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Abstract.  10 

Concentrations of atmospheric methane (CH4), the second most important greenhouse gas, continue to grow. In recent years 

this growth rate has increased further (2020: +154.67 ppb), the cause of which remains largely unknown. Here, we 

demonstrate a high-resolution (~80km), short-window (24-hour) 4D-Var global inversion system based on the ECMWF 

Integrated Forecasting System (IFS) and newly available satellite observations. The largest national disagreement found 

between prior (5.363.1 Tg moyr-1) and posterior (5.059.8 Tg moyr-1) CH4 emissions is from China, mainly attributed to the 15 

energy sector. Emissions estimated forrom our global system agree well with previous basin-wide regional studies and point 

source specific studies. Emission events (leaks/blowouts) >10 tCH4 hr-1 were detected, but without appropriateaccurate prior 

uncertainty information, were not well quantified. Our results suggest that global anthropogenic CH4 emissions for the first 6 

months of 2020 were, on average, 5.7470 TGg yr-1mo-1 (+1.6%) higher than for 2019, mainly attributed to the energy and 

agricultural sectors. Regionally, the largest 2020 increases were seen from China (+2.6220 TGg yr-1mo-1, 4.3%), with 20 

smaller increases from India (+500.8 TGg yrmo-1, 1.52.2%) and USAIndonesia (+0.340 TGg yr-1mo-1, 2.62.2%). Results 

show the rise in emissions, and subsequent atmospheric growth, would have occurred with or without the COVID-19 

slowdown. When assuming a consistent year-on-year positive trend in emissions, results show that Dduring the onset of the 

global slowdown (March-April, 2020) energy sector CH4 emissions from China increased above expected levels; however, 

during later months (May-June, 2020) emissions decreased below expected pre-slowdown levelslevels. Results for the first 6 25 

months of 2019/2020 suggest Tthe accumulated impact of the COVID-19 slowdown on CH4 emissions from March-June 

2020 is found to be small relative to the long-term positive trend in emissions. Changes in OH concentrationatmospheric 

chemistry, not investigated here, may have contributed to the observed growth in 2020. Future work aims to develop the 

global IFS inversion system and to extend the 4D-Var window-length using a hybrid ensemble-variational method. 
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1 Introduction 30 

Atmospheric methane (CH4) as a long-lived greenhouse gas (GHG) has contributed to ~23% of the additional radiative 

forcing since 1750 (Etminan et al., 2016), second only to CO2. Near-surface concentrations have more than doubled since the 

pre-industrial era, with the global average dry air mole fraction reaching 1891 ppb in 2020 (gml.noaa.gov, 2021). This 

growth can mainly be attributed to increased anthropogenic emissions from agriculture, biomass burning, fossil fuel 

extraction and use, and waste (Etheridge et al., 1998). 35 

 

The reduction in global human activities, triggered by the COVID-19 pandemic, provided an opportunity to assess the 

impact of potential rapid climate mitigation strategies to reduce GHG emissions (Diffenbaugh et al., 2020). The sectors most 

obviously affected by the slowdown, e.g., transport and industry, are directly associated with fluxes of short-lived pollutants 

(Ming et al., 2020) and CO2 (Le Quéré et al., 2020), and less so CH4 (Forster et al., 2020). The change in energy and fuel 40 

demand is estimated to have reduced oil and gas CH4 emissions by 10 % for 2020 when compared to 2019 (IEA, 2021). 

Similarly, a recent study found reduced emissions from the largest oil- producing basin in the USA, the Permian Basin, 

between April and May of 2020 (Lyon et al., 2020). Despite this, during 2020 atmospheric concentrations of CH4 grew by 

154.76±0.4 ppb, the largest amount since records began in the early 1980s (NOAA, 2021). An alternative hypothesis is aThe 

reduction in demand could have increased venting/flaring when extracting fossil fuels, resulting inleading to increased 45 

atmospheric concentrations. The remaining CH4 source sectors were not expected to have been noticeably impacted by 

changes in activity during the slowdown. The reduced emissions of OH-forming nitrogen oxides (NOx) during the slowdown 

may have reduced the CH4 sink (Stevenson et al., 2021), however another recent study suggests this impact may only have 

accounted for, at most, a 2 ppb growthbe small (Weber et al., 2020). 

 50 

TGiven the relatively large atmospheric variability of CH4 concentrations and relatively accurate available measurements, 

allow for the quantification and attribution of emissions is possible using inverse modelling based on both in-situ (e.g. 

Wilson et al., 2016; McNorton et al., 2018) and satellite observations (e.g. Bergamaschi et al., 2018; Maasakkers et al., 

2019). Global atmospheric flux inversions (e.g. Segers and Houweling, 2018; Qu et al., 2021) are typically performed at a 

coarse spatiotemporal resolution (~monthly, >1°), for which localised events (e.g. leaks and blowouts) are difficult to detect. 55 

Additionally, previous attempts to quantify emissions have been restricted by limited surface and satellite observations. In 

2002, tThe Scanning Imaging Absorption spectrometer for Atmospheric CartograpHY (SCIAMACHY) provided the first 

total column CH4 (XCH4) measurements from space. These observations were superseded by the Infrared Atmospheric 

Sounding Interferometer (IASI) in 2006 and the Greenhouse gases Observing SATellite (GOSAT) in 2009, offering higher 

sensitivity and spatial resolution (~10 km). GOSAT is limited by a relatively narrow spatial sampling restricting the 60 

coverage. Both instruments have been used to constrain CH4 surface fluxes in inversion studies (e.g. Frankenberg et al., 

2005; Maasakkers et al.., 2019). The TROPOspheric Monitoring Instrument (TROPOMI) instrument on-board Sentinel-5P, 
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launched in 2017, provides global high-resolution (~7 km) XCH4 observations with an improved spatiotemporal coverage 

and precision (Veefkind et al., 2012; Hu et al., 2018). These newly available observations provide the opportunity to detect 

CH4 hotspots (Barré et al., 2020) and potentially constrain CH4 fluxes at high spatiotemporal resolution (Pandey et al., 2019; 65 

Zhang et al., 2020). 

 

This study presents and evaluates a first version of the new capabilities introduced in the European Centre for Medium-

Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) to estimate emissions of greenhouse gases and 

atmospheric pollutants using satellite observations of their atmospheric concentrations. The system is being developed in the 70 

framework of the EU-funded Copernicus CO2 project (coco2-project.eu, 2021) and its precursor, the CO2 Human Emission 

project (Balsamo et al., 2021) as the global prototype for a new Copernicus anthropogenic CO2 emissions monitoring and 

verification support capacity (Janssens-Maenhout et al., 2020). For this paper, the focus on CH4 emissions allows to benefit 

from greater observability from remote-sensing (compared to CO2) and suitably large spatiotemporal variability, 

addressingHere, we focus on anthropogenic CH4 emissions, as they offer a useful testbed for the future CO2 system for three 75 

main reasons. First, relatively accurate remote-sensing observations of CH4 are available at a high spatiotemporal resolution. 

Second, the atmospheric gradients are larger for CH4, providing a suitably large sensitivity of concentration to emissions. 

Third, the anthropogenic contribution to fluxes is comparable to the natural component, whereas for CO 2 the anthropogenic 

component is considerably  smaller. We address three main outstanding questions. First, are CH4 emission hotspots 

quantifiable using multiple sensors and a high-resolution global short-window 4D-Var system when accounting for 80 

meteorological errors? Second, how well do concentrations generated using posterior emission estimates agree with 

independent observations and existing studies? Third, is the system capable of assessing potential longer-term trends during 

the COVID-19 pandemic slowdown? 

 

The following sections, 2.1 and 2.2, outline model methodology, detailing the 4D-Var inversion system used and prior 85 

assumptions made. Section 2.3 describes the observations assimilated into the inversion system. Section 3.1 identifies 

suitable prior uncertainty assumptions in CH4 fluxes. Section 3.2 provides a global overview of posterior fluxes and the 

relative changes from prior estimates. Section 3.3 evaluates the system using a range of regional and persistent point source 

case studies. Section 3.4 Investigates the feasibility to quantify emissions at both a high spatial and temporal resolution using 

case studies. Section 3.5 investigates the influence of the global slowdown triggered by the COVID-19 pandemic on CH4 90 

emissions. Section 4 discusses the findings and relevance to the wider community including limitations and suggestions for 

future work. 
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2. Methods 

2.1 Forward model 

The ECMWF global Integrated Forecasting System (IFS), which provides the operational Copernicus Atmosphere 95 

Monitoring Service (CAMS, https://atmosphere.copernicus.eu/) greenhouse gas (GHG) forecast (Agusti-Panareda et al., 

2019), was used to generate the forward model integrations used in this study. These were performed from January to June 

of 2019 and January to September of 2020, with additional case study simulations performed for June 2018, and November 

2019 and July to September of 2020. Computational cost prevented simulating the full period (2018-2020). Simulations were 

performed using a horizontal cubic octahedral reduced Gaussian grid (TCo399: ~25km) and 137 vertical levels with coupled 100 

meteorology at operational forecast timesteps of 15 minutes and 3- hourly output. 

 

Monthly gridded prior estimates of anthropogenic emissions were taken from the CAMS global emissions product, CAMS-

GLOB-ANT v4.2, (Granier et al., 2019), which combines existing products (e.g. EDGAR: Cippa et al., 2018; CEDS: Hoesly 

et al., 2018). The Global Fire Assimilation System (GFAS) provided daily biomass burning emissions (Kaiser et al., 2012). 105 

We used a monthly climatology of wetland emissions based on the LPJ-WHyMe model (Spahni et al., 2011). Remaining 

fluxes from oceans (Lambert and Schmidt, 1993; Houweling et al., 1999), termites (Sanderson, 1996) and wild animals 

(Houweling et al., 1999) were used at the highest available spatiotemporal resolution. 

 

The atmospheric CH4 sink comprised of a monthly mean climatological loss rate field (Bergamaschi et al., 2009), which 110 

represents loss reactions with hydroxyl, chlorine and atomic oxygen radicals. A gridded surface soil sink was also used 

(Ridgwell et al., 1999). Initial conditions for the 3D atmospheric state of CH4 were taken from the CAMS CH4 inversion 

product (Segers and Houweling, 2018). 

2.2 Inverse Model 

2.2.1 4D-Variational inversion 115 

We used the 4D-Var IFS system, cycle 47R1 used operationally at ECMWF between June 2020 and May 2021. More 

detailed information on the IFS 4D-Var system can be found in Rabier et al. (2000) and Courtier et al. (1994). The 

incremental algorithm used consists of solving a series ofa quadratic minimisation problems (inner-loop) constructed by 

linearising the initial (non-linear) cost function around updated estimates of the state vector (outer-loop). To constrain 

surface emissions, the state vector is augmented by a parameter control vector that consists of a 2D scaling factor applied to 120 

a prior emission inventory (see Sec. 2.2.2), based on Massart et al. (2021). In our configuration, the posterior scaling factors 

are optimised on a regular 2D grid (~80 km) within a 24-hour window and then applied to the prior emission inventory 

defined on a grid of ~10 km resolution (Figure 1). Prior emission errors are assumed to be independent between 24-hour 

inversion cycles (i.e., each 24-hour inversion uses the same uniform scaling factor of 1 and the same prior errors). This 
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choice was driven by the lack of information about temporal error correlations in current prior inventories. Currently the 125 

error covariance for the CH4 initial state vector is taken from a climatology and fixed in time constant across 4D-Var cycles 

(supplementary figure 3). As a result, Pposterior errors in methane emissions and 3D state are not propagated forward across 

data assimilation cycles in this configuration, which is a technical limitation of our current system and will be addressed in 

subsequent versions. We use an online 4D-Var data assimilation system, where the meteorological fields are part of the 

control vector and optimised jointly with the emission scaling factors. As a result, the transport errors associated with 130 

uncertainties in the initial conditions of the meteorological variables are accounted for in our inversion. This is in contrast 

with widely used offline inversion systems, wherein transport error are typically prescribed on an ad-hoc basis and fixed. 

Note that in our experiments the background errors for the meteorological variables at initial time are constructed based on a 

climatology, and therefore are not flow-dependent. 

 135 

The scaling factors derived from the inversion were applied to sector- specific prior maps for source attribution. A caveat to 

this approach is the assumption that collocated sectors have the same scaling factor applied, which can only be overcome 

with the use of co-emitted species observations such as ethane or isotopologues (e.g. McNorton et al., 2018). However, this 

is unlikely to noticeably impact these results as at the relatively high increment resolution used (~80km) CH4 sectors are 

rarely collocated. Missing sources in the prior are also not accounted for when using a posterior scaling factor. 140 

2.2.2 Prior information 

Anthropogenic sector =specific grid cell uncertainties, taken from Maasakkers et al. (2016), provided the initial prior 

estimate for countries with well-developed statistical infrastructures or Annex I countries (IPCC, 2006). For Non-Annex I 

countries, the same sector -specific uncertainties were further increased by 50%. Globally, constant wetland uncertainties 

were estimated at 58%, taken as the standard deviation from the WetCHARTs ensemble (Bloom et al., 2017). We assume 145 

the standard deviation of the WetCHARTs ensemble to provide a reasonable uncertainty estimate of the LPJ-WHyMe 

emissions used here. Initially, all other biogenic uncertainties were estimated as 100%. The atmospheric sink was not 

optimised by the inversion. Sensitivity experiments where prior errors were perturbed and validated against independent 

observations were used to evaluate prior uncertainty assumptions (supplementary table 1). Given anthropogenic emissions 

are typically from point sources (e.g. fossil fuel extraction), we assumed no spatial prior error correlation given the derived 150 

increments are at a ~80 km. Wetland emissions would typically require defined spatial correlations, however given the 

uncertainty of these structures, the focus of this study being anthropogenic emissions and limited occurrences of co-located 

emissions from wetland and anthropogenic sources we have chosen to omit these for simplicity. Total grid cell uncertainties, 

used in the control vector, were calculated with the error propagation method. All prior uncertainties are assumed to have a 

log-normal distribution to prevent negative emissions. 155 
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2.3 Observations 

The observations used in the meteorological component of the IFS 4D-Var system include satellite radiances, conventional 

ground based and radiosondes, and aircrafts and ships data, for which the coverage and quality is constantly monitored prior 

the assimilation. With specific focus on CH4, the TROPOMI instrument on-board the Sentinel-5 Precursor satellite provides 

near-global daily coverage of XCH4 with a nadir ground pixel size of 7 km x 7 km and near-surface sensitivity (Veefkind et 160 

al., 2012; Lorente et al., 2021). We used operational observations, which became available in April 2018 and were bias 

corrected, as in Barré et al. (2020). An example representation of daily satellite coverage, which is applicable within a 24-

hour 4D-Var window, is shown in sSupplementary figure 1. TROPOMI uncertainties (<1%) provided as part of the CH4 

product were applied within the minimisation routine and averaging kernels were used (Hasekamp et al., 2019). Additional 

XCH4 observations  from the Infrared Atmospheric Sounding Interferometer (IASI) and GOSAT, and their associated 165 

uncertainties of ~2% and <1%, respectively, are assimilated into the system to provide additional constraints as described by 

Massart et al., (2014). Poor quality data are removed based on the provided quality flags. 

3. Results 

Several simulations were performed. First, a suite of sensitivity experiments was performed to identify an appropriate prior 

flux uncertainty (section 3.1). This was then used to investigate global emissions (section 3.2), specific emission events 170 

(section 3.3 and 3.4) and perform comparative source attribution of CH4 fluxes during the COVID-19 global slowdown 

(section 3.5). A full list of simulations is provided in supplementary table 1. Between mid- to late-March 2020 most of the  

countries in the world implemented slowdown measures, which reduced socioeconomic activities (Hale et al., 2021). These 

measures typically lasted until May or June when certain activities were progressively reintroduced, although not to pre-

slowdown levels. China is a slight exception, with an earlier slowdown occurring from the end of January. To investigate the 175 

impact of these measures on CH4 emissions, relative to previous years, we perform simulations from January, when 

slowdown restrictions were limited to China, to June for 2019 and 2020. We assume January and February were business-as-

usual months for both 2019 and 2020 and that the relative difference in emissions for these two months between each year 

represents the long-term trend in emissions. 

3.1 Evaluation 180 

To assess the suitability of our prescribed prior error in CH4 emissions, 6 sensitivity inversions with a range of uncertainties 

were performed (see supplementary table 1). We also performed an additional experiment where only the initial 3D 

atmospheric concentration of CH4 was optimised. Optimised emissions were then used in forward model simulations, which 

were evaluated against XCH4 measurements from 16 Total Column Carbon Observing Network (TCCON) sites (Wunch et 

al., 2011). TCCON averaging kernels were applied to model profiles as described in Massart et al. (2016). Results show 185 

improved performance when including flux scaling factors in the control vector when compared to only optimizing the initial 
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3D-state (Ssupplementary figure 2). When evaluating XCH4 concentrations simulated with optimised emissions, the lowest 

all-site average lowest standard error (6.8 ppb) and, absolute mean bias (7.52 ppb) was found for the mapped prior error 

described in section 2.2.2. Using the mapped prior error resulted in a lower standard error in 12 of the 16 sites when 

compared with the control, furthermore the absolute mean bias was improved at 10 of the 16 sites. andThe mapped prior 190 

error also produced the highest all-site average R-value (0.74), an improvement compared with the control at 9 of the 16 sites 

was found for the mapped prior error described in section 2.2.2. All subsequent experiments used the mapped prior 

uncertainty, typically ranging from 50-150%. 

3.2 Global Emission Estimates 

As human activities have changed in 2020 in response to the COVID-19 pandemic we first investigated the difference 195 

between prior and posterior emissions for the first half of a business -as -usual year, 2019. Emissions were estimated using 

the 4D-Var global inversion system described in Section 2.2 from January to June 2019. The resulting fire and wetland 

emissions are likely to be an inaccurate estimate of annual emissions because of the strong seasonality of both sources. 

TROPOMI observations do not provide full global coverage within our 24-hour 4D-Var window, resulting in emissions not 

being constrained over large areas.  To produce meaningful spatiotemporal budgets of posterior emissions the posterior error 200 

covariance should be accounted for. Because this latter quantity is currently lacking in our system, we chose to compute 

posterior emission budgets based on a subset of grid cells that are significantly constrained by the observations. With this 

aim in mind To this aim, in our analysis, grid cells whose distance to an observation were greater than 1° were discarded. 

When considering monthly average emissions, the difference in coverage between years is unlikely to significantly impact 

the results, assuming the variability within a single month is small. For each selected grid cell, we apply the monthly mean 205 

posterior scaling factor to our prior emission inventory to provide a posterior emission estimate. Globally, we found total 

average posterior emission estimates (44.0528.2 Tg moyr-1) for 2019 were 4.70.4 Tg moyr-1 smaller than prior estimates 

(44.4532.9 Tg moyr-1). Within national boundaries, both negative and positive adjustments in emissions often occur (Figure 

2b). Moreover, we found that when averaged over the 6-month period, considerable changes, relative to the prior, are from 

anthropogenic sources (-0.4 +4.7 Tg moyr-1). 210 

 

At national scales, for the 6 month period, anthropogenic emission differences between the prior (5.363.1 Tg moyr-1) and the 

posterior (5.059.8 Tg moyr-1) were found to be largest over China (Figure 2c). The potential overestimation in bottom-up 

emission estimates from China is well documented (e.g. Cheewaphongphan et al., 2019), although the magnitude of this 

overestimation is uncertain. Using prior emission maps, we distributed total posterior emissions into 6 sector -specific 215 

categories; energy, agriculture, waste, other anthropogenic (industrial, residential and transport sectors), wetlands and fires. 

In agreement with multiple inverse studies (e.g. Deng et al., 2021) most of the overestimated emissions from China are 

found to originate from the energy sector (0.21.9 Tg moyr-1) and specifically from the coal mining regions of OuterInner 

Mongolia, Shaanxi and Shanxi. Relative to the prior, posterior emissions are reduced from India (-3.0%) and Pakistan (-
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1.1%), increased from Brazil (+1.3%) and less than 1% different for the USA (0.5%), Indonesia (0.3%), EU27+UK (+0.1%) 220 

and Russia (-0.7%). Except for Russia and Indonesia, these bring emission estimates in closer agreement with other top-

down studies (e.g. Deng et al., 2021). 

3.3 Emission estimates for Regions and Point Sources  

The feasibility to detect and quantify emission hotspots on a global scale using a relatively high resolution increment grid 

(~80 km, daily), a high resolution prior emission grid (~9km, monthly) and multi-sensor data was evaluated using previously 225 

-documented case studies (e.g. Zhang et al., 2020 Varon et al., 2020). Preliminary work by Barre et al., (2020) combined 

high-resolution IFS forecasts (~9 km) with TROPOMI observations to detect missing emission sources based on a statistical 

analysis; here we attempted to extend this to the quantification of emissions in a robust atmospheric transport inversion 

framework. To filter posterior estimates which provided little or no updatedadded information we omitted daily grid cells 

associated with poor observation constraints (see supplement figure 1). When comparing our results with other studies, and 230 

in the absence of a formal posterior uncertainty estimate, the sampling bias introduced by this filtering method may 

introduce additional uncertainties. Future developments will account for posterior error reduction in our analysis. Efforts are 

ongoing to include an ensemble-based estimate of the posterior emission errors in our system to provide a more robust 

evaluation. Posterior emissions and comparisons with existing studies for several case studies are provided in table 1. 

3.3.1 Regional emissions - Permian Basin, USA 235 

The Permian Basin, an area of ~400km2, is the largest oil-producing basin in the USA. Previous studies identified an 

underestimation in inventory estimates of CH4 fluxes in this region (Alvarez et al., 2018; Robertson et al., 2020; Zhang et al., 

2020). In recent years oil production in the basin has undergone rapid expansion with output of crude oil quadrupling and 

natural gas more than doubling between 2007 and 2018 (Zhang et al., 2020). Given the rapid expansion and the lag in uptake 

of statistical information to inform the prior inventory, it is likely that the prior used here underestimates emissions from the 240 

region. Variability in atmospheric transport over the basin noticeably impacts observed XCH4 enhancements (Crosman et al., 

2021), therefore an accurate high-resolution representation of transport is required to quantify emissions. The IFS system, 

used here, is suitable to address such a problem as it performs an online assimilation of atmospheric composition and 

meteorological observations therefore providing an improved representation of transport uncertainty. 

 245 

Using only dates when nearby TROPOMI observations were available (237/485), inversions for the 15 months available 

(January to June 2019 and January to September 2020) provided average posterior emissions of 190±392.3±0.5 Tg Gg yrmo-

1 over the 6°x4° domain, centred around 32°N, 103°W (Figure 3). The standard deviation value indicates the daily variability 

and not the posterior uncertainty. This is a considerable increase from the prior 2.0164±0.03 GTg moyr-1. The uncertainty 

value shown for this case study and all subsequent cases represents the standard deviation of the daily fluxes and not the 250 

posterior uncertainty. The estimated flux brings emissions closer to, but remains lower than, a recent 4D-Var inversion 
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estimate, 2402.9±0.540 TGg moyr-1 (Zhang et al., 2020). A small positive trend is identified over the basin (+15012±4 ktGg 

moyr-21). While it is difficult to diagnose the cause of the difference in posterior estimates, one possibility is the larger prior 

uncertainty used in Zhang et al. (2020). Additionally, transport uncertainties associated with initial meteorological conditions 

are accounted for in our online inversion system, which might significantly impact the derived emissions.  Furthermore, both 255 

studies cover slightly different time periods. Finally, differences between the treatment of observations and their associated 

uncertainties will have influenced derived fluxes in both studies. 

 

During the 2020 slowdown Lyon et al. (2020) derived tower and aircraft based CH4 emission estimates from the Permian 

Basin. They found emissions from January to March, 2020 (134±12 Gg mo-1) reduced during the onset of the slowdown 260 

(April: 47±10 Gg mo-1) and subsequently increased again as oil price partially recovered in June (107±13 Gg mo-1). For the 

same period, we find only a small decrease in emissions from January to March averages (188±45 Gg mo-1) to April (183±34 

Gg mo-1). This decreasing trend continues into June (178±14 Gg mo-1). However, we find between July and September 

emissions noticeably increase to 215±40 Gg mo-1, suggesting the rebound found by Lyon et al. (2020) is detected, in our 

system, from July onwards. The difference in magnitude of emissions between both studies is, in part, a result of the 265 

different domains used. 

 

3.3.2 Regional emissions - Bakken Formation, USA/Canada 

The Bakken Formation, predominantly in North Dakota, is a major oil-producing region both within the USA and Canada. 

The rig count in the region has declined in recent years; however, except for during the initial 2020 global slowdown, both 270 

oil and gas production have seen large increases in the past decade (EIA, 2021). During recent years various management 

methods have sought to reduce fugitive emissions from the region, however it remains one of the largest emitting regions 

within North America (Schneising et al., 2020). 

 

A previous study estimated average CH4 emissions from the Bakken Formation between 2018 and 2019 of 740.89±470.56 275 

GTg moyr-1 (Schneising et al., 2020). These were estimated using a Gaussian integral method and TROPOMI data. Our prior 

emissions (871.03 TGg moyr-1) for a 1°x1° domain centred around 48.5°N, 103°W for 2019 are larger than those previous 

derived estimates. Our posterior results for 2019 (770.93±0.4842 TGg moyr-1) show a large variableility, but an overall 

positive trendgrowth in emissions from the region (Figure 4). These estimates agree with those derived by Schneising et al. 

(2020). For 2020, a period not included in their study, we find larger average emissions relative to 2019 (1.0386±0.6352 280 

TGg moyr-1). Unlike for the Permian Basin example, the agreement found here is based upon two different top-down 

approaches, our 4D-Var IFS system and the Gaussian integral method of Schneising et al., (2020). 
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A possible CH4 emission event is observed on the 4th September 2020 where emissions were estimated to increase by 350% 

from a 2020 average of 120 t hr-1 to 410 t hr-1, which over the 24-hour period equates to an additional 7 Ggkt CH4. The 285 

source of this previously undocumented event is not clear, an incident reported at The Steelman Gas Plant in Saskatchewan, 

Canada (ID 48996) is a possibility; however, accurate attribution requires further investigation (Saskatchewan.ca, 2021). 

Several similar events of slightly smaller magnitude are also observed, the causes of these require further investigation. 

3.3.3 Regional natural emissions - Lake Chad, Africa 

The hydrology of Lake Chad and the surrounding area has recently undergone substantial variability on timescales ranging 290 

from seasonal to decadal (Pham-Duc et al., 2020), which is expected to have impacted both natural and anthropogenic 

emissions in the region. A recent study, using a similar prior to the one used here, performed a top-down inversion over 

tropical Africa using GEOS-Chem and GOSAT observations and found posterior emissions increased relative to their prior 

over Lake Chad between 2016 and 2018, although these are not quantified (Figure 3c of Lunt et al., 2019). Our results for 

2019 and 2020 for a 1°x1° box centred around the lake (13.0°N, 14.3°E) show posterior emissions (320.38±40.05 TGg yrmo-295 

1 are 11% higher than prior emissions (0.3529±20.02 TGg moyr-1) (Figure 5). Observations are only available over the 

region for 65 out of 485 days, making estimations of the seasonal shift between the posterior and prior difficult. We are 

unable to attribute the increased emissions to a specific sector; however, based on prior information, it is likely to be from 

agricultural livestock or wetland sources. If this region-wide increment is the result of wetland emissions, with further 

refinement and accurate characterisation of prior error correlations, our system could be used to quantify emissions over 300 

wetland regions. Detailed comparison with Lunt et al. (2019) is not performed as the studies cover a different period and a 

thorough comparison requires further refinement of how natural emissions are treated in the prior. Here we only note the 

sign of the bias in both studies is the same and requires further investigation. 

3.3.4 Point source emissions - Appin Colliery, Australia) 

The Appin Colliery (34.2°S, 150.8°E), in New South Wales, Australia is an underground coal mine previously noted for 305 

having high CH4 emissions (Varon et al., 2020). It represents a single point source, which is challenging to quantify as there 

are several nearby emission sources including landfills, dairy facilities, and a gas processing plant. Varon et al., (2020) used 

the high-resolution GHGSat-D instrument and, integrated mass enhancement (IME) and cross-sectional flux (CSF) methods 

calibrated with large eddy simulations to derive vent emissions from the mine between 2016 and 2018. They estimated mean 

CH4 emissions of 5.9 t hr4.2 Gg mo-1 (IME) and 5.0 t hr3.6 Gg mo-1 (CSF), lower than the prior used here (6.74.9±0.1 t hrGg 310 

mo-1, fugitive only: 6.04.3±0.1 t hrGg mo-1). We derived 2019-2020 average grid cell emissions of 6.44.6±0.75 t hrGg mo-1. 

Assuming little or no change in emissions between their 2016-2018 study period and our 2019-2020 estimate, our derived, 

fugitive-only, emissions (5.74.1±0.60.5 t hrGg mo-1) agree well with their findings (Figure 6). For 2019, a business -as -usual 

year, which is nearer to the time period investigated in their study, fugitive emissions are even lower (5.33.9±0.75 t hrGg mo-

1). These results suggest our inversion is capable of detecting biases in the prior from point sources, given sufficient 315 
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observations (100/485 days observed), a relatively large point source (>~54 t hrGg mo-1) and a suitable prior uncertainty 

estimate. Prior emission estimates appear to be in better agreement with our posterior in 2020, suggesting an increase in 

emissions, most likely from the Colliery given it is the dominant source in the region. 

3.4 Emission estimates for Temporary and Shifting Sources 

The following 4 cases assess the quantification of emissions from specific release events, step changes in emissions or short-320 

term observation periods, using documented examples and previously unexplored sources. As with the regional comparisons 

in the previous section, evaluation of the system is performed against multiple emission estimation systems beyond the 4D-

Var approach used here. 

 

3.4.1 Feasibility of estimating blow-out emissions - Eagle Ford Blowout, USA (November 2019) 325 

On 1st November 2019, a blowout event occurred at a gas well in the Eagle Ford Shale in Texas (28.9°N, 97.6°W), which 

was followed by a diminishing 20-day release event (Cusworth et al., 2021). Cusworth et al. (2021) estimated emissions of 

the blowout using several estimation techniques, including the Integrated Methane Enhancement algorithm (Varon et al., 

2018), and multiple observation platforms, including TROPOMI. Observations directly over the blowout were made from 

TROPOMI on the 2nd, 3rd, 15th and 18th of November 2019. We further extended our analysis to all observations made 330 

between 15th October and 28th November 2019 within 2°x2° domain centred around the blowout (Figure 7). We found when 

blowout emissions peaked on the 1st/2nd November 2019, posterior emissions at the site were ~40% higher than prior 

emissions; however, the magnitude of the posterior emissions (2.5 t hr-1) is noticeably lower than the 28-61 t hr-1 previously 

estimated (Cusworth et al., 2021). As expected, posterior emission estimates return to near prior levels after the initial 

blowout (Figure 7c-e). Estimates provide by Cusworth et al., (2021) would require more than a 1,500% increase in emissions 335 

relative to our prior which is unlikely to be achieved with our relatively modest prior error (87%). It is likely given the model 

resolution and prior information that posterior emissions are incorrectly attributed to nearby grid cells. This is evident in the 

mapped scaling factors, which show increases incorrectly applied slightly to the west of the blowout location. Within a 4°x4° 

domain surrounding the blowout site posterior and prior emissions typically agree well for months excluding November, 

suggesting any differences occurring in November, could be attributed to the well blowout. Based on this assumption we 340 

used the residual from the posterior minus the prior to estimate blowout emissions on the 2nd November 2019 of 140 t hr-1, 

which is more than double the estimate of Cusworth et al. (2021). These results suggest that the system, as presented here, 

can detect such events but cannot accurately quantify a well blowout of this magnitude over an oil field.  It could however be 

used as a crude quantification of emissions from such a blowout over a larger domain, assuming other sources are well 

known. A more accurate quantification of emissions from release events of this nature, requires further development and 345 

possibly the implementation of alternative techniques well adapted for missing sources (e.g. Yu et al., 2021). 
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3.4.2 Feasibility of 1-day emission estimates - Upper Silesian Coal Basin, Poland (June, 2018) 

The Upper Silesian Coal Basin (USCB) is one of the largest CH4 emitting regions in Europe, with emissions originating 

from ~40 coal mines (EEA, 2021). The region extends from southern Poland across the border to Czechia where CH 4 is 350 

released from deep coal deposits and emitted to the atmosphere via ventilation shafts (Fiehn et al., 2020). 

 

To evaluate the feasibility of the system to quantify regional CH4 emission sources within a 24-hour window we performed a 

one-day inversion over the USCB. Results were compared with emission estimates derived using aircraft observations 

combined with Eulerian and Lagrangian dispersion models (Kostinek et al., 2021) and a mass balance approach (Fiehn et al., 355 

2020). These studies used extensive flight data from the 6th June 2018 to derive regional CH4 emission estimates of 0.42-

0.4835-40 TGg yrmo-1. The CoMet v2 bottom-up inventory (Fiehn et al., 2020) was specifically compiled for the purpose of 

the flight campaign and estimated emissions in the region of 480.58 TGg yrmo-1. Our results for the 6th of June 2018 

estimated USCB emissions of 480.57 TGg yrmo-1, compared to our prior estimate of 0.6353 TGg yrmo-1 (Figure 8). This 

shows good agreement with CoMet v2 and an improved agreement with the top-down estimates. From January-June 2019, 360 

posterior estimates (0.5849±0.1714 TGg yrmo-1) remain low relative to the prior, however they increase in 2020 resulting in 

an average estimate for 2019-2020 of 0.6252±0.1916 TGg moyr-1 compared to a prior of 0.6453±0.011 TGg yrmo-1. This 

suggest that whilst emissions in the basin increased over the simulation duration, they were consistently overestimated in the 

prior. The prior emissions do not consider daily variability, whilst considerable variability was estimated by the posterior 

(1.7±0.5 Ggkt day-1). 365 

3.4.3 Detection limit of inversion system - Oil Fields, Algeria (2019-2020) 

The CH4 emissions from a point source release event from a well pad at the Hassi Messaoud oil field in Algeria (31.7°N, 

5.9°E) from October 2019 until August 2020 were previously quantified (Varon et al., 2021). Using Sentinel-2 observations 

they derived mean emissions of 9.36.7±5.54.0 t hrGg mo-1. From our inversions, and using only dates where TROPOMI 

observations were available within 0.4° of where the leak occurred (21 days between 9th October, 2019 and 9th August, 370 

2020), we found average CH4 emissions within a 1°x1° domain of 24.117.6±3.52.7 t hrGg mo-1 (Figure 9b). After the leak 

was sealed average emissions decreased to 22.715.3±2.22.6 t hrGg mo-1. Assuming any difference in emissions between the 

two time periods was caused by the release event, we estimate mean leak emissions of 1.42.4±0.96 tGg hrmo-1. This suggests 

some detection was made, but quantification was not accurate when compared to a previous study (Varon et al., 2021). It 

seems likely the magnitude of the leak (<104 tGg hrmo-1) approaches the detection limit of the inversion performed here, and 375 

far exceeds the limit for accurate quantification. Additionally, the low number of observation days during the 10-month leak 

period (21 days), might have contributed to the lack of robust detection. 

 

The Illizi Basin (28.3°N, 9.0°E) is one of the largest gas producing regions in Algeria and is currently undergoing planned 

expansions (Ouki et al., 2019). Results from a 3°x1.5° domain within the basin suggest average emissions are ~20% higher 380 
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(200.24±0.053.9 TGg yrmo-1) than those estimated by the prior inventory (0.2016.9±0.010.4 TGg yrmo-1) between 2019 and 

2020 (Figure 9d). These results suggest the Illizi Basin is a larger source of CH4 emissions than the Hassi Messaoud oil field 

(17.50.21±0.032.5 TGg yrmo-1), although it should be noted the domain area is larger. As with the Hassi Messaoud oil field, 

with our system, it is not possible to attribute the emission changes to a specific facility but rather to the entire region (~200 

km2). 385 

3.4.4 Detection of unknown sources - Istanbul, Turkey (2020) 

Istanbul is the most populous city in Europe, with prior CH4 emission estimates of 56~0.7 TGg moyr-1, making it one of the 

largest emitting regions of Europe. Prior information attributes 86% of those emissions to the solid waste and wastewater 

sector. Inversion results from a 1°x1° domain centred around Istanbul (41.0°N, 29.0E°) showed an unexpected increase in 

emissions from July 2020 onwards, before which posterior (0.6856±0.109 TGg yrmo-1) emission estimates were in good 390 

agreement with the prior (0.6857±0.033 TGg yrmo-1) (Figure 10). From July to September 2020, these emissions increased 

by 42% to 810.97±0.3025 TGg yrmo-1. The reason for this step change in emissions is unclear and, assuming the posterior 

estimates are robust, requires further investigation given the magnitude of the increase. Increased emissions are derived over 

a large area of the Istanbul domain; however, given results from the Eagle Ford blowout region it is possible the estimated 

increase is from a point source. It is also unclear whether this is a new persistent emission source or if it only occurred over a 395 

period of several months. 

3.5 CH4 emissions during the COVID-19 period 

To evaluate the impact on anthropogenic CH4 emissions from the global slowdown, caused by the COVID-19 pandemic, we 

compared posterior emissions from January to June of 2019 and 2020. Globally, monthly average anthropogenic emissions 

for the 6-month period in 2020 (359.530.0 Tg±1.822.0 Tg yrmo-1) are found to be 1.6% (470 Gg mo-1) higher than for 2019 400 

(353.929.5±23.52.0 GTg moyr-1) (Figure 11). These increased emissions contributed to the observed increased atmospheric 

growth rate between 2019 (9.8±0.610.0 ppb yr-1) and 2020 (14.715.6±0.4 ppb yr-1) (NOAA, 2021). Sector -specific 

attribution shows the energy (+2.7220±1.6130 TGg yrmo-1) and agriculture (+2.0160±0.540 TGg yrmo-1) sectors are the 

largest contributors to this increase, with smaller contributions from the waste (+0.650±0.430 TGg moyr-1) and other 

anthropogenic sources (0.4+30±0.220 TGg yrmo-1). 405 

 

When compared with 2019, anthropogenic CH4 emissions in 2020 were larger pre-slowdown (January-February: 

+5.6470±0.0 GTg moyr-1), considerably larger during the early stages of the slowdown (March-April: +8.2680±0.980 TGg 

yrmo-1) and only slightly larger in the latter months of the initial slowdown (May-June: +3.2270±0.030 TGg yrmo-1). 

Assuming no other factors contributed to this observed difference in emissions between the two years, Tthis suggests, 410 

globally, the impact of the slowdown initially increased emissions and subsequently reduced them, although emissions for all 

6 months were higher in 2020 than for 2019. This trend in emissions was mainly driven by energy sector emissions (January-
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February: +2.4200 TGg yrmo-1, March-April: +4.7390 TGg yrmo-1, May-June: +0.980 TGg yrmo-1), whilst the agricultural 

sector showed a relatively consistent increase, relative to 2019, for all months (+160 Gg mo-1). 

 415 

When averaged over all 6 months, an increase in emissions between 2019 and 2020 was estimated in 6 out of 8 of the largest 

emitting regions, with the only exceptions being Pakistan (-0.60.0 TGg yrmo-1) and Brazil (-0.2823 TGg yrmo-1). The largest 

increase was in China (+2.6220 TGg yrmo-1), of which, over half originated from the energy sector, specifically from the 

northern coal mining regions. The difference in emissions from China, relative to 2019, were the main driver for the global 

trend with increases pre-slowdown (January-February: +3.9230 TGg yrmo-1), large increases during the initial slowdown 420 

(March-April: +6.0300 TGg yrmo-1) and only small increases in the latter months (May-June: +1.4120 TGg yrmo-1). As with 

the global signal, this monthly variability is attributed to changes in energy sector emissions. It should be noted the 

slowdown in China occurred from the end of January and results show, relative to 2019, 2020 emissions from China were 

noticeable larger in January (+270 Gg mo-1) and only slightly larger in February (+190 Gg mo-1) suggesting a brief impact 

from the slowdown. 425 

 

For the first six months Eemissions for 2020 from India were on average 0.865 TGg yrmo-1 higher than for 2019, with 

noticeable large increases in emissions from the agricultural sector in June 2020 (+1101.3 TGg yrmo-1), which contributed to 

almost half of the global increase for June. The increased emissions in June mainly originated from the Uttar Pradesh region 

in north India. Similar increases in agricultural emissions are found over Bangladesh for June (+1.3110 TGg yrmo-1). Poor 430 

prior information in the region may have resulted in the misallocation of emissions which could have originated from the 

large Baghjan Oil Field blowout in Assam, India, in May/June 2020. Energy sector emissions from Indonesia were 

consistently higher in 2020 (+130.2 to +0.646 GTg yrmo-1) and relatively unchanged for the remaining regions (< ±0.325 

TGg yrmo-1). 

 435 

Given the limitations of our system we have typically focused on anthropogenic emissions; however, natural fluxes were 

also derived. Global posterior results for the first half of 2020 show a reduction in both wetland (-360.4 TGg yrmo-1) and fire 

(-1501.8 TGg yrmo-1) emissions when compared with 2019, with large monthly variability. The total global decrease in fire 

emissions is unchanged from the estimated prior emissions, taken from GFAS, which is based on satellite observations. The 

wetland emission change originates from South America, mainly from Brazil (-0.1410 TGg yrmo-1) and Argentina (-0.3328 440 

TGg yrmo-1). These reduced emissions were likely caused by large scale droughts which occurred in early 2020 (Marengo et 

al., 2021). Although the months simulated are not typically associated with the boreal northern hemisphere fire season, most 

of the reduction in biomass burning emissions came from Russia (-1.3110 TGg yrmo-1) and Canada (-440.53 TGg yrmo-1). 

This change was caused by a particularly active arctic fire season in 2019 (Zhang et al., 2021) and large wildfires in northern 

Alberta in May 2019. Relative to 2019, increased fire emissions from Australia are derived for January 2020 (+2.6220 TGg 445 

yrmo-1). It is estimated that an unusually intense bushfire season (Shiraishi and Hirata, 2021) resulted in the release of 330 
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ktGg CH4 from Australia over the month of January alone, 220 kt CH4 more than 2019. More specifically, the emissions 

were unusually large from New South Wales and Victoria. 

 

A limitation of the current system is the use of a climatological OH sink, which is the primary oxidant for atmospheric CH4. 450 

Currently, OH is not included in the control vector and does not respond to changes in atmospheric chemistry. Formation 

pathways of OH are influenced by atmospheric NOx concentrations, which were estimated to have decreased during the 

slowdown period (Doumbia et al., 2021). Several simulations were performed using multiple chemistry schemes to assess 

the atmospheric impact of OH when using a slowdown adjusted emission scenario (Huijnen et al., 2021). Results show 

global OH decreases of 1-3% during the slowdown period, however a heterogenous spatial pattern is observed near the 455 

surface with increased OH concentrations over some regions. This would suggest the 2020 increased emissions found here 

may be overestimated; however, the derived emission increases in January and February of 2020, relative to 2019, are 

unlikely to have been influenced by OH changes caused by the global slowdown. Future developments will include the 

inversion of NOx emissions during the global slowdown and their effect on OH concentrations, resulting in more accurate 

source-sink attributionFuture developments will include the addition of OH in the control vector and the use of an online OH 460 

loss rate derived using atmospheric chemistry, resulting in more accurate source/sink attribution. 

4 Conclusions 

We have investigated the feasibility to monitor CH4 emissions using a global online high-resolution (~80km) short-window 

4D-Var (24-hour) data assimilation system and satellite observations from multiple sensors. This system optimises both the 

initial 3D atmospheric concentration of CH4 and surface fluxes, whilst implicitly accounting for transport errors associated 465 

with uncertainty in meteorological initial conditions. The prior emission errors were selected based on comparisons with 

independent TCCON retrievals. We identify strengths and weaknesses of our inversion system by performing case study 

comparisons with other well-established flux estimation systems at a range of spatiotemporal scales. 

 

Globally a small decrease in annual CH4 emissions, relative to the prior, is estimated by the inversion for 2019 (~1%). At a 470 

national scale, we found decreased anthropogenic emissions from China (-5%) and India (-3%), with small increases from 

USA (+0.5%) and Brazil (+1.3%) contributing to this change, this is in general agreement with a recent inverse study (Qu et 

al., 2021). 

 

To evaluate the system at the regional and point scale, several anthropogenic case studies were selected (Table 1). Posterior 475 

estimates of anthropogenic sources with persistent emissions typically showed good agreement with previous studies. In 

addition, the posterior quantification of emissions from a large biogenic source region, Lake Chad, compared well with a 

previous inversion study (Lunt et al., 2019). 
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We investigated the feasibility to quantify emissions at a high spatial, temporal and spatiotemporal resolution. Emissions 480 

from a well leak in the Hassi Messaoud oil field, which persisted for several months, were found to be at or around the 

detection limit of the system (~9 tCH4 hr-1) and beyond the limit for accurate quantification. Similarly, emissions from a 

large well blowout in Eagle Ford were found to be misallocated to the surrounding region owing to poor prior information 

and too coarse model resolution. In contrast, inverse estimates from a known persistent point source, the Appin Mine, were 

found to be in good agreement with a previous top-down estimate (Varon et al., 2020). For a 1-day period over a large 485 

region, the Upper Silesian Basin, inverse estimates agreed well with previous studies, (Fiehn et al., 2020; Kostinek et al., 

2021). Overall, these case studies suggest our inverse system is suitable for regional scale (~100km2) emission quantification 

over a short time-period (24-hour), given sufficient satellite observations are available. Given adequate prior information our 

system is also capable of quantifying emissions from a persistent point source (e.g. Appin Mine, Australia).  

 490 

Several previously undocumented CH4 emission sources were also investigated, including an unknown release event from 

the Bakken Formation. Prior emission estimates were persistently found to be underestimated by ~20% from the Illizi Basin 

between 2019 and 2020, possibly owing to an expansion in operations. Finally, a noticeable step change in emissions from 

Istanbul was observed from July 2020, when emissions increased by ~40%, the reason for which is unknown and would 

require further investigation. 495 

 

The impact on CH4 emissions from the global slowdown in response to COVID-19 was investigated using inversions from 

the first half of 2019 and 2020. The slowdown coincided with a year where CH4 growth (14.715.6 ppb) was the largest since 

records began in the early 1980s. We found in the early part of 2020 atmospheric growth was, in part, driven by 

anthropogenic emissions which were larger than for 2019 (January to February: +5.6470±0.0 TGg yrmo-1). These emissions 500 

further increased during the early stages of the slowdown (March to April: +8.2680±0.980 TGg yrmo-1), almost half of 

which originated from the energy sector in China. Had this trendbeen a sustained increase, continued the global growth rate 

for 2020 would have been even larger. However, during the later months of the slowdown period emissions reduced, 

although were still slightly higher than 2019 values (May to June: +3.2270±0.430 TGg yrmo-1),. Assuming no other 

contributing factors, this suggestings the slowdown may have acted to reduce emissions, mainly from the energy sector. By 505 

using the relative differences for January and February as a reference of the long-term growth between 2020 and 2019 and 

assuming business-as-usual for those months, we conclude Tthe overall impact of the global slowdown on CH4 emissions is 

found to be small. The slowdown in China occurred at the end of January, using the aforementioned assumption but only for 

January results in the same conclusion of a minimal impact on emissions during the entire 6 month period from the 

slowdown. and tThe increased atmospheric growth is found to be the result of a continued increasing trend in CH4 emissions 510 

and possibly related to changes in atmospheric chemistry in response to the slowdown (e.g. Stevenson et al., 2021). The 

reason for the observed monthly variability in emissions is unclear, it is possible a reduction in energy demand resulted in 
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increased venting of natural gas or a change in working practice led to an increase in fugitive emissions which subsequently 

fell below previous levels after several months of reduced demand. 

 515 

Future developments will adapt the system for use to constrain CO2 emissionsbe based on a hybrid-ensemble system that 

will extend the assimilation window and utilise observations of co-emitted species (e.g., NO2, CO). Additionally, improved 

representation of biogenic fluxes as well as spatiotemporal correlations in the prior will provide more accurate posterior 

estimates and uncertainties. Finally, the current lack of error propagation across the 4D-Var windows, will be addressed in 

an upcoming version of the system and more dynamical approaches to automatically adjust inaccurate prior information will 520 

be implemented to better constrain missing and intermittent sources. These improvements will allow for constraints of other 

greenhouse gas emissions, most notably CO2. 
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Table 1: Estimated prior and posterior emissions of CH4 from several regions and events between 2018 and 2020. Comparison is 

made with existing case studies. Also given is the dominant source type (>50%) and the number of days when TROPOMI 770 
observations are made within 1° of the domain of interest. Values denoted by ± indicate standard deviation across all days. 
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Figure 1: a) Schematic of different resolutions used in the inversion shown by pseudo-data for 5 sectors. The magnitude of prior 775 
emissions at ~9 km (left) and those same emissions used as input to the forward model at ~25 km (middle). The inversion 

increment at ~80 km, resulting scaling factors are applied to all sectors within the grid cell, the boxes indicate relative contribution 

per sector (right). b) Schematic of inversion setup using the 24-hour window, correcting for the initial 3D state, emissions, and 

initial conditions in the prior of the subsequent window. 
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Figure 2: a) Global annual mean prior CH4 emissions for 2019 taken from CAMS. b) Difference between posterior and prior 

emissions averaged between January and June 2019, derived from the IFS inversion. c) Posterior adjustment, as a percentage of 

prior, in anthropogenic CH4 emissions per country. Formatted: Subscript
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Figure 3: a) Average prior Permian Basin CH4 emissions for 2019. b) Average of posterior minus prior anthropogenic CH4 

emissions over the Permian Basin for January-June 2019, excluding days for which observations were not available. c) Time series 

of total prior (black circles) and posterior (green triangles) anthropogenic CH4 emission estimates within the 6°x4° Permian Basin 
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domain, centered around 32°N, 103°W (black box in b) for 2019-2020, excluding days for which observations were not available. 790 
The shaded error denotes prior uncertainty. 
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Figure 4: a) Average prior Bakken CH4 emissions for 2019. b) Average of posterior minus prior anthropogenic CH4 emissions over 

Bakken for January-June 2019, excluding days for which observations were not available. c) Time series of total prior (black 795 
circles) and posterior (green triangles) anthropogenic CH4 emission estimates within the 1°x1° Bakken domain,  centred around 

Formatted: Subscript
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48.5°N, 103°W (black box in b) for 2019-2020, excluding days for which observations were not available. The shaded error denotes 

prior uncertainty. 
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Figure 5: a) The Lake Chad domain indicated by the black box (© Google Maps, 2021). b) Time series of total prior (black circles) 

and posterior (green triangles) CH4 emission estimates within the 1°x1° domain, centred around 13.0°N, 14.3°E for 2019-2020, 

excluding days for which observations were not available. The shaded error denotes prior uncertainty. c) Average prior CH4 

emissions for 2019. d) Average posterior minus prior CH4 emissions for January-June 2019, excluding days for which observations 

were not available. 805 
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Figure 6: a) The sector specific contribution to emissions within theA map of Australia with the Appin Colliery domain indicated 

by the black box. b) Time series of total prior (black circles) and posterior (green triangles) fugitive CH4 emission estimates within 

the domain for 2019-2020, excluding days for which observations were not available. c) Average Pprior CH4 emissions for January 810 
2019, the white box denotes the grid cell used to estimate emissions. d) Average posterior minus prior CH4 emissions for January-

June 2019, excluding days for which observations were not available. 
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Figure 7: a) Prior (black circles) and Posterior (green triangles) anthropogenic CH4 emission estimates, where observations are 815 
available, over an oil well blowout event in Eagle Ford, USA during October/November 2019 at the grid scale (a) and within a 

4°x4° domain (b). The shaded error denotes prior uncertainty. The nearest date (2nd November) to the event, which occurred on 

the 1st November, is indicated. Regional scaling factor values from the inversion for November 1st (C), 2nd (D) and 3rd (E). Eagle 

Ford blowout site marked with an ‘x’ and 4°x4° domain denoted. 
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Figure 8: a) The Upper Silesian Coal Basin 1°x0.5° domain indicated by the white box, centred around 50.0°N, 18.7°E. Also shown 

are eleven major coal mines in the region (© Google Maps, 2021). b) Time series of total prior (black circles) and posterior (green 

triangles) CH4 emission estimates within the domain for 2019-2020, where observations and inverse simulations were available. 

The shaded error denotes prior uncertainty. c) Prior total CH4 emissions for 6th June 2018. d) Average posterior minus prior CH4 825 
emissions for 6th June 2018. 
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Figure 9: a) Prior average anthropogenic CH4 emissions for Eastern Algeria, 2019. The domains for the Hassi Massaoud oil field 

(1°x1°, white box) and part of the Illizi Basin (3°x1.5°, red box) are marked. Time series of total prior (black circles) and posterior 

(green triangles) CH4 emission estimates within the Hassi Massaoud (b) and Illizi Basin (d) domains for 2019-2020, where 

observations and inverse simulations were available. The shaded error denotes prior uncertainty. c) Average posterior minus prior 835 
CH4 emissions for January-June 2019, using dates where nearby observations were available. 
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Figure 10: a) Prior CH4 emissions within the Istanbul domain for September 2020. b) Time series of total prior (black circles) and 840 
posterior (greenblue triangles) CH4 emission estimates within the 1°x1° domain, centred around 41°N, 29°E (white box in a) for 

2019-2020, where observation and inverse simulations are available. The shaded error denotes prior uncertainty. Average 

posterior minus prior CH4 emissions for May (c) and September (d) 2020, using dates where nearby observations were available. 
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Figure 11: Estimated national/regional average CH4 emission change between 2020 and 2019 for January to June, derived using an 

IFS inversion for the largest emitters for a) Energy, b) Agriculture, c) Waste and d) Other Anthropogenic sources. e) Global 

change in sector -specific monthly CH4 emissions for the same period. f) National/regional change in total anthropogenic CH4 

emissions for the same period. 


