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Abstract Heavy-duty vehicles (HDV) contribute a significant, but decreasing, fraction of primary aerosol emissions in 

urban areas. Previous studies have shown spatial heterogeneity in compliance with regulation. Consequently, location-

specific emissions factors are necessary to describe primary particulate matter (PM) emissions by HDV. Using near-road 10 

observations from the Bay Area Air Quality Management District (BAAQMD) network over the 2009-2020 period in 

combination with Caltrans measurements of vehicle number and type, we determine primary PM2.5 emission factors from 

HDV on highways in the San Francisco Bay Area. We demonstrate that HDV primary aerosol emission factors derived using 

this method are in line with observations by other studies, that they decreased a by a factor of ~9 in the past decade, and that 

emissions at some sites remain higher than would be expected if all HDV were in compliance with California HDV 15 

regulations. 

 

1 Introduction 

Exposure to aerosols smaller than 2.5 microns in diameter (PM2.5) at current ambient levels is estimated to cause 130,000 

excess deaths per year in the United States (Tessum et al., 2019). Epidemiological studies have shown that health and 20 

mortality impacts from PM2.5 persist at concentrations of PM2.5 below current National Ambient Air Quality Standards and 

that small changes in PM2.5 concentration may result in substantial health impacts (Di et al., 2017). Because of the health 

impacts resulting from small increases in PM2.5, air quality academics, public health researchers, local regulatory agencies, 

and state governments have come to appreciate the importance of neighborhood scale differences in cumulative exposure to 

PM2.5 (e.g. CARB, 2018). For example, regulatory agencies in California have begun to shift from a paradigm based 25 

primarily on compliance with annual and daily, regional scale air quality metrics to one also focused on mitigation of 

cumulative exposure, creating local remediation plans based on source apportionment. (BAAQMD, 2019). These source 

apportionment estimates are created from bottom-up emissions inventories using emissions factors and activity data. 

Consequently, accurate local emissions factors are vital to understanding and planning neighborhood-scale mitigation 

strategies.  30 

On-road vehicles, specifically HDV, are a large contributor to aerosol in urban areas, both through direct emissions and 

through secondary formation in the atmosphere (e.g. Shah et al., 2018; BAAQMD, 2011). Total emissions can be thought of 
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as the product of emissions factors (EFs) and the activity, where the EFs are expressed in units of grams of aerosol per unit 

activity (such as grams of aerosol per kg of fuel burned or per km travelled). EFs are estimated for on-road activity in a 

variety of ways including scaling based on measurements in a lab setting and/or on-road measurements (See references, 35 

Table 1). A summary of on-road studies for primary HDV and passenger vehicle PM2.5 EFs over the last 25 years is shown in 

Figure1 and Table 1. These studies determined EFs of primary on-road aerosol by comparing ratios of aerosol enhancement 

(in grams) to CO2 and/or CO enhancement (as a measure of fuel burned). Measurements included sampling directly in the 

exhaust of tunnels, and high frequency sensors near or above roads to sample and characterize individual vehicle plumes.  

These prior observations show that typical heavy duty, diesel-powered vehicles dominated on-road emissions of primary 40 

aerosol in the 1990s and early 2000s. However, in recent years, emissions factors from typical heavy-duty vehicles have 

been dramatically reduced such that PM2.5 EFs of HDVs are now similar to those of light duty vehicles (LDV) and are less 

than 0.05 g PM2.5 /kg fuel burned. Control technologies such as diesel particulate filters and selective catalytic reduction are 

contributing to these reductions in EFs for HDVs.   

While these improvements are seen in the “typical” HDV, previous studies indicate that compliance of HDV with emission 45 

technology requirements, and therefore HDV on-road emissions factors, vary by up to an order of magnitude from location 

to location (Preble et al., 2018; Bishop, 2015; Haugen et al., 2018; Haugen et al., 2019). For example, Bishop (2015) and 

Haugen et al., (2018, 2019) found emissions factors measured at the Port of Los Angeles were as much as an order of 

magnitude lower than those measured along a highway in Cottonwood, California during the same season. While the gap 

between the two sites narrowed from 2013-2017, the mean emission factors measured in Cottonwood were still 3 times those 50 

measured at the Port of Los Angeles in 2017. Similarly, Preble (2018) found that while 100% of trucks at the Port of 

Oakland were registered by the state of California as being in compliance with HDV control technology regulations, 

compliance rates amongst HDV at the Caldecott tunnel (also in Oakland, CA) were below 90%.  

These studies highlight that variability in emissions factors as a function of location may affect exposure. They point to the 

importance of characterizing spatial variation in HDV emissions if we are to understand aggregate emissions from the sector 55 

and its localized impacts. To assess the potential for existing data sources to supply the needed information, here we explore 

the use of regulatory sensor networks (near-highway, hourly PM2.5 and CO (or CO2) measurements), paired with coincident 

traffic data including LDV and HDV counts, to quantify spatial variation in HDV EFs. Such data is widely available. For 

example, in the US, there are more than 550 regulatory sites at which PM2.5 and CO are collocated, some of which have 

measurements spanning more than a decade (https://www.epa.gov/outdoor-air-quality-data). Of these, 154 are located within 60 

500 m of a highway. The large number of these sites and their longevity allow for examination of regional and temporal 

differences in EFs for HDV across the United States. In the future, the approach we outline should be even more widely 

applicable when dense low-cost sensor networks including aerosol and CO or CO2 are available as a data source (e.g. 

Shusterman et al., 2016, Kim et al., 2018; Zimmerman et al, 2018). Because HDV emissions control regulations vary 

regionally in the US, this method has the potential to shed light on regional differences in HDV EF trends. 65 
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We begin by describing a general method for using such data to derive EFs of primary PM2.5 from HDV (Section 2). We 

then (Section 3) test our method by using data from four near-highway sites operated by the Bay Area Air Quality 

Management District  (BAAQMD) in the San Francisco Bay Area (Figure 2a) over the period of 2009-2018. In section 4 we 

discuss the relationship of these findings to measures of exposure. 

2 Data and Methods 70 

2.1 Aerosol and CO Measurements 

We use 1 hr averaged observations from 18 of the BAAQMD regulatory sites which measure PM2.5 using Beta Attenuation 

Monitors and CO using the Thermo Scientific TE48i IR sensor. Some sites have been in operation since 2009, while others 

have been brought online as recently as 2018, or were operational for only a few years during this time period. Data was 

retrieved from https://aqs.epa.gov/aqsweb/documents/data_api.html. Site locations are summarized and example data are 75 

shown in Figure 2. PM2.5 and CO data from four near-highway sites (San Rafael, Redwood City, Berkeley Marina, 

Pleasanton) are used to characterize EFPM(HDV), and data from other sites are used to define regional signals. 

 

2.2 Meteorology 

Boundary layer height and wind speed and direction were retrieved from the European Center for Meteorology and Weather 80 

Forecasting (ECMWF) ERA5 reanalysis, (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-

land?tab=form). Typical diel cycles for boundary layer height and total windspeed are shown in Fig. S1.  

We use this reanalysis to find windspeed, boundary layer height, and wind direction for each hour (2009-2020) at each of the 

BAAQMD sites. Wind data is then used for filtering PM2.5 and CO measurements as described below.  

 85 

2.3 Traffic Data 

Total vehicle flow, fleet speed, and the percent of vehicles that are HDV are taken from the Caltrans’ Performance 

Measurement System (PeMS) database (http://pems.dot.ca.gov), which records these parameters at over 1800 locations on 

highways in the Bay Area. We include all BAAQMD sites that are within 500 meters of one major highway and use traffic 

count data from the PeMS measurement site closest to each air quality site. In cases of missing PeMS data, data was filled in 90 

with the median value associated with that parameter for a particular site in a particular year, or if not possible, retrieved 

from the second or third nearest sites. More details about the PeMS data including a map of PeMS measurement sites, a list 

of sites used in this study, and example diels of truck flow and truck percent are presented in Fig. S2, Tbl. S1, and Fig. S3. 

2.4 The EMissions FACtor (EMFAC2017) Model 

In order to calculate EFPM(HDV) as describe in section 2.5, we make use of the EMFAC2017 model to estimate both HDV and 95 

LDV emission factors for CO, as well as a HDV and LDV fuel efficiency. We run this model for the four time periods of 

https://aqs.epa.gov/aqsweb/documents/data_api.html
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
http://pems.dot.ca.gov/
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interest (2009-2011, 2012-2014, 2015-2017, 2018-2020) by choosing the middle year for that period, specifying location to 

be the nine counties under BAAQMD’s jurisdiction. We assign vehicle class to either LDV or HDV by approximate vehicle 

length, as this is the manner in which PeMS classifies vehicles as either LDV or HDV. These designations are summarized 

in the supplement of Fitzmaurice, et al. (2022). We use EMFAC emission values across all speeds to obtain CO emission 100 

factor used to calculate EFPM(HDV) for all sites during a given time period.  

To estimate uncertainty in hese emission factors at particular sites, we use speed-dependent variance in EMFAC-derived 

emission factors. To do this, we first calculate speed-dependent CO emission factors (g CO / kg fuel), as well as emission 

rates g CO2 / vkm for HDV and LDV for each time period as follows: 

𝑿𝒔𝒑𝒆𝒆𝒅,𝑯𝑫𝑽/𝑳𝑫𝑽 =
∑ 𝒗𝒌𝒎𝒊,𝒔𝒑𝒆𝒆𝒅𝑿𝒊,𝒔𝒑𝒆𝒆𝒅

𝒏
𝒊=𝟏

∑ 𝒗𝒌𝒎𝒊,𝒔𝒑𝒆𝒆𝒅
𝒏
𝒊=𝟏

. (1) 105 

Here, vkm is the EMFAC model’s estimate of kilometers traveled per year by a particular vehicle class, X is either emission 

rate (g CO2 / vkm) or emission factor in (g CO / kg fuel). The EMFAC2017 model bins speeds (5 mph each), so we use 

spline interpolation to estimate CO emission factor and emission rate hourly at each PeMS site corresponding to a 

BAAQMD site of interest. The 1 variance of these estimates during times corresponding to those used to calculate 

EFPM(HDV) are then used estimate uncertainty in emission rate and CO emission factors. These in turn are used to estimate 110 

uncertainty in EFPM(HDV).  

2.5 Derivation of EFPM(HDV) 

Our derivation of HDV EFs assumes that the relationship between the enhancement of PM2.5 and CO, as observed near-road, 

can be scaled so that it represents PM per unit of fuel burned by HDVs: 

 𝐸𝐹𝑃𝑀(𝐻𝐷𝑉) = 𝛾
𝑃𝑀𝐻𝐷𝑉

𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑔 𝐶𝑂,𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙,𝐻𝐷𝑉
, (2) 115 

In this equation, =0.0008, and is the ideal gas law conversion factor, from (𝜇g/m3ppm-1-CO) to (𝑔PM2.5 /𝑔𝐶𝑂). A detailed 

derivation of Eq 2. is described in Sect. S3. Below, we describe the steps used to calculate each term in equation (2). 

The first term 
𝑃𝑀𝐻𝐷𝑉

𝐶𝑂𝑓𝑙𝑒𝑒𝑡
 in the equation is derived from observations as the slope of a linear fit of near-road PM2.5 (assumed 

to be primarily emitted by HDV) and near-road CO (assumed to be emitted by both HDV and LDV). This term is derived by 

(1) isolating local enhancements of PM2.5 and CO, (2) isolating roadway enhancements by use of temporal and 120 

meteorological filters and (3) fitting resulting roadway enhancements of PM2.5 and CO to a line, as detailed below.  

(1) To isolate local enhancements from total signal PM2.5 and CO, we first leverage the entire BAAQMD network to 

derive an hourly regional signal for each species. The regional signal is defined as the 10th percentile of the data 

across all 22 BAAQMD sites within a five-hour window of that hour (Figure 2b). We choose the bottom 10th 

percentile rather than the absolute minimum in hopes that the baseline captures regional mixing rather than just 125 
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cleaner “background” air. In Sect. S4, we show that while the EFPM(HDV) is slightly sensitive to the percentile and 

time-window chosen, sensitivity of EFPM(HDV)  to these parameters is smaller than estimated uncertainty in final 

EFPM(HDV) values. This regional signal is assumed to be composed of background PM2.5 /CO transported to the 

region from elsewhere as well as region-wide sources of secondary aerosol/CO. We the find the enhancement by 

local primary emissions by subtracting the regional signal from total signal at each site. 130 

(2) We isolate primary emissions from on-road sources by considering only the morning commute times and only 

during fall and winter and applying meteorological filters. These are times coinciding with relatively high traffic 

emissions and too early in the day for significant accumulation of new secondary aerosol. We find the 6-8 am 

period represents the optimal overlap of low boundary layer height (Figure S1) and HDV emissions (Figure S3). 

The combination of low boundary layer height and stable early morning conditions enhance signal (Choi et al., 135 

2012; Choi et al., 2014), allowing inferences about traffic from sites further away than would be possible during 

later morning or afternoon.  

To avoid observations of stagnant air, we only include observations with wind speed above 0.5 m/s. Furthermore, 

for each site of interest, exclude known fire events and we filter out observations that occur when the BAAQMD 

site is upwind of the highway. An upwind event is defined as when the wind direction deviates more than 90 140 

degrees in either direction from the perpendicular line pointing from the highway nearest a BAAQMD site to that 

site. The result of these first two steps are enhancements in PM2.5 and CO above background. 

(3) The slope of a linear fit of all unfiltered PM2.5 and CO (see figure 3) is defined as the “enhancement ratio,” in 

units of 𝜇g/m3ppm-1-CO. Using the lengthy dataset, we can derive enhancement ratio for different percentages of 

HDV in the vehicle fleet on the road. There are some high PM2.5 values uncorrelated with CO as shown in Figure 145 

3. In all cases, these points show little to no NOx enhancement and thus are characteristic of a source that is not 

HDV.  We make the assumption that LDV PM2.5 EFs are negligible and on-road primary emissions of aerosol are 

solely from HDV, implying that the enhancement ratio is equivalent to the term 
𝑃𝑀𝐻𝐷𝑉

𝐶𝑂𝑓𝑙𝑒𝑒𝑡
. We discuss this assumption 

and the impact of correcting for LDV emissions further in Sect. 3.  

The term 
𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙,𝐻𝐷𝑉
 is can be calculate using HDV fraction, t, and LDV and HDV CO emission factors (g CO / kg fuel) and 150 

emission rates (g CO2 / km) from EMFAC2017 model as follows: 

 
𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙,𝐻𝐷𝑉
 =

𝐸𝐹𝐶𝑂(𝐻𝐷𝑉)𝑡𝐸𝐻𝐷𝑉+ 𝐸𝐹𝐶𝑂(𝐿𝐷𝑉)(1−𝑡)𝐸𝐿𝐷𝑉

𝑡𝐸𝐻𝐷𝑉
 , (3) 

where t is the HDV fraction and E is emission rate.  

Because, at a given site, we expect 
𝑃𝑀𝐻𝐷𝑉

𝐶𝑂𝑓𝑙𝑒𝑒𝑡
 (but not EFPM(HDV)) to vary linearly with HDV fraction, we bin data by HDV 

fraction in increments of 0.02, and use the process above to calculate EFPM(HDV) for each bin. Data and slopes for each bin are 155 

shown in Fig. S6. We then calculate EFPM(HDV) for each site during a particular time period using the average of the, 
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weighted by uncertainty in EFPM(HDV) for each bin. A detailed description of how we estimate the uncertainty in EFPM(HDV) for 

each bin can be found in Sect. S6. 

3 HDV Emissions Factors from Primary Aerosols in SF Bay Area: 2009-2020 

The result of this procedure is EFPM(HDV) at four near-highway BAAQMD sties (Redwood City, Berkeley Marina, San 160 

Rafael, Pleasanton) during the time periods: 2009-2011, 2012-2014, 2015-2017, 2018-2020 (Fig. 4). We observe EFPM(HDV) 

decrease substantially over the decade (Fig. 1, Fig. 4), amounting to a roughly nine-fold reduction. We also observe 

substantial site to site differences in EFPM(HDV). For example, during the 2018-2020 period, we see a range of a factor of ~7 of 

0.05+/-0.06 g PM2.5 / kg fuel to a maximum of 0.35 +/- 0.08 g PM2.5 / kg fuel. In addition, we observe different timing 

emission factor decreases between sites (e.g. Redwood City and San Rafael). For example, while emission factors at both 165 

Redwood City and Santa Rosa drop throughout the time period, values at San Rafael in the 2018-2020 time period are 

similar to those seen at Redwood City in 2012-2014, suggesting a difference in timing of compliance to control technologies 

at each place. Both the temporal decrease and the site-to-site differences in EFPM(HDV) are similar to prior reports derived 

using other approaches to data collection and interpretation (e.g. Haugen et al. 2017, 2018).  

In addition to being in line with observations from other studies, the observed decrease in EFPM(HDV) follows progressively 170 

more stringent truck regulations by the state of California over that time. However, in the 2018-2020 period, observed 

EFPM(HDV) are still higher than would be expected were all vehicles in compliance with California regulations. By 2020, 

California law required that all HDV models from the years 1995-2003 replace their engines with 2010 or newer models, and 

that all HDV model year 1994 or newer use diesel particulate filters (DPF) (California Code of Regulations). Assuming that 

the fleetwide average EF for models with 2010 or newer engines using DPF is 0.03 g PM / kg fuel as observed by Haugen 175 

(2018), we can use fuel usage by HDV model year in 2020 as well as emissions factors for vehicles older than 1994 

estimated by the Emissions FACtor Model (EMFAC2017) to estimate a fleetwide average. Thus a fleetwide average should 

have an EF of 0.03-.06 g PM / kg fuel if the trucks were fully compliant in 2018-2020. In contrast, we observe an average EF 

of 0.08 +/-0.03 g PM2.5 / kg fuel, for 2018-2020.  While our estimates overlap with the higher end of what is expected 

counting uncertainty, it is larger than expected for an HDV fleet compliant with current regulations.  180 

Non-exhaust vehicle emissions (e.g. tire wear, brake wear) may account for some of this discrepancy. However, we observe 

substantially higher emission factors at highways near the Pleasanton (0.35 +/- 0.08 g PM / kg fuel) and Berkeley Marina 

(0.15 +/ 0.12 g PM2.5 / kg fuel) sites. Possible explanations for this discrepancy include exemptions from truck regulations, 

under which certain classes of HDV travelling less than 15,000 miles per year are eligible for exemptions, meaning locally 

travelling HDV may have higher emissions factors than those travelling long distances (CARB, 2018), the fact that HDV 185 

registered in other states are not typically subject to CA regulations unless they enter specific areas, such as ports, and failure 

of or tampering with installed equipment. 

In considering estimated EFPM(HDV), it is important to consider two potential biases in our method: the impact of PM2.5 

emitted by LDV and the potential for local sources to bias emissions estimates. As stated in Sect. 2, in calculating EFPM(HDV), 
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we assume that contribution of PM2.5  from LDV is negligible. This assumption is sound at the beginning of our period 190 

(2010s) of interest, because reported values of EFPM(HDV) were more than an order of magnitude higher than EFPM(LDV)  at that 

time (Fig 1). More recently, as EFPM(HDV) has decreased this is less clear, especially without on-road estimates of EFPM(LDV), 

and because LDV also contribute non-tailpipe emissions of PM2.5 from brake and tire wear. However, for 2020, EMFAC still 

estimates the ratio of EFPM(HDV) : EFPM(LDV) to be ~8. Such a ratio would mean that even if only 5% of vehicles were HDV, 

more than 60% of PM2.5 emissions are expected to be attributable to HDV. This is an important concern, and we address it in 195 

two ways. First, we show that even in the 2018-2020 period, the PM:CO enhancement ratio increases with HDV % 

regardless of total flow rate (Fig. 5, left). We interpret the intercept of a linear fit with these data to be the PM2.5 resulting 

from LDV alone and note it to be much smaller than the impact of increasing HDV by only a few percent. The observed 

PM2.5:CO intercept would correspond to an EFPM(LDV) to be ~0.01g PM2.5 / kg fuel. This value is roughly consistent with tire 

and brake emission factors from EPA MOVES3 (EPA, 2020), although it is difficult to know the extent of braking at a given 200 

site, and estimates form previous studies of non-exhaust PM2.5 by LDV vary widely (Fussell et al., 2022). Second, we 

explore the impact that LDV emissions might have on EFPM(LDV). To understand the impact of LDV PM2.5 emissions on our 

findings, we assume EFPM(LDV) to be 0.01g PM / kg fuel and recalculate EFPM(HDV). As shown in Fig. 5, right, correction for 

LDV emissions in this way decreases estimated EFPM(LDV), bringing the average value in the 2018-2020 period to 0.03, which 

is in line with what would be expected if all Bay Area HDV were in compliance with regulations during that period. 205 

However, even after this correction, EFPM(HDV) at Pleasanton and Berkeley Marina are still substantially higher (0.32+/-0.08 

and 0.13 +/- 0.05) than would be expected if all HDV were compliant. 

The second potential for bias in the method presented here is the influence of local, non-highway sources on measured PM2.5 

and CO enhancements. Because our method is dependent on finding the slope of PM2.5 and CO, we expect this to eliminate 

contributions from non-combustion sources for which PM2.5 and CO are uncorrelated. However, nearby combustion, such as 210 

non-highway vehicle sources, has the potential to influence EFPM(HDV) results. For example, we consider the EFHDV 

calculated for Laney College, a near-highway BAAQMD site not considered in the analysis above. The Laney College site 

instruments are located in a large parking lot. In the 2015-2017 and 2018-2020 periods is significantly higher than EFHDV 

observed at the four sites we deem reliably far from other sources. While it is possible that HDV on the highway near Laney 

College are unusually high emitters, it is more likely that emissions from a nearby parking lot are responsible for the high 215 

inferred EFs. This is because PM2.5:CO emissions ratios are expected to be dramatically higher at low (parking lot) speeds 

compared to speeds typically seen on a highway, meaning that a comparatively small number of vehicles may contribute 

significantly to PM2.5:CO enhancement ratios. (See Sect. S8, Fig. S8.) This example shows that while the method developed 

in this paper has the potential to leverage existing data to highlight potential hotspots for EFPM(HDV) non-compliance, care 

must be taken in interpretation of resulting emission factors. 220 

 

4 - Primary PM2.5 exposure 
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To understand exposure from HDV PM2.5, we calculate both a region-wide addition to aerosol burden by HDV emissions 

and an enhancement as a function of distance from a highway. Assuming steady-state, a box of 100 km in length, 160 m in 

height, and a wind-speed of 1.2 m/s (Figure S6), and using fuel sales data (Moua, 2020)  to estimate total HDV fuel used, we 225 

estimate a maximum region-wide enhancement on the order of 0.12 𝜇g/m3 on a typical day in the 2018-2020 period, 

compared to an enhancement of 1.1 𝜇g/m3 during the 2009-2011 period (Figure S7). Decreases in emissions factors over the 

past decade are countered by the increase in diesel fuel usage (70%) (Moua, 2020) such that there has been only a small 

change in typical regional exposure to primary PM from HDV. (See Fig. S1 for diel cycle of modeled region-wide 

enhancement.) While an enhancement of 0.12 𝜇g/m3 is small in comparison to average ambient PM2.5 (8.3-14.4 𝜇g/m3 for all 230 

BAAQMD sites in 2018), it is sizeable in comparison to average ambient BC (.4-1 𝜇g/m3 for all BAAQMD sites in 2018).  

To gauge near roadway exposure, PM2.5 enhancement from HDV was calculated as a function of distance from a highway, 

modeled treating emissions from the highway as a gaussian plume flowing perpendicular to a line source. Assuming both 

highway and point of measurement at ground level, the simplified gaussian plume dispersion for a line source yields: 

𝑃𝑀2.5 𝑒𝑛ℎ =  
2

√2𝜋𝑢𝜎𝑧
 (3) 235 

where  is an emissions rate per unit highway length, u is wind speed, and 𝜎𝑧  is a dispersion parameter. Using the average 

emission factor from the 2018-2020 time period, for a typical daytime HDV flow rate of 500 vehicles per hour (Figure S2) 

and windspeed of 1.2 m/s (Figure S6), we calculate PM2.5 enhancement as a function of perpendicular distance downwind of 

a highway. For unstable atmospheric conditions (𝜎𝑧 =  
0.102𝑥

(1 + 
𝑥

927
)

−1.92), enhancements drop to values of below 0.8 𝜇g/m3 in the 

first 200 m.  For stable conditions (𝜎𝑧 =  
0.022𝑥

(1+ 
𝑥

1170
)

0.7), such as those typical of early morning, enhancements of 1 𝜇g/m3 are 240 

predicted up to a kilometer away. 

5 Conclusions 

We find that HDV EFs in the SF Bay Area have decreased by about a factor of ~9 over the last decade, consistent with 

trends reported in other analyses in this region and Los Angeles. We find spatial variation of HDV EFs remains large 

indicating a wide range in the application of retrofit technologies and the possibility that vehicles legally exempt from 245 

compliance with the current standards are a significant portion of those on the road at the sampling sites. The method 

introduced in this paper has the potential to leverage existing regulatory (or other) data to examine long-term trends and 

highlight potential spatial heterogeneities in EFPM(HDV). 
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Figure 1: On-road measurements of emissions factors, from other studies.  HDV (black) emissions factors converge on LDV (blue) 

emissions factors. Some studies do not give error bars. Grey patches and blue trendline indicate findings from this study for the two highway 

sites (RWC and SR) available during all time periods. Blue trendline shows the error-weighted mean of emission factors at these two sites 

during each time period. Grey patches indicate the estimated uncertainty in the error-weighted mean. 380 
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Figure 2 (Left): BAAQMD sites used in this study. Red dots show near-highway sites at which HDV emissions factors were determined. 

Blue sites were used only for determining regional signal. Figure 2 (Right). Aerosol and CO at each BAAQMD site (various colors). The 

regional background (black), is defined as the lowest 10th percentile of all signals within a rolling 4-hour window. Figure credit: Esri, 385 
HERE, Garmin, USGS, EPA, NPS. 
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 390 
Figure 3. PM vs. CO at Pleasanton site during the 2018-2020 time period for which 10-12% of traffic flow is trucks. Data is colored by 

NOx concentration. These points are fit linearly to find slope. 
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 395 

 
Figure 4: Top: Fleet emissions factors, derived from all sites, all years, binned by truck fraction. Bottom: HDV emissions factor at near 

highway sites during 2009-2011, 2012-2014, 2015-2017, and 2018-2020 time period. 
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Figure 5: (left) Each point corresponds to the PM:CO enhancement ratio calculated via a linear fit between PM enhancement and CO 

enhancement at a particular near-highway site during the 2018-2020 time for each bin of HDV %.  Laney College data is not included. The 

black line shows the linear fit corresponding to all points. (right) Trend in EFPM(HDV) for RWC and SR (as shown in Figure 1). The blue 

line indicates values calculated setting EFPM(LDV)=0, while the orange line indicates values calculated using EFPM(LDV)= 0.002 g PM / kg 405 
fuel. Grey patches indicate the estimated uncertainty in the error-weighted mean for the case where EFPM(LDV)=0. 
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Study Year of 
Measurements 

Vehicle Type Measurement 
Location 

EFCO (g/kg fuel) EFPM (g/kg fuel) 

Kirchstetter (1999) 1997 Light Duty Caldecott Tunnel, 
Oakland CA 

 0.11 ±  0.1 
 

Kirchstetter (1999) 1997 Heavy Duty Caldecott Tunnel, 
Oakland CA 

 2.7 ±  0.3 
 

Geller (2005) 2004 Light Duty Caldecott Tunnel, 
Oakland CA 

 0.07 ±  0.02 
 

Geller (2005) 2004 Heavy Duty Caldecott Tunnel, 
Oakland CA 

 1.04  ± 0.02 
 

Ban-Weiss (2008) 2006 Light Duty Caldecott Tunnel, 
Oakland CA 

 0.07 ± 0.2 
 

Ban-Weiss (2008) 2006 Heavy Duty Caldecott Tunnel, 
Oakland CA 

 1.4 ± 0.6 

Park (2011)* 2007  Light Duty Los Angeles, CA 
(Wilmington) 

47 
 

0.15 
 

 2007  Heavy Duty Los Angeles, CA 
(Wilmington) 

36 
 

0.73 
 

Dallman (2012) 2010 Heavy Duty Caldecott Tunnel, 
Oakland CA 

8.0 ± 1.2   

Dallman (2013) 2010 Light Duty Caldecott Tunnel, 
Oakland CA 

14.3 ± 0.7  
 

0.038 ± 0.010  
 

Bishop (2015) 2013 Heavy Duty Cottonwood, CA  0.65 ± 0.11 
 

Bishop (2015) 2013 Heavy Duty Port of Los Angeles  0.031 ± 0.007 

Park (2016) 2011 Light Duty West Hollywood 15.2 ± 53.8  0.01 ± 0.01  

 2011 Light Duty  Boyle Heights 36.8 ± 85.6  0.11 ± 0.68  

 2011 Light Duty Los Angeles, CA 
(Wilmington) 

46.6 ± 117.9  0.04 ± 0.21  

Haugen (2017) 2015 Heavy Duty Port of Los Angeles 1.6 ± 0.4  0.11±0.01 

 2015 Heavy Duty Cottonwood, CA 3.0 ± 0.2  0.22 ± 0.04  

Haugen (2018) 2017 Heavy Duty Port of Los Angeles 1.7 ± 0.3  0.035 ± 0.01  

 2017 Heavy Duty Cottonwood, CA 2.8 ± 0.4  0.09 ± 0.005  

Li (2018) 2014 Light Duty Pittsburgh, PA  0.035±0.008 

 2014 Heavy Duty Pittsburgh, PA  0.225±0.065 

 
* Note that in Park (2011), no error in emissions factors were reported.  
Table 1: Summary of emission factors derived by previous studies. 
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