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Abstract.

o L)

Concentrations of atmospheric methane fCkhe second most important greenhouse gas, continue to grow. In recent year[ Formatted: ~Subscript

this growth rate has increased further (2020547 ppb) the cause of which remains largely unknown. Here, we

demonstrate a higresolution (~80km), showindow (24hour) 4DVar global inversion system based on the ECMWF

Integrated Forecasting System (IFS) and newly available satellite observations. Tke fatgmal disagreement found

between prior §.353-1 Tg moyx™t) and posteriord.059:8 Tg moy«*) CHs emissions is from China, mainly attributed to the [Formaned: Superscript

energy sector. Emissions estimateddm our global system agree well with previdussinwide regional studies and point [Formaned: Superscript

source specific studies. Emission events (leaks/blowouts)GH0Hr* were detected, but withoabpropriateceurateprior [F"rmaned: Subscript

uncertainty information, were not well quantified. Our results suggest that global antemapGd} emissions fothe first 6 [Formaned: Superscript

months 0f2020 were on average5-7470TGg yr-tmo* (+1.6%) higher than for 2019, mainly attributed to the energy and [Formaned: Subscript

agricultural sectors. Regionally, the larg@s20-increases were seen from China2.@220 TGg yr-1mo*, 4.3%), with

smaller increases from India §80-8 TGg yrmq?, 1.52.2%) andUSAlndenesia(+0-240 TGg yr-1mo*, 2.62.2%)Results [Formaned: Superscript
how-the fise in—emissions—and—subsequentatmospheric—gro d_have_occurred ho hout_tHeOID-19

slowdown When assuming a consistent yearyear positiveirend in emissions, resultB@w thatBduring the onset of the

global slowdown (MarctApril, 2020) energy sector GHemissions from China increasetiove expected levelhowever, [Formaned; Subscript

during later months (Mayune, 2020) emissions decreased below expectesiowdownleveldevels Resultsfor the first 6

months of 2019/2028uggestrthe accumulated impact of teOVID-19 slowdown on Cl emissions from MrchJune [Formaned: Subscript

2020 isfound-to-besmall relative to thelong-term positive trend in emission€hanges ifDH concentratioatmespheric
chemistry not investigated here, may have contributed to the observed growth inR2020:-work-aims-to-develop-the

alob nversion-svystem-and-to-extend-the MEr windowlenath na-a-hvbrid-ensemble onal-method
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1 Introduction

Atmospheric methanéCH,) as a longived greenhouse gas (GHG) has contributed to ~23% of the additional radiative

forcing since 1750 (Etminan et al., 2016), second only tg G@arsurface concentrations have more than doubled since the [Formaned: Subscript

pre-industrial era, with the global avemaglry air mole fraction reaching 1891 ppb in 2020 (gml.noaa.gov, 2021). This
growth can mainly be attributed to increased anthropogenic emissions from agriculture, biomass burning, fossil fuel
extraction and use, and waste (Etheridge et al., 1998).

The rauction in global human activities, triggered by the COMI® pandemic, provided an opportunity to assess the
impact of potential rapid climate mitigation strategies to reduce GHG emissions (Diffenbaugh et al., 2020). The sectors most

obviously affected byhe slowdown, e.g., transport and industry, are directly associated with fluxes efi\@tgollutants

(Ming et al., 2020) and GQLe Quéré et al., 2020), and less sosChbrsteret al, 2020) The change in energy and fuel Formatted: Subscript

Similarly, a recent study found reduced emissions from the largegtroducing basin in the USA, the Permian Basin, | Formatted: Subscript

demand is estimated to haveduced oil and gas Glémissions by 10 % for 2020hen compared to 2019 (IEA, 2021). [Formatted: Subscript

between April and May of 2020 (Lyon et al., 202Despite this, during 2020 atmospheric concentrations gfgeév by Formatted: Subscript

154.76+0.4 ppb, the largest amount since records began in the early 1980s (NOAA, 202)ernative hypothesis isFae
reduction in demand could have increased veritigrg when extracting fossil fuelgesulting ifeading—toincreased

atmospheric concentrations. The remainingsGHurce sectors were not expected to have been noticeably impacted b){ Formatted: Subscript

changes in activitguring the slowdown. The reduced emissions off0ihing nitrogen oxides (N& during the slowdown [Formaned: Subscript

may have reduced the gHlink (Stevenson et al., 2021), however another recent study suggests this impact nhay®nly [Formaned; Subscript

accounted for, at most, a 2 ppb grbeé-smal(Weber et al., 2020).

TGiven-he relatively large atmospheric variability of £ebncentrations and:latively accurateavailablemeasurements, [Formaned: Subscript

allow for the quantification and attribution of emissiomspeossibleusing inverse modelling based on bothsitu (e.g.

Wilson et al., 2016; McNorton et al., 2018) and satellite observations (e.g. Bergamaschi et al., 2018; Maasakkers et al.,
2019). Global atmospheric flux inversions (e.g. Segers and Houweling, 2018;aQu2821) are typically performed at a
coarse spatiotemporal resolution (~monthly, >1°), for which localised events (e.g. leaks and blowouts) are difficutt to detec
Additionally, previous attempts to quantify emissions have been restricted by limifadesand satellite observatiors.

2002 tFhe Scanning Imaging Absorption spectrometer for Atmospheric CartograpHY (SCIAMACHY) provided the first

total column CH (XCHg) measurements from space. These observations were supersedediidyatbe Atmosphec [Formaned: Subscript

Sounding Interferometer (IASI) in 2006 and iGeeenhouse gases Observing SATellite (GOSAT) in 2009, offering higher [Formatted: Subscript

sensitivity and spatial resolution (~10 km). GOSAT is limited by a relatively narrow spatial sampling restricting the

coverage. Both struments have been used to constrain Skiface fluxes in inversion studies (e.g. Frankenberg et al., [Formaned; Subscript

2005; Maasakkers et-al2019). The TROPOspheric Monitoring Instrument (TROPOMI) instrumeiiitoand SentinebP,
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launched in 2017, provides global higesolution (~7 km) XCH observations with an improved spatiotemporal coverage [Formaned: Subscript

and precision (Veefkind et al., 2012; Hu et al., 2018). These newly available observations provide the opportunity to detect

CHy hotspots (Barré et al., 2020) and potentiatipstrain CH fluxes at high spatiotemporal resolution (Pandey et al., 2019; [Formaned: Subscript

Zhang et al., 2020). [Formatted: Subscript

This study presents and evaluate$rst-version-ofthe new capabilities introduced in theiropean Centre for Medium

Range Weather ForecafECMWF) Integrded Forecasting System (IFS) to estimate emissions of greenhouse gases and

atmospheric pollutants using satellite observations of their atmospheric concentrations. The system is being developed in the

framework of the Etfunded Copernicus GQproject (coc@-project.eu, 2021) and its precursor, the, ission [Formaned; Subscript

project (Balsamo et al., 2021) as the global prototype for a new Copernicus anthropogerimi€sibns monitoring and [Formatted: Subscript

verification support capacity (Jansséviaenhout et al., 2020):or-this-p@er,-the focus-on-CHemissions-allows-to-benefit ( Formatted: _ Subscript
om—greater—observability from—remesensing ompared—to—CO and—suitably targe—spatiotemporal—variability,

addressinblere we focus on anthropogenic gEmissionsas they offer a useful testbed for the future, €@temfor three [Formaned; Subscript

main reasons. First, relatively accurate renssiesing observations of Gldre available at a high spatiotemporal resolution. [;:ormaned; Subscript

Second, the atmospheric gradients are larger fqf, Gidviding a suitably large sensitivity of concentration to emissio [Formaned; Subscript

Third, the anthropogenic contribution to fluxes is comparable to the natural component, wheregstfw &@Ghropogenic [pormaned; Subscript

component is_considerablysmaller We addressthree main outstanding questions. First, ares @Hhission hotspots [Formaned: Subscript

quantifiable usig multiple sensors and a higésolution global shomvindow 4DVar system when accounting for

meteorological errors? Second, how well do concentrations generated using posterior emission estimates agree with

independent observations and existing studigsfl, is the system capable of assessing potential lelegertrends during

the COVID-19 pandemic slowdown?

The following sections, 2.1 and 2.2, outline model methodology, detailing tRgadbnversion system used and prior

assumptions made. SectiorB2describes the observations assimilated into the inversion system. Section 3.1 identifies

suitable prior uncertainty assumptions in JOHixes. Section 3.2 provides a global overview of posterior fluxes and the [Formaned: Subscript

relative changes from prior estimates. 88tB8.3 evaluates the system using a range of regional and persistent point source

case studies. Section 3.4 Investigates the feasibility to quantify emissioni athigh spatial and temporal resolution using

case studies. Section 3.5 investigatesitfieence of the global slowdown triggered by the COMI® pandemic on CH [Formaned; Subscript

emissions. Section 4 discusses the findings and relevance to the wider community including limitations and suggestions for

future work.



95

100

105

‘110

115

120

2. Methods
2.1 Forward model

The ECMWF globallintegrated Forecasting System (IFS), which provides the operational Copernicus Atmosphere
Monitoring Service (CAMS, https://atmosphere.copernicus.eu/) greenhouse gas (GHG) forecastR#&warsia et al.,
2019), was used to generate the forward modebnations used in this study. These were performed from January to June
of 2019 andlanuary-te-September 2020, with additional case study simulations performed for June, 26E®&lovember
2019and Julyto September of 202@omputational cost pventedsimulating the full period(20182020) Simulations were

performed using a horizontal cubic octahedral reduced Gaussian grid (TC0399: ~25km) and 137 vertical levels with coupled

meteorology at operational forecast timesteps of 15 minutes-drar8y output.

Monthly gridded prior estimates of anthropogenic emissions were taken from the CAMS global emissions produet, CAMS
GLOB-ANT v4.2, (Granier et al., 2019), which combines existing products (e.g. EDGAR: Cippa et al., 2018; CEDS: Hoesly
et al., 2a8). The Global Fire Assimilation System (GFAS) provided daily biomass burning emissions (Kaiser et al., 2012).
We used a monthly climatology of wetland emissions based on th&VERMe model (Spahni et al., 2011). Remaining
fluxes from oceans (Lambert arf@hmidt, 1993; Houweling et al., 1999), termites (Sanderson, 1996) and wild animals

(Houweling et al., 1999) were used at the highest available spatiotemporal resolution.

The atmospheric GHsink comprised of a monthly mean climatological loss rate field (Bergamaschi et al., 2009), whicl{ Formatted: Subscript

represents loss reactions with hydroxyl, chlorine and atomic oxygen radicals. A gridded surface soil sink was also used

(Ridgwell et al., 1999). Initial cortions for the 3D atmospheric state of £ere taken from the CAMS GHnversion [Formatted: Subscript

product (Segers and Houweling, 2018). [Formatted: Subscript

2.2 Inverse Model
2.2.1 ABVariational inversion

We used the 4Var IFS system, cycle 47R1 used operationally at ECMWF between Junea@fi2®lay 2021. More

detailed information on the IFS 4War system can be found in Rabier et al. (2000) and Courtier et al. (1994). The
incremental algorithm used consists of solving a serieqquadratic minimisation problems (inAkeop) constructed by
linearising the initial (notinear) cost function around updated estimates of the state vector-l@mpgr To constrain

surface emissions, the state vector is augmented by a parameter control vector that consists of a 2D scaling factor applied t
a prior enission inventory (see Sec. 2.2.2), based on Massart et al. (2021). In our configuration, the posterior scaling factors
are optimised on a regular 2D grid (~80 km) within ahd4r window and then applied to the prior emission inventory
defined on a grid fo~10 km resolution (Figure 1Prior emission errors are assumed to be independent betwdwui24
inversion cycles (i.e.each 24hour inversion uses the same uniform scaling factor of 1 and the same prior errors). This

4
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choice was driven by the lack afformation about temporal error correlations in current prior inventofiesiently the

error covariance for the GHhnitial state vector is taken from a climatology and fixed in tooastant across 4Mar cycles

(supplementary figure 3). As a resultPposterior errorsri methane emissions and 3D state are not propagated forward across

data assimilation cycles in this configuration, which is a technical limitation of our current system and will be addressed i
subsequent versions. We use an online\&D data assimilatiosystem, where the meteorological fields are part of the
control vector and optimised jointly with the emission scaling factors. As a result, the transport errors associated with
uncertainties in the initial conditions of the meteorological variables@w®uated for in our inversion. This is in contrast

with widely used offline inversion systems, wherein transport error are typically prescribed ofhaa laasis and fixed.

Note that in our experiments the background errors for the meteorological veaaléial time are constructed based on a

climatology, and therefore are not fledependent.

The scaling factors derived from the inversion were applied to segtecific prior maps for source attribution. A caveat to
this approach is thassumption that collocated sectors have the same scaling factor applied, which can only be overcome

with the use of ceemitted species observations such as ethane or isotopologues (e.g. McNorton et al., 2018). However, this

is unlikely to noticeably impadhese results as at the relatively high increment resolution used (~80ksgeCldrs are [Formaned; Subscript

rarely collocated. Missing sources in the prior are also not accounted for when using a posterior scaling factor.

2.2.2 Prior information

Anthropogenic sectorspecfic grid cell uncertainties, taken from Maasakkers et al. (2016), provided the initial prior
estimate for countries with wetlleveloped statistical infrastructures or Annex | countries (IPCC, 2006). FeARmex |
countries, the same sect@pecific uncetainties were further increased by 50%. Globally, constant wetland uncertainties
were estimated at 58%, taken as the standard deviation from the WetCHARTSs ensemble (Bloom et al\/e2083F)me

the standard deviation of the WetCHARTs ensemble to proeideasonable uncertainstimate ofthe LPJWHyMe

emissions used herdnitially, all other biogenic uncertainties were estimated as 100%. The atmospheric sink was not
optimised by the inversion. Sensitivity experiments where prior errors were perambedalidated against independent
observations were used to evaluate prior uncertainty assumptions (supplementary table 1). Given anthropogenic emissions
are typically from point sources (e.g. fossil fuel extraction), we assumed no spatial prior eetaticorgiven the derived
increments are a ~80 km. Wetland emissions would typically require defined spatial correlations, however given the
uncertainty of these structures, the focus of this study being anthropogenic emissionstamdccurrencesfcco-located

emissions from wetland and anthropogenic sources we have chosen to omit these for simplicity. Total grid cell uncertainties,
used in the control vector, were calculated with the error propagation method. All prior uncertainties are ashaweed to

log-normal distribution to prevent negative emissions.
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2.3 Observations

The observations used in the meteorological component of the IR&ga#ABystem include satellite radiances, conventional
ground based and radiosondes, and aircrafts and shgpsafawhich the coverage and quality is constantly monitored prior

the assimilation. With specific focus on gkhe TROPOMI instrument eboard the Sentinéd Precursor satellite provides [Formaned;

Subscript

nearglobal daily coverage of XGHwith a nadir ground pixel sizef 7 km x 7 km and nessurface sensitivity (Veefkind et [Formaned:

Subscript

al.,, 2012 Lorenteet al, 202]). We used operational observations, which became available in April 2018 and were bias
corrected, as in Barré et al. (2020). An example representation of dailjtesatmllerage, which is applicable within a-24

hour 4DVar window, is shown irsSupplementary figure 1. TROPOMI uncertaintiesl%) provided as part of the GH [Formaned:

Subscript

product were applied within the minimisation routine and averaging kernels weréHssetkamp eal., 2019) Additional

XCHjy observations-from the—Infrared-Atmospheric-Sounding—tnterferometiAS|) and GOSAT and their associated [Formaned:

Subscript

uncertaintieof ~2% and <1%respectivelyare assimilated into the system to provide additional constraints as described by

Massart et al., (2014Roor quality data are removed based on the provided quality flags.

3. Results

Severalsimulationswere performedFirst, a suite of sensitivity experents was performed to identify an appropriatier

flux uncertainy (section 3.1). This was then ustglinvestigateglobal emissions (section 3.Xpecific emissionevents
(section 3.3 and 3.43nd perform comparative source attribution of,Gldxes during the COVID19 global slowdown
(section 3.5). A full list of simulations is provided inpplementary tablé. Between midto lateMarch 2020mostof the
countriesin the worldimplemented slowdown measures, which reduced socioeconomic activiéikese(Hl.,2021). These
measures typically lasted until May Junewhen certain activities were progressively reintroduced, although not to pre

slowdown levelsChina is a slight excein, with an earlieslowdownoccurringfrom the end of Januarfo investigate the

impact of these measures on Lemissions, relativeot previous years, we perform simulations from Januatyen
slowdown-restrictions-were-limited-to-Chirta,June for 2019 and 2020/e assume January and February were busaess

usual mortts for both 2019 and 2020 and that the relative difference irsemssfor these two months between each year

represents the loAgrm trend in emissions.

3.1Evaluation

To assess the suitability of oprescribed por error in CH, emissions, 6 sensitivity inversions with a range of uncertainties
were performed(see supplementary table 1)We also performednaadditional experiment where only the initial 3D
atmospheric concentration of GWas optimisedOptimisedemissionsverethen used in forward model simulations, which
were evaluated against XGlheasurements frorb6 Total Column Carbon Observing Network (TCCON) s{i&sinchet

al., 2011). TCCON averaging kernels were applied to model profiles as described in Masda(2016). Results show
improved performance when includifigx scaling factrsin the control vector when compared to only optimizing the initial

6
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3D-state Esupplementary figure 2). WheevaluatingXCH, concentrationsimulatedwith optimisedemissions, théowest
all-site averageewest standard error (6.8 ppland absolute meaibias (7.52 ppbyas foundfor the mapped prior error

described in section 2.2.2Jsing the mapped prior error resulted danlower standard erran 12 of the 16 sites when

compared with the controfurthermore the absolute mean bias was improved at 10 of the 16asitERe mapped prior

error also produced theghestall-site averag®-value (0.74) an improvement compared with the conaibb of the 16 sites

was—foundfor-the-mapped-prior—errodeseribed-in—section—2.2.All subsequent experiments used the mapped prior
uncertainty typically ranging from 5.50%.

3.2 Global Emission Estimates

As human activities have changed in 2020 in response to the GO¥Ipandemic we first investigated tdéference
between prior and posterior emissions tfog first half ofa businessas-usualyear, 2019Emissionswere estimated using

the D-Var global inversiorsystem described in Section Zrdm January to June 2019. The resultfirg and wetland
emissions are likely to be anaccurateestimate of annual emissions because of the strong seasafabitgh sources
TROPOMI observations do not provide full global coverage within odn@4 4D-Var window, resulting in emissions not
being constrained over large ared® produce meaningful spatiotemporal budgets of posterior emissions the posterior error
covariance should be accounted for. Because this latter quantity is currently lackimgsystem, we chose to compute
posterior emission budgets based on a subset of grid cells that are significantly constrained by the obséfvatiorss.

aim in mindFe-this—aif in our analysisgrid cells whose distance to an observation were grezaer1° were discarded.

When considering monthly averagenissionsthe difference in coverage between years is unlikely to significantly impact

the resultsassuming the variability within a single month is snfadr each selected grid cell, we apply thenthly mean

posterior scaling factor to our prior emission inventory to provide a posterior emission esBinatdly, we found total
averageposterior emission estimate$4(0528.2 Tg moyrt) for 2019 were 4.70.4 Tg moyr* smaller than prior estimates
(44.4532.9Tg moyrt). Within nationalboundariesboth negative and positivadjustmentsn emissionften occur(Figure
2b). Moreover, we found that when averaged over #meo®ith periodconsiderablehangesrelative to he prior,arefrom
anthropogenic sourceg)(4 +4.7 Tg moys™).

At national scalesfor the 6 month perigcanthropogenic emission differences between the psiG68-1Tg moyr?) and the
posterior 6.059:8 Tg moyr ) werefound to belargest over China (Figurgc). The potential overestimation in bottamp
emission estimates from China is well documented (lgewaphongphan et al., 2019), although the magnitude of this
overestimation is uncertain. Using prior emission maps, we lliséd total posterior emissions into 6 seetspecific

categories; energy, agriculture, waste, other anthropodienicstrial, residential and transport sectpvggtlands and fires.

In agreement with multiple inverse studiesg( Deng et al.,2021) most of the overestimated emissions from China are
found to originate from the energy sect6r2(-9 Tg moyr?) and specifically from theoal mining regions oButeinner

Mongolia, Shaanxi and ShanxRelative to the prior, posterior emissions aduced from India-8.0%) and Pakistan (

7
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1.1%), increased from Brazil (+1.3%) and less than 1% different for the USA (0.5%), Indonesia (0.3%), EU27+UK (+0.1%)
and Russia-0.7%). Except for Russia and Indonesia, these bring emission estimates in cleseneagrwith other tep
down studies (e.g. Deng et al., 2021).

3.3 Emission estimates for Regions and Point Sources

The feasibility to detect and quantify emission hotspots on a global scale using a relatively high resolution increment grid
(~80 km, daily),a high resolution prior emission grid (~9km, monthly) and nmetisor data was evaluated using previously
-documented case studies (e.g. Zhang et al., 2020 Varon et al., 2020). Preliminary work by Barf20@0atombined
high-resolution IFS forecasts (~9 km) with TROPOMI observations to detect missing emission sources based on a statistical
analysis; here we attempted to extend this to the quantification of emissions in a robust atmospheric transport inversion
framework. To filter posterior estimates which provided little orupaatedddedinformation we omitted daily grid cells

associated with poor observation constraints (see supplement figiéndi). comparing our results with other studessd

in the absere of a formal posterior uncertainty estimate, the sampling bias introducehisbfiltering method may

introduce additional uncertaintieButure developments will account for posterior error reduction in our analysis. Efforts are

ongoing to include an eemblebased estimate of the posterior emission errors in our system to provide a more robust

evaluation. Posterior emissions and comparisons with existing studies for several case studies are provided in table 1.

3.3.1 Regional emissionsPermian Basin,USA

The Permian Basin, an area of ~4008kiis the largest oiproducing basin in the USA. Previous studies identified an
underestimation in inventory estimates of lixes in this region (Alvarez et al., 2018; Robertson et al., 2020; Zhang et al.,
2020). In recent years oil production in the basin has undergone rapid expansion with output of crude oil quadrupling and
natural gas more than doubling between 2007 a8 ZBhang et al., 2020). Given the rapid expansion and the lag in uptake

of statistical information to inform the prior inventory, it is likely that the prior used here underestimates emissiahe from
region. Variability in atmospheric transport over besin noticeably impacts observed X@#hhancements (Crosman et al.,
2021), therefore an accurate higdsolution representation of transport is required to quantify emissions. The IFS system,
used here, is suitable to address such a problem as it psriornonline assimilation of atmospheric composition and

meteorological observations therefore providing an improved representation of transport uncertainty.

Using only dates when nearby TROPOMI observations were available (237/485), inversions fomthati$ available
(January to June 2019 and January to September 2020) provided average posterior emisgisi§o8+0.5-TgGg yrmo
L over the 6°x4° domain, centred around 32°N, 103°W (Figuré!8).standard-deviation-value-indicates-the-daily-vaigbil

and-not-the-pesterier-uncertainfhis is a considerable increase from the p#dr 64+0.03 GTg moyr?. The uncertainty
value shown for this case study and all subsequent aepeesents the standard deviation of the daily flua@s not the

posterior uncertaintyThe estimated flux brings emissions closer to, but remains lower than, a rec¥tar 4Bversion

8
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estimate 24(2.9+0-540 TGg moys* (Zhang et al., 2020). Amallpositive trend is identified over the basinge12+4 ktGg
moyr2). While it is difficult to diagnose the cause of the difference in posterior estimates, one possibility is the larger prior
uncertainty used in Zhang et al. (2020). Additionally, transport uncertainties associated with initial meteorologjtb@hson

are accounted for in our online inversion system, which might significantly impact the derived emissitdnsimoreboth

studies cover slightly different time period@nally, differences betweethe treatment of observations and their assediat

uncertaintiesvill have influenced derived fluxes in both studies.

During the 2020 slowden Lyon et al. (2020yerivedtower andaircraft basedCH4 emission estimateom the Permian

Basin. They foundemissions from January to March, 202B4+12 Ggmo?) reduced during the onset of the slowdown

(April: 47+10 Gg mo') and subsequently increased again as oil price partially recovered in Juné31BFna). For the

sameperiod,we find only asmalldecrease in emissions from January to March averages (188+4% & ¢p April (183+34

Gg maY). This decreasing trend continues into June8#Z Gg ma"). However, we find between Juand September

emissionsnoticeablyincrease to 2154 Gg mo?, suggesting the rebound found by Lyon et al. (2020) is detected, in our

system, from July onwardShe difference in magnitude of emissions between both stusliea part, a result of the

different domains used.

3.3.2 Regional emissionsBakken Formation, USA/Canada

The Bakken Formation, predominantly in North Dakota, is a majeproilucing region both within the USA and Canada.

The rig count in the region has declined in recent years; however, except for during the initial 2020 global slowdown, both
oil and gas production have seen large increases in the past decade (EIA, 2021). During recent years various management
methods have sought to reduce fugitive emissions from the region, however it remains one of the largest emitting regions
within North Ameica (Schneising et al., 2020).

A previous study estimated average /GHhissions from the Bakken Formation between 2018 and 20189¢8%470.56

G¥g moyr? (Schneising et al., 2020). These were estimated using a Gaussian integral method and TROPOMI data. Our prior
emissions §71-03 TGg moyr?) for a 1°x1° domain centred around 48.5°N, 103°W for 2019 are larger than those previous
derived estimates. Our postg results for 2019 770-93:0.4842 TGg moyr?) showa large variabeility, but an overall

positive trenerowth in emissions from the region (Figure 4). These estimates agree with those derived by Schneising et al.
(2020). For 2020, a period not included in their study, we find larger average emissions relative tb-2BEq.6352

TGg moyrt). Unlike for-the Pemian Basin example, the agreement found here is based upon two differeftwiop

approaches, our 4War IFS system and the Gaussian integral method of Schneising(2020).
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A possible CH emission event is observed on tieSeptember 2020 where &sions were estimated to increase by 350%
from a 2020 average of 120 t*hto 410 t ht, which over the 24our period equates to an additionalz@kt CHs. The

source of this previously undocumented event is not clear, an incident reported at TharS@atnPlant in Saskatchewan,
Canada(lD 48996)is a possibility; however, accurate attribution requires further investigation (Saskatchewan.ca, 2021).
Several similar events of slightly smaller magnitude are also observed, the causes of these require further investigation.

3.3.3 Regional natural emisens - Lake Chad, Africa

The hydrology of Lake Chad and the surrounding area has recently undergone substantial variability on timescales ranging
from seasonal to decadal (Phd&mc et al., 2020), which is expected to have impacted both natural and agémimpo
emissions in the region. A recent study, using a similar prior to the one used here, performeldvantap/ersion over

tropical Africa using GEO£hem and GOSAT observations and found posterior emissions increased relative to their prior
over LakeChad between 2016 and 2018, although these are not quantified (Figure 3c of Lunt et al., 2019). Our results for
2019 and 2020 for a 1°x1° box centred around the lake (13.0°N, 14.3°E) show posterior enli&8iGas40-05FGg yrmo

L are 11% higher than i emissions §-3529+20.02 TGg moyr?) (Figure 5). Observations are only available over the
region for 65 out of 485 days, making estimations of the seasonal shift between the posterior and prior difficult. We are
unable to attribute the increased emissitm a specific sector; however, based on prior information, it is likely to be from
agricultural livestock or wetland sources. If this regwide increment is the result of wetland emissions, with further
refinement and accurate characterisation of peimor correlations, our system could be used to quantify emissions over

wetland regionsDetailed comparison with Lunt et al. (2019) is not performethasstudies covea different periodand a

thorough comparison requires further refinement of howrahemissions are treated in the priblere we only note the

sign of the bias in both studiesti®e same@ndrequires further investigation

3.3.4 Point source emissionsAppin Colliery, Australia }

The Appin Colliery 84.2°S, 150.8°E)in New SouthWales, Australia is an underground coal mine previously noted for
having high CH emissions (Varon et al., 2020). It represents a single point source, which is challenging to quantify as there
are several nearby emission sources including landfills, dflties, and a gas processing plant. Varon et al., (2020) used
the highresolution GHGSab instrument andintegrated mass enhancement (IME) and esessional flux (CSF) methods
calibrated with large eddy simulations to derive vent emissions fromite between 2016 and 2018. They estimated mean
CH4 emissions 06:9-+h#.2 Gg md* (IME) and5-0-+h8.6 Gg md* (CSF), lower than the prior used hee7¢.9+0.1+-hrGg

ma?, fugitive only:6.04.3+0.1t+hrGg ma'). We derived 2012020 average grid dedmissions 06-44.6+0.75 +-hrGg mo™.
Assuming little or no change in emissions between their -201® study period and our 202920 estimate, our derived
fugitive-only; emissions %-74.1+0.60.5+hGg mo') agree well with their findingéFigure 6). For 2019, a business-usual

year, which is nearer to the time period investigated in their study, fugitive emissions are eveB-En@0(75 thfGg mo

1). These results suggest our inversion is capable of detecting biases in thergmigpdint sources, given sufficient
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observations (100/485 days observed), a relatively large point soursé {3+Gg mad') and a suitable prior uncertainty
estimate. Prior emission estimates appear to be in better agreement with our posg92f, isuggesting an increase in
emissions, most likely from the Colliery given it is the dominant source in the region.

3.4 Emission estimates for Temporary and Shifting Sources

The following 4 cases assess the quantification of emissions from spe@éseavents, step changes in emissions or-short

term observation periods, using documented examples and previously unexplored sources. As with the regional comparisons
in the previous section, evaluation of the system is performed against multiple eraisication systems beyond the-4D

Var approach used here.

3.4.1 Feasibility of estimating blowout emissions- Eagle Ford Blowout, USA (November 2019)

On T November 2019, a blowout event occurred at a gas well in the Eagle Ford Shale in Texas (Z869%), Svhich

was followed by a diminishing 2@ay release event (Cusworth et al., 2021). Cusworth et al. (2021) estimated emissions of
the blowout using several estimation technigues, including the Integrated Methane Enhancement algorithm (Varon et al.,
2018), and multiple observation platforms, including TROPOMI. Observations directly over the blowout were made from
TROPOMI on the %, 39, 15" and 18" of November 2019. We further extended our analysis to all observations made
between 19 October and &" November 2019 within 2°x2° domain centred around the blowout (Figure 7). We found when
blowout emissions peaked on th&2rY November 2019, posterior emissions at the site were ~40% higher than prior
emissions; however, the magnitude of the posteniissions (2.5 t ) is noticeably lower than the Z&L t hr* previously
estimated (Cusworth et al., 2021). As expected, posterior emission estimates return to near prior levels after the initial
blowout (Figure 7). Estimates provide by Cusworthadt (2021) would requirenore thare 1,500% increase in emissions
relative to our prior which is unlikely to be achieved with our relatively modest prior error (87%). It is likely givendbe m
resolution and prior information that posterior emissiamsiacorrectly attributed to nearby grid cells. This is evident in the
mapped scaling factors, which show increases incorrectly applied slightly to the west of the blowout location. Within a 4°x4°
domain surrounding the blowout site posterior and priorssions typically agree well for months excluding November,
suggesting any differences occurring in November, could be attributed to the well blowout. Based on this assumption we
used the residual from the posterior minus the prior to estimate blowouidsiss the  November 2019 of 140 t iy

which is more than double the estimate of Cusworth et al. (2021). These results suggest that the system, as presented here,
can detect such events but cannot accurately quantify a well blowout of this magnitu@e oil field-It could however be

used as a crude quantification of emissions from such a blowout over a larger domain, assuming other sources are well
known. A more accuratguantification of emissions from release events of this nature, requiteerfuevelopment and
possibly the implementation of alternative techniques well adapted for missing sources (e.g. Yu et al., 2021).
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3.4.2 Feasibility of Xday emission estimates Upper Silesian Coal Basin, Poland (June, 2018)

The Upper Silesian Codasin (USCB) is one of the largest £kemitting regions in Europe, with emissions originating
from ~40 coal mines (EEA, 2021). The region extends from southern Poland across the border to Czechia mikere CH

released from deep coal deposits and emitted to the atmosphere via ventilatiofF&taftst al., 2020).

To evaluate the feasibility of the system to quantify regional €hission sources within a 2¥ur window we performed a
oneday inversion over the USCB. Results were compared with emission estimates derived using aircratioolsserva
combined with Eulerian and Lagrangian dispersion models (Kostinek et al., 2021) and a mass balance approach (Fiehn et al.,
2020). These studies used extensive flight data from ¥hiule 2018 to derive regional ¢Emission estimates @f42
0.4835-40 TGg y*mo*. The CoMet v2 bottorup inventory (Fiehn et al., 2020) was specifically compiled for the purpose of
the flight campaign and estimated emissions in the regiofgefs8 TGg yrmo?. Our results for the '6of June 2018
estimated USCB emissiomg 480-57 TGg yrma™, compared to our prior estimate @653 TGg yrma* (Figure 8). This

shows good agreement with CoMet v2 and an improved agreement with tiewapestimates. From Janualyne 2019,
posterior estimates(5849+0-1714 TGg yrmo™) remain low relative to the prior, however they increase in 2020 resulting in
an average estimate for 202020 of0.6252+0.1916 TGg moyr* compared to a prior a8.6453+0.011 TGg yrma*. This
suggest that whilst emissions in the basin increased oveimtiudation duration, they were consistently overestimated in the
prior. The prior emissions do not consider daily variability, whilst considerable variability was estimated by the posterior

(1.7£0.5Ggkt day?).

3.4.3 Detection limit of inversion system Oil Fields, Algeria (20192020)

The CH, emissions from a point source release event from a well pad at the Hassi Messaoud oil field in(Z1g&iiy
5.9°E)from October 2019 until August 2020 were previously quantified (Varon et al., 2021). Using S2rdlredrvations
they derived mean emissions @36.7+5.54.0 t-hrGg ma*. From our inversions, and using only dates where TROPOMI
observations were availabwithin 0.4 of where theleak occurred (21 days betweefi Qctober, 2019 and'™August,
2020), we found average Glgmissions within a°k1° domain of24-117.6+3.52.7 t htGg mo* (Figure 9b). After the leak
was sealed average emissions decreas@a-1a5.3+2.22.6 t-htGg mo’. Assuming any difference in emissions between the
two time periods was caused by the release event, we estimate mean leak emigsign&0f96 tGg hrma?. This suggests
some detection was made, but quantification was not accurate when compareéviows @study (Varon et al., 2021). It
seems likely the magnitude of the leak @4 tGg hrmo™) approaches the detection limit of the inversion performed here, and
far exceeds the limit for accurate quantification. Additionally, the low number of obserdatys during the tfhonth leak
period (21 days), might have contributed to the lack of robust detection.

The lllizi Basin (28.3N, 9.0°E)is one of the largest gas producing regions in Algeria and is currently undergoing planned
expansions (Ouki et al2019). Results from a°81.5° domain within the basisuggest average emissions are ~20% higher
12
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(200.24+0.053.9 TGg yrma?) than those estimated by the prior inventdh2016.9+0.010.4 TGg yrmo?) between 2019 and
2020 (Figure 9d). These resudtsggest the lllizi Basin is a larger source of @hissions than the Hassi Messaoud oil field
(17.9:2140.02.5 TGg yrma'), although it should be noted the domain area is larger. As with the Hassi Messaoud oil field,
with our system, it is not possible attribute the emission changes to a specific facility but rather to the entire region (~200
km?).

3.4.4 Detection of unknown sourceslstanbul, Turkey (2020)

Istanbul is the most populous city in Europe, with prior,@hhission estimates &6=0-7 TGg moyr!, making it one of the

largest emitting regions of Europe. Prior information attributes 86% of those emissions to the solid waste and wastewater
sector. Inversion results from a 1°x1° domain centred around Istanbul (41.0°N, 29.0E°) showed actethé@xgease in
emissions from July 2020 onwards, before which postefigigp6+0-10 FGg yrmo™) emission estimates were in good
agreement with the prio(6&7+0-033 TGg yrmo?) (Figure 10). From July to September 2020, these emissions increased

by 42% to 810-970.3025 TGg yrmo™. The reason for this step change in emissions is unclear and, assuming the posterior
estimates are robust, requires further investigation given the magnitude of the increase. Increased emissions arerderived ove
a largearea of the Istanbul domain; however, given results from the Eagle Ford blowout region it is possible the estimated
increase is from a point source. It is also unclear whether this is a new persistent emission source or if it only wecarred o
period ofseveral months.

3.5 CHs emissions during the COVID19 period [Formaned:

Subscript

To evaluate the impact on anthropogenics@hhissions from the global slowdown, caused by the CG18pandemic, we
compared posterior emissions from January to June of 2019 and 2020. Glolelifly average anthropogenic emissions
for the 6month period in 2020269-530.0 Tg+1.822.0 Tg yrmo™?) are found to be 1.6%170 Gg md) higher than for 2019
(353-29.5+23.5.0 GFg moyr?) (Figure 11). These increased emissions contributed toltberved increased atmospheric
growth rate between 2019.68+0.610.0 ppb yr?) and 2020 14.715.6:0.4 ppb yr') (NOAA, 2021). Sector-specific
attribution shows the energy 4#220+1.6130 FGg y*mac?) and agriculture (#0160+0-540 FGg yrma') sectors are the
largest contributors to this increase, with smaller contributions from the waSteb@0-430 FGg moyt) and other

anthropogenic source8-{-+30+0.220 TGg yrma?).

When compared with 2019, anthropogenic sCemmissions in 2020 were larger glwdown (Januarfebruary:
+5:6470+0-0 GTg moyrY), considerably larger during the early stages of the slowdown (Mssch +8-2680+0-980 TGg
yrmo™) and only slightly larger in the latter months of the inisédwdown (MayJune: 8.2270+0.030 TGg yrma?).

Assuming no other factors contributed to this observed difteren emissions between the two yedrthis suggests,

globally, the impact of the slowdown initially increased emissions and subsequently rétkroedlthough emissions for all

6 months were higher in 2020 than for 2019. This trend in emissions was mainly driven by energy sector emissions (January
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February: £:4200 TGg yrmo?, MarchApril: +4-7390 TGg yrmo™, May-June: ©-980 TGg yrma*?), whilst the agricultural
sector showed a relatively consistent increase, relative to 2019, for all nfebi<sg mo).

When averaged over all 6 months, an increase in emissions between 2019 and 2020 was estimated in 6 out of 8 of the largest
emitting regions, with the only exceptions being Pakisteh@p-0 TGg yrmo?) and Brazil {02823 TGg yrma?). The largest

increase was in China 246220 TGg yrmo™), of which, over half originated from the energy sector, specifically from the
northern coamining regions. The difference in emissions from China, relative to 2019, were the main driver for the global
trend with increases piowdown (JanuarfFebruary: 8.9230 TGg yrmo?), large increases during the initial slowdown
(March-April: +6-0300FGg y+rmo™) and only small increases in the latter months (Maye: 4-4120FGg ymag?). As with

the global signal, this monthly variability is attributed to changes in energy sector emissiehsuld be noted the

slowdown in China occurred from the end ahdary and results showelative to 2019, 202@missions from China were

noticeable largein January (+2@ Gg mo') and only slightly largein February (490 Gg md) suggesting a brief impact

from the slowdown.

For the first six month&emissions for 2020 from India were on averagygs5 FGg yrmao* higher than for 2019, with

noticeable large increases in emissions from the agricultural sector in June 20203#Gg yrma), which contributed to

almost half ofthe global increase for June. The increased emissions in June mainly originated from the Uttar Pradesh region
in north India. Similar increases in agricultural emissions are found over Bangladesh for J6h&0(+Gg yrma?). Poor

prior information in the region may have resulted in the misallocation of emissions which could have originated from the
large Baghjan Oil Field blowout in Assam, India, in May/June 2020. Energy sector emissions from Indonesia were
consistently higher in 2020 {80-2 to +0-646 GTg yrma?) and relatively unchanged for the remaining regions @225

FGg yrma?).

Given the limitations of our system we have typically focused on anthropogenic emissions; however, natural fluxes were
also derived. Global posterior téts for the first half of 2020 show a reduction in both wetlaBéd:4 TGg yrma*) and fire

(-150L.8 TGg y*rma?) emissions when compared with 2019, with large monthly variability. The total global decrease in fire
emissions is unchanged from tbstimated prior emissions, taken from GFAS, which is based on satellite observations. The
wetland emission change originates from South America, mainly from Brazik{0 TGg yrmo?) and Argentina-0-328

TGg yrmo?). These reduced emissions were likedyised by large scale droughts which occurred in early 2020 (Marengo et

al., 2021). Although the months simulated are not typically associated with the boreal northern hemisphere fire season, most
of the reduction in biomass burning emissioasie from Rissia ¢1-3110 TGg yrmo?) and Canada-440-53TGg yrmao?).

This change was caused by a particularly active arctic fire season in 2019 (Zhang et aand0ade wildfires in northern

Alberta in May 2019 Relative to 2019, increased fire emissions from Australia are derived for January 262Q(+#Gg

yrmo). It is estimated that an unusually intense bushfire se@naishi and Hirata, 2021) resedt in the release of 330
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ktGg CH4 from Australia over the month of January alp880-ki-CH-mere-than-2019More specifically, the emissions
were unusually large from New South Wales and Victoria.

A limitation of the current system is the use aflimmatological OH sink, which is the primary oxidant for atmospheria.CH
Currently, OH is not included in the control vector and does not respond to changes in atmospheric chemistry. Formation
pathways of OH are influenced by atmosphericxNOncentratios, which were estimated to have decreased during the
slowdown period (Doumbia et al., 2021). Several simulations were performed using multiple chemistry schemes to assess
the atmospheric impact of OH when using a slowdown adjusted emission scenarion(Htige, 2021). Results show

global OH decreases of3% during the slowdown period, however a heterogenous spatial pattern is observed near the
surface with increased OH concentrations over some regions. This would suggest the 2020 increased emmsisiere fo

may be overestimated; however, the derived emission increases in January and February of 2020, relative to 2019, are

unlikely to have been influenced by OH changes caused by the global slow@owre developments will include the [pormaned: Font: Not Bold, Font color: Auto

inversion of NQ emissions during the global slowdown and their effect on OH concentrations, resulting in more accura{ Formatted: Font color: Auto

sourcesink attributio n-online OI-[ Formatted: Font: Not Bold, Font color: Auto

4 Conclusions

We have investigated the feasibility to monitor Jnissions using a global online higésolution (~80km) shomvindow

4D-Var (24-hour) data assimilation system and satellite observations from multiple sensors. This system optimises both the
initial 3D atmospheric concentration of @End surface fluxesyhilst implicitly accounting for transport errors associated

with uncertainty in meteorological initial conditions. The prior emission errors were selected based on comparisons with
independent TCCON retrievals. We identify strengths and weaknesses iofzexgion system by performing case study
comparisons with other wedstablished flux estimation systems at a range of spatiotemporal scales.

Globally a small decrease in annual {#hissions, relative to the prior, is estimated by the inversion fa® ge1%). At a

national scale, we found decreased anthropogenic emissions from &¥t)aafd India {3%), with small increases from

USA (+0.5%) and Brazil (+1.3%) contributing to this change, this is in general agreement with a recent inverse study (Qu et
al., 2021).

To evaluate the system at the regional and point scale, several anthropogenic case studies we(g agledip&osterior
estimates of anthropogenic sources with persistent emissions typically showed good agreement with previous studies.
addition, the posterior quantification of emissions from a large biogenic source region, Lake Chad, compared well with a

previous inversion study (Lunt et al., 2019).
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We investigated the feasibility to quantify emissions at a high spatial, temporapatidtemporal resolutiofEmissions

from a well leak in the Hassi Messaoud oil field, which persisted for several months, were found to be at or around the
detection limit of the system (~9 tGHirY) and beyond the limit for accurate quantification. &inly, emissions from a

large well blowout in Eagle Ford were found to be misallocated to the surrounding region owing to poor prior information
and too coarse model resolution. In contrast, inverse estimates from a known persistent point sourcey ieéppere

found to be in good agreement with a previousdopn estimate (Varon et al., 2020). For -aldy period over a large

region, the Upper Silesian Basin, inverse estimates agreed well with previous studies, (Fiehn et al., 2020; Kostinek et al.,
2021). Overall, these case studies suggest our inverse system is suitable for regional scalé)(effi€ion quantification

over a short timgeriod (24hour), given sufficient satellite observations are available. Given adequate prior information our
system is also capable of quantifying emissions from a persistent point source (e.g. Appin Mine, Australia).

Several previously undocumented £éhission sources were also investigated, including an unknown release event from
the Bakken FormatiarPrior emission estimates were persistently found to be underestimated by ~20% from the lllizi Basin
between 2019 and 2020, possibly owing to an expansion in operations. Finally, a noticeable step change in emissions from
Istanbul was observed from July 2020, whemissions increased by ~40%, the reason for which is unknown and would

require further investigation.

The impact on Cklemissions from the global slowdown in response to CO¥®Dwas investigated using inversions from

the first half of 2019 and 2020. Tiseowdown coincided with a year where £gtowth (:4-715.6 ppb) was the largest since
records began in the early 1980s. We found in the early part of 2020 atmospheric growth was, in part, driven by
anthropogenic emissions which were larger than for 2019 (January to Febrbi@ny0+0.0 TGg yrma?). These emissits

further increased during the early stages of the slowdown (March to ABril68(+0.980 TGg y*mo?), almost half of

which originated from the energy sector in China. Hadtthiscbeen a sustained increasentinuedthe global growth rate

for 2020 wold have been even larger. However, during the later months of the slowdown period emissions reduced,
although were still slightly higher than 2019 values (May to Jure22¥(t0-430 TGg yrmo?);. Assuming no_other
contributing factors, thisuggestgs the slowdown may have acted to reduce emissions, mainly from the energy Bector.

using the relative differences for Januand February as a reference of the loegn growth between 2020 and 204:18d

assuming businesssusualfor those monthswe corclude¥the overall impact of the global slowdown on £#hissions is

found-to-besmall The slowdown in China occurred at the end of Janussing theaforementioned assumption but only for

January results in the same conclusion of a minimal impact osseEms during the entire 6 month period from the

slowdown.and-The increased atmospheric growttidsnd to bethe result of a continued increasing trend ins@hhissions
and possibly related to changes in atmospheric chemistry in response to the sld@dpvBtevenson et al., 2021). The

reason for the observedonthly variability in emissions is unclear, it is possible a reduction in energy demand resulted in
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increased venting of natural gas or a change in working practice led to an increase indugitaiens which subsequently
fell below previous levels after several months of reduced demand.

Future developments wiltdapt-the-system-for-use-to-constrain.@Bissionbe based on a hybridnsemble system that
will extend the assimilation window and utilise observations e¢mitted species (e.g., NOCO). Additionally, improved
representation of biogenic fluxes as well as spatiotemporal correlations in the priorowilepmore accurate posterior
estimates and uncertainties. Finally, the current lack of error propagation across\flae windows, will be addressed in
an upcoming version of the system and more dynamical approaches to automatically adjust inacmuirsfiermation will

be implemented to better constrain missing and intermittent sodrcese improvements will allow for constraints of other

greenhouse gasmissionsmost notably C@
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Table 1: Estimated prior and posterior emissions of CH from several regions and events between 2018 and 2020. Comparison is
770 made with existing case studies. Also given is the dominant source ty(e50%) and the number of days when TROPOMI
observations are made within 1° of the domain of interesWalues denoted by #indicate standard deviation across all days.

25



Region Lat Lon Dominant Dates No. Prior Emissions Posterior Previous Estimates

Source (where TROPOMI (Ggmot) Emissions (Gg mo!) (Gg mo!)

Type available) observation

days (total:
485)

Permian 32.0°N | 103.0°W | Oil/Gas Jan 2019- 237 164+3 190+39 240
Basin Field Sep 2020 (Zhang et al., 2020)
Bakken 48.5°N [ 103.0°W | Oil/Gas Jan 2019- 93 87+0 84+48 74
Formation Field Sep 2020 2019-only: 87+0 2019-only: 77+42 (Schneising et al., 2020)
Lake Chad | 14.3°N 13.0°E | Agriculture/ Jan 2019- 65 29+2 324 No value given

Wetlands Sep 2020 (Lunt et al., 2019)
Appin 34.2°8 150.8°E | Coal Mining Jan 2019- 100 4.3x0.1 4.1+0.5 3.6-4.2
Colliery Sep 2020 2019-only: 3.9%0.5 (Varon et al., 2020)
Eagle Ford | 28.9°N 97.6°W | Blowout Oct 2019- 15/45 - 1.8 20-45

Event Nov 2019 (Oct/Nov (4°x4°: 74) (Cusworth et al., 2021)

2019)

Upper 18.7°N | 50.0°E | Coal Mining 6 June 103 (total) 53 48 35-48
Silesian 2018 (Fiehn et al., 2020;
Coal Basin Kostinek et al., 2021)
Hassi 31.7°N 5.9°E Well Leak Oct 2019- 21/306 - 2.4+0.6 6.7
Messaoud Aug 2020 (Varon et al., 2021)
Illizi Basin | 28.3°N 9.0°E Oil/Gas Jan 2019- 172 1720 204 -

Field Sep 2020
Istanbul 41.2°N 29.0°E | Waste Jan 2019- 219 Pre-July 2020: Pre-July 2020: 56=9 -

Sept 2020 57+3 Post-July 2020: 8125

Post-July 2020:
54+0
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Region Lat Lon Dominant Dates No. Prior Emissions Posterior Previous Estimates
Source (where TROPOMI | (ktyr?) Emissions (kt yr?) (kt yr?)
Type available) | observati
on days
(total:
485)
Permian 32.0°N 103.0°W | Oil/Gas Jan 2019- 237 1970+30 2290+470 2900 (Zhang et al.,
Basin Sep 2020 2020)
Bakken 48.5°N | 103.0°W Jan 2019- 93 1040+0 1000+£570 890 (Schneising et
Formation Sep 2020 2019-only: 2019-only: al., 2020)
10400 9301480
Lake Chad | 14.3°N 13.0°E Agriculture | Jan 2019- 65 346+24 383+53 No value given
/Wetlands Sep 2020 (Lunt et al., 2019)
Appin 34.2°S 150.8°E | Coal Jan 2019- 100 53+1 5016 44-51 (Varon et al,,
Colliery Mining Sep 2020 2020)
Eagle 28.9°N 97.6°W Blowout Oct 2019- 15/45 - 22 242-534 (Cusworth
Ford Event Nov 2019 | (Oct/Nov (4°x4°: 892) etal.,, 2021)
2019)
Upper 18.7°N 50.0°E Coal 6" June 103 627 572 423-581
Silesian Mining 2018 (total) (Fiehn et al., 2020;
Coal Basin Kostinek et al.,
2021)
Hassi 31.7°N 5.9°F Well Leak Oct 2019- 21/306 - 28+29 81 (Varonetal.,
Messaoud Aug 2020 2021)
Basin Oil/Gas Jan 2019- 172 2035 23647 -
Sep 2020
Istanbul 41.2°N 29.0°E Waste Jan 2019- 219 Pre-July 2020: Pre-July 2020: -
Sept 681+34 677+103
2020 Post-July 2020: Post-July 2020:
648+4 967+301
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775 Figure 1. a) Schematic of different resolutions used in the inversion shown by pseudata for 5 sectors. The magnitude of prior
emissions at ~9 km (left) and those same emissions used as input to the &dvmodel at ~25 km (middle). The inversion
increment at ~80 km, resulting scaling factors are applied to all sectors within the grid cell, the boxes indicate relatiwantribution
per sector (right). b) Schematic of inversion setup using the 2dour window, correcting for the initial 3D state, emissions, and
initial conditions in the prior of the subsequent window.
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Figure 2: a) Global annual mean prior CHs emissions for 201%aken from CAMS. b) Difference between posterior and prior
emissions averaged between January and June 2019, derived from the IFS inversionPosterior adjustment, as a percentage of
prior, in anthropogenic CHa emissionsper country.
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Figure 3: a) Average prior Permian Basin CH emissions for 2019. b) Average of posterior minus prior anthropogenic CH
emissions over the Permian Basin for Januarjune 2019 excluding days for which observations were not available) Time series
of total prior (black circles) and posterior (green triangles)anthropogenic CH4 emission estimates within the 6°x4° Permian Basin
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790 domain, cengred around 32°N, 103°W (black box in b) for 2012020, excluding days for which observations were noavailable.
Theshaded error denotes prior uncetainty.
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Figure 4: a) Average prior Bakken CHs emissions for 2019. b) Average of posterior minus prior anthropogenic C+emissions over
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Bakken for January-June 2019 excluding days for which observations were not availablec) Time series of total prior (black
circles) and posterior (green trianglesynthropogenic CH4 emission estimates within the 1°x1° Bakken domajncentred around
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48.5°N, 103°W (black box in b) for 2012020,excluding days for which observations were not availablé.he shaded error denotes
prior uncertainty.
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