

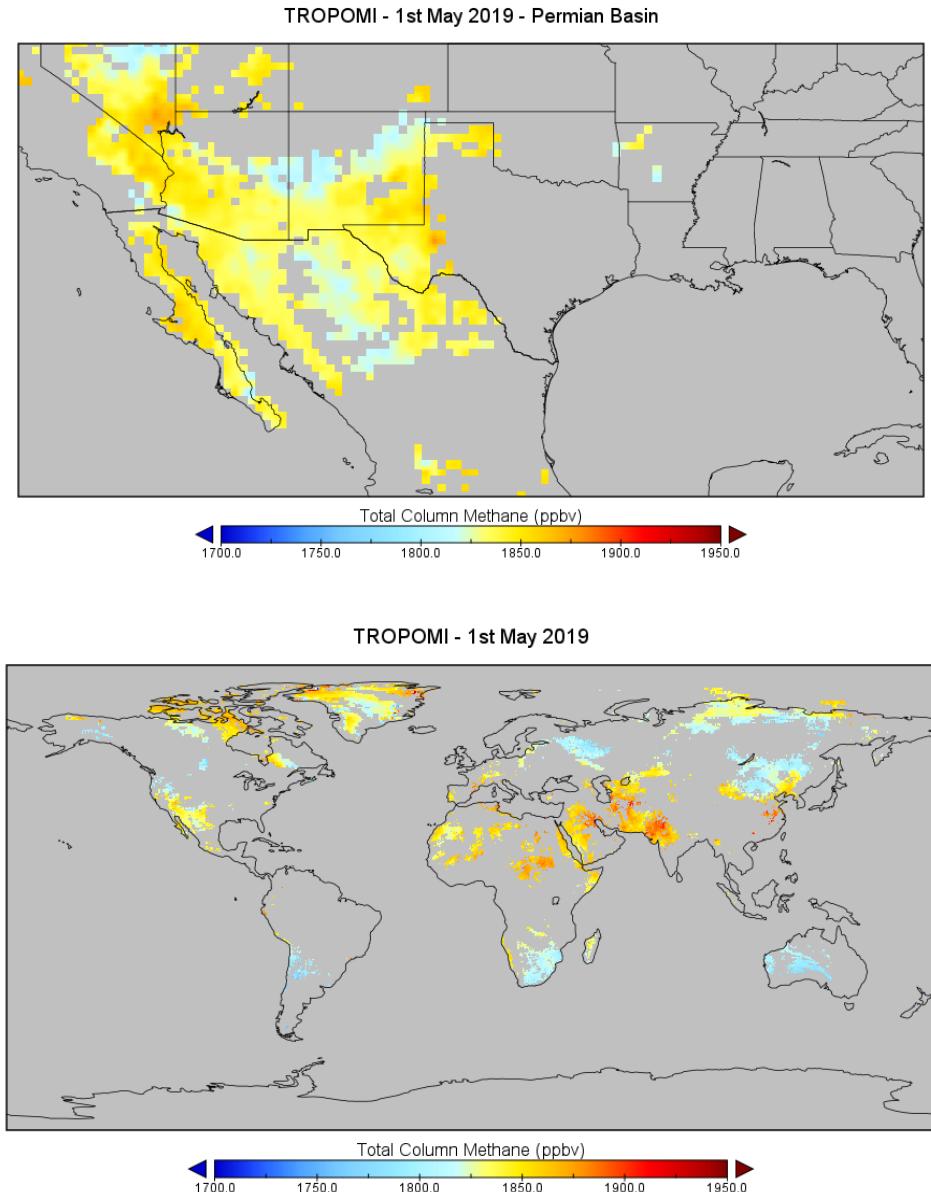
Supplement of

Quantification of methane emissions from hotspots and during COVID-19 using a global atmospheric inversion

5 Joe McNorton¹, Nicolas Bousserez¹, Anna Agustí-Panareda¹, Gianpaolo Balsamo¹, Richard Engelen¹,
Vincent Huijnen², Antje Inness¹, Zak Kipling¹, Mark Parrington¹, Roberto Ribas¹

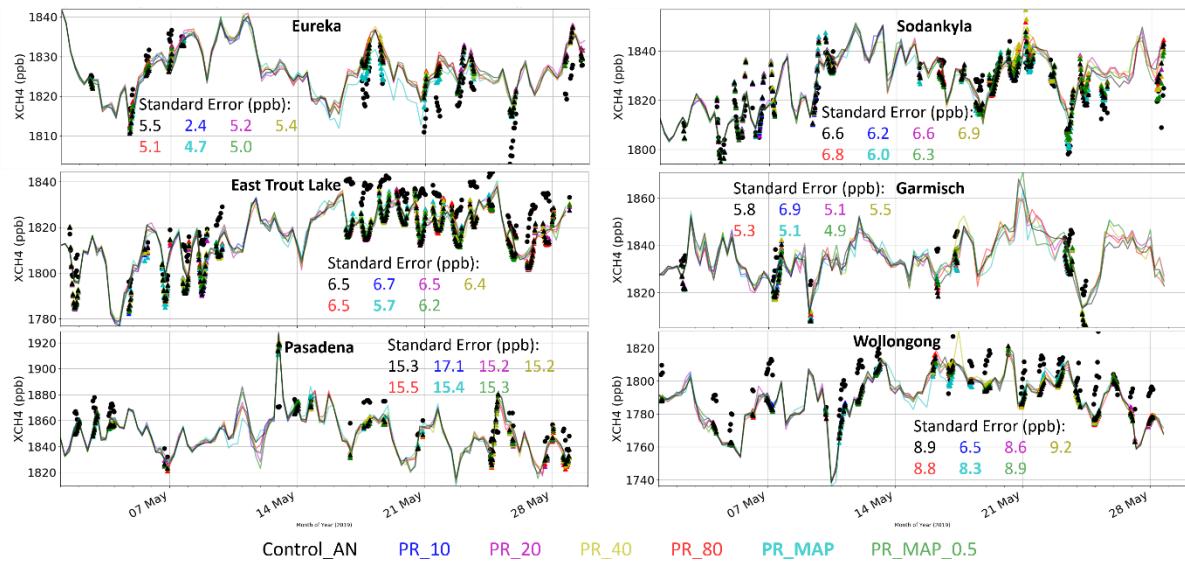
¹European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX, UK

²Royal Netherlands Meteorological Institute (KNMI), De Bilt, NL-3731, Netherlands


10 *Correspondence to:* Joe McNorton (joe.mcnorton@ecmwf.int)

The full list of simulations performed are provided in ST1 with the dates and purpose of the experiment, these can be divided between those used for prior error tuning and those used for source attribution for different times.

Experiment Name	Start Date	End Date	Purpose
PR_10	1 st May 2019	1 st June 2019	Evaluate 10% prior error
PR_20	1 st May 2019	1 st June 2019	Evaluate 20% prior error
PR_40	1 st May 2019	1 st June 2019	Evaluate 40% prior error
PR_80	1 st May 2019	1 st June 2019	Evaluate 80% prior error
PR_MAP	1 st May 2019	1 st June 2019	Evaluate mapped error
PR_MAP_0.5	1 st May 2019	1 st June 2019	Evaluate halved mapped error
Control_AN	1 st May 2019	1 st June 2019	Control Analysis for Comparison
INV_2018	1 st May 2018	1 st July 2018	Emissions for 2018 (including case studies)
INV_2019	1 st January 2019	1 st July 2019	Emissions for 2019 (including case studies)
INV_2020	1 st January 2020	1 st July 2020	Emissions for 2020 (including case studies)
EAG_2019	1 st October 2019	1 st December 2019	Eagle Ford blowout case study
LATE_2020	1 st August 2020	31 st December 2020	Various case studies.


Supplementary Table 1 Details of all IFS inversion experiments performed.

The global coverage of TROPOMI XCH₄ is represented for a single day in S1, data have been gridded to the IFS increment resolution (~40km²) and averaged where multiple observations are available. The coverage is representative of the number of quality checked observations assimilated within one 24-window (~150,000). GOSAT and IASI observations are also assimilated further improving the global coverage.

20 **Supplementary Figure 1. Example TROPOMI XCH₄ coverage for a 24-hour period on 1st May 2019. Quality flags are applied to remove poor data. Note that observations are averaged into 40 km² gridcells.**

Prior error evaluation was performed using multiple estimates as given by table S1 (PR_*)²⁵. Comparisons were made for a 1-month period (May 2019) with TCCON retrievals (Wunch *et al.*, 2011) (S2). Only a subset of the 16 sites are shown for illustration purposes. Averaged across all sites the lowest standard error and absolute mean bias, and high correlation was found when using the mapped prior error (PR_MAP).

Supplementary Figure 2. Comparisons of XCH4 from inversions using 6 different prior uncertainties and 1 where only the initial 3d-state is optimised (Control_AN) with a subset of 6/16 TCCON sites for May 2019 with standard error values given.