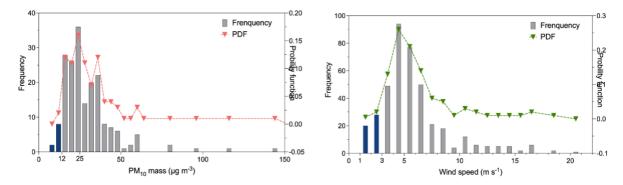
We thank referee #1 R Subramanian for the many constructive comments and suggestions which helped to improve the manuscript. In order to improve readability, we numbered each reviewer comment and its corresponding response in the style R1-C1 for reviewer 1 comment 1 and R1-A1 for reviewer 1 answer to comment 1, respectively. Comments by the reviewer are given in black, our response to the comments are shown in red, and modified text in the revised manuscript are given in green. Supporting information (SI) has been added. In the following, we provide a point-by-point response to all comments.


RC1: 'Important submission on an understudied region', R Subramanian, 05 Jul 2021

R1-C1: Deabji et al. present initial (five-month) PM10 and chemical composition results from a new monitoring station at a remote elevated site in Northern Africa. Given the lack of data from this region, this is an important contribution that will lead to greater understanding of aerosol sources in Northern Africa. Unfortunately, the manuscript as presented is hard to read and could benefit from restructuring/reorganization. Some of the conditions and comparisons seem arbitrary.

R1-A1: The manuscript has been copy-edited and large parts of the manuscript have been re-written and thoroughly improved. Figures have been improved. Grammatic errors have been corrected and the language has been edited to be more concise throughout. The references have been edited to avoid errors in the citations. The structure of the manuscript has been improved. The classification criteria have been reconsidered, therefore some of the results have been modified. Some sections have been combined to improve readability, comparisons, and avoid repetition. A point-by-point description of the changes made to the manuscript is given in the following.

R1-C2: For example, they report PM10 concentrations during "background" periods were up to $20 \,\mu\text{g/m}3$ - but that is because the authors set $20 \,\mu\text{g/m}3$ as the upper limit defining "background" periods.

R1-A2: The choice of the background definition was motivated by different studies such as Puxbaum et al., 2004; Vardoulakis and Kassomenos, 2008; Karaca et al., 2009; Harrison et al., 2004; Escudero et al., 2006 who suggested that the reference could be at 20 μ g m⁻³. However, as recommended by the reviewer the lowest fifth (5th) percentile of PM₁₀ mass concentrations has now been considered as the baseline threshold. This can be easily seen in the new PM₁₀ variation Figure (Fig. 3A). Based on these new criteria, the PM₁₀< 12 μ g m⁻³ was considered as background. The number of samples that med this condition was 10 and the mean concentration was about 10.9 μ g m⁻³. The frequency and the probability density function of mass concentrations and wind speed were calculated for background samples (Fig. S3). The thresholds chosen are in line with the results obtained from statistical calculations, as highlighted with the blue bars in the frequency and probability density function Figures below.

Figure S3. Frequency distribution and corresponding probability density function of PM₁₀ mass and wind speed during the sampling period.

The following text has been added on the manuscript on lines 318-323:

"To establish a reference baseline and evaluate the background conditions at the site, the lower 5^{th} percentile of the PM_{10} concentrations ($PM_{10} < 12 \mu g m^{-3}$) was found to be representative of remote background aerosol conditions. The PM_{10} frequency and probability density function as shown in Fig. S3 confirmed this observation. The samples within this PM concentration range had similar air mass trajectories and typical meteorological conditions with low wind speeds $< 3 m s^{-1}$. The air masses typically traveled in the free troposphere at about 1000 m above sea level, crossing the North-Atlantic Ocean before arriving at the site within the past 96 h."

R1-C3: They also excluded local pollution from "background" and then present results saying these were dominated by local dust – this again is a result of excluding other local sources.

R1-A3: The former criterion has been revised and new chemical composition of these samples evaluated. The current criteria also consider both local and regional sources during background conditions especially from anthropogenic activities such as local road dust resuspension from cars assessing the site. A corresponding sentence has been added to the manuscript in line 324 and now reads:

"These conditions were, however, not free from local and regional pollution from point sources such as dust resuspension from the cars accessing the site."

R1-C4: A better approach might be to pick the lowest fifth (5^{th}) or tenth (10^{th}) percentile of PM₁₀ mass concentrations and describe that as background condition.

R1-A4: We thank the reviewer for the suggestion which is crucial for the selection of background samples. As recommended by the reviewer the lowest fifth (5th) percentile of PM_{10} mass concentrations has now been considered as the baseline threshold for the background conditions. This can be easily seen in the new PM_{10} variation figure, as shown below in the updated Fig. 3a. Based on these new criteria, the maximum PM_{10} during these conditions was $12 \mu g \, m^{-3}$. The number of samples that met this condition was 10 and the mean concentration was about $10.9 \, \mu g \, m^{-3}$. A corresponding line has been added on the manuscript on lines 326-329:

"Consequently, the average background PM_{10} mass concentration at the Middle-Atlas was 10.9 μ g m⁻³, which was found to be stable and representative of periods of little external influence. In comparison, Benchrif et al. (2018) reported background PM_{10} values for Northern Morocco with an average of 12.2 μ g m⁻³, which is very similar to the concentrations determined in this study, 10.9 μ g m⁻³."

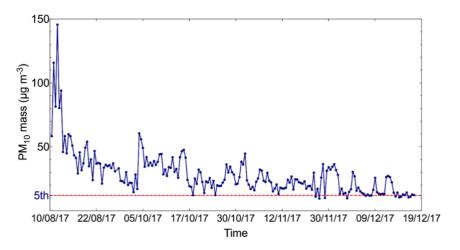


Figure 3. (A) Time series of daily PM₁₀ mass

R1-C5: Similarly, the comparisons with Delhi and Kathmandu seem out of place, as pollution in urban centers especially these locations is very complex and unlike AM5. Since the focus of this manuscript is on AM5, even comparing Moroccan cities (from other published literature, not this work) to Delhi is out of place in this manuscript.

R1-A5: The comparison section has been restructured and rewritten and Table 3 has been modified. The choice of stations was redesigned with a focus on remote background stations. The GAW network database was used as a reference for site selection. Sites like Jungfraujoch, Mt. Everest, Mt. Cimone, and Puy de Dôme were introduced to optimize and make the comparison more relevant. The choice of urban stations was also questioned, therefore only urban stations located in Morocco are now included. The update of Table 3 is as follows:

Table 3. Average mass concentration of PM_{10} from other high-altitude sites and urban sites in Morocco reported in the literature and ordered according to their altitudes.

Nº	Site	Site type	Sampling Period	Altitude	PM ₁₀	References
	Site	Site type	bumping reriod	(m)	(μg m ⁻³)	References
1	Mt. Everest, Nepal	High altitude	Feb 2006-May 2008	5079	6	Decesari et al., 2010
2	Lhasa, Tibet	High altitude	Jan-Feb 2006	3663	37	Wang et al., 2015
3	Jungfraujoch, Switzerland	High altitude	Feb-Mar 2005	3580	3	Cozic et al. 2008
4	Izaña, Canary Islands	High altitude	Feb 2008-Aug 2013	2400	46	García et al., 2017
5	Mount Cimone, Italy	High altitude	Jun-Aug 2004	2165	16	Marenco et al. 2006
6	Atlas (AM5),	High altitude	Aug-Dec 2017	2100	29	Present study
	Morocco					
7	Puy de Dome, France	High altitude	Apr 2006-Apr 2007	1465	6	Bourcier et al. 2012
8	Mahabaleshw ar, India	High altitude	Jun 2012-May 2013	1348	37	Leena et al., 2017
9	Djarjeeling, India	High altitude	Jan-Dec 2005	2194	29	Chatterjee et al. 2010
10	Marrakech, Morocco	Urban	2009-2012	465	55	Inchaouh et al., 2017
11	Meknes, Morocco	Urban	Mar 2007-Apr 2008	546	75	Tahri et al., 2012
12	Tetouan, Morocco	Urban	May 2011-Apr 2012	105	31	Benchrif et al., 2018
13	Kenitra, Morocco	Urban	Feb 2007-Feb 2008	26	110	Tahri et al., 2017

In addition, Table 4 in the previous version, which presented the chemical composition only during background conditions has been modified and now labeled Table 5. The new Table 5, presents the chemical composition for the entire sampling period comparing the values with those of other high-altitude sites, as shown below.

Table 5. Concentrations of main aerosol chemical species in PM_{10} (ng m⁻³) at AM5 compared to other high altitude mountain stations. Data are reported in the format average (mean \pm standard deviation) and NA: not available. Notice that the concentrations of PM_{10} mass are given in μ g m⁻³. ^a Present study; ^b Bourcier et al. 2012; ^c Chatterjee et al. 2010; ^d Marenco et al. 2008; ^e Decesari et al., 2010.

Elements	Mt. Atlas, Morocco ^a	Mt. Puy de Dome, France ^b	Mt. Himalaya, India ^c	Mt. Cimone, Italy ^d	Mt. Everest, Nepal ^e
Altitude (m a.s.l)	2100 m	1465 m	2194 m	2165 m	5079 m
Samples	190	NA	111	57	99
Period	Aug-Dec 2017	Apr 2006-Apr 2007	Jan-Dec 2005	Jun-Aug 2004	Apr 2006 - May 2008
Mass load	29.1 ± 17.3	5.6 ± 4.6	29.5 ± 20.8	16.1 ± 9.8	5.6 ± 4.6
OC	1069 ± 818	NA	NA	NA	800 ± 637
EC	247 ± 134	NA	NA	NA	115 ± 132
Na ⁺	186 ± 231	NA	2200 ± 2000	NA	24.2 ± 22.5
K^+	42 ± 35	NA	310 ± 210	NA	34 ± 32
Ca^{2+}	649 ± 579	15.5 ± 10.2	130 ± 10	360 ± 550	138 ± 90
Mg^{2+}	60 ± 50	NA	120 ± 60	NA	19.3 ± 7.2
Cl-	80 ± 133	NA	2350 ± 1500	82 ± 98	22 ± 46
$\mathrm{NH_4}^+$	298 ± 220	297 ± 276	50 ± 40	1400 ± 800	175 ± 183
NO_3	859 ± 687	510 ± 980	950 ± 200	840 ± 770	170 ± 223
SO_4^{2-}	941 ± 848	1380 ± 1160	3500 ± 2100	3500 ± 2000	394 ± 329
Al	443 ± 830	NA	NA	300 ± 460	740
Fe	486 ± 728	NA	NA	260 ± 440	NA
Ti	37 ± 45	NA	NA	30 ± 50	NA
V	3.5 ± 12.2	NA	NA	3.1 ± 1.5	NA
K	174 ± 156	NA	NA	160 ± 210	NA
Cr	4.3 ± 5.2	NA	NA	NA	NA
Ni	2.4 ± 3.1	NA	NA	1.4 ± 0.5	NA
Cu	1.2 ± 3.1	NA	NA	2.9 ± 3.1	NA
Zn	8.6 ± 6.2	NA	NA	9.9 ± 6.6	NA
Pb	4.8 ± 4.5	NA	NA	3.9 ± 2.4	NA
Mn	12.4 ± 39.3	NA	NA	6.2 ± 7.0	NA

The comparison of the chemical composition at AM5 has been added with other high altitude sites in section 3.3. The corresponding sentences have been added as follows:

In lines 395-398: "For instance, the high-altitude site in Mt. Cimone, Italy recorded several days with African dust transport which influenced the chemical composition (Marenco et al., 2006). However, the Saharan dust concentration at AM5 (17.7 μ g m⁻³) is approximately 4 times higher than at Mt. Cimone (4 μ g μ g m⁻³)."

In lines 398-400: "Nevertheless, the average concentrations of elements such as Al, Fe, Ti, and Mn, are comparable with the values reported in Mt. Cimone, Italy (Marenco et al., 2006), Table 5. However, the calcium, concentration at the AM5 (0.65 \pm 0.58 μ g m⁻³), was 2 times higher than the concentration recorded in Mt. Cimone."

In lines 401-402: "Furthermore, the calcium concentration was 5 times higher than the concentration recorded at other high-altitude station such as Mt. Himalaya and Mt. Everest (Chatterjee et al. 2010; d; Decesari et al., 2010)."

In lines 404-405: "Some studies have reported the high content of calcite in the soils of Northern Morocco 1.07 $\mu g \ m^{-3}$ which confirms the predominance of calcium-rich in the Atlas regions (Desboeufs and Cautenet, 2005; Kandler et al., 2009; Benchrif et al., 2018)."

In lines 432-435: "The study of Decesari et al. 2010 reported similar concentrations of OC (0.8 \pm 0. μ g m⁻³), and lower EC (0.11 \pm 0.13 μ g m⁻³) concentrations in PM10 at the Himalayan high-altitude station in Nepal. Furthermore, Sharma et al., 2020 reported higher OC (5.4 \pm 2.0 μ g m⁻³) and EC (2.2 \pm 2.0 μ g m⁻³) at the high-altitude site of Darjeeling, India most likely due to the higher influence of anthropogenic activities at the site."

In lines 346-449: "The OC/EC ratio observed at AM5 for BAM was similar to those found in local samples in Northern Morocco with an average of 1.9 (Benchrif et al. 2018). Moreover, the OC/EC ratio shows a slight difference with those observed in Mt. Everest (Decesari et al., 2010) whose ratios varied from 5 to 9."

In lines 476-481: "The comparison of sodium and chloride concentrations with other high-altitude studies is shown in table 5. The concentrations of Na+ $(1.8 \pm 2.31 \ \mu g \ m^{-3})$ and Cl- $(0.80 \pm 1.33 \ \mu g \ m^{-3})$ are several times lower than those at Darjeeling in India which has a concentration of Na+ and Cl-, of $2.2 \pm 2.0 \ \mu g \ m^{-3}$ and $2.3 \pm 1.5 \ \mu g \ m^{-3}$, respectively. On the other hand, the concentration of Na+ and Cl- were 4 to 8 times higher than the values reported at Mt. Everest station located at an altitude of 5079 m asl. In addition, the concentration of chloride was in good agreement with those observed in Mt. Cimone, Italy, $0.82 \pm 0.98 \ \mu g \ m^{-3}$ ".

In lines 481-484: "Sea salt concentration observed at the AM5 (0.45 µg m-3) was 5 times lower than at Tetouan (2.46 µg m⁻³), a coastal Mediterranean city in northern Morocco, and approximately 20 times lower than Cap Verde Atmospheric Observatory (CVAO) located in the tropical Atlantic Ocean (Benchrif et al. 2018; Fomba et al. 2014)."

In lines 504-508: "Secondary inorganic aerosol over the Atlas Mountains has been compared with the data reported in other high-altitude stations (Table 5). The average concentration of nitrate $(0.8 \pm 0.6 \,\mu g \,m^{-3})$ at AM5 was comparable with those reported in Mt. Himalaya and Mt. Cimone, $0.9 \pm 0.2 \,\mu g \,m^{-3}$ and $0.8 \pm 0.7 \,\mu g \,m^{-3}$, respectively (Chatterjee et al. 2010; (Marenco et al., 2006). However, the concentration of NO3- were found to be approximately 2 times higher than the value reported in Puy de Dôme (Bourcier et al., 2012), as shown in Table 5".

In lines 513-516: "Similar concentrations of ammonium at AM5 $(0.3 \pm 0.2 \,\mu g \,m^{-3})$ were found at Puy de Dôme, France $(0.3 \pm 0.2 \,\mu g \,m^{-3})$, whereas the concentration was 5 times lower than those reported in other high-altitude sites such as the Mt. Himalaya (Chatterjee et al., 2010). This indicates that the influence of ammonium remains relatively low despite the proximity of the site to agricultural activities located in the surroundings of Meknes."

In lines 517-519: "The concentrations of sulfate $(0.9 \pm 0.8 \,\mu g \,m^3)$ over AM5 were comparable with those at Puy de Dôme $(1.3 \pm 1.1 \,\mu g \,m^3)$, but were almost 4-5 times lower than all the other hilly stations except Mt. Everest (Decesari et al., 2010)."

R1-C6: I also had a hard time following the paper, and it could benefit from a more organized structure. For example, in the site intercomparison above, the authors compare AM5 with Izana (Moroccan coastal site), then with India/Tibet/Kathmandu, then back to Cape Verde (off the coast of North Africa), then to an unnamed background site in the Mediterranean. This discussion would be more cohesive if AM5 is compared first with all remote sites, then (if at all) with urban sites rather than switching back and forth.

R1-A6: The intercomparison section was rewritten and reworded following the reviewer's recommendations. Starting first with a comparison of station AM5 with remote high-altitude sites, then a comparison with Moroccan urban sites was introduced in the following paragraph. The intercomparison section has been added to the revised manuscript on lines 331-340 and now reads:

"The mean concentration recorded at AM5 from this study (29.2 \pm 17.3 μ g m⁻³) agreed well with the PM₁₀ concentration of other remote high-altitude sites, such as Darjeeling in Northeastern Himalayas (29 μ g m⁻³; Chatterjee et al. 2010), Lhasa in Tibet (37 μ g m⁻³; Wang et al., 2015), and Mahabaleshwar in India (37 μ g m⁻³; Leena et al., 2017) as presented in Table 3. Other high-altitude stations, such as Izaña, in Canary Islands (46 μ g m⁻³) showed much higher PM₁₀, most likely due to the exposure to strong Saharan dust events (García et al., 2017). In contrast, the PM₁₀ concentrations at AM5 were considerably higher than the PM₁₀ levels recorded in European and Asian high-altitude sites. For example, the average PM₁₀ mean value recorded in this study was about twice that of Mount Cimone, Italy (16 μ g m⁻³; Marenco et al., 2006) and factor 6 greater than the PM₁₀ in Everest Mountain (Decesari et al., 2010) and in Puy de Dôme, France (6 μ g m⁻³; Bourcier et al. 2012), and was approximately 10 times greater than the average level in Jungfraujoch (3 μ g m⁻³; Cozic et al., 2008)."

R1-C7: when discussing daily and monthly variations, they first discuss August/summer. In the next paragraph, they discuss Oct-Nov-Dec, but midway again discuss August and Saharan influence, then again present winter (Nov-Dec?) results.

R1-A7: The daily and monthly discussion has been restructured in a uniform and consistent paragraph. The variation during summer has been moved to the previous paragraph followed by the discussion on the autumn and winter. The corresponding sentences on lines 234-335 and now read:

"During August, high PM_{10} concentration were mostly related to high wind speeds from southeast wind direction. For example, PM_{10} mass concentration often exceeded 50 μ g m⁻³ and sometimes even reached up to 145 μ g m⁻³ during August, when the wind speed was stronger than 9 m s⁻¹."

R1-C8: Even the winter discussion is inconsistent, as they first say a change in wind direction leads to lower PM_{10} (which seems unlikely since the populated centers are to the west and wind speeds are high), but then attribute the lower PM to increased precipitation (which is more logical).

R1-A8: We thank the reviewer for this insightful comment. The winter discussion has been modified and the precipitation argument reworded to make it more consistent and uniform. The drop in PM is certainly due to precipitation. The corresponding sentences in lines 347-352 now read:

"A sharp fall in PM concentrations was noticed in November (22.8 \pm 7.9 μ g m⁻³) and December (15.9 \pm 5.6 μ g m⁻³). Overall, PM₁₀ concentration decreased from the summer to winter by 32%. This trend is most likely due to the increased amount of precipitation (peaks of 852mm) during fall and winter, which can lead to the wash-out effect of aerosol and its components (Holst et al. 2008)."

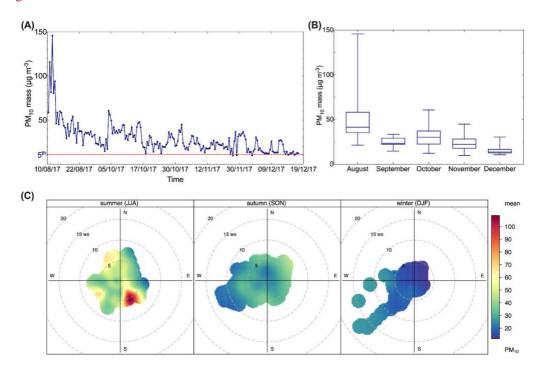
R1-C9: Skimming the rest of the paper showed continued repetition and disorganized presentation of results - for example, line 822 has the "first insight into aerosol chemical composition..." midway through a paragraph, and then next paragraph also starts with "first high altitude aerosol characterization study..."

R1-A9: The repetitions have been eliminated and the manuscript has been edited. All the copy editing modifications are listed at the end of the response.

R1-C10: I also don't know why sulfate concentration of 1.4 μ g/m³ is presented as high when average concentrations at AM5 are ~30 μ g/m³ - is that because that sulfate level is high relative to average sulfate at the site? It might help to separate these two results, then.

R1-A10: That sentence was meant to compare the sulfate concentrations with those during background conditions, Therefore, the two results were separated as suggested. In the first instance, the sulfate concentration of MCE is high $(1.2\pm0.9~\mu g~m^{-3})$ compared to the average sulfate concentration during background conditions $0.2\pm0.2~\mu g~m^{-3}$ at the AM5 site. The corresponding sentences have been added as follows and now read:

In lines 500-501: "In average, the sulfate concentration for MCE (1.2 \pm 0.9 μ g m⁻³) was about 5 times higher than background sulfate concentrations (0.2 \pm 0.2 μ g m⁻³)."


In lines 517-519: "The concentrations of sulfate $(0.9 \pm 0.8 \,\mu g \, m^{-3})$ over AM5 were comparable with those at Puy de Dôme $(1.3 \pm 1.1 \,\mu g \, m^{-3})$, but were almost 4-5 times lower than all the other hilly stations except Mt. Everest (Decesari et al., 2010)."

R1-C11: The next few sections were lengthy, somewhat repetitive descriptions of chemical composition results. The manuscript may be more readable if the monthly variation and chemical composition results are replaced and reorganized by air mass as winds from different directions seem to hit the site each month.

R1-A11: The manuscript has been restructured by introducing air mass classification before the description of the chemical composition. As a result, the new structure allows the discussion of the results of the chemical composition of the complete period using the interpretation of the influence of the air masses introduced previously, to avoid any repetitions. The modified structure now reads as follow:

- 3.1 Variation of PM10 mass
- 3.2 Air mass origins
- 3.3 Characterization of aerosol chemical composition for the complete measurement period
- 3.4 Inter-relationship between aerosol components
- 3.5 Day and night-time variation
- 3.6 Differences in chemical composition between dust and non-dust events

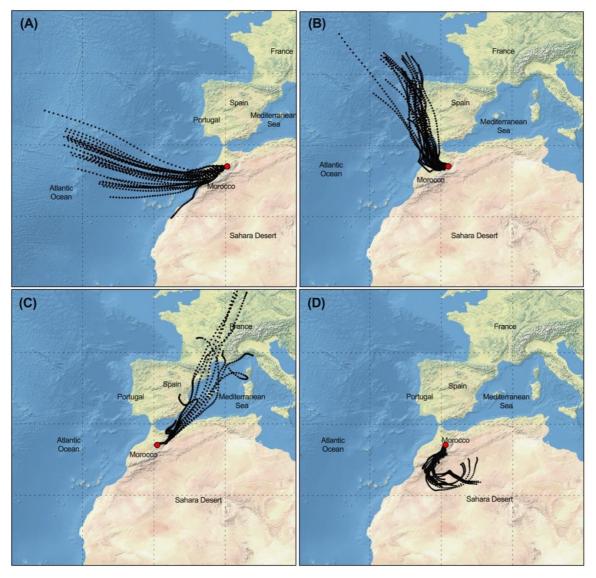

The section of PM_{10} mass variation according to month and chemical composition has been reorganized by introducing the influence of air masses and winds coming from different directions. Figure 3 was modified to discuss the variation of PM_{10} concentration according to the change of wind speed and direction of each month. A new Fig .3 is shown below.

Figure 3. (A, top right) Time series of daily PM_{10} mass; (B, top left) Box plot of monthly averages of PM_{10} mass; (C, bottom) Pollution rose of PM_{10} mass; The presented data were separated according to each season into summer (Aug), Fall (Sep-Nov), and winter (Dec).

R1-C12: Maybe the authors could shorten and reorganize the paper as NAO+MCE (as they are similar); ACE; SD; and local remote/background - these are perhaps more interesting for atmospheric research and future campaign planning than monthly data.

R1-A12: We thank the reviewer for his suggestion to reorganize the air mass classification section. Accordingly, the manuscript has been organized according to the reviewer's suggestion, the NOA and ACE air masses have been grouped, and Background Air masses; (BAM) have been introduced in the classification. Figure 4 has been modified as follows:

Figure 4. Typical 96h air mass back trajectory performed for AM5 during routine samples periods; aerosol type and PM₁₀ mass concentration are given in parentheses: (a) 18 December 2017: air mass from the North Atlantic Ocean considered to be representative of background conditions (Background, m=10.9 μg m⁻³); (b) 10 October 2017: air mass from Europe crossing coastline of North Morocco (Atlantic Coast Europe, m=44.1 μg m⁻³); (c) 2 November 2017: slightly polluted air mass from North East crossing Mediterranean Sea (Mediterranean Coast Europe, m=26.4 μg m⁻³); (d) 13 August 2017: dust loaded air mass coming from Sahara desert (Saharan Dust, m=94.1 μg m⁻³).

The paragraph describing the results of updated air mass classification in section air mass origins (3.2) has been modified. The corresponding sentences have been modified in lines 347-357 as follow and now read:

"The calculation of back trajectories using the Hysplit model allowed the identification of several remote sources of PM₁₀ at the station. Four main air masses categories were identified as shown in Fig. 4. i) Air masses that spent the last 96h over the Atlantic Ocean at high-altitude (1000 m.asl), representative of typical background air mass (BAM) conditions, which influenced about 5.3% of all samples; ii) Air masses originating from the Atlantic and crossing over the Coast of Europe (ACE), especially Spain and over Moroccan industrial cities located at the North Atlantic coast, influencing about accounts 26.8% of all samples; iii) Air masses from Europe crossing over the Mediterranean Coast and Europe (MCE) as well as over North Moroccan cities, as shown in Fig. 4c and influencing about 37.4% of all samples and iv) Air masses originating from Southern and/or Eastern Sahara crossing the desert (SD), at different altitudes before arriving at the AM5 and influencing about 22.6% of all samples. The remaining back trajectories represent mixing scenarios including 7.9% of all samples that could not be assigned to the four major classes mentioned above."

Consequently, the chemical composition corresponding to each air mass has been modified, as presented in Table 4. The concentrations of the compounds have been modified according to the new classification.

Table 4. PM₁₀ concentrations (μ g m⁻³) of main aerosol chemical species according to the air mass influence at AM5; The organic composition is given in ng m⁻³; The number of samples is written in parentheses.

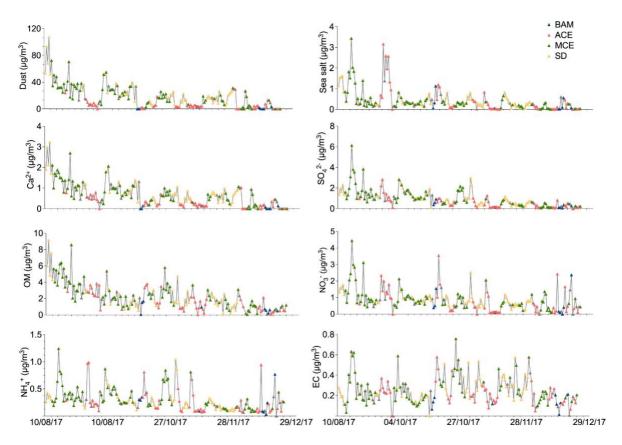
Aerosol	Air mass						
components	BAM (n=10)	ACE (n=51)	MCE (n=71)	SD (n=43)			
Mass load	10.9 ± 0.9	20.4 ± 6.3	33.8 ± 14.5	37.9 ± 25.3			
Dust	5.5 ± 3.5	13.3 ± 5.2	19.9 ± 11.9	29.1 ± 22.6			
Sea salt	0.05 ± 0.06	0.3 ± 0.5	0.3 ± 0.4	0.2 ± 0.2			
OM	1.0 ± 0.6	1.4 ± 1.1	2.7 ± 1.7	2.3 ± 1.8			
EC	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1			
POC	0.1 ± 0.06	0.2 ± 0.3	0.3 ± 0.3	0.2 ± 0.2			
SOC	0.3 ± 0.2	0.4 ± 0.4	1.0 ± 0.8	0.9 ± 0.8			
NO_3	0.5 ± 0.6	0.6 ± 0.7	1.0 ± 0.7	0.9 ± 0.4			
nss-SO ₄ ²⁻	0.2 ± 0.2	0.5 ± 0.5	1.2 ± 0.9	1.0 ± 0.6			
$\mathrm{NH_4}^+$	0.2 ± 0.2	0.2 ± 0.2	0.3 ± 0.2	0.2 ± 0.1			
Ca_2^+	0.2 ± 0.2	0.2 ± 0.2	0.8 ± 0.5	0.9 ± 0.6			
Alkanes	4.9 ± 3.2	5.6 ± 3.7	10.5 ± 7.7	9.2 ± 8.6			
PAHs	0.4 ± 0.5	0.4 ± 0.4	0.9 ± 2.1	0.7 ± 0.7			
Alkan-2-ones	7.8 ± 6.9	5.9 ± 5.5	5.5 ± 5.0	6.6 ± 4.1			
Sugars	-	3.7 ± 6.0	5.2 ± 7.7	1.8 ± 2.9			
Oxalate	44 ± 26	73 ± 58	129 ± 58	107 ± 63			
pН	5.6 ± 0.2	6.0 ± 0.4	6.5 ± 0.4	6.5 ± 0.4			
OC/EC	2.2 ± 1.1	3.3 ± 1.9	6.3 ± 7.5	4.6 ± 4.6			
CPI	3.3 ± 0.8	3.5 ± 2.4	3.9 ± 1.9	4.0 ± 3.1			

The comparison between the chemical composition with respect to the air masses (Table 4) has been included in the discussion paragraphs in section (3.3). The corresponding sentences have been added as follow:

In lines 383-389: "Mineral dust was found to be more than 7 times higher (37.9 \pm 25.3 μ g m-3) during dust events (SD), in comparison to remote background conditions (BAM) with an average concentration of 5.5 \pm 3.5 μ g m⁻³, as observed in Table 4. Other less intense Saharan dust storms occurred during the summer season between the 21st and 24th of August with a similar high dust concentration that was 5 times higher than dust background concentrations. The presence of mineral dust is relatively low but still significant for air masses other than SD, such as during the ACE (13.3 \pm 5.2 μ g m⁻³) and MCE (19.9 \pm 11.9 μ g m⁻³) air mass influence, as shown in Table 4."

In lines 444-445: "The highest OC/EC ratio (6.3 ± 7.5) was observed for MCE air masses, while the lowest ratio was recorded for BAM at about 2.3 ± 1.1 , as shown in Table 4."

In lines 462-463: "However, no significant difference was noticed in sea salt concentrations found in the ACE $(0.5 \pm 0.7 \,\mu\mathrm{g m^{-3}})$ and MCE samples $(0.5 \pm 0.5 \,\mu\mathrm{g m^{-3}})$, as shown in Table 4."


In lines 494-496: "On average, the influence of long-range transport during the ACE and MCE air masses for sulfate (2.8 μ g m⁻³) and nitrate (2.3 μ g m⁻³) were similar. However, the contribution of ammonium (1.7 μ g m-3) to particulate matter was particularly higher for MCE air mass."

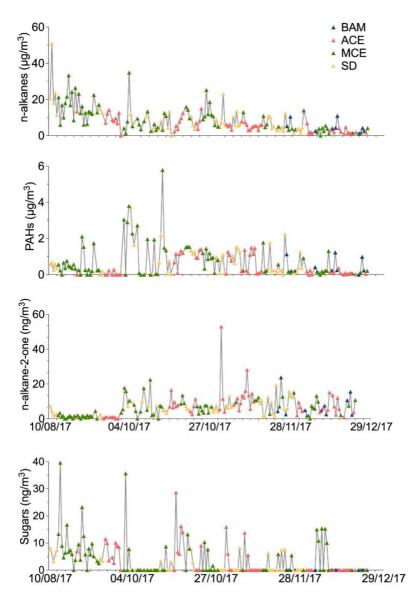
In lines 550-552: "Table 4 presents the CPI values calculated according to each air mass. The average CPI value was 3.8 ± 2.4 and ranged from 0.7 to 18.6. However, high CPI (>>1) was observed for all air masses, which indicates that the alkanes originated from plants waxes, as presented in Table 4 (Kavouras, 2002)."

In lines 570-575: "The highest amount of PAH was detected during October, approximately 5.7 ng m^{-3} due to long-range transport of MCE air masses, as shown in Figure 6. The minimum concentration was observed during winter, of about 0.05 ng m^{-3} . The average background concentration of PAHs was $0.4 \pm 0.5 \,\mu g \, m^{-3}$, which was low in comparison to other organic compounds likely because of high evaporation on warm days (Cincinelli et al., 2007). During MCE air mass, the PAH concentrations increased by 52% compared to the BAM concentration, as shown in Table 4."

In lines 630-641: "The average sugar concentrations during these air mass influences were ACE (3.7 ± 6.0 ng m^{-3}) and MCE (5.2 ± 7.7 ng m^{-3}), as listed in Table 4. In contrast, sugar compounds were relatively low in SD (1.8 ± 2.9 ng m^{-3}) air masses and were not found in the background PM_{10} conditions. Levoglucosan which is considered as a good tracer of biomass burning emissions in aerosol particulate matter, was particularly higher for ACE (2.0 ng m^{-3}) and MCE (1.6 ng m^{-3}) air mass influence, as displayed in Fig. S8. (Bauer et al., 2008). Arabitol shows a similar concentration for MCE and ACE with a mean of 1.0 ng m^{-3} suggesting that particles were loaded with primary biological aerosols such as pollen, fungal spores, vegetative debris, viruses, and bacteria from the marine coast (Fu et al., 2012). Glucose remained relatively high during MCE air mass influence in comparison to other air masses influence. During SD air mass influence, the concentration of arabitol was extremely low with a concentration less than 0.08 ng m^{-3} . However, glucose showed a higher concentration of about 0.7 ng m^{-3} but remains 3 times lower than MCE concentrations. This indicates that the sugars were most likely originated from marine air masses."

The background shading type has been modified to improve visibility. Thus, each sample is represented by a distinguishing color symbol for each specific air mass. At the same time, Figure 6, which shows the temporal variation of the organics, has been modified in the same way. The new Figure 5 and Figure 6 are shown below:

Figure 5. Time series of major aerosol chemical constituents in PM₁₀ filter samples collected from August to December 2017; The color of the symbols displayed for each sample represents a specific air mass origin: Background (blue); ACE (red); MCE (green); SD (yellow).


Consequently, the description of Figure 5 has been modified in section 3.3 according to the new air mass classification, so the modified paraphrases are listed as follows:

In lines 364-368: "During the 5 months of PM collection at the AM5 site, the average mineral dust concentration was about $17.7 \pm 7.4 \,\mu g \, m^{-3}$ and varied strongly between $0.05 \,\mu g \, m^{-3}$ and $107 \,\mu g \, m^{-3}$. The highest mean concentrations were observed in August (39 $\mu g \, m^{-3}$) and the lowest in December (3.7 $\mu g \, m^{-3}$). Low concentrations were observed during days with low wind speeds (< 2 $m \, s^{-1}$), low Saharan dust air mass inflow, and after precipitation events, which typically occurred in the fall and winter."

In lines 404-415: "Organic carbon (OC) and elemental carbon (EC) showed strong variation and distinct differences with an average of $1.1 \pm 0.8 \,\mu g \, m^{-3}$ and $0.2 \pm 0.1 \,\mu g \, m^{-3}$, respectively. The OC has both primary and secondary origin, and can be formed from primarily emitted substances through condensation or chemical reactions among them (Sarkar et al., 2019). The OC concentration reached a maximum $4.5 \,\mu g \, m^{-3}$ during summer, whereas the lowest concentration was observed during winter at about $0.03 \,\mu g \, m^{-3}$. The average concentration of OC progressively decreased from summer ($2.1 \pm 0.8 \,\mu g \, m^{-3}$) to winter ($0.3 \pm 0.2 \,\mu g \, m^{-3}$). The abundant contribution of organic matter in summer can be due to high biogenic emissions in the Middle Atlas. A slight increase in OC was also observed during dust events, as shown in Fig. 5, which suggests that the dust deposited at AM5 also contained biogenic material from the surroundings of the Middle-Atlas region."

In lines 464-469: "The Middle Atlas region is influenced by two maritime sources of sea salt, more often from the Atlantic Ocean, and sometimes from the Mediterranean Sea. During the study period, the average concentration of sea salt remains low $(0.45 \pm 0.55 \ \mu g \ m^{-3})$ and contributed only 1.6% of the total PM_{10} concentration. The highest concentrations were recorded during August when sea salt concentrations reached a maximum of 3.4 $\mu g \ m^{-3}$. The sea salt then decreased gradually, reaching a minimum concentration of 0.06 $\mu g \ m^{-3}$ during December. The sea salt concentration was high when wind speed exceeded 6 $m \ s^{-1}$, indicating that sea salt is strongly dependent on meteorological conditions and air mass sources."

In lines 487-498: "A significant part of PM composition was associated with the formation of secondary inorganic aerosols (SIA), which are mainly composed of sulfate, nitrate, and ammonium. They made up about 7.2% of the PM₁₀ mass. The temporal variation during the sampling period of SO_4^{2-} , NO_5 , and NH_4^+ is presented in Fig. 6, with average concentrations of $0.9 \pm 0.8 \,\mu g \, m^{-3}$, $0.8 \pm 0.6 \,\mu g \, m^{-3}$, and $0.3 \pm 0.2 \,\mu g \, m^{-3}$, respectively. In summer, the concentrations were relatively high during few days in August, with the observation of the highest sulfate, nitrate, and ammonium concentrations of up to $6.1 \,\mu g \, m^{-3}$, $4.4 \,\mu g \, m^{-3}$, and $1.2 \,\mu g \, m^{-3}$, respectively (Fig. 6). This was due to the transport of polluted MCE air masses through the Mediterranean Sea and across cities in the North of Morocco leading to high PM loaded aerosols. On average, the influence of long-range transport during the ACE and MCE air masses for sulfate (2.8 $\,\mu g \, m^{-3}$) and nitrate (2.3 $\,\mu g \, m^{-3}$) were similar. However, the contribution of ammonium (1.7 $\,\mu g \, m^{-3}$) to particulate matter was particularly higher for MCE air mass. Additionally, other peaks were also observed in aerosol concentrations both for SO_4^{-2-} and NO_3^{-2-} during August. This could be attributed to the long-range transport of dust aerosol from the Saharan desert in Southern Morocco. The subsequent months demonstrate a clear decreasing trend of SIA from high concentrations in summer (3.8 $\,\mu g \, m^{-3}$), to relatively low concentrations during winter (1.0 $\,\mu g \, m^{-3}$)."

Figure 6. Time series of organic compounds in PM_{10} filter samples collected from August to December 2017 at AM5; The color of the symbols displayed for each sample represents a specific air mass origin: Background (blue); ACE (red); MCE (green); SD (yellow).

The description of Figure 6 has been modified in the section of the organic compound (3.3.5) in line with the new air mass classification, so the modified lines are listed as follows:

In lines 529-533: "The distinguishing aspect of alkanes is their specific source and their ability to provide information about their origins (Pietrogrande et al., 2010). Individual n-alkanes with C-atom numbers in the range 19-34 were analyzed. Figure 6 shows the temporal variation of the n-alkanes revealing strong variations over the seasons with an average concentration of about 8.4 ± 7.1 ng m⁻³. The average concentration decreases from summer (16.1 ± 8.9 ng m⁻³) to winter (2.6 ± 2.0 ng m⁻³)."

In lines 566-572: "In the present study, polycyclic aromatic hydrocarbons (PAHs) with 3 to 7 rings were quantified. The temporal variation of the sum of the 20 identified PAH compounds in the particle is presented in Figure 6. The contribution of PAHs remains much lower than alkanes with an average concentration of 0.7 ± 0.8 ng m^{-3} over the whole study period. Contrary to what has been observed for alkanes, the PAH concentrations determined during the autumn months are higher than those during the summer and winter. The highest amount of PAH was detected during October, approximately 5.8 ng m^{-3} due to long-range transport of MCE air masses, as shown in Figure 6. The minimum concentration was observed during winter, of about 0.05 ng m^{-3} ."

In lines 590-598: "In total, 5 n-alkan-2-ones were detected in this study, as shown in Fig. S8. The n-alkan-2-one concentrations increased significantly from summer (1.8 ng m⁻³) to autumn (9.7 ng m⁻³), then decreased continuously to winter (6.3 ng m⁻³), with an average of 6.6 ng m⁻³ for the whole sampling period. The minimum concertation was recorded during the summer of about 0.60 ng m⁻³. In contrast, the maximum concentration was reached during autumn of about 52 ng m⁻³ due to ACE air mass influence, as shown in Fig. 6. The sum of n-alkane-2-one was between 0.67 to 13.2 ng m⁻³. The same relative composition of n-alkan-2-one concentrations was observed in both seasons, suggesting that they came from similar sources. However, the levels of n-alkan-2-one were much lower in concentration than those of n-alkanes. The average background concentration of the total n-alkan-2-one was 5.9 ± 5.5 ng m⁻³."

Further comments

After restructuring the manuscript to improve readability and logical flow (and some light copy-editing*) the paper can be re-reviewed and considered suitable for publication.*Some examples:

R1-C13: Lines 160-161: please use either km/h or m/s, but not both especially when comparing two values.

R1-A13: The unit " $m \, s^{-1}$ " was used to describe the wind speed and has been used to replace km h⁻¹ throughout the whole manuscript. The sentences can be read as follow:

Linies 149-150: "The average wind speed at AM5 was about 5.8 m s⁻¹ but reached a maximum of 19.7 m s⁻¹ due to turbulence in the mountain region, especially during winter."

Linie 150: "Over the summer, the minimum wind speed was about 1.6 m s⁻¹, and the relative humidity (RH) was low."

Linies 163-164: "During summer, southeast winds have a higher frequency but a lower average speed of about 5.8 m s^{-1} ."

Lines 165-166: "During this period, there is a strong occurrence of westerly winds which are often characterized by high wind speeds (stiff breeze) of up to 20 m s^{-1} ."

Lines 299-300: "For example, PM_{10} mass concentration often exceeded 50 μ g m⁻³ and sometimes even reached up to 145 μ g m⁻³ during August, when the wind speed was stronger than 9 m s⁻¹."

Lines 306-307: "High PM₁₀ concentrations were observed during strong westerly winds of up to $> 7 \text{ m s}^{-1}$."

Lines 320-321: "The samples within this PM concentration range were had similar air mass trajectories and typical meteorological conditions with low wind speeds $< 3 \text{ m s}^{-1}$."

Lines 336-438: "Low concentrations were observed during days with low wind speeds ($< 2 \text{ m s}^{-1}$), low Saharan dust air mass inflow, and after precipitation events, which typically occurred in the fall and winter."

Lines 457-459: "The sea salt concentration was high when wind speed exceeded 6 m s⁻¹, indicating that sea salt is strongly dependent on meteorological conditions and air mass sources."

Lines 800-801: "High speeds were recorded during the night, up to 17.5 m s⁻¹, mostly associated with marine air masses."

R1-C14: It is unclear why low wind speeds indicate Saharan dust reaches AM5 via this path.

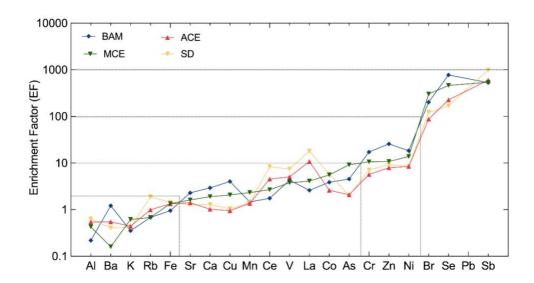
R1-A14: The change in wind direction in addition to the wind speed is responsible for the transport of the Saharan dust. Nevertheless, the low wind speed from the south recorded during summer is due to the High Atlas Mountains which protect the site and act as a barrier to block the transport of Saharan mineral dust. By contrast, the marine air masses coming from the west are characterized by strong winds and can reach maximum speeds of 20 m s⁻¹. As result, the sentences have been corrected in section 3.3.1 in lines 368-375, and now read:

"The influence of the Saharan dust on the Middle Atlas region remains relatively dependent on meteorological conditions. Firstly, the direction and speed of the wind, as the typical Saharan dust events were observed during high wind speed periods from south and southeast. Secondly, their progression depends mainly on favorable weather conditions for transport, the difference in temperature between day and night, humidity, and especially the scarcity of rainfall. Thirdly, the High-Atlas mountains situated at 4000 m of altitude acts as a barrier to

Saharan dust transport which forces the winds to deviate from their path. All these factors influence the transport of large particles from the Sahara to the Middle-Atlas during the different seasons."

R1-C15: Also the authors say summer is dominated by southwestern winds, but only describe westerly and southeasterly winds.

R1-A15: The polar rose of PM_{10} in Figure 3c has been modified accordingly for each month to discuss the variation of PM_{10} concentration with respect to wind speed and direction. A description of southwestern winds has been added in lines 305-307, and now reads:


"Furthermore, high concentrations up to 40-50 μ g m⁻³ were observed as well with westerly winds, especially during northwest and southwest winds. The highest PM₁₀ concentrations was observed during strong westerly winds of up to > 7 m s⁻¹."

R1-C16: The last sentence of this section then says summer is dominated by southern winds, so this section is also confusingly structured/worded.

R1-A16: The last sentence of the section has been deleted and the paragraph has been restructured and rewritten, and the lines 298-316 now read:

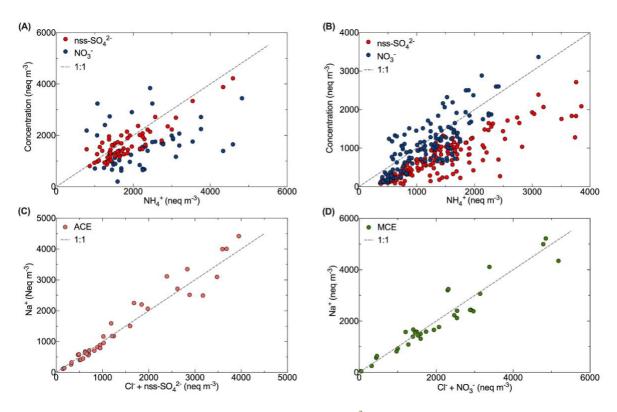

"During August, the high PM_{10} concentrations were mostly related to high wind speeds from the southeast. For example, PM₁₀ mass concentration often exceeded 50 µg m⁻³ and sometimes even reached up to 145 µg m⁻³ during August, when the wind speed was stronger than 9 m s⁻¹. The high PM_{10} concentration recorded was due to the influence of Saharan dust events during periods of air mass influence from the southern sector located in the southeast of the AM5 station. The Middle Atlas region is marked by particular meteorological conditions during the summer with low humidity and often low precipitation (avg. 37 mm), as shown in Table 1. These hot and arid conditions are known to favor the transport of dust particles from the Saharan desert to the Atlas Mountains (Rodríguez et al., 2011). Furthermore, high concentrations of up to 40-50 µg m⁻³ were observed as well with westerly winds, especially during northwest and southwest winds. High PM₁₀ concentrations were observed during strong westerly winds of up to > 7 m s⁻¹. The back trajectory analysis suggests that the high concentrations during this period were most likely associated with the long-range transport of aerosol particles from the western coast of the Iberian Peninsula. In contrast to the summer period, PM_{10} mass concentrations were lower during the fall, despite some temporal peaks. The PM_{10} concentrations were generally lower in September (24.2 \pm 5.1 $\mu g \ m^{-3}$) and October (30.5 \pm 10.8 $\mu g \ m^{-3}$). During this period, winds originated from the northeast suggesting the influence of air mass transport from the Mediterranean Sea coast. A sharp fall in PM concentrations was noticed in November (22.8 \pm 7.9 μg m³) and December (15.9 \pm 5.6 μg m³). Overall, PM₁₀ concentration decreased from the summer to winter by 32%. This trend is most likely due to the increased amount of precipitation (peaks of 852mm) during fall and winter, which can lead to the wash-out effect of aerosol and its components (Holst et al., 2008). "

Figure 7 has been updated according to the new air mass classification. The category of Background Air Masses has been added as follow:

Figure 7. Crustal enrichment factors (EF) of aerosol PM_{10} evaluated for the different trace metal elements at AM5; The averaged values are plotted according to their respective air mass origins.

The correlation plot displayed in Figure 8 have been updated according to the new air mass classification as follow:

Figure 8. Scatter plot of (A) NH_4^+ with NO_3^- and nss- SO_4^{2-} during summer; (B) NH_4^+ with NO_3^- and nss- SO_4^{2-} during autumn-winter; (C) Na^+ and $Cl^- + SO_4^{2-}$ during ACE air mass; (D) Na^+ and $Cl^- + NO_3^-$ during MCE air mass at the AM5 site.

The inter-relationship between aerosol components section (3.4) has been restructured by adding subheadings as follow:

- 3.4.1 Nitrate and nss-sulfate
- 3.4.2 Ammonium nitrate and ammonium sulfate
- 3.4.3 Sodium and chlorine

Therefore, the discussion paragraphs of different correlations have been reformulated as follow:

In lines 708-721: "The correlation between NO_3 " and $nss\text{-}SO_4$? $(r^2=0.76)$ indicates their possible common origin. The correlation was more pronounced for MCE air masses $(r^2=0.80)$ in contrast to ACE $(r^2=0.43)$ air masses, suggesting an enhanced transport of secondary anthropogenic aerosol from the Mediterranean coast (Liu et al., 2017) to the AM5 site. The nss-sulfate concentrations were slightly correlating with Vanadium which is associated with the emissions of oil combustion, ship emissions as well as iron and steel industrial emissions (Pandolfi et al., 2011). A strong correlation of NO_3 " and $nss\text{-}SO_4$? was observed with oxalate $(C_2H_4$?), which could indicate that

they have a common source and that they can originate from biomass burning and secondary transformations. $Nss-SO_4^2$ also originated from crustal sources especially as elevated concentrations were observed during dust events. This assertion was supported by a good correlation of $nss-SO_4^{2-}$ with $nss-Ca^{2+}$ (Fig. S7), indicating the likely presence of calcite particles of crustal origin. A similar observation was reported by Okada and Cai, (2004), who observed that Desert dust was associated with sulfur compounds and organic matter from surrounding agricultural areas. Indeed, the particles with high sulfate content were accompanied by Ca and were assigned as gypsum particles, also suggesting that the sulfur in these particles originated from a sedimentary source (Falkovich et al., 2001)."

In lines 728-741: "The analysis of the correlation matrices between nss- SO_4^{2-} and NO_5^- with ammonium (NH_4^+) was applied to better understand the inter-relationship between the secondary inorganic species. A correlation between nss- SO_4^{2-} and NH_4^+ ($r^2=0.90$) supported the hypothesis of dominant ammonium sulfate particles $(NH_4)_2SO_4$ in the summer especially when air masses were coming from ACE, as shown in Fig. 8. During this period, a strong correlation was found between sulfate and solar radiation which suggests that nss- SO_4^{2-} was produced via photochemical reaction (<u>Baker and Scheff, 2007</u>). Nevertheless, the transport of nss- SO_4^{2-} from the Atlantic coast also contributes to the formation of ammonium sulfate. However, the trend is more towards ammonium nitrate (NH_4NO_3) in winter, given that the main correlation of NH_4^+ with NO_3^- ($r^2=0.95$) mainly present in MCE air masses. Nitrate shows a strong dependency on the temperature at AM5, most likely due to the stability of ammonium nitrate in the atmosphere at low temperatures (<u>Squizzato et al., 2013</u>). The predominance of nitrates over sulfates during winter, where nitrates and ammonium remain high, is probably due to the influence of temperature that prevents the dissociation of ammonium nitrate particles (<u>Ricciardelli et al., 2017</u>). Moreover, a similar pattern of NO_3^- and NH_4^+ as observed by <u>Querol et al., 2004</u> in the Mediterranean coast with a summer minimum and suggested that it could be due to the low thermal stability of the nitrate in the hot season."

In lines 738-750: "The evolution of the sea salt constituents and their relationship with the most important aerosol acidic species such as NO_3 ° and SO_4^{2-} was investigated according to their air mass origins (Fig. 8). A correlation between sodium and chlorine was observed (r^2 =0.76), as shown in Fig. 8. The scatter plot of molar equivalent concentrations of Na^+ and Cl^- shows a strong correlation specifically for ACE and SD air masses. However, the data points are below the seawater reference line and only approach this line when the Cl^- concentration is combined with NO_3 ° and nss- SO_4 ?-. This indicates that chloride was depleted in the sea salt particles due to the displacement of chloride by sulfate from sulfuric acid when air masses were coming from MCE and ACE, especially as photochemical processes favor sulfate formation during summer. The same scenario has been observed for NO_3 ° with a considerable difference during the winter. Indeed, the correlation between sodium and the sum of chloride and nitrate shows the chloride depletion and indicates that the Mediterranean Sea air mass was loaded with aged sea salt. Similar results were observed in the North of Morocco where the mass fraction of nitrate was higher in the coarse fraction which indeed corresponds to aged sea salt (Benchrif et al. 2018). No correlation between Na^+ and Cl^+ was observed in the BAM conditions."

R1-C17: <u>Line 260:</u> Either delete "while" or replace it with "However" or combine this sentence with the previous sentence - separating the two as "mineral dust, while...".

R1-A17: "While" was delated and replaced by "However" in Lines 262-263, and now reads:

"However, method 2 allows to take into account the overall mineral composition and therefore was applied in this study."

R1-C18: Line 293: replace "accordingly" with "for example,"

R1-A18: The word "accordingly" was replaced with "for example,"

The corresponding sentence has been modified on lines 298-300, which now reads:

"During August, the high PM_{10} concentrations were mostly related to high wind speeds from the southeast. For example, PM_{10} mass concentration often exceeded 50 μ g m⁻³ and sometimes even reached up to 145 μ g m⁻³ during August, when the wind speed was stronger than 9 m s⁻¹."

R1-C19: Line 294: says PM₁₀ peaked at 143 μ g/m³ but line 307 says the peak was 145 μ g/m³.

R1-A19: The corresponding PM_{10} concentration has been corrected. The corresponding sentence has been modified on lines 289-290, which now reads:

"The PM₁₀ mass concentration time series at the AM5 station varied from 9.5 μ g m⁻³ to 145.6 μ g m⁻³ with averaged of 29.2 \pm 17.3 μ g m⁻³."

R1-C20: Line 336: delete "In contrast" (and in any case, probably don't compare AM5 to a complex urban site outside Morocco as mentioned earlier.)

R1-A20: The comparison with other urban sites has been removed and replaced by urban Moroccan sites. In addition, the term "In contrast" was deleted.

R1-C21: Lines 348-349: I assume they mean the urban sites in Morocco are twice or thrice (not trice; also, "two or three times" is better) the AM5 values, but the sentence is unclear.

R1-A21: Indeed, a typing error was made in the sentence. Therefore the sentence has been rephrased in lines 340-343, and now reads:

"Other Moroccan sites, such as Marrakech, Meknes, and Agadir, which are exposed to strong urban emissions, usually show PM_{10} concentrations between 50 and 110 μ g m⁻³, which is much higher than the concentration found at AM5 in this study (Inchaouh et al., 2017; Tahri et al., 2012; Tahri et al., 2017)."

R1-C22: The first two sentences of this paragraph could be easily rephrased as "Urban sites show PM10 values two to three times that observed at AM5 (Table 3)." However, I just noticed only one other site in Morocco listed in Table 3 - Tetouan, which has very similar PM₁₀ to AM5.

R1-A22: In addition to the Tetouan site, other Moroccan sites such as Marrakech, Kenitra, and Meknes, have now been added in Table 3 as presented previously. Therefore, the sentences in lines 340-345 have been revised and now read:

"Other Moroccan sites, such as Marrakech, Meknes, and Agadir, which are exposed to strong urban emissions, usually show PM10 concentrations between 50 and 110 µg m³, which is much higher than the concentration found at AM5 in this study (Inchaouh et al., 2017; Tahri et al., 2012; Tahri et al., 2017). These results highlight a better air quality at AM5 in comparison to many sites and indicate that the station can serve as a good remote reference station for defining background concentrations in Morocco and possibly the whole of North Africa."

References

Escudero, M., Stein, A., Draxler, R. R., Querol, X., Alastuey, A., Castillo, S., and Avila, A.: Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model, J. Geophys. Res., 111, D06210, https://doi.org/10.1029/2005JD006395, 2006.

Harrison, R. M., Jones, A. M., and Lawrence, R. G.: Major component composition of PM10 and PM2.5 from roadside and urban background sites, Atmospheric Environment, 38, 4531–4538, https://doi.org/10.1016/j.atmosenv.2004.05.022, 2004.

Karaca, F., Anil, I., and Alagha, O.: Long-range potential source contributions of episodic aerosol events to PM10 profile of a megacity, Atmospheric Environment, 43, 5713–5722, https://doi.org/10.1016/j.atmosenv.2009.08.005, 2009.

Puxbaum, H., Gomiscek, B., Kalina, M., Bauer, H., Salam, A., Stopper, S., Preining, O., and Hauck, H.: A dual site study of PM2.5 and PM10 aerosol chemistry in the larger region of Vienna, Austria, Atmospheric Environment, 38, 3949–3958, https://doi.org/10.1016/j.atmosenv.2003.12.043, 2004.

Vardoulakis, S. and Kassomenos, P.: Sources and factors affecting PM10 levels in two European cities: Implications for local air quality management, Atmospheric Environment, 42, 3949–3963, https://doi.org/10.1016/j.atmosenv.2006.12.021, 2008.