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2 Response to Reviewer #2’s comments 2 

This paper aims to investigate the effect of ENSO on global dust emissions, concentration, and 3 

deposition. A multivariate predictive model and the Ganger causality test were used to analyze 4 

dust-relevant output from 12 CMIP6 models.   5 

General Comments 6 

A major and critical shortcoming of this paper, in current form, is the lack of detailed presentation 7 

of methodology, results, and discussion. The paper seems to be written hastily. 8 

Response: We thank the reviewer for your comments. We agree with the reviewer that some parts 9 

of the manuscript need improvement. We modified the manuscript based on your suggestions as 10 

below. 11 

2.1 Methodology: Authors only provide a few lines about their approach, and refer readers to 12 

their previous works and the supplementary document. However, a brief description of the 13 

method should be presented in this section.  14 

Response: We thank the reviewer for raising this point. We moved part of the supplementary to 15 

Section 2.2 to further clarify the Methods used in this study as follows: 16 

“We use the following multivariate predictive model (Mosedale et al., 2006; Stern and Kaufmann, 17 

2013) to estimate the causal links between the ENSO and dust deposition:  18 

𝑿𝒕 = ∑ 𝜶𝒊𝑿𝒕−𝒊 +
𝒑
𝒊=𝟏 ∑ 𝜷𝒊𝒀𝒕−𝒊 +

𝒑
𝒊=𝟏 ∑ ∑ 𝜹𝒋,𝒊𝒁𝒋,𝒕−𝒊 +

𝒑
𝒊=𝟏 𝜺𝒕

𝒎
𝒋=𝟏                                                                          (1)                                                                                                   19 

where Xt is the annual mean (or seasonal mean) dust deposition for year t, Yt is the ENSO index, 20 

and Zj,t is the confounding factor j for year t. In the predictive model presented in equation 1, while 21 

assessing the effect of 𝑌 on 𝑋 (i.e., the contribution of the term ∑ 𝛽𝑖𝑌𝑡−𝑖 
𝑝
𝑖=1 in predicting 𝑋), the 22 

possible influence of past 𝑋 events are considered by adding the term ∑ 𝛼𝑖𝑋𝑡−𝑖
𝑝
𝑖=1 . Thus, the causal 23 

influence of 𝑌 on 𝑋, if detected, is robust and the impact of past 𝑋 events are accounted in the 24 

analyses. Here, m is the number of confounding factors and p ≥ 1 is the order of the multivariate 25 

predictive model. The optimal order p is computed by minimizing the Schwarz criterion or the 26 

Bayesian information criterion (Schwarz, 1978). The optimal orders may be different for each 27 

model.  28 
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Here we take into account the impacts of confounding factors and therefore provide further 29 

information of the real-world teleconnections. In the analyses, we use three different confounding 30 

factors; hence, m is equal to 3. The noise residuals εt and the regression coefficients αi, βi and δj,i 31 

are computed by using the multiple linear regression analysis of the least squares method. We 32 

detrend and normalize all the climate indices.” 33 

2.2 Additionally, authors stated that they studied confounding effects of other climates modes, 34 

namely NAO, SAM, and IOD. First, what is the basis for choosing these modes(?), and 35 

second, no analysis or sensitivity test regarding this treatment was provided.  36 

Response: We thank the reviewer for raising this point. We added the following sentences to 37 

Section 2.2 to explain the selection of the three factors Indian Ocean Dipole, Southern Annular 38 

Mode, and the North Atlantic Oscillation: 39 

“The climate modes SAM, the IOD and the NAO are the important sources of global climate 40 

variability (Hurrell et al., 2003; Luo et al., 2012; Roxy et al., 2015). For instance, the NAO is the 41 

prominent mode of atmospheric circulation variability over the North Atlantic and surrounding 42 

regions (Delworth et al., 2016; Hurrell et al., 2003) and variations in NAO are crucial for the 43 

environment and society (Hurrell et al., 2003). The IOD affects climate extremes over the Indian 44 

Ocean and surrounding areas (Abram et al., 2008; Kripalani et al., 2009; Kripalani and Kulkarni, 45 

1997) and might cause severe economic consequences (Ummenhofer et al., 2009). The SAM is 46 

the major mode of atmospheric circulation variability in the southern Hemisphere (Cai et al., 2011; 47 

Raphael and Holland, 2006). In addition, changes in these modes may affect the variations of 48 

ENSO (Abram et al., 2020; Cai et al., 2011, 2019; Le et al., 2020; Le and Bae, 2019). Nevertheless, 49 

it is likely that these factors may alter the influences of ENSO on dust activities.” 50 

2.3 Finally, what is the basis for choosing these 12 models as data crucial for these analyses are 51 

missing in three of them (table S2)?           52 

Response: We thank the reviewer for raising this point. We selected all the models with accessible 53 

dust-related data. Considering the total models is somewhat low (i.e., 12 models), we kept all these 54 

models. To our knowledge, dry and wet deposition of dust are key variables which directly affect 55 

local environment, thus we selected all models having these data. 56 

We add the following sentences to Section 2.1 to clarify this point: 57 
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“We limited our study to all the models having both dry dust and wet dust data (i.e., there is total 58 

of 12 models with accessible dry dust and wet dust data as described in Table S2). Dust deposition 59 

on land and ocean surface are important metrics to assess the impacts of dust activities on 60 

ecosystems and environment (Bao et al., 2017; Fan et al., 2006; Jickells et al., 2005; Jiménez et 61 

al., 2018; Kanakidou et al., 2018; Schulz et al., 2012). Additional data of od550dust and emidust 62 

supplied by these 12 models provide further understanding of ENSO impacts on dust activities.” 63 

2.4 Results and Discussion: Results were presented and discussed in a highly qualitative manner 64 

without any in-depth analysis as required in a manuscript with an archival value. Authors 65 

only reported the fraction of total “affected area” over ocean and land, but this number alone 66 

is not useful in understanding the true impact of ENSO on dust activities in different regions 67 

of the globe.  68 

Response: We thank the reviewer for raising this point. The “affected area” provide important 69 

information on the scale of ENSO impacts. The purpose of this work is to provide simple and 70 

robust conclusions about the causal effects of ENSO on global dust activities. To our knowledge, 71 

these analyses are lacking, and the results described here have not been shown before. We should 72 

note that we also provided information on the impacts of ENSO on dust activities at regional scale, 73 

as well as the consistency between models in simulating the connection between ENSO and dust 74 

activities. 75 

2.5 As expected, individual models show drastically different results (figures 4-6), but 76 

conclusions of the paper were based only on the ensemble mean results with minimal 77 

discussion about the difference between models. Note that the chosen models use different 78 

dust emissions and deposition, as well as dust size partitioning schemes, so ensemble mean 79 

results must be interpreted with caution.  80 

Response: We thank the reviewer for raising this point. The use of ensemble mean is widely used 81 

and is expected to reduce the uncertainty related to the connection between ENSO and dust 82 

activities. In fact, despite using different aerosol model, there is high agreement (i.e., denoted by 83 

stippling in Figures 1 and 2) between models for the results. Our conclusions are mainly based on 84 

this high consistency. 85 

We partly discussed the difference between models in Section 4 as below: 86 
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“Regarding the consistency across models, the response of dust emission to ENSO is much 87 

stronger in the models INM-CM5-0, MIROC-ES2L, and UKESM1_0_LL compared to other 88 

models (Figure 6). This difference might be due to the use of different dust schemes and soil 89 

properties in this model which lead to higher dust emissions (Mulcahy et al., 2020; Zhao et al., 90 

2022). As models use different parameters to estimate dust emissions (Thornhill et al., 2020), this 91 

discrepancy leads to low consensus across models in modeling the response of dust emissions to 92 

ENSO (Figures 3 and 6).” 93 

2.6 Finally, several conclusions of the work are not supported by the current results, for example, 94 

“ENSO may initiate dust activities in …. (line 93)”, “dust deposited in the South Pacific and 95 

the Southern Ocean might be originated from central Australia and southern South America 96 

(line 117)”, “weak causal impacts of ENSO on regional dust emissions of major dust sources 97 

(Figure 3) may indicate the important role of human influences in igniting local dust 98 

activities… (line 132)”.     99 

Response: We thank the reviewer for raising this point. We removed the lines 93 and 117 to avoid 100 

confusing the readers.  101 

We rewrote line 132 as this line serves as a discussion rather than a conclusion as below: 102 

“Substantial influences of ENSO on dust emission over central Australia (Figure 3) suggest an 103 

agreement with earlier work (Marx et al., 2009), while we observe weak causal impacts of ENSO 104 

on regional dust emissions of major dust sources (Figure 3).” 105 

“Previous studies indicate the important role of human influences in igniting local dust activities 106 

(Duniway et al., 2019; Webb and Pierre, 2018).” 107 

Specific Comments 108 

2.7 Line 15 and all other places through the manuscript: Caution must be practiced with the term 109 

“concentration” as the relationship between dust concentration and dust AOD depends on 110 

the pre-defined and assumed dust particle size distribution, which is different in different 111 

models. 112 

Response: We thank the reviewer for raising this point. We removed the term “concentration” to 113 

avoid confusing the readers. 114 

2.8 Line 15 and all other places through the manuscript: Change “transportation” to “transport” 115 
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Response: We thank the reviewer for raising this point. We corrected as your suggestion. 116 

2.9 Line 57: “Dry and wet deposition is related to different types of dust and aerosol.” Not clear 117 

what authors mean here. 118 

Response: We thank the reviewer for raising this point. We removed this sentence to avoid 119 

confusing the readers. 120 

2.10 Line 82: How are “areas affected by ENSO” defined? What are the criteria considerd? 121 

Response: We thank the reviewer for raising this point. We added the following sentence to clarify 122 

the criteria for computing the areas affected by ENSO: 123 

“In Figure 2b, the areas influenced by ENSO are computed as the areas limited by the cyan contour 124 

line as shown in Figures 1 and 2a (i.e., p-value is lower than 0.33 or ENSO is unlikely to exhibit 125 

no causal effects on dust activities over these regions).” 126 

2.11 Line 116: Change “original” to “originated” 127 

Response: We corrected as your suggestion. 128 

2.12 Figure 1: What is the significance of studying dry and wet deposition separately in figure 1, 129 

as paper provides no insightful comparison between the two? 130 

Response: We thank the reviewer for raising this point. As we introduced in Section 2.1, dry and 131 

wet deposition are related to different processes of dust deposition. Hence, direct comparison is 132 

not necessary. We combined the results in 1 Figure as these dust deposition processes are 133 

complementing for each other. 134 

2.13 Figure 2(b) and S2: There two figures don’t provide any addition information beyond just 135 

one number mentioned in the text, so they should be removed. 136 

Response: We thank the reviewer for raising this point. We think these Figures provide quick 137 

summary and illustration for the Text. Hence, we would like to keep these Figures.  138 

2.14 Table S1 and S2: Should be merged into one table 139 

Response: We thank the reviewer for this suggestion. We would like to keep these Tables 140 

separately to avoid a too big Table. It would make the presentation easier. 141 

2.15 The following recent publication might be of interest to the authors: 142 

https://acp.copernicus.org/articles/22/2095/2022/  143 

https://acp.copernicus.org/articles/22/2095/2022/
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Response: We thank the reviewer for this suggestion. We include this publication as a reference. 144 
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