
We thank the reviewers for their thoughtful helpful comments, which we have used to guide us 
in making changes to the text. We address each comment below. Text from the original review 
is in black. Our response is in red. 

 

Reviewer 1: 

This paper presents a method for determining emissions factors (EF) of primary aerosols from 
heavy-duty vehicles (HDV) using long-term stationary monitoring data of PM2.5, and CO. 
Authors combined traffic count/composition, and air pollution concentrations measured at 
several monitoring sites in the Bay Area to determine emission factors of PM2.5. Authors 
reported that estimated EFs vary substantially with time and space. The research topic is 
important and well suited to the scope of the journal. However, I think that the estimated 
emission factors using the proposed method are highly uncertain, rely on many assumptions 
(some of them are not very realistic, in my view). The paper is not very well written; discussions 
are very short; conclusions are not well substantiated by uncertainty analysis. Some of my 
specific comments are below. 

Thank you for highlighting places where we need to be more clear in justifying the assumptions 
we make in this paper. We use the specific comments below to adjust our methods and add 
explanation to the text. 

1. The paper used ambient air pollution measurements from various sites to estimate the 
emission factors. They said, “We include all BAAQMD sites that are within 500 meters of 
one major highway and use traffic count data from the PeMS measurement site closest 
to each air quality site”. The distances from the highway for various sites are not 
reported. Previous studies have used on-road or near-road ambient measurements to 
determine emission factors for traffic-related air pollutants. The main challenge in this 
process is to isolate the traffic signals from ambient measurements. Since the traffic 
pollution signal decay exponentially with distance from the roads, within a few meters 
(usually 50-100 m), traffic signals become very close to ambient/background level. If one 
goes away from the roadway, the decoupling of traffic and background signals becomes 
more and more challenging, and resulting estimates become highly uncertain. Since the 
roadway signals get highly diluted with downwind distance, a small error in isolating 
traffic versus non-traffic signals can impact emission factor estimations. This is a major 
limitation of this paper since they used data within 500m from the roadway.   

By focusing our analysis on the early morning, when the boundary layer height is low, we 
observe highway signals at distances of up to ~500 m. While it is true that other studies have 
demonstrated that substantial signal decay occurs within 50-100 m, these studies report data 
that was collected later in the day, when both the boundary layer height is higher and vertical 
mixing more vigorous. Previous studies support this conclusion that the length scales vary with 



time-of-day. For example, Choi et al. (2014) show that enhancement decreases on length scales 
~500-1000 meters from a highway and they report persistent enhancements up to 2 km away.  

2. The near-road signals depend on wind speed and direction and other meteorological 
factors. While the authors used a subset of monitoring data from morning and wind 
speed > 0.5 m/s, (it appears that) they did not consider wind direction. While a period 
with high wind speed but opposite direction, the monitoring locations will not see much 
highway signals. To get a good highway signal, one needs to consider wind speed and 
direction (and data from within a few meters of the highway). 

Thank you for this suggestion. We have implemented wind filtering and it has not substantially 
changed our results or analysis. (See description of wind filtering L140 and table below in 
response to Reviewer 2’s suggestion around fitting method.) 

3. Authors assumed that only HDV contributes to PM2.5. I do not fully agree with this 
assumption. In the current US scenario, tailpipe and non-tailpipe traffic emissions are 
comparable (even non-tailpipe could be higher than tailpipe) in many locations. Both 
HDV and LDV contribute to non-tailpipe PM emissions. Since the number of LDV in a 
typical highway fleet is much higher than HDV (typically 90-95% are LDV), the LDV might 
largely contribute to overall vehicular primary PM2.5. Also, tailpipe PM2.5 from LDV is 
not negligible. Therefore, when total PM2.5 is the concern, I think the assumption that 
only HDV contributes to PM2.5 is a wild guess. 

Thank you for emphasizing this important point. We add a paragraph (L188-L205) discussing 
this assumption and the evidence supporting it. To clarify the issue, we have brought Fig. 5 
which addressed this issue in the supplement forward into the main text. There is a significant 
(order of magnitude) disagreement about LDV emission factors in the literature, especially for 
non-tailpipe emissions (Fussell, et al., 2022). However, our data (Figure 5 left) shows that 
PM2.5:CO enhancement ratios increase in proportion to HDV %, with a small intercept (Fig. 5, 
left). This correlation is our evidence for HDVs dominating emissions. We also re-compute HDV 
emissions factors using a fixed LDV emission factor (Fig. 5, right).  

4. Looking at Fig. 2, the estimated background PM2.5 signals (assuming 10th percentile as 
background) seem very uncertain. In some cases, the background PM2.5 is close to zero. 
As per the existing literature, the majority of PM2.5 is background. These background 
estimates (or decoupling highway versus roadway signal for PM2.5) are uncertain. 
Therefore, the resulting EFs using these data also would be highly uncertain. 

If they underestimate the background PM2.5 (means overestimation of traffic PM2.5), 
the resulting traffic EF would be higher. This could be the reason behind their estimated 
higher EF than other recent studies shown in Fig.1. Also, they said, “We observe an 
average EF of 0.11 g 145 PM / kg fuel, for 2018-2020, more than 2-3 times larger than 
expected for an HDV fleet compliant with current regulations”. This higher estimation 
could be due to uncertainty in isolating traffic and background signals. 



An error in the background of the sort the reviewer described would not scale with % HDV. (See 
Fig. 5.) Such an error would be a constant offset affecting the intercept of our analysis and be 
attributed to LDVs. We add discussion surrounding the impact of LDV emissions to Sect. 3 
(L188-L205). 

5. EF's spatial variability could also be due to the problem of isolating traffic versus non-
traffic signals. If the location of a site is far away from the roadway, a small error in 
isolating traffic versus non-traffic signals could have a huge impact on the estimated EF. 
The authors tried to explain the high EF at one site based on parking lot influence. This is 
not very convincing. Because if one compares the number of cars on a parking lot versus 
a highway over a day, one expects much higher cars on a highway. 

It is true that high EFs may be related to isolating highway traffic from non-traffic or non-
highway traffic signals, and we add a qualification about our results to this affect (L206-L209; 
L216-218). However, even at sites with high calculated EFs (such as Pleasanton in 2018-2020), 
we see increasing NOx with increasing PM2.5 and CO enhancement. 

With regards to the Laney College site, vehicles in a parking lot drive much more slowly than on 
the highway. As discussed in Sect. S8, emission models predict a 40 times higher PM2.5:CO ratio 
for LDV driving at 5mph compared to 50 mph. We model the impact of ~650 cars per hour 
driving through a parking lot and show that the added PM2.5 from these LDV explain a 
substantial portion of the difference between what is observed and what would be expected 
using EMFAC2017 emission factors, given observed truck volumes (Fig. S8.) 

6. Equation 1 is hard to understand (it has some formatting issues). I think the details 
derivation of Eq. 1 is needed. 

We now detail the derivation in Sect. S3. 

𝐸𝐹𝑃𝑀,𝐻𝐷𝑉 =
𝑔 𝑃𝑀𝐻𝐷𝑉

𝑘𝑔 𝑓𝑢𝑒𝑙𝐻𝐷𝑉
. 

We multiply this expression by 
𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡
 and 

𝑘𝑔 𝑓𝑢𝑒𝑙𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙𝑓𝑙𝑒𝑒𝑡
, getting: 

𝐸𝐹𝑃𝑀,𝐻𝐷𝑉 =
𝑔 𝑃𝑀𝐻𝐷𝑉

𝑘𝑔 𝑓𝑢𝑒𝑙𝐻𝐷𝑉

𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙𝑓𝑙𝑒𝑒𝑡
. 

Rearranging, we find: 

𝐸𝐹𝑃𝑀,𝐻𝐷𝑉 =
𝑔 𝑃𝑀𝐻𝐷𝑉

𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙𝐻𝐷𝑉
, so  

𝐸𝐹𝑃𝑀,𝐻𝐷𝑉 =
𝑔 𝑃𝑀𝐻𝐷𝑉

𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙𝐻𝐷𝑉
. 



Because we measure concentrations of PM2.5 (g m-3) and CO (ppm) rather than g PM emitted and g CO 
emitted, we convert using the ideal gas law. 

𝐸𝐹𝑃𝑀,𝐻𝐷𝑉 = 𝛾
 𝑃𝑀𝐻𝐷𝑉

 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑔 𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙𝐻𝐷𝑉
. 

We calculate 𝛾 is using the ideal gas law, assuming STP. 

We have added a section to our supplement detailing this derivation, as we do not think that it 
fits well within the narration of the main text. 

Reviewer 2: 

In this manuscript, the authors calculated the on-road emission factors of heavy-duty vehicles 
(HDV) in the San Francisco Bay area using BAAQMD’s ambient monitoring data. The results 
show that the HDV emission factors decreased by a factor of 7 in the past decades, which is in 
line with other near-road and tunnel observations in the US. And the authors also found that 
the HDV emission factors have large spatial variations. The monitoring data from BAAQMD’s 
monitoring network was also used to estimate people’s exposure to primary PM2.5 from HDV 
emissions in this study. Overall, I think the method developed by the authors is potentially 
useful and can be applied to other EPA near-road stations to estimate HDV emission factors 
around the US. However, the emission factors estimated by this method are highly uncertain, 
and the authors haven’t fully characterized the uncertainty associated with this method.  

Thank you for these comments. We have used your suggestions below to further characterize 
the uncertainties associated with our method. 

1. Since the time resolution of the monitoring data is very low (1-h), it is challenging to separate 
the HDV emissions from the background, and the choice of background concentrations can 
significantly affect the results. In this study, the authors used the 10th percentile of all 
measurements collected within a 5-hour window across the entire San Francisco Bay area as 
the background, which seems arbitrary.  

We include a sensitivity test to the time-window chosen in section S4. 

The authors need to run more sensitivity tests about the background concentration. How 
different would the emission factors be if another percentile was chosen as background?  

We added tests of the sensitivity of the derived HDV emission factor to the inferred background 
concentration, by using the 5th, 10th, 15th, 20th, and 25th percentile to calculate background 
concentration. We find that while changing the percentile results in differences to the 
estimated HDV emission facto that are small in comparison to year over year differences. We 
have added a section S4 to the supplement, discussing this analysis. 



For each near-road station, if you only use concentrations measured at the closest station or 
the lowest concentration measured at stations within a closer distance (like 10 km), how 
different would the calculated HDV emission factor be?  

Most stations are greater than 10 km from one another, meaning this method would not be 
practical to implement for the BAAQMD network. This would be interesting to explore further 
in the case of denser networks such as Purple air or BEACO2N (Shusterman et al., 2016; 
Shusterman et al., 2018; Kim et al., 2018; Kim et al., 2022). 

2. For the background-corrected PM2.5-to-CO ratio shown in Figure 3, the authors should do 
the fitting using the original data instead of binning the CO concentration. By binning data, a 
tiny portion of data in the high delta CO range (>0.8 ppm) is dragging the overall fitting.  

As suggested, we now use all the original data not filtered by wind or fire criteria in the fits. We 
initially used medians of bins to eliminate the impact of noise we thought to be from non-
highway sources. However, by implementing a wind filter as suggested above, this noise was 
reduced, so when combined with the addition of a wind filter, fitting all data instead of binned 
data ahs little impact on the derived emission factors. We include a comparison table here. Un-
highlighted values are from our original method, using median point values only in fitting. 
Highlighted numbers are generated through slopes found fitting all data (and wind filtering), as 
now shown in Fig. 4. (All values are HDV EF estimates in g PM2.5 / kg fuel.) 

With the exception of Redwood City in 2009-2011 and San Rafael 2018-2020, these numbers 
match to within current error estimations (Fig. 4). In both of these cases, original values were 
higher, possibly indicating a contribution from nearby non-highway sources. Using all data 
points instead of bins allows us to estimate an emission factor for Berkeley Marina in 2015-
2017 as well, although the estimated uncertainty is large relative to the estimated emission 
factor. Because this site came online during the 2015-2017 period, by using the binning 
method, we did not have enough points to fit a line.   

TIME PERIOD SAN RAFAEL REDWOOD CITY BERKELEY 
MARINA 

PLEASANTON 

2009-2011 0.98 

1.10 

.48 

0.31 

N/A 

N/A 

N/A 

N/A 
2012-2014 0.94 

0.86 

0.08 

0.10 

N/A 

N/A 

N/A 

N/A 
2015-2017 0.32 

0.42 

0.05 

0.05 

N/A 

0.50 

N/A 

N/A 
2018-2020 0.21 

0.11 

0.02 

0.05 

0.17 

0.15 

0.38 

0.36 

 



The authors should also estimate the uncertainty associated with this fitting and propagate it to 
the overall uncertainty range. 

We now show the uncertainty in the fitting in S5. We propagate this uncertainty, as described 
in Sect. S6, and use this uncertainty propagation to add error bars to Figure 4.  

3. The authors need to thoroughly discuss uncertainties associated with all terms in Equation 1 
and 2 and propagate them to the results.  

We add a discussion of the uncertainties associated within each term, as well as the 
propagation of these uncertainties to the supplement. (See Section S6.) We use the described 
uncertainty propagation to characterize uncertainty in the emission factors we show in Figure 
4. 

4. The emission factors in Figure 4 should have uncertainty bars. Because the method has large 
uncertainties from the choice of background concentrations, the spatial variation estimated 
using this method may not be real. How were the traffic speed and slope of the road at those 
near-road stations? The spatial variation may also be caused by traffic speed and road slope. 

We add uncertainty bars to the emission factors in Figure 4 as discussed in response to previous 
comment. We agree that on-road factors such as traffic speed and road slope may have a 
substantial impact on emission factors. None of the lengths of roadway in Figure 4 are subject 
to a substantial grade. We incorporate day-to-day variance in traffic speed into our new 
uncertainty calculation. 

5. Did the authors try analyzing the monitoring data around noontime? The HDV traffic is 
usually the highest around noontime.   

We do not try analyzing the data at noontime, because by that time the boundary layer height 
is substantially larger than during the AM rush hour, meaning that emissions are likely to be 
substantially more dilute before reaching BAAQMD monitoring sites than in the AM. While HDV 
emissions may be slightly higher at noontime than during AM rush hour, they are not 
substantially so (< 25% higher for all sites examined).  

6. The wind speed and wind direction data are also measured at BAAQMD’s monitoring 
stations. Why did the authors use wind data from the reanalysis product instead of the 
measurements at monitoring stations?  
 
We use the ECMWF reanalysis product instead of the measurements at BAAQMD monitoring 
stations, because the meteorological measurements at the BAAQMD monitoring stations are 
unreasonably difficult to access. While BAAQMD posts meteorological data to its website, to 
the best of our knowledge, there is no API for BAAQMD meteorological measurements that we 
could find. For example, while BAAQMD air quality measurements can be downloaded using 
the EPA’s API service, wind speed and wind direction are not available via this service.  



 
7. The authors should be more careful about using parameters derived from the EMFAC model 
to calculate on-road HDV emissions. The emission factors estimated by the authors are under 
the situation when HDVs are driving on-road at a certain speed with a particular road slope. 
However, the emission factors modeled by EMFAC consider the entire driving cycle, different 
seasons, different types of fuels, and all driving conditions. The authors should provide more 
details about how they ran the EMFAC model.  
 
This is a good point, as both fuel efficiency and emission factors from other pollutants can vary 
considerably as a function of specific driving conditions. We have created a new methods 
section (2.4) in which we detail how we run the EMFAC model to estimate CO emission factors 
as well as emission rates (g CO2 / vkm). The methods we use follow those in Fitzmaurice et al., 
2022. We also add the impact of speed variance on emission factors to our estimation of 
uncertainty in HDV PM emission factors. 
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