explain the ion cluster distribution observed
601 in Figure 7.

Commented [QLLJ38]: RC2>> TC16

Deleted: 6

602 Individual MSA-related ions can be identified (cf. Fig. 7, orange dots) at m/z = 94.9808 and m/z = 192.9482,
603 respectively. Several studies have shown ~~the~~ possible role of MSA in aerosol processes, including nucleation
604 (Hodshire et al., 2019) - especially with involvement on SA-DMA clusters (Bork et al., 2014). However, in
605 our case, MSA was only found as CH₃SO₃⁻ and as CH₃SO₃H.HSO₄⁻. MSA was not observed in larger clusters
606 solely composed of SA, NH₃ and DMA and therefore likely does not contribute to the nucleation observed on
607 that day (at least not through to negative ion pathway).

Commented [QLLJ39]: RC2 >> SC9

Commented [QLLJ40]: RC2>>TC17

608 Finally, we identified the presence of halogen compounds, (cf. Fig. 7, yellow and green dots), such as Br⁻ (m/z
609 = 78.9189), I⁻ (m/z = 126.9050), IO₃⁻ (m/z = 174.8898), HIO₃NO₃⁻ (m/z = 237.8854), HIO₃HSO₄⁻ (m/z =
610 272.8571). The presence of halogenated species as natural ions could also indicate that these compounds
611 contribute to aerosol processes. ~~However, these ions were only identified as small halogen clusters of low molec-~~
612 ~~ular weight and with only low signal intensity. Considering previous observations in the arctic and coastal~~
613 ~~environment (Sipilä et al., 2016) only shows iodine-related nucleation as successive addition of multiple iodic~~
614 ~~acid and water group, it is unlikely that IA promotes nucleation either through neutral or ion-induced mech-~~
615 ~~anism at this Antarctic site.~~

Commented [QLLJ41]: RC2 >> SC10

Deleted: represented by

Commented [QLLJ42]: RC2 >> SC11

616 Deleted: because only small halogen clusters (e.g., with ni-
617 trate or sulfuric acid) were found at low mass range and in
618 relatively small abundance added to the fact that no further
619 clustering was seen as IA/water addition as observed in the
620 Arctic and coastal environments by Sipilä et al. (2016), it is
621 unlikely that IA significantly promoted nucleation either
622 through neutral or ion-induced mechanism at this site.¶

630

3.3.3 Chemical composition of the aerosol phase

631

Figure 8: Chemical composition of water-soluble ions from weekly fine aerosol samples (PM2.5).

Asmi et al. (2018) reported aerosol chemical composition from weekly filter analysis containing marine-originated sea salt aerosols and the presence of ammonium, sulfate, nitrate and mesylate (CH_3SO_3^-). Here, we performed the identical analysis, which agrees with the previously reported results.

636

Until February 16th, the fine aerosol composition remains rather constant with high amounts of non-sea salt sulphate (nss-sulphate, i.e., sulphate - $0.246 \times$ sodium - in mass concentration, Brewer (1975)) which is partly neutralized by ammonia and a significant contribution from secondary marine MSA. The presence of Na^+ , Cl^- and Ca^{2+} ions also indicates contribution from primary marine sea salt and continental soil minerals. Aerosol composition and mass concentrations are very similar to those found in Asmi et al. (2018) for Marambio summer aerosol. The highest concentrations of ions are measured during the active nucleation period in the beginning of February. By the end of the month, the concentrations of MSA, ammonium and calcium ions decrease. No indications of anthropogenic contamination is found in the samples.

645

The bulk aerosol chemical composition (Fig. 8) reflects rather well the observed cycle of the secondary particle formation and provides further evidence of the important role of sulphate/sulfuric acid, methane sulfonate, and ammonia in the production and especially in the growth of Antarctic secondary aerosol. The qualitative agreement of gas-phase and particle-phase compositions indicates that it is likely possible that these compounds originate from similar marine/coastal sources.

651

652

3.3.4 Source of gas-phase precursors

653

661 Backward trajectories from sampled air masses (Fig. 9) were analyzed and seen to originate mostly
662 from the West sector passing through the Southern Ocean before surrounding the Peninsula from its Northwest
663 side - coinciding with the observed wind directions. The observed trajectories could explain the low concen-
664 tration of IA, whose variability was independent of NPF occurrence due to (1) the absence of travel over the
665 Weddell littoral seaside ~~prior to~~ the NPF or (2) because the algae bloom on the melting sea ice – possibly
666 responsible for an increase reactive iodine of organic origin- has already occurred earlier in the season. On the
667 other hand, the air is clearly enriched in MSA and SA when passing over the ocean that has the highest DMS
668 concentration over the Dec-Feb months (Lana et al., 2011). In some instances, air mass trajectories ~~are~~ seen to
669 turn over the north of the peninsula, which can indicate a ~~possible~~ enrichment of gas produced by the fauna on
670 the land or at the shore (e.g., local source of ammonia and amines from ~~penguin~~ colony established at approx.
671 8 km South of the sampling site during summertime). With a majority of trajectories originating from the
672 Bellingshausen sea, NH₃ and various type of amines likely originate from the (melting) ocean as discussed
673 in Dall'Osto et al. (2017).

Deleted: 8

Deleted: proceeding

Deleted: were

Deleted: n

Commented [QLLJ45]: RC1>>C11

Deleted: i

Formatted: Subscript

Commented [QLLJ46]: RC3 > C1,2,3

Deleted:

Formatted: Line spacing: 1,5 lines

Deleted:

Formatted: Indent: First line: 0 cm, Line spacing: 1,5 lines

Deleted: 8

Commented [QLLJ47]: RC2>>TC18

Commented [QLLJ48]: RC2>>TC18

674 ↓
675 Figure 9c also shows altitudes of the air mass trajectories. While (Kerminen et al., 2018) reviewed that Ant-
676 arctic NPF would easily take place within the free troposphere, both the number size distribution and the
677 indicated altitude flight path point toward nucleation processes occurring at the surface layer considering the
678 lifetime (λ) of key gas-phase precursors (e.g., $\lambda_{SA} < 0.5$ h, Fiedler et al. (2005)). Similar back trajectories were
679 calculated for non-event days, separately for days with high SA concentration ~~is~~ (i.e., $[SA] > 2 \times 10^6$ molecules
680 cm^{-3}) and for days with lower SA (Fig. S5a-c and Fig. 5a'-c', respectively). The result of the analysis as well
681 as the model characteristics are shown in ~~the~~ *Supplementary Information*.

Figure 2: Backward trajectories for recorder NPF events **a**) (numbering according to classification Table 1), **b**) shows a zoom-in over the Antarctic Peninsula and **c**) shows the trajectory altitudes colored by formation rates J_3 values. In panel **a**) and **b**) the black and grey lines delimit the sea ice extent as average for January and February 2018, respectively. Sea ice data are from: [ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/south/monthly/](http://sidads.colorado.edu/DATASETS/NOAA/G02135/south/monthly/) (Fetterer et al., 2017).

Local wind analysis (Fig. S6) was performed to determine possible local emission sources. In essence, no prevalent wind direction was found specifically for NPF days. However, in some instances, moderate to strong winds were seen to originate from the South/South-West sector where strong emission from the fauna is likely to occur by the shore at this season. Those days, 25 January (event # 3), 10 February (event # 9), and 11 Feb (event # 10), were among the highest growth ($GR_{3.8-12} = 10 \text{ nm h}^{-1}$) and the highest formation rates ($J_{1.5} = 10 \text{ cm}^{-3} \text{ s}^{-1}$ and $J_{1.5} = 9.2 \text{ cm}^{-3} \text{ s}^{-1}$), respectively, which agree with our hypothesis attributing high emissions of e.g., ammonia / amines to the bird colony. On the other hand, Event #12 has a different trajectory and prevalent wind direction against the South sector. Given the fact that the anion mass defect (Fig.7) suggests significant presence of ammonia and possibly DMA on this event, specifically, nitrogen-containing base compounds origin can be explained by bio-mechanism from the zoo/phytoplankton in the Antarctic ocean.

Formatted: Line spacing: 1,5 lines

Deleted:

Deleted: 8

Deleted: (

Deleted: (

Deleted: (

Deleted: (

Deleted: (

Commented [OL-LJ49]: BC3 >> C1 ? 3

Commented [OLLJ50]:

Deleted: . ¶

714 **4 Discussion**

715
716 We observed the presence of many chemical constituents with significant measurable concentrations
717 especially during aerosol formation events:

718
719 (1) IA daily maximum concentrations showed low variability, independent of NPF occurrence. Its
720 concentration - only rarely over 10^6 molecules cm^{-3} - was unlikely sufficient to initiate NPF alone
721 as compared with previously reported concentrations of 10^8 molecules cm^{-3} and ($>$) 8×10^6 mol-
722 ecules cm^{-3} for Arctic and coastal studies (Sipilä et al., 2016; Baccarini et al., 2020; Beck et al.,
723 2021). Iodine emissions have been connected to sea-ice conditions and photolabile iodine com-
724 pounds that are rapidly oxidized (Saiz-Lopez et al., 2015; He et al., 2021). The colder Weddell
725 Sea provides high potential for the emission of iodine and thus iodic acid in the atmosphere. How-
726 ever, the temporality is a key factor governing such emissions. In fact, many studies have shown
727 that IA concentration in polar-marine environment are usually peaking in early spring - already
728 before the sea ice melt onset - (Saiz-Lopez et al., 2007) and during the refreezing transition period
729 (Baccarini et al., 2020), strongly linking Iodic acid emission with the sea ice state. This alterna-
730 tively implies that our measurement period was then not optimum to catch iodine-related vapors
731 maxima since the neighboring sea ice – key surface emission medium - was already melted around
732 the Seymour Island. We do not exclude the possibility that IA would contribute to NPF in other
733 seasons, but our data set show that during the summer period, from mid-January until the end of
734 February, IA is likely not substantial.

735
736 The high concentrations of SA suggest that SA plays a key role in nucleation similarly to earlier
737 observations from Antarctica (Jokinen et al., 2018) and from the Arctic (Beck et al., 2021). The
738 significantly higher nucleation rates, with similar concentrations of SA, contrast with those studies
739 that concluded that sulfuric acid – ammonia ion induced nucleation was the primary pathway to
740 new particle formation. The reported new particle formation rates were systematically below 1
741 $\text{cm}^{-3} \text{ s}^{-1}$, typically ca. 2 orders of magnitude lower than observed in our study despite comparable
742 air temperatures.

743
744 Taking the case study of 16 February as an example, we found sulfuric acid – ammonia complexes
745 with high abundance from the analysis of natural ion chemical composition (Fig. 7). That would
746 indicate that at least negative ion-induced nucleation pathways proceeds with sequential addition
747 of SA and NH_3 . However, the total nucleation rate was $3.6 \text{ cm}^{-3} \text{ s}^{-1}$ on this day, much larger than
748 the negative ion induced nucleation rate of $0.06 \text{ cm}^{-3} \text{ s}^{-1}$. This would lead to the conclusion that a
749 neutral nucleation mechanism could dominate the process in our case.

Formatted: Line spacing: 1,5 lines

Deleted: ,
Deleted: ,

Commented [QLLJ51]: RC2>>TC20

Commented [QLLJ52]: RC2>>TC21

Deleted: study case

Deleted: 6

Commented [QLLJ53]: RC2>>TC22

Commented [QLLJ54]: RC2>>TC23

Commented [QLLJ55]: RC2>>TC24

Deleted: sh

756 Outside the case study, nucleation rates are still remarkably high, often exceeding the ion-induced
757 nucleation rate limit set by ion-production rate of ca. 2 ion pairs $\text{cm}^{-3} \text{ s}^{-1}$ by galactic cosmic radiation.
758 While the exact nature of neutral mechanism is not directly detected, the parameterization
759 experiments performed in the CERN CLOUD-chamber (Dunne et al., 2016; Kürten, 2019) indicate
760 that very high concentrations of ammonia would be needed to explain the observed nucleation
761 rates – above ppb levels, under assumption that the ternary $\text{SA-NH}_3\text{-H}_2\text{O}$ mechanism was solely
762 responsible for initial nucleation.

Commented [QLLJ56]: RC2>>TC25

Deleted: CERN

Commented [QLLJ57]: RC2>>TC26

Deleted: sulfuric acid – ammonia – water

Formatted: Subscript

Formatted: Subscript

Deleted: 6

763 (2) Another possibility is that dimethyl amine – as detected in negative ion spectra (cf. Fig. 7) – effi-
764 ciently nucleates with sulfuric acid and could be primarily responsible for neutral new particle
765 SA-H₂O-DMA formation pathway, as discussed in several studies (Kürten et al., 2014; Brean et
766 al., 2021). Unfortunately, the deployed instrumentation does not allow the determination of DMA
767 concentrations to assess the exact contribution of DMA on nucleation. Yet, our observation shows
768 significantly higher nucleation rates than the reported values of both studies and, considering the
769 range of measured SA concentrations, this conjecture is not likely to happen alone but rather as a
770 possible synergistic effect of both amines and ammonia in the nucleation with sulfuric acid and
771 water at the encountered temperatures.

Formatted: List Paragraph, Line spacing: 1,5 lines,
Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start
at: 1 + Alignment: Left + Aligned at: 1,27 cm + Indent at:
1,9 cm

773 (3) In addition to the high quantity of SA and MSA measured in CI mode, MSA was observed in ion-
774 cluster in form of CH_3SO_3^- and MSA clusters with bisulfate ion but not in any larger nucleating
775 cluster. Its contribution to a possible ion-induced nucleation mechanism is therefore unlikely in
776 our case. However, we still cannot exclude the possibility that MSA would be weakly bounded to
777 ion clusters and then evaporated inside the mass spectrometer vacuum chambers and lost in semi-
778 energetic collisions within the electric fields used to focus ions inside the system. Additionally,
779 mesylate (i.e., the MSA fragments - CH_3SO_3^-) were observed in significant fraction in the chemi-
780 cal speciation of the aerosol phase, which indicates its involvement in particle growth.

Deleted: ¶

Formatted: Line spacing: 1,5 lines

Formatted: Font colour: Text 1

Deleted: ammonia

Formatted: Subscript

Formatted: Font colour: Text 1

Commented [QLLJ58]: RC1>>C11

Deleted: i

Formatted: Font colour: Text 1

Formatted: Font colour: Text 1

Deleted: 8

Formatted: Font colour: Text 1

781 (4) The missing link is the (high) concentration of ammonia and amines required to follow the pro-
782 posed SA-(NH₃/DMA)-H₂O nucleation scheme, likely on the order of ppb for ammonia and ppt
783 levels for DMA. Without direct measurement of neither NH_3 nor DMA, we can only speculate
784 that our observations point toward a strong source, possibly land-based (e.g., from high penguin
785 population during summertime) or marine-based (e.g., emissions from plankton biological activ-
786 ity from the (melting) ocean). In fact, predominant wind possibly passing over a penguin colony
787 at shore was seen from the wind roses proposed in Figure S6 for event 3, 4, 7, 9, and 10 and
788 confirmed by the air mass trajectory analysis (Fig. 9). Yet, for our case study (event 12) - proving
789 significant contribution of ammonia / DMA to detected in ion clusters - nor the wind analysis nor
790 the backward trajectory analysis point toward emission sourcing from the bird colony. We do not
791

Formatted: Font colour: Text 1

800 exclude the possibility of additional influence from the local fauna, further away from the island,
801 however, this nitrogen-containing species could also be marine-sourced, especially by emission
802 from the metabolic activity of planktons and accumulation of precursors (e.g. proteins) in the
803 melting sea ice (Dall'Osto et al., 2017).
804 Ammonia and amine concentrations are key parameters
805 that need to be assessed to fully understand the nucleation mechanism that our analysis suggests.

Formatted: Font colour: Text 1
Formatted: Font colour: Text 1
Formatted: Font colour: Text 1
Commented [QLLJ59]: RC3 >> Comment 1 & Comment 2
Formatted: Font colour: Text 1
Deleted: A

806 (5) MSA, together with DMA, NH₃ and SA, could potentially nucleate via a neutral, yet unidentified
807 mechanism. However, this potential mechanism does not manifest itself in chemical composition
808 of negative ion clusters, and potentially would only occur as neutral. It is also important to consider
809 that our measurement relies on clusters that are stable enough to be analyzed in the very low-
810 pressure chamber of the TOF, and thus might not be detectable with all species or molecular cluster
811 possibly present in the real atmosphere. Further investigations of nucleation potential of MSA
812 including the aforementioned compounds as mixture are required before MSA can be attributed
813 to be responsible for our observed high nucleation rates that we observe at Marambio.

814
815 (6) To this remains the question of organics; our data set do not show substantial presence of HOMs
816 (as characterized in forest environments), and possible detected compounds entering in our esti-
817 mation – yet unidentified chemically, and which can also represent instrumental chemical back-
818 ground – could be low-volatility organic compounds originating from marine environment that
819 may contribute to the growth to some extent (Weller et al., 2015; Kecorius et al., 2019).

820
821 (7) A possible explanation for our observations of higher-than-expected nucleation and growth rates
822 is that particle formation and growth could occur primarily at colder temperatures at higher alti-
823 tudes, which would enhance both SA-NH₃ and SA-DMA nucleation. Nucleated particles would
824 then be transported to lower altitudes resulting in apparently higher nucleation and growth rates.
825 This in turn suggest more regional emission sources rather than local emissions of SA, NH₃ or
826 DMA as our analysis points toward. However, further investigations on vertical mixing would
827 have been needed to confirm vertical distribution of nucleation and growth rates.

Commented [QLLJ60]: RC2>>TC27
Commented [QLLJ61]: RC2>>TC28
Deleted: s

828 5 Conclusion

829 The Austral summer campaign 2018 at the Marambio Antarctic research station revealed very active
830 aerosol processes and a frequency of new particle formation events of ~ 40 %. Out of 35 days of active mea-
831 surement, a total of 13 NPF events were identified and characterized. In Marambio, NPF was promoted by key
832 meteorological factors: high radiation (clear sky conditions), low humidity conditions (incl. the absence of
833 precipitation), and high temperature – close to zero or above. We retrieved formation and growth rates for
834 neutral and charged particles measured within 1.5 nm up to 800 nm size range - combining nCNC, NAIS and
835

Commented [QLLJ62]: RC2>>TC29
Deleted: well known

840 DMPS instrumentation. As a reference, the formation rate of 3-nm (neutral) particles (J_3) during NPF was on
841 average $0.6863 \text{ cm}^{-3} \text{ s}^{-1}$ and the growth rate ($GR_{4-12 \text{ nm}}$) was on average 4.2 nm.h^{-1} . Those values are particularly
842 high in comparison with the literature, the comparison remains even more surprising considering the most
843 active NPF day where $J_{1.5}$ reached $19 \text{ cm}^{-3} \text{ s}^{-1}$ and $GR_{4-12 \text{ nm}}$ was 10.9 nm.h^{-1} . The chemical analysis of gas-
844 phase aerosol precursors with CI-APi-TOF showed high concentrations of SA and MSA - on average $5.17 \times$
845 $10^5 \text{ molecules cm}^{-3}$ and $1.18 \times 10^6 \text{ molecules cm}^{-3}$, respectively - but quite low concentration of IA (on average
846 $2.06 \times 10^5 \text{ molecules cm}^{-3}$). All chemical species reached their maxima during mid-day (e.g., with maximum
847 concentration of 2.56×10^7 , $2.32 \times 10^7 \text{ molecules.cm}^{-3}$, respectively for SA and MSA during aerosol formation
848 events). The ubiquitously high SA concentration (peaking at almost $10^7 \text{ molecules cm}^{-3}$ during many events)
849 and the high abundance of SA-associated ion clusters makes no doubt on its involvement on NPF. The speci-
850 ation of negative ion spectra revealed clusters of dimethylamine – sulfuric acid – bisulfate-ions, as well as
851 various clusters of sulfuric acid - ammonia- bisulfate-ion - consistent with previously reported studies. How-
852 ever, the systematically high formation / growth rates cannot be quantitatively explained by SA-(DMA/ NH₃)-
853 H₂O NPF pathways without direct measurement of DMA and NH₃ gas phase concentrations. Additionally,
854 consistently high concentrations of MSA during daytime suggests a possible role of MSA in the growth, along
855 with SA and ammonia - as confirmed by the bulk aerosol chemical composition. Herein, the mechanism of
856 forming secondary aerosol in the peninsula involves a combination of SA, DMA, NH₃ and MSA (and only
857 relatively low contribution of IA, at least at this time of the year). Better understanding the synergetic effect
858 of DMA/NH₃ at these temperatures and environments require more field measurements and simulated exper-
859 iments, specifically including direct measurement of DMA and NH₃ concentrations.

860
861 **Data Availability**

← Formatted: Line spacing: 1,5 lines

863 *The data used in this work are available from the first author upon request. Please contact Lauriane L. J.*
864 *Quéléver (lauriane.quelever@helsinki.fi).*

865
866 **Acknowledgments**

868 This work was supported by the European Research Council under the following programs: ERC (GASPAR-
869 CON – grant n° 714621 & COALA – grant n° 638703) and EMME-CARE (grant n° 856612). We
870 acknowledge the support from the Academy of Finland (projects n° 296628 and n° 328290), the Center of
871 Excellence program (project n° 307331, [334514](#), 3282290), and Finnish Academy ACFA (project n° 335845
872 and ACCC Flagship funding (337552). We thank the generous help from the Servicio Meteorológico Nacional
873 - SMN, the Fuerza Aerea Argentina - FAA, and the FINNish Antarctic Research Program – FINNARP. We
874 are thankful for the technical personnel of the Marambio base for their support in cooperation, logistics and
875 measurements. We thank Toftools for providing mass spectrometry analysis tool package for MATLAB.

876

877 **Author's Contribution**

878
879 **EA** and **MS** supervised the project. **EA** initiated the measurement container deployment and is responsible for
880 the large size aerosol and auxiliary measurements data from the measurement container. **LLJQ** co-organized
881 the project, prepared, set up and performed the measurements, analyzed the data, and wrote the manuscript.
882 **LLJQ** operated the instrumentation with the help of **EA**, **JEF** and **GEC**. **EA**, **MS** and **TJ** supervised the
883 analysis and contributed to the scientific discussion in collaboration with **DW**. **LLJQ** analyzed the gas-phase
884 measurements and produced most figures. **LD** processed, analyzed, and discussed the aerosol phase data, pre-
885 pared by **TC**, **JL**, **GPF** and **EA**. **LB** and **MA** analyzed the chemical composition of bulk aerosols. **EA** per-
886 formed the backward trajectory analysis and its relevant figures. All co-authors contributed to the scientific
887 discussion, commenting and the revision of the manuscript.

888
889 **Competing interests**

890 *The authors claim no competing interests.*

891
892 **Supplementary Information (cf. Separate file)**

893
894 **References**

895
896
897 Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., Adamov, A.,
898 Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne,
899 E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M.,
900 Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T.,
901 Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V.,
902 Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen, I.,
903 Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld,
904 J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara,
905 P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer,
906 D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R.,
907 Vehkamäki, H., and Kirkby, J.: Molecular understanding of sulphuric acid–amine particle nucleation in the
908 atmosphere, *Nature*, 502, 359–363, 10.1038/nature12663, 2013.

909 [Atkinson, H. M., Huang, R. J., Chance, R., Roscoe, H. K., Hughes, C., Davison, B., Schönhardt, A., Mahajan, A. S., Saiz-Lopez, A., Hoffmann, T., and Liss, P. S.: Iodine emissions from the sea ice of the Weddell Sea, Atmos. Chem. Phys., 12, 11229-11244, 10.5194/acp-12-11229-2012, 2012.](#)

910
911
912 Asmi, E., Frey, A., Virkkula, A., Ehn, M., Manninen, H. E., Timonen, H., Tolonen-Kivimäki, O., Aurela, M.,
913 Hillamo, R., and Kulmala, M.: Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol
914 particles and observations of new particle formation, *Atmos. Chem. Phys.*, 10, 4253–4271, 10.5194/acp-10-
915 4253-2010, 2010.

916
917 Asmi, E., Neitola, K., Teinilä, K., Rodriguez, E., Virkkula, A., Backman, J., Bloss, M., Jokela, J., Lihavainen,
918 H., de Leeuw, G., Paatero, J., Aaltonen, V., Mei, M., Gambarie, G., Copes, G., Albertini, M., Fogwill, G. P.,
919 Ferrara, J., Barlasina, M. E., and Sánchez, R.: Primary sources control the variability of aerosol optical
920 properties in the Antarctic Peninsula, *Tellus B: Chemical and Physical Meteorology*, 70, 1–16,
10.1080/16000889.2017.1414571, 2018.

921 Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J., Brooks, I. M., Saiz-Lopez, A., Salter, M.,
922 Tjernström, M., Baltensperger, U., Zieger, P., and Schmale, J.: Frequent new particle formation over the high
923 Arctic pack ice by enhanced iodine emissions, *Nature Communications*, 11, 4924, 10.1038/s41467-020-
924 18551-0, 2020.

925 Barnes, I., Hjorth, J., and Mihalopoulos, N.: *Dimethyl Sulfide and Dimethyl Sulfoxide and Their Oxidation
926 in the Atmosphere*, *Chemical Reviews*, 106, 940-975, 10.1021/acs.accounts.0c020529+, 2006.

927 Formatted: Normal, Left, Space After: 0 pt

928 Beck, L. J., Sarnela, N., Junninen, H., Hoppe, C. J. M., Garmash, O., Bianchi, F., Riva, M., Rose, C., Peräkylä,
929 O., Wimmer, D., Kausiala, O., Jokinen, T., Ahonen, L., Mikkilä, J., Hakala, J., He, X.-C., Kontkanen, J., Wolf,
930 K. K. E., Cappelletti, D., Mazzola, M., Traversi, R., Petroselli, C., Viola, A. P., Vitale, V., Lange, R., Massling,
931 A., Nøjgaard, J. K., Krejci, R., Karlsson, L., Zieger, P., Jang, S., Lee, K., Vakkari, V., Lampilahti, J., Thakur,
932 R. C., Leino, K., Kangasluoma, J., Duplissy, E.-M., Siivola, E., Marbouti, M., Tham, Y. J., Saiz-Lopez, A.,
933 Petäjä, T., Ehn, M., Worsnop, D. R., Skov, H., Kulmala, M., Kerminen, V.-M., and Sipilä, M.: Differing
934 Mechanisms of New Particle Formation at Two Arctic Sites, *Geophysical Research Letters*, 48,
935 e2020GL091334, 10.1029/2020GL091334, 2021.

936 Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg,
937 P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A.,
938 Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase
939 Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, *Chemical Reviews*, 119,
940 3472-3509, 10.1021/acs.chemrev.8b00395, 2019.

941 Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R., Molteni, U., Herrmann, E., Adamov,
942 A., Bukowiecki, N., Chen, X., Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kürten,
943 A., Manninen, H. E., Münch, S., Peräkylä, O., Petäjä, T., Rondo, L., Williamson, C., Weingartner, E., Curtius,
944 J., Worsnop, D. R., Kulmala, M., Dommen, J., and Baltensperger, U.: New particle formation in the free
945 troposphere: A question of chemistry and timing, *Science*, 352, 1109-1112, 10.1126/science.aad5456, 2016.

946 Bork, N., Elm, J., Olenius, T., and Vehkämäki, H.: Methane sulfonic acid-enhanced formation of molecular
947 clusters of sulfuric acid and dimethyl amine, *Atmos. Chem. Phys.*, 14, 12023-12030, 10.5194/acp-14-12023-
948 2014, 2014.

949 Brean, J., Dall'Osto, M., Simó, R., Shi, Z., Beddows, D. C. S., and Harrison, R. M.: Open ocean and coastal
950 new particle formation from sulfuric acid and amines around the Antarctic Peninsula, *Nature Geoscience*, 14,
951 383-388, 10.1038/s41561-021-00751-y, 2021.

952 Brewer, G. P.: Minor elements in seawater, *Chemical Oceanography*, 1, 415-496, 1975.

953 Chan, T., Cai, R., Ahonen, L. R., Liu, Y., Zhou, Y., Vanhanen, J., Dada, L., Chao, Y., Liu, Y., Wang, L.,
954 Kulmala, M., and Kangasluoma, J.: Assessment of particle size magnifier inversion methods to obtain the
955 particle size distribution from atmospheric measurements, *Atmos. Meas. Tech.*, 13, 4885-4898, 10.5194/amt-
956 13-4885-2020, 2020.

957 Collins, D. B., Burkart, J., Chang, R. Y. W., Lizotte, M., Boivin-Rioux, A., Blais, M., Mungall, E. L., Boyer,
958 M., Irish, V. E., Massé, G., Kunkel, D., Tremblay, J. É., Papakyriakou, T., Bertram, A. K., Bozem, H.,
959 Gosselin, M., Levasseur, M., and Abbatt, J. P. D.: Frequent ultrafine particle formation and growth in Canadian
960 Arctic marine and coastal environments, *Atmos. Chem. Phys.*, 17, 13119-13138, 10.5194/acp-17-13119-2017,
961 2017.

957 Formatted: EndNote Bibliography, Justified, Space After:
12 pt

962 Dada, L., Chellapermal, R., Buenrostro Mazon, S., Paasonen, P., Lampilahti, J., Manninen, H. E., Junninen,
963 H., Petäjä, T., Kerminen, V. M., and Kulmala, M.: Refined classification and characterization of atmospheric
964 new-particle formation events using air ions, *Atmos. Chem. Phys.*, 18, 17883-17893, 10.5194/acp-18-17883-
965 2018, 2018.

Deleted: ~~Page Break~~

968 Dada, L., Paasonen, P., Nieminen, T., Buenrostro Mazon, S., Kontkanen, J., Peräkylä, O., Lehtipalo, K.,
969 Hussein, T., Petäjä, T., Kerminen, V. M., Bäck, J., and Kulmala, M.: Long-term analysis of clear-sky new
970 particle formation events and nonevents in Hyytiälä, *Atmos. Chem. Phys.*, 17, 6227-6241, 10.5194/acp-17-
971 6227-2017, 2017.

972 Dada, L., Lehtipalo, K., Kontkanen, J., Nieminen, T., Baalbaki, R., Ahonen, L., Duplissy, J., Yan, C., Chu, B.,
973 Petäjä, T., Lehtinen, K., Kerminen, V.-M., Kulmala, M., and Kangasluoma, J.: Formation and growth of sub-
974 3-nm aerosol particles in experimental chambers, *Nature Protocols*, 15, 1013-1040, 10.1038/s41596-019-
975 0274-z, 2020.

976 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and Lehtinen, K. E.: Formation
977 and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II,
978 Hyytiälä, Finland, *Boreal Environment Research*, 10, 323, 2005.

979 Dall’Osto, M., Beddows, D. C. S., Tunved, P., Harrison, R. M., Lupi, A., Vitale, V., Becagli, S., Traversi, R.,
980 Park, K. T., Yoon, Y. J., Massling, A., Skov, H., Lange, R., Strom, J., and Krejci, R.: Simultaneous
981 measurements of aerosol size distributions at three sites in the European high Arctic, *Atmos. Chem. Phys.*, 19,
982 7377-7395, 10.5194/acp-19-7377-2019, 2019.

983 Dall’Osto, M., Geels, C., Beddows, D. C. S., Boertmann, D., Lange, R., Nøjgaard, J. K., Harrison, R. M.,
984 Simo, R., Skov, H., and Massling, A.: Regions of open water and melting sea ice drive new particle formation
985 in North East Greenland, *Scientific Reports*, 8, 6109, 10.1038/s41598-018-24426-8, 2018.

986 Dall’Osto, M., Beddows, D. C. S., Tunved, P., Krejci, R., Ström, J., Hansson, H. C., Yoon, Y. J., Park, K.-T.,
987 Becagli, S., Udisti, R., Onasch, T., O’Dowd, C. D., Simó, R., and Harrison, R. M.: Arctic sea ice melt leads to
988 atmospheric new particle formation, *Scientific Reports*, 7, 3318, 10.1038/s41598-017-03328-1, 2017.

989 Deng, C., Fu, Y., Dada, L., Yan, C., Cai, R., Yang, D., Zhou, Y., Yin, R., Lu, Y., Li, X., Qiao, X., Fan, X.,
990 Nie, W., Kontkanen, J., Kangasluoma, J., Chu, B., Ding, A., Kerminen, V.-M., Paasonen, P., Worsnop, D. R.,
991 Bianchi, F., Liu, Y., Zheng, J., Wang, L., Kulmala, M., and Jiang, J.: Seasonal Characteristics of New Particle
992 Formation and Growth in Urban Beijing, *Environmental Science & Technology*, 54, 8547-8557,
993 10.1021/acs.est.0c00808, 2020.

994 Dunne, E. M., Gordon, H., Kürten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K., Pringle, K. J.,
995 Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius,
996 J., Dommen, J., Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A.,
997 Heinritzi, M., Jokinen, T., Kangasluoma, J., Kirkby, J., Kulmala, M., Kupe, A., Lawler, M. J., Lehtipalo, K.,
998 Makhmutov, V., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A.,
999 Reddington, C. L., Riccobono, F., Richards, N. A., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger,
1000 S., Sengupta, K., Simon, M., Sipilä, M., Smith, J. N., Stozkhov, Y., Tomé, A., Tröstl, J., Wagner, P. E.,
1001 Wimmer, D., Winkler, P. M., Worsnop, D. R., and Carslaw, K. S.: Global atmospheric particle formation from
1002 CERN CLOUD measurements, *Science*, 354, 1119-1124, 10.1126/science.aaf2649, 2016.

1003 Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann,
1004 R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T., Schobesberger, S.,
1005 Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G.,
1006 Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.-M., Kulmala, M., Worsnop,
1007 D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol, *Nature*, 506,
1008 476-479, 10.1038/nature13032, 2014.

1009 Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel. 2017, updated daily. *Sea Ice Index*,
1010 *Version 3*. [<ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/south/monthly/>]. Boulder, Colorado USA.
1011 NSIDC: National Snow and Ice Data Center, [10.7265/N5K072F8](https://doi.org/10.7265/N5K072F8), 2021 [last access: August 5, 2021].

1012

1013 Fiebig, M., Hirdman, D., Lunder, C. R., Ogren, J. A., Solberg, S., Stohl, A., and Thompson, R. L.: Annual
1014 cycle of Antarctic baseline aerosol: controlled by photooxidation-limited aerosol formation, *Atmos. Chem.*
1015 *Phys.*, 14, 3083-3093, 10.5194/acp-14-3083-2014, 2014.

1016 Fiedler, V., Dal Maso, M., Boy, M., Aufmhoff, H., Hoffmann, J., Schuck, T., Birmili, W., Hanke, M., Uecker,
1017 J., Arnold, F., and Kulmala, M.: The contribution of sulphuric acid to atmospheric particle formation and
1018 growth: a comparison between boundary layers in Northern and Central Europe, *Atmos. Chem. Phys.*, 5, 1773-
1019 1785, 10.5194/acp-5-1773-2005, 2005.

1020 He, X.-C., Tham, Y. J., Dada, L., Wang, M., Finkenzeller, H., Stolzenburg, D., Iyer, S., Simon, M., Kürten,
1021 A., Shen, J., Rörup, B., Rissanen, M., Schobesberger, S., Baalbaki, R., Wang, D. S., Koenig, T. K., Jokinen,
1022 T., Sarnela, N., Beck, L. J., Almeida, J., Amanatidis, S., Amorim, A., Ataei, F., Baccarini, A., Bertozi, B.,
1023 Bianchi, F., Brilke, S., Caudillo, L., Chen, D., Chiu, R., Chu, B., Dias, A., Ding, A., Dommen, J., Duplissy, J.,
1024 El Haddad, I., Gonzalez Carracedo, L., Granzin, M., Hansel, A., Heinritzi, M., Hofbauer, V., Junninen, H.,
1025 Kangasluoma, J., Kempainen, D., Kim, C., Kong, W., Krechmer, J. E., Kvashin, A., Laitinen, T.,
1026 Lamkaddam, H., Lee, C. P., Lehtipalo, K., Leiminger, M., Li, Z., Makhmutov, V., Manninen, H. E., Marie,
1027 G., Marten, R., Mathot, S., Mauldin, R. L., Mentler, B., Möhler, O., Müller, T., Nie, W., Onnela, A., Petäjä,
1028 T., Pfeifer, J., Philippov, M., Ranjithkumar, A., Saiz-Lopez, A., Salma, I., Scholz, W., Schuchmann, S.,
1029 Schulze, B., Steiner, G., Stozhkov, Y., Tauber, C., Tomé, A., Thakur, R. C., Väisänen, O., Vazquez-Pufleau,
1030 M., Wagner, A. C., Wang, Y., Weber, S. K., Winkler, P. M., Wu, Y., Xiao, M., Yan, C., Ye, Q., Ylisirniö, A.,
1031 Zauner-Wieczorek, M., Zha, Q., Zhou, P., Flagan, R. C., Curtius, J., Baltensperger, U., Kulmala, M.,
1032 Kermanen, V.-M., Kurtén, T., Donahue, N. M., Volkamer, R., Kirkby, J., Worsnop, D. R., and Sipilä, M.: Role
1033 of iodine oxoacids in atmospheric aerosol nucleation, *Science*, 371, 589, 10.1126/science.abe0298, 2021.

1034 Herenz, P., Wex, H., Mangold, A., Laffineur, Q., Gorodetskaya, I. V., Fleming, Z. L., Panagi, M., and
1035 Stratmann, F.: CCN measurements at the Princess Elisabeth Antarctica research station during three austral
1036 summers, *Atmos. Chem. Phys.*, 19, 275-294, 10.5194/acp-19-275-2019, 2019.

1037 Hodshire, A. L., Campuzano-Jost, P., Kodros, J. K., Croft, B., Nault, B. A., Schroder, J. C., Jimenez, J. L., and
1038 Pierce, J. R.: The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the
1039 associated radiative forcings, *Atmos. Chem. Phys.*, 19, 3137-3160, 10.5194/acp-19-3137-2019, 2019.

1040 IPCC, Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex,
1041 V., and Midgley, P. M. (Eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working
1042 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
1043 University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.,
1044 10.1017/CBO9781107415324, 2013.

1045 Jokinen, T., Sipilä, M., Junninen, H., Ehn, M., Lönn, G., Hakala, J., Petäjä, T., Mauldin Iii, R. L., Kulmala,
1046 M., and Worsnop, D. R.: Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF,
1047 *Atmos. Chem. Phys.*, 12, 4117-4125, 10.5194/acp-12-4117-2012, 2012.

1048 Jokinen, T., Sipilä, M., Kontkanen, J., Vakkari, V., Tisler, P., Duplissy, E. M., Junninen, H., Kangasluoma, J.,
1049 Manninen, H. E., Petäjä, T., Kulmala, M., Worsnop, D. R., Kirkby, J., Virkkula, A., and Kermanen, V. M.:
1050 Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica, *Science*
1051 Advances, 4, eaat9744, 10.1126/sciadv.aat9744, 2018.

1052 Järvinen, E., Virkkula, A., Nieminen, T., Aalto, P. P., Asmi, E., Lanconelli, C., Busetto, M., Lupi, A.,
1053 Schioppo, R., Vitale, V., Mazzola, M., Petäjä, T., Kermanen, V. M., and Kulmala, M.: Seasonal cycle and
1054 modal structure of particle number size distribution at Dome C, Antarctica, *Atmos. Chem. Phys.*, 13, 7473-
1055 7487, 10.5194/acp-13-7473-2013, 2013.

1056

1057 Kangasluoma, J., Franchin, A., Duplissy, J., Ahonen, L., Korhonen, F., Attou, M., Mikkilä, J., Lehtipalo, K.,
1058 Vanhanen, J., Kulmala, M., and Petäjä, T.: Operation of the Airmodus A11 nano Condensation Nucleus
1059 Counter at various inlet pressures and various operation temperatures, and design of a new inlet system, *Atmos.*
1060 *Meas. Tech.*, 9, 2977-2988, 10.5194/amt-9-2977-2016, 2016.

1061 Kecorius, S., Vogl, T., Paasonen, P., Lampilahti, J., Rothenberg, D., Wex, H., Zeppenfeld, S., van Pinxteren,
1062 M., Hartmann, M., Henning, S., Gong, X., Welti, A., Kulmala, M., Stratmann, F., Herrmann, H., and
1063 Wiedensohler, A.: New particle formation and its effect on cloud condensation nuclei abundance in the
1064 summer Arctic: a case study in the Fram Strait and Barents Sea, *Atmos. Chem. Phys.*, 19, 14339-14364,
1065 10.5194/acp-19-14339-2019, 2019.

1066 Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., and Bianchi, F.: Atmospheric new particle
1067 formation and growth: review of field observations, *Environmental Research Letters*, 13, 103003,
1068 10.1088/1748-9326/aad3c, 2018.

Deleted: <https://doi.org/>

1069 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagné, S., Ickes, L.,
1070 Kürten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer,
1071 D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M., Flagan, R.
1072 C., Haider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A.,
1073 Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhtutov, V., Mathot, S., Mikkilä, J., Minginette, P., Mogo, S.,
1074 Nieminen, T., Onnela, A., Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M., Stozhkov, Y.,
1075 Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E.,
1076 Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.: Role of
1077 sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, *Nature*, 476, 429-433,
1078 10.1038/nature10343, 2011.

1079 Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi, M., Simon, M., Yan,
1080 C., Almeida, J., Tröstl, J., Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer,
1081 A.-K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A., Ehrhart, S., Flagan, R. C.,
1082 Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim,
1083 J., Krapf, M., Kürten, A., Laaksonen, A., Lehtipalo, K., Makhtutov, V., Mathot, S., Molteni, U., Onnela, A.,
1084 Peräkylä, O., Piel, F., Petäjä, T., Praplan, A. P., Pringle, K., Rap, A., Richards, N. A. D., Riipinen, I., Rissanen,
1085 M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sipilä, M., Steiner, G., Stozhkov,
1086 Y., Stratmann, F., Tomé, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E.,
1087 Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R.,
1088 Baltensperger, U., Kulmala, M., Carslaw, K. S., and Curtius, J.: Ion-induced nucleation of pure biogenic
1089 particles, *Nature*, 533, 521-526, 10.1038/nature17953, 2016.

1090 Kontkanen, J., Järvinen, E., Manninen, H. E., Lehtipalo, K., Kangasluoma, J., Decesari, S., Gobbi, G. P.,
1091 Laaksonen, A., Petäjä, T., and Kulmala, M.: High concentrations of sub-3nm clusters and frequent new particle
1092 formation observed in the Po Valley, Italy, during the PEGASOS 2012 campaign, *Atmos. Chem. Phys.*, 16,
1093 1919-1935, 10.5194/acp-16-1919-2016, 2016.

1094 Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petäjä, T., Sipilä,
1095 M., Schobesberger, S., and Rantala, P.: Direct observations of atmospheric aerosol nucleation, *Science*, 339,
1096 943-946, [10.1126/science.1227385](https://doi.org/10.1126/science.1227385), 2013.

Formatted: EndNote Bibliography, Justified, Space After:
12 pt

1097 Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., Dal Maso, M., Aalto, P. P.,
1098 Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., and Kerminen, V.-M.: Measurement
1099 of the nucleation of atmospheric aerosol particles, *Nature Protocols*, 7, 1651-1667, 10.1038/nprot.2012.091,
1100 2012.

Deleted: ↵

Page Break

1105 Kulmala, M., Stolzenburg, D., Dada, L., Cai, R., Kontkanen, J., Yan, C., Kangasluoma, J., Ahonen, L. R.,
1106 Gonzalez-Carracedo, L., Sulo, J., Tuovinen, S., Deng, C., Li, Y., Lehtipalo, K., Lehtinen, K. E. J., Petäjä, T.,
1107 Winkler, P. M., Jiang, J., and Kerminen, V.-M.: Towards a concentration closure of sub-6 nm aerosol particles
1108 and sub-3 nm atmospheric clusters, *Journal of Aerosol Science*, 159, 105878, [10.1016/j.jaerosci.2021.105878](https://doi.org/10.1016/j.jaerosci.2021.105878),
1109 2022.

Deleted: <https://doi.org/>

1110 Kyrö, E. M., Kerminen, V. M., Virkkula, A., Dal Maso, M., Parshintsev, J., Ruiz-Jimenez, J., Forsström, L.,
1111 Manninen, H. E., Riekola, M. L., Heinonen, P., and Kulmala, M.: Antarctic new particle formation from
1112 continental biogenic precursors, *Atmos. Chem. Phys.*, 13, 3527-3546, 10.5194/acp-13-3527-2013, 2013.

1113 Kürten, A.: New particle formation from sulfuric acid and ammonia: nucleation and growth model based on
1114 thermodynamics derived from CLOUD measurements for a wide range of conditions, *Atmos. Chem. Phys.*,
1115 19, 5033-5050, 10.5194/acp-19-5033-2019, 2019.

1116 Kürten, A., Jokinen, T., Simon, M., Sipilä, M., Sarnela, N., Junninen, H., Adamov, A., Almeida, J., Amorim,
1117 A., Bianchi, F., Breitenlechner, M., Dommen, J., Donahue, N. M., Duplissy, J., Ehrhart, S., Flagan, R. C.,
1118 Franchin, A., Hakala, J., Hansel, A., Heinritzi, M., Hutterli, M., Kangasluoma, J., Kirkby, J., Laaksonen, A.,
1119 Lehtipalo, K., Leiminger, M., Makhmutov, V., Mathot, S., Onnela, A., Petäjä, T., Praplan, A. P., Riccobono,
1120 F., Rissanen, M. P., Rondo, L., Schobesberger, S., Seinfeld, J. H., Steiner, G., Tomé, A., Tröstl, J., Winkler,
1121 P. M., Williamson, C., Wimmer, D., Ye, P., Baltensperger, U., Carslaw, K. S., Kulmala, M., Worsnop, D. R.,
1122 and Curtius, J.: Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under
1123 atmospheric conditions, *Proceedings of the National Academy of Sciences*, 111, 15019,
1124 10.1073/pnas.1404853111, 2014.

1125 Lachlan-Cope, T., Beddows, D. C. S., Brough, N., Jones, A. E., Harrison, R. M., Lupi, A., Yoon, Y. J.,
1126 Virkkula, A., and Dall'Osto, M.: On the annual variability of Antarctic aerosol size distributions at Halley
1127 Research Station, *Atmos. Chem. Phys.*, 20, 4461-4476, 10.5194/acp-20-4461-2020, 2020.

1128 Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J., Dachs, J., Bopp, L., Saltzman,
1129 E. S., Stefels, J., Johnson, J. E., and Liss, P. S.: An updated climatology of surface dimethylsulfide
1130 concentrations and emission fluxes in the global ocean, *Global Biogeochemical Cycles*, 25,
1131 10.1029/2010GB003850, 2011.

Deleted: <https://doi.org/>

1132 Lehtipalo, K., Leppä, J., Kontkanen, J., Kangasluoma, J., Franchin, A., Wimmer, D., Schobesberger, S.,
1133 Junninen, H., Petaja, T., and Sipila, M.: Methods for determining particle size distribution and growth rates
1134 between 1 and 3 nm using the Particle Size Magnifier, *Boreal Environment Research*, 2014.

1135 Lehtipalo, K., Ahonen, L. R., Baalbaki, R., Sulo, J., Chan, T., Laurila, T., Dada, L., Duplissy, J., Miettinen,
1136 E., Vanhanen, J., Kangasluoma, J., Kulmala, M., Petäjä, T., and Jokinen, T.: The standard operating procedure
1137 for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter, *Journal of Aerosol Science*,
1138 159, 105896, [10.1016/j.jaerosci.2021.105896](https://doi.org/10.1016/j.jaerosci.2021.105896), 2022.

Deleted: <https://doi.org/>

1139 Loo, B. W. and Cork, C. P.: Development of High Efficiency Virtual Impactors, *Aerosol Science and
1140 Technology*, 9, 167-176, 10.1080/02786828808959205, 1988.

1141 Manninen, H. E., Mirme, S., Mirme, A., Petäjä, T., and Kulmala, M.: How to reliably detect molecular clusters
1142 and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS), *Atmos. Meas. Tech.*, 9,
1143 3577-3605, 10.5194/amt-9-3577-2016, 2016.

1144 Mardyukov, A. and Schreiner, P. R.: *Atmospherically Relevant Radicals Derived from the Oxidation of
1145 Dimethyl Sulfide*, *Accounts of Chemical Research*, 51, 475-483, 10.1021/acs.accounts.7b00536, 2018.

1146 Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on
1147 global CCN, *Atmos. Chem. Phys.*, 9, 8601-8616, 10.5194/acp-9-8601-2009, 2009.

Formatted: Left, Space After: 0 pt

1152 Mirme, S. and Mirme, A.: The mathematical principles and design of the NAIS – a spectrometer for the
1153 measurement of cluster ion and nanometer aerosol size distributions, *Atmos. Meas. Tech.*, 6, 1061-1071,
1154 10.5194/amt-6-1061-2013, 2013.

1155 Notz, D.: The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss, *Proceedings of*
1156 *the National Academy of Sciences*, 106, 20590-20595, 10.1073/pnas.0902356106, 2009.

1157 Saiz-Lopez, A. and von Glasow, R.: Reactive halogen chemistry in the troposphere, *Chemical Society*
1158 *Reviews*, 41, 6448-6472, 10.1039/C2CS35208G, 2012.

1159 Saiz-Lopez, A., Blaszczak-Boxe, C. S., and Carpenter, L. J.: A mechanism for biologically induced iodine
1160 emissions from sea ice, *Atmos. Chem. Phys.*, 15, 9731-9746, 10.5194/acp-15-9731-2015, 2015.

1161 Saiz-Lopez, A., Mahajan Anoop, S., Salmon Rhian, A., Bauguitte Stephane, J. B., Jones Anna, E., Roscoe
1162 Howard, K., and Plane John, M. C.: Boundary Layer Halogens in Coastal Antarctica, *Science*, 317, 348-351,
1163 10.1126/science.1141408, 2007.

1164 Schmale, J., Baccarini, A., Thurnherr, I., Henning, S., Efraim, A., Regayre, L., Bolas, C., Hartmann, M., Welti,
1165 A., Lehtipalo, K., Aemisegger, F., Tatzelt, C., Landwehr, S., Modini, R. L., Tummon, F., Johnson, J. S., Harris,
1166 N., Schnaiter, M., Toffoli, A., Derkani, M., Bukowiecki, N., Stratmann, F., Dommen, J., Baltensperger, U.,
1167 Wernli, H., Rosenfeld, D., Gysel-Beer, M., and Carslaw, K. S.: Overview of the Antarctic Circumnavigation
1168 Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). *Bulletin of the*
1169 *American Meteorological Society*, 100(11), 2260-2283, 10.1175/BAMS-D-18-0187.1, 2019.

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Deleted:

1171 Schobesberger, S., Junninen, H., Bianchi, F., Lönn, G., Ehn, M., Lehtipalo, K., Dommen, J., Ehrhart, S.,
1172 Ortega, I., Franchin, A., Nieminen, T., Riccobono, F., Hutterli, M., Duplissy, J., Almeida, J., Amorim, A.,
1173 Breitenlechner, M., Downard, A., Dunne, E., and Worsnop, D.: Molecular understanding of atmospheric
1174 particle formation from sulfuric acid and large oxidized organic molecules, *Proceedings of the National*
1175 *Academy of Sciences of the United States of America*, 10.1073/pnas.1306973110, 2013.

1176 Schobesberger, S., Franchin, A., Bianchi, F., Rondo, L., Duplissy, J., Kürten, A., Ortega, I. K., Metzger, A.,
1177 Schnitzhofer, R., Almeida, J., Amorim, A., Dommen, J., Dunne, E. M., Ehn, M., Gagné, S., Ickes, L., Junninen,
1178 H., Hansel, A., Kerminen, V. M., Kirkby, J., Kupec, A., Laaksonen, A., Lehtipalo, K., Mathot, S., Onnela, A.,
1179 Petäjä, T., Riccobono, F., Santos, F. D., Sipilä, M., Tomé, A., Tsagkogeorgas, G., Viisanen, Y., Wagner, P.
1180 E., Wimmer, D., Curtius, J., Donahue, N. M., Baltensperger, U., Kulmala, M., and Worsnop, D. R.: On the
1181 composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation, *Atmos. Chem. Phys.*,
1182 15, 55-78, 10.5194/acp-15-55-2015, 2015.

1183 Shaw, G. E.: Considerations on the origin and properties of the Antarctic aerosol, *Reviews of Geophysics*, 17,
1184 1983-1998, 10.1029/RG017i008p01983, 1979.

Deleted: <https://doi.org/>

1185 Shaw, G. E.: Antarctic aerosols: A review, *Reviews of Geophysics*, 26, 89-112, 10.1029/RG026i001p00089,
1186 1988.

Deleted: <https://doi.org/>

1187 Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin, R. L.,
1188 Hyvärinen, A.-P., Lihavainen, H., and Kulmala, M.: The Role of Sulfuric Acid in Atmospheric Nucleation,
1189 *Science*, 327, 1243, 10.1126/science.1180315, 2010.

1190 Sipilä, M., Sarnela, N., Neitola, K., Laitinen, T., Kemppainen, D., Beck, L., Duplissy, E. M., Kuittinen, S.,
1191 Lehtusjärvi, T., Lampilahti, J., Kerminen, V. M., Lehtipalo, K., Aalto, P. P., Keronen, P., Siivola, E., Rantala,
1192 P. A., Worsnop, D. R., Kulmala, M., Jokinen, T., and Petäjä, T.: Wintertime sub-arctic new particle formation
1193 from Kola Peninsula sulphur emissions, *Atmos. Chem. Phys. Discuss.*, 2021, 1-27, 10.5194/acp-2020-1202,
1194 2021.

1198 Sipilä, M., Sarnela, N., Jokinen, T., Henschel, H., Junninen, H., Kontkanen, J., Richters, S., Kangasluoma, J.,
 1199 Franchin, A., Peräkylä, O., Rissanen, M. P., Ehn, M., Vehkamäki, H., Kurten, T., Berndt, T., Petäjä, T.,
 1200 Worsnop, D., Ceburnis, D., Kerminen, V.-M., Kulmala, M., and O'Dowd, C.: Molecular-scale evidence of
 1201 aerosol particle formation via sequential addition of HIO_3 , *Nature*, 537, 532-534, 10.1038/nature19314, 2016.

1202 Stuecker, M. F., Bitz, C. M., Armour, K. C., Prostosescu, C., Kang, S. M., Xie, S.-P., Kim, D., McGregor, S.,
 1203 Zhang, W., Zhao, S., Cai, W., Dong, Y., and Jin, F.-F.: Polar amplification dominated by local forcing and
 1204 feedbacks, *Nature Climate Change*, 8, 1076-1081, 10.1038/s41558-018-0339-y, 2018.

1205 Vanhanen, J., Mikkilä, J., Lehtipalo, K., Sipilä, M., Manninen, H. E., Siivola, E., Petäjä, T., and Kulmala, M.:
 1206 Particle Size Magnifier for Nano-CN Detection, *Aerosol Science and Technology*, 45, 533-542,
 1207 10.1080/02786826.2010.547889, 2011.

1208 Virkkula, A., Asmi, E., Teinilä, K., Frey, A., Aurela, M., Timonen, H., Mäkelä, T., Samuli, A., Hillamo, R.,
 1209 Aalto, P., Kirkwood, S., and Kulmala, M.: Review of Aerosol Research at the Finnish Antarctic Research
 1210 Station Aboa and its Surroundings in Queen Maud Land, Antarctica, *Geophysica*, 45, 2009.

1211 Von Berg, L., Prend, C. J., Campbell, E. C., Mazloff, M. R., Talley, L. D., and Gille, S. T.: Weddell Sea
 1212 Phytoplankton Blooms Modulated by Sea Ice Variability and Polynya Formation, Geophysical Research
 1213 Letters, 47, e2020GL087954, 10.1029/2020GL087954, 2020.

1214 Weller, R., Schmidt, K., Teinilä, K., and Hillamo, R.: Natural new particle formation at the coastal Antarctic
 1215 site Neumayer, *Atmos. Chem. Phys.*, 15, 11399-11410, 10.5194/acp-15-11399-2015, 2015.

1216 Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T.,
 1217 Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegrí, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto,
 1218 P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R.,
 1219 Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R.,
 1220 Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H. G., Keck, L., Jiang, J., Scheckman, J.,
 1221 McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian,
 1222 S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate
 1223 high quality long-term observations of atmospheric particle number size distributions, *Atmos. Meas. Tech.*, 5,
 1224 657-685, 10.5194/amt-5-657-2012, 2012.

1225 Willis, M. D., Burkart, J., Thomas, J. L., Köllner, F., Schneider, J., Bozem, H., Hoor, P. M., Aliabadi, A. A.,
 1226 Schulz, H., Herber, A. B., Leaitch, W. R., and Abbatt, J. P. D.: Growth of nucleation mode particles in the
 1227 summertime Arctic: a case study, *Atmos. Chem. Phys.*, 16, 7663-7679, 10.5194/acp-16-7663-2016, 2016.

1228 Yan, C., Dada, L., Rose, C., Jokinen, T., Nie, W., Schobesberger, S., Junninen, H., Lehtipalo, K., Sarnela, N.,
 1229 Makkonen, U., Garmash, O., Wang, Y., Zha, Q., Paasonen, P., Bianchi, F., Sipilä, M., Ehn, M., Petäjä, T.,
 1230 Kerminen, V. M., Worsnop, D. R., and Kulmala, M.: The role of $\text{H}_2\text{SO}_4\text{-NH}_3$ anion clusters in ion-induced
 1231 aerosol nucleation mechanisms in the boreal forest, *Atmos. Chem. Phys.*, 18, 13231-13243, 10.5194/acp-18-
 1232 13231-2018, 2018.

1233 Yu, H., Ortega, J., Smith, J. N., Guenther, A. B., Kanawade, V. P., You, Y., Liu, Y., Hosman, K., Karl, T.,
 1234 Seco, R., Geron, C., Pallardy, S. G., Gu, L., Mikkilä, J., and Lee, S.-H.: New Particle Formation and Growth
 1235 in an Isoprene-Dominated Ozark Forest: From Sub-5 nm to CCN-Active Sizes, *Aerosol Science and*
 1236 *Technology*, 48, 1285-1298, 10.1080/02786826.2014.984801, 2014.

1237

Commented [QLLJ63]: RC1>>C2

Deleted: Aboa

Formatted: Default Paragraph Font, Check spelling and
grammar

Formatted: Left, Space After: 0 pt