
 

1 
 

1 

Estimated regional CO2 flux and uncertainty based on an ensemble of atmospheric 

CO2 inversions  
Naveen Chandra1, Prabir K. Patra1,2,3, Yousuke Niwa4, Akihiko Ito4, Yosuke Iida5, Daisuke Goto6, Shinji 

Morimoto3, Masayuki Kondo7, Masayuki Takigawa1, Tomohiro Hajima1, Michio Watanabe1 

 5 
1Research Institute for Global Change, JAMSTEC, 3173-25 Showa-machi, Kanazawa, Yokohama, 236-0001, Japan  
2Center for Environmental Remote Sensing, Chiba University, Chiba, 263-8522, Japan 
3Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan  
4Earth System Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan  
5Atmosphere and Ocean Department, Japan Meteorological Agency, Tokyo 105-8431, Japan 10 
6National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan  
7Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 Japan  

Correspondence to: Naveen Chandra (naveennegi@jamstec.go.jp) and Prabir K. Patra (prabir@jamstec.go.jp) 

 

Abstract. Global and regional sources and sinks of carbon across the earth’s surface have been studied extensively using 15 

atmospheric carbon dioxide (CO2) observations and chemistry-transport model (ACTM) simulations (top-down/inversion 

method). However, the uncertainties in the regional flux (+ve: source to the atmosphere; -ve: sink on land/ocean) distributions 

remain unconstrained mainly due to the lack of sufficient high-quality measurements covering the globe in all seasons and the 

uncertainties in model simulations. Here, we use a suite of 16 inversion cases, derived from a single transport model (MIROC4-

ACTM) but different sets of a priori (bottom-up) terrestrial biosphere and oceanic fluxes, as well as prior flux and observational 20 

data uncertainties (50 sites) to estimate CO2 fluxes for 84 regions over the period 2000-2020. The ensemble inversions provide 

a mean flux field that is consistent with the global CO2 growth rate, land and ocean sink partitioning of -2.9±0.3 (±1σ 

uncertainty on mean) and -1.6±0.2 PgC yr-1, respectively, for the period 2011-2020 (without riverine export correction), 

offsetting about 22-33% and 16-18% of global fossil-fuel CO2 emissions. Aggregated fluxes for 15 land regions compare 

reasonably well with the best estimations for (approx. 2000-2009) given by the REgional Carbon Cycle Assessment and 25 

Processes (RECCAP), and all regions appeared as a carbon sink over 2011-2020. Interannual variability and seasonal cycle in 

CO2 fluxes are more consistently derived for different prior fluxes when a greater degree of freedom is given to the inversion 

system (greater prior flux uncertainty). We have evaluated the inversion fluxes using independent aircraft and surface 

measurements not used in the inversions, which raises our confidence in the ensemble mean flux rather than an individual 

inversion. Differences between 5-year mean fluxes show promises and capability to track flux changes under ongoing and 30 

future CO2 emission mitigation policies. 
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1. Introduction 

Carbon dioxide is the most important anthropogenic greenhouse gas in the Earth’s atmosphere. Due to human 

influences, e.g., fossil fuels consumption and cement production (FFC), the concentration of atmospheric CO2 has 

increased (by 38%) from 289.9±3.3 ppm in 1850-1900 to 398.8±7.3 ppm in 2010-2019, with the fastest growth in 35 

past five decades (Canadell et al., 2021). To limit global warming below 1.5oC by 2100, as per the Paris Agreement, 

a drastic and sustained reduction in CO2 emissions from anthropogenic activities is recommended in the IPCC’s 6th 

assessment report (AR6). The IPCC AR6 Working Group 1 estimated remaining carbon budgets (starting from 1 

January 2020) for limiting global warming to 1.5°C, 1.7°C, and 2.0°C as 140 PgC, 230 PgC, and 370 PgC, 

respectively, based on the 50th percentile of the transient climate response to cumulative carbon emissions (TCRE). 40 

With the present FFC emissions of about 10 PgC yr-1 (Jones et al., 2021), the remaining carbon budget will be 

consumed within decades.  

 

The sinks on the land and ocean constitute a major component of nature-based solutions (Canadell et al., 2021). 

One of the impediments to making policy for CO2 emission reduction is poor knowledge of the regional sources 45 

and sinks of carbon in Earth’s disturbed and undisturbed ecosystems on land and in the ocean. During 2010–2019, 

the CO2 emissions from human activities (average rate = 10.9±0.9 PgC yr-1) was distributed between three Earth 

system components: 46% accumulated in the atmosphere (5.1±0.02 PgC yr-1), 23% was taken up by the ocean 

(2.5±0.6 PgC yr-1) and 31% was stored by vegetation in terrestrial ecosystems (3.4±0.9 PgC yr-1) (Table 5.1 in 

Canadell et al., 2021). Large uncertainties persist for the total global land and ocean sink partitioning in the IPCC 50 

assessment, up to about 25% of the global total land and ocean sinks. The uncertainty in land and ocean sink 

partitioning exists greatly in the Global Carbon Project (GCP)’s annual carbon budget release (Friedlingstein et al., 

2020). 

 

Top-down inverse models estimate residual natural or non-FFC CO2 fluxes from land and ocean regions because 55 

inversion calculations do not optimise the FFC emissions. When different sources of FFC emissions are used in 

inversions, post-inversion corrections are applied for comparison between inversions (Peylin et al., 2013; 

Thompson et al., 2016). More recently, the inverse model inter-comparison experiments use prescribed FFC 

emissions, e.g., the global carbon project (Friedlingstein et al., 2020) or the OCO-2 flux intercomparison (Crowell 

et al., 2019) to avoid the post-inversion correction. However, the impacts of biases in FFC emissions on inversion 60 

estimated CO2 fluxes remained relatively unexplored (Saeki and Patra, 2017). The FFC emission biases affect the 

region of FFC emission and the regions linked closely by atmospheric transport. This is because 1) the prior flux 
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uncertainties set for each of the inversion regions may not be sufficient to allow fully compensatory correction by 

inversion, 2) the model transport biases could move FFC emission signals slower or faster from the source region, 

3) emission signal goes undetected within the region when there are not enough measurement sites in the source 65 

region of biased FFC. Most FFC emission inventories are based on the data available on the International Energy 

Agency (IEA) and British Petroleum and mainly differ in spatial distribution within a given country (Crippa et al., 

2020; Jones et al., 2021; Oda et al., 2018). 

 

The GCP annual updates of inversions provide a metric for evaluating inversions using independent measurements, 70 

mainly from the aircraft campaigns (e.g., Friedlingstein et al., 2020). We argue in this work that the metric for 

evaluation of regional fluxes should be evaluated using a new transport model simulation of the predicted fluxes, 

not using the assimilated CO2 field. This hypothesis is put forward because estimation of predicted fluxes from 

model-data differences may not be straightforward due to the underlying assumptions of the data assimilation 

systems for flux correlation lengths, observational data uncertainty, etc. (Baker et al., 2010; Chevallier et al., 2007; 75 

van der Laan-Luijkx et al., 2017; Miyazaki et al., 2011; Niwa et al., 2017; Rodenbeck et al., 2003). In other words, 

good statistics for the validation metric using independent data did not ensure good agreement between the 

estimated fluxes by different models, at the sub-hemispheric and sub-continental scales, or separately for land and 

ocean (Gaubert et al., 2019; Long et al., 2021). Another way of improving our knowledge about regional flux 

estimation uncertainties in regional fluxes is to employ multiple types of datasets from both bottom-up and top-80 

down modelling systems  (Kondo et al., 2020). 

 

The uncertainties in the regional fluxes mainly arise from prior flux distribution and seasonality, selection of 

observational network and data uncertainty, transport model resolution leading site-representation error, 

uncertainties arising from parameterisation of transport processes. The uncertainties associated with the 85 

subcontinental scale CO2 fluxes are often much greater than the interannual and interdecadal flux changes in non-

FFC sectors, which allows us a better assessment of the changes in regional CO2 fluxes compared to knowledge 

gained in regional flux magnitudes (Baker et al., 2006; Gurney et al., 2002; Patra et al., 2005a, 2005b; Peylin et al., 

2013; Rödenbeck et al., 2003). Typically, multi-model assessment of flux estimation uncertainties is performed by 

collecting inversions from different transport models, e.g., in TransCom (Gurney et al., 2002; Peylin et al., 2013), 90 

for inversions using GOSAT measurements (Houweling et al., 2015) or for inversions using OCO-2 (Crowell et 

al., 2019). Such intercomparisons used single inversion from different modelling groups and provided the range in 

CO2 flux uncertainty due to differences in transport models. However, no quantification of the flux uncertainties 
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due to the choices of prior fluxes distribution, prior flux uncertainty, and observational data uncertainty could be 

obtained.   95 

 

Here we show an ensemble-based inversion approach based on different choices of prior flux uncertainties and 

representation of measurement data uncertainties, using a single chemistry-transport model (JAMSTEC’s 

MIROC4-ACTM). The details of the MIROC4-ACTM, observed and model data processing, inversion setup are 

in section 2, followed by the Results and discussion. The fluxes and uncertainties are presented at regional and 100 

global scales, along with their validation using inversion-independent observations. Although the inversions are 

performed for the period 1998-2020, results are discussed mainly for the two most recent decades (2001-2010 and 

2011-2020), with the only exception for comparing land-ocean flux partitioning with the IPCC AR6. Conclusions 

are given in section 4.  

 105 

2. Materials and method 

2.1. JAMSTEC’s MIROC version 4 Atmospheric Chemistry-Transport Model (MIROC4-ACTM) 

The Model for Interdisciplinary Research on Climate, version 4 (MIROC4; Watanabe et al., 2008) atmospheric 

general circulation model (AGCM)-based chemistry transport model (referred to as MIROC4-ACTM; Patra et al., 

2018) is used for the forward simulations of CO2. The MIROC earth system model is developed at JAMSTEC in 110 

collaboration with the University of Tokyo and the National Institute of Environmental Studies (NIES) (Kawamiya 

et al., 2020). Simulations of long-lived gases in the atmosphere (CO2, CH4, N2O, SF6: (Bisht et al., 2021; Chandra 

et al., 2021; Patra et al., 2017, 2018) are performed at a horizontal resolution of T42 spectral truncations (~2.8o 

×2.8o latitude-longitude grid) with 67 vertical hybrid-pressure layers between the Earth’s surface and 0.0128 hPa 

(~80 km). The simulated horizontal winds (U, V) and temperature (T) are nudged with the Japan Meteorological 115 

Agency Reanalysis data product (JRA-55; Kobayashi et al., 2015) at the altitude range of ~980-0.018 hPa for better 

representation of the atmospheric transport at synoptic and seasonal timescales. An accurate representation of 

transport is essential for performing inverse model calculation by minimising biases in horizontal and vertical 

gradients in the simulated tracer fields. We tested the large-scale interhemispheric transport and Brewer-Dobson 

circulation in the MIROC4-ACTM using the SF6 simulations in the troposphere and CO2-derived age of air in the 120 

troposphere and stratosphere (Bisht et al., 2021; Patra et al., 2018). A close match between observed and modelled 

SF6 and photochemically inert CO2 vertical gradient in the troposphere and lower stratosphere manifests the 
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accurate transport in the MIROC4-ACTM. That enables us to use any mismatch between observation and 

simulations to estimate the land and oceanic fluxes using the inverse modelling technique (details in Section 2.4).  

 125 

2.2 A priori CO2 simulations  

We simulated CO2 tracers corresponding to the FFC (CO2
ff), land biosphere fluxes (CO2

lnd), fire emissions (CO2
fire), 

and ocean exchanges (CO2
ocn) from different sets of prior (bottom-up) emissions (Table 1). CO2

ff is simulated using 

the gridded fossil fuel emission dataset (GridFED; Jones et al., 2021). CO2
lnd tracers are simulated using two sets 

of terrestrial biosphere fluxes from the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model 130 

(Randerson et al., 1997)), and Vegetation Integrative Simulator for Trace Gases (VISIT) (Ito, 2019). The CASA 

fluxes are annually balanced, seasonally varying flux due to terrestrial photosynthesis and respiration, while the 

VISIT simulation accounts for CO2 fertilisation (increasing photosynthesis due to rising atmospheric CO2), LUC 

(perturbation on terrestrial carbon budget via land-use change), and climate variability (on the net a large land sink; 

Table 1). The CASA and VISIT monthly-mean fluxes are downscaled to 3-hourly time intervals using JRA-55 135 

meteorology (Table 1). Monthly-mean fire emissions are used from GFEDv4s (van der Werf et al., 2017) for 

simulating the CO2
fire tracer. Sea-air CO2 fluxes are taken from an upscaling model of shipboard measurements of 

pCO2 (referred to here as TT09: Takahashi et al., 2009), and an empirical model of the Japan Meteorological 

Agency (JMA; Iida et al., 2021) for simulating CO2
ocn tracers. The seasonal cycle for TT09 sea-air exchange flux 

is stationary, like that of the CASA, over the analysis period, while the JMA oceanic CO2 fluxes vary interannually, 140 

as in the case of VISIT. The model and prior fluxes’ details are given in Table 1.  

 

We prepare two cases of prior CO2 simulations by adding the CO2 flux tracers in different combinations as follows: 

gc3t =  CO2
lnd (CASA) +  CO2

ocn (TT09) + CO2
ff 

gvjf =  CO2
lnd (VISIT) +  CO2

ocn (JMA) + CO2
ff + CO2

fire 145 

 

The gvjf case includes all the known interannual variability in land due to climate as simulated by VISIT and ocean 

fluxes by JMA. In contrast, the gc3t case has no information on interannual variability in land and ocean fluxes and 

the annual land sink. These two a priori flux cases are designed to evaluate the strength of MIROC4-ACTM 

simulations to derive fluxes consistently (or the lack of it) given the information on CO2 measurements from a 150 

network of sites and the statistics of prior flux uncertainty and measurement data uncertainty.     
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2.3 Atmospheric Data Selection and curve fitting 

We used CO2 observations from 50 measurement sites (marked in Fig. 1) for the inverse modelling (Supplementary 

Table S1). The 38 sites are chosen from GML/NOAA, 4 from CSIRO, one from LSCE/IPSL, 2 from SIO-CO2, 1 155 

from SAWS, 1 from ECCC, 3 from JMA. Data until 2019 are taken from 

obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01 (Schuldt et al., 2021), and JMA data are taken from 

WDCGG. Extension to obspack_co2_1_GLOBALVIEWplus_v6.1 for 2020 is compiled from GML/NOAA data 

and WDCGG websites as appropriate. We further extended the 2020 values into 2021 based on the growth rate 

determined for Jan-Mar observed at Minamitorishima (MNM) as available on the WDCGG (the results of 2021 160 

will not be used in any analysis and will be treated as the spin-down year of inversion). The model simulations are 

sampled at observation time and the nearest grid of observation location at hourly intervals. We selected the sites 

where the temporal data gaps are minimum; no more than six months data gaps at a stretch for the inversion period 

(1999–2020). These temporal data gaps (1-6 months) are filled using the curve fitting method based on the digital 

filtering technique (Nakazawa et al., 1997). We fit the measured and simulated time-series at daily-weekly time 165 

intervals with six harmonics by a cut-off length of 24 months for the digital filter.  

 

 

2.4. Inverse method 

Inverse analysis of atmospheric CO2 helps to link the atmospheric observations to carbon fluxes from land and 170 

ocean. We use a time-dependent Bayesian inversion system, initially developed by (Rayner et al., 1999). The 

inversion formalism specifies prior estimates of both the fluxes and their uncertainty (called prior flux uncertainty 

(PFU)) and optimises fluxes over 54 lands and 30 ocean regions (Fig. 1) by minimising the difference between the 

CO2 mixing ratios simulated by the MIROC4-ACTM and observed at 50 measurement sites for 1998-2021. We 

exclude the first two years and last year of inversion from our analysis period (2000-2020) to avoid the edge effect. 175 

 

 In the Bayesian inversion, the cost function  

(D - GS)T CD
-1 (D - GS) + (S - So)T CSo

-1 (S - So)        (1) 

is minimised with the solution  

S = So + (GTCD
-1G + CSo

-1)-1 GTCD
-1 (Dobs - DACTM)                        (2) 180 

and posterior error covariance 
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Cs = (GTCD
-1G + CSo

-1)-1                                                  (3) 

where So is the regional prior source matrix, CSo is a prior source covariance matrix, Dobs is the measurement data 

matrix, DACTM is forward model simulations using a priori fluxes and, CD is the data covariance matrix. The linear 

relationship between the regional emission (S) matrix and model-observation difference matrix (D) is defined by 185 

Green’s function (G) using the unitary regional source to concentration change relationship for the 84 regions 

depicted in Fig. 1a. The elements in monthly flux (S) are the optimised fluxes (referred to as a posteriori or predicted 

flux) of CO2 from 84 regions of the inverse model, and the elements of CD and CSo are the error variance-covariance 

matrix of the observational data (D) and a priori source (S0). The off-diagonal elements of CSo are kept zero, 

assuming the a priori fluxes are uncorrelated to one another. The correction flux (second term in Eq. 2) is primarily 190 

determined by the difference between Dobs and DACTM, scaled by the data uncertainty. 

 

The inversion settings based on the choice of a priori fluxes, measurement data uncertainty (MDU), and prior flux 

uncertainty (PFU) are crucial for flux estimation. The MDU refers to the degree to which the predicted 

concentrations are required to be fitted by the inverse model. In addition to measurement precision, MDU 195 

incorporates the inability of coarse spatial-resolution global ACTMs to simulate the concentrations at the 

observation sites. PFU decides the degree of freedom or allowed flux adjustment for each of the 84 regions to match 

the atmospheric data. It determines to what extent the priors are relied upon to constrain the posterior flux estimates. 

To determine the robustness of our results, we have performed sensitivity analysis by varying PFU and MDU 

(Table 2). In the first approach, we assign uniformly 2 PgC yr-1 uncertainty to each of the 54 land regions and 1 200 

PgC yr-1 to each of the 30 ocean regions (referred to as PFU = “ctl”). In the second approach, we assign the land 

uncertainty by scaling the regional total FLUXCOM gross primary productivity (GPP) (Jung et al., 2017), while 

the uncertainty for the ocean regions is kept at 0.5 PgC yr-1. In this case, regional total GPPs were multiplied by 2, 

and the upper limit is set at 2 PgC yr-1 (referred to as gpp_v2; PFUs varied from 0.2-2.0 PgC yr-1). We construct 

two additional PFU cases (gpp_v3 and gpp_v4) by multiplying the regional total GPPs by a factor of 3 and 4, 205 

respectively, and the maximum allowed set at 3 and 4 PgC yr-1. The land PFUs varied as 0.4-3.0 PgC yr-1 and 0.6-

4.0 PgC yr-1 for the gpp_v3 and gpp_v4, respectively. The ocean PFUs were set at 0.75 PgC yr-1 for gpp_v3 and 

1.0 PgC yr-1 for gpp_v4 (Table 2). 

 

The monthly-mean residual standard deviation (RSD), from the difference between measured and fitted data, plus 210 

a constant value to account for the measurement accuracy are used for monthly varying measurement data 

uncertainty (MDU) at each station for inverse modelling calculations. The absolute magnitude of MDU is chosen 
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in such a way that the estimated flux is optimized to the data only to an appropriate level commensurate with the 

ability of ACTM to model them. We prepared two MDU cases by multiplying the RSDs by a factor of 2 (referred 

to as “ux2”) and 4 (referred to as “ux4”), and added to an estimated measurement uncertainty of 0.1 ppm.  Based 215 

on different combinations of four PFU (ctl, gpp_v2, gpp_v3, gpp_v4), two MDU (ux2, ux4), and two prior flux 

cases (gc3t and gvjf), we run 16 set of inversion cases (Table 2). Based on the inversions with multiple priors, PFUs 

and MDUs, we will present estimated mean/median fluxes and spread as 1-𝜎 standard deviations from 16 ensemble 

members.  

  Figure 2 shows the examples of simulated and observed time series of CO2 (top row), and simulated-observed 220 

differences (bottom row) at two selected sites, Alert and Syowa. The results show faster (slower) CO2 increase 

rates for the a priori flux simulated case gc3t (gvjf), mainly because of no land sink in CASA flux and stronger 

land sink in VISIT flux (broken red and purple lines, respectively). By using the mean of these two a priori flux 

scenarios, the prior CO2 concentrations show a better match with the CO2 growth rates (refer to the grey lines in 

the lower row; Fig. 2). Even after inversion, mild overestimation (underestimation) of the CO2 growth rate for gc3t 225 

(gvjf) cases persisted, and by taking ensemble mean inversion flux the CO2 growth rates are perfectly matched with 

the observations (Fig. 2), which is sometimes set as an evaluation metric for atmospheric CO2 inversions 

(Friedlingstein et al., 2020).  

 

2.5 Performance of inversion 230 

We use flux uncertainty reduction (FUR) to identify which regions are well constrained by the data. FUR is a 

standard diagnostic of Bayesian estimation and defined by 

𝐹𝑈𝑅	 = 	1	 −	
𝜎!"#$%&'#$
𝜎!"%("

 

where σprior and σpredicted represent the prior and predicted flux uncertainties. High values (FUR towards 100) indicate 

strong data constraints, while low values (close to 0) indicate that the data are not able to move the estimates away 235 

from the prior. To identify which parts of the land and ocean have been constrained significantly by the inversions, 

PFU, predicted flux uncertainty, and FUR is plotted in Fig. 3 for the four PFU cases of gc3t and ux4 setup. The 

PFU case “gpp_v4” and “ctl” shows observational constraint over most of the region (grey shaded areas on the 

right column). Good constraints (larger FUR) are found in the Northern America, Russia, Southern Ocean, Tropical 

and South Pacific, South Indian, North Atlantic, highlighting the large long-running observational programs by 240 

USA, Japanese, and European research groups. The poor constraints (low FUR) are observed over South Asia, 
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West Asia, Northern Africa. The Tropical Indian Ocean due to the lack of observations. It is also noted that FUR 

is influenced by PFU settings. For example, a smaller a priori uncertainty, i.e., gpp_v2 achieved lower FUR. As 

discussed later in this article, the FUR is only indicative of the observational constraint regional fluxes, and we 

recommend that the spread of ensemble inversions provide more representative estimation of the regional CO2 245 

sources and sinks.    

 

2.6 Flux processing and regional uncertainty estimations 

The predicted fluxes from 84 regions (54 land and 30 oceans) are regridded into 1o x 1o spatial resolutions based 

on the land and ocean basis functions. Once regridded, the fluxes were aggregated into 15 land and 11 ocean regions 250 

for further analysis (ref. Fig. 1b). We first estimated the mean of each inversion for different periods (monthly, 

annual, five-year, decadal) as per analysis. Then, we averaged the individual means (n=16) to estimate the ensemble 

mean and standard deviations. The ensemble mean (here and, in the following, referred to as “ensm”) is the best 

estimate (i.e., a measure of central tendency) of land-air and sea-air exchange carbon flux. There are different 

options to characterize “uncertainty” in CO2 flux estimates, for example, the standard deviation, standard error, 255 

95% confidence intervals, interquartile ranges. Here, we followed the standard deviation of the multi-inversion 

means as a metric of the “uncertainty” (i.e., variability) in the multi-inversion estimates. 

    

2.7. Observations used for predicted fluxes validation 

The predicted fluxes are validated by comparing the posterior 3-dimensional CO2 observations to independent (i.e., 260 

not used in the inversions) aircraft observations. The aircraft observations used for validation include data published 

in obspack_co2_1_GLOBALVIEWplus_v6.1.  

 

 2.7.1 HIPPO and ATom observations 

We used the CO2 from two sets of aircraft campaigns: the HIAPER Pole‐to‐Pole Observations (HIPPO) during the 265 

period January 7, 2009, to September 15, 2011 (Wofsy, 2011) and the Atmospheric Tomography Missions (ATom) 

during the period July 29, 2016, to May 21, 2018 (Wofsy et al., 2018) to validate the latitude-altitude gradients 

covering different seasons over the Pacific and Atlantic Oceans. The four HIPPO campaigns (HIPPO-1 in January 

2009, HIPPO-2 in October/December 2009, HIPPO-3 in March/April 2010 and HIPPO-4 in May/July 2011), 

performed from 82°N to 67°S over the Pacific (but also partly cover the North American continent) and with 270 

continuous profiling between ~150 m and 8500 m altitudes at approximately 2.2o intervals, are used for the 
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validation. The ATom mission is built upon HIPPO mission, but with a wider horizontal extent with global 

coverage over the Pacific, the Atlantic, and the Arctic oceans. The comparisons performed for all the four ATom 

circuits occurred in July–August 2016 (ATom-1), January–February 2017 (ATom-2), September– October 2017 

(ATom-3), and April–May 2018 (ATom-4). The mission consisted of 48 science flights and 548 vertical profiles 275 

over the Pacific and Atlantic basins.    

 

 2.7.2. NOAA measurements 

We use NOAA regular aircraft‐based vertical profiles also to validate the simulated vertical gradients in the 

troposphere (Sweeney et al., 2015). The aircraft sites are located mainly over the North American continent. The 280 

aircraft profiles include measurements over the Southern Great Plains (SGP: 2006-2019), operated by the U.S. 

Department of Energy (Biraud et al., 2013). Most of the aircraft profiles range between the surface and 350 hPa. 

For shorter periods, flights up to 150 hPa are available for the sites Charleston, South Carolina (SCA), SGP, and 

Cartersville, Georgia (VAA), also covering the UTLS (upper troposphere/lower stratosphere) region. 

 285 

2.7.3. CONTRAIL measurements 

The CONTRAIL (Comprehensive Observation Network for Trace gases by AIrLiners) program uses an Automatic 

air Sampling Equipment (ASE) for flask sampling and Continuous CO2 Measuring Equipment (CME) for in-situ 

CO2 measurements (Machida et al., 2008; Matsueda et al., 2008). These instruments have been installed on several 

Boeing aircraft operated by Japan Airlines (JAL) with regular flights from Japan to Australia, Europe, Asia (East, 290 

South and Southeast), Hawaii and North America, providing large spatial data coverage across the globe, 

particularly in the Northern Hemisphere. The ASE performed flask samplings in the upper troposphere and lower 

stratosphere (altitude range of ~7–12 km). The CME data are recorded at 10-sec intervals during ascent/descent 

(~100-meter intervals in altitude) and at 1-min intervals during cruise (~15 km intervals horizontally) as well as in-

flight aircraft positions. To avoid heavy pollution around airports, CME is not operated within ~600 m of the ground 295 

surface. The CME has obtained thousands of CO2 vertical profiles over many airports since 2005. The ASE and 

CME along with NOAA aircraft measurements of CO2 are used to estimate the latitudinal bias in predicted fluxes. 
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2.8 Evaluation Metrics 300 

We calculate correlation coefficients (R), mean bias (MB), and root-mean-square errors (RMSE) to evaluate the 

predicted fluxes with aircraft observations. The mean bias and RMSE are defined as  

𝑀𝐵	 = 	,
	1		
𝑛
	./𝑥)%"&")*'( −	𝑥)%"&")*'

! 1
%

+
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𝑛
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 305 

where 𝑥)%"&")*'(  is aircraft observation, 𝑥)%"&")*'
! is predicted CO2 mole fraction sampled at the ith aircraft location, 

and n is the number of aircraft observations. The MB infers the magnitude of underestimation/overestimation of 

CO2 mixing ratios by the model. The RMSE includes errors (both random and systematic) in the predicted CO2. 

The MB and RMSE could be due to uncertainties in predicted fluxes, and model transport. The simulations of SF6 

and age of air confirm the low transport error in MIROC4-ACTM (Bisht et al., 2021; Patra et al., 2018). Hence, 310 

the magnitude of biases and RMSE indicates predominantly the accuracy of the predicted fluxes.  

 

 3. Global-scale land and ocean fluxes 

3.1 Global distributions  

Figure 4 shows the spatial distributions of annual mean CO2 fluxes. While the spatial distributions of a priori 315 

oceanic flux are similar for the JMA and TT09, the terrestrial biosphere fluxes are vastly different. The annually 

neutral CASA fluxes show near-zero values for most grids. However, strong sinks are observed over most of the 

densely vegetated regions of the globe for the VISIT+GFED fluxes, mainly because VISIT simulation produces 

stronger sinks by the ecosystem (Fig. 4a, 4d). Anomalously strong sources are also seen in Fig. 4d due to the fire 

emissions estimated by GFED based on the satellite-derived burned area anomaly. The inverse models make 320 

reasonable corrections, though the prior gc3t case includes the net-zero annual flux or case ‘gvjf’ was a stronger 

sink. Consistently predicted fluxes are seen for North America, Europe, Russia, or East Asia for the PFU=ctl case 

(middle row). Similarities are slightly less when the PFU is scaled to the GPP of 84 regions of the inverse model 

(bottom row). This suggests that the greater PFU is more suitable for the inversion when the region has 
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observational sites (Fig. 1). In the case of PFU=gpp_v2, the fluxes are not allowed to change much in the boreal 325 

regions except for the summer months. However, the gpp_v2 inversion may be preferred over the dry region of 

Northern Africa, where the control PFU case produces an East (weak source) - West (weak sink) dipole. 

Performance of the inversions to retrieve the flux distributions over tropical America and tropical Africa are 

unclear. They show large dependence on the prior flux distributions, possibly due to the lack of observations within 

the land regions in our inversion. The main focus of this study is to better understand the total regional emissions 330 

and their trends over the past 20 years. The inversion does not revise the fine structures within each of the 84 

regions of the inversion by the design of the system, where the regional basis functions assume a fixed pattern for 

constructing the source-receptor relationships (G-matrix). However, the degree of freedom of our inversions is 

similar to the gridded inversions when spatial flux correlations of greater than 1000 km are assumed (Peylin et al., 

2013).  335 

 

3.2. Global totals. 

Figure 5 shows the trends and interannual variability in the global fossil fuel (FF) emissions (used as input for the 

inverse model), land-biosphere, ocean, and annual atmospheric CO2 growth rate for 16 inversion ensemble 

members based on two combinations of land-biosphere and ocean prior fluxes (VISIT and CASA for land-340 

atmosphere, and TT09 and JMA for sea-air) and prior flux/data uncertainties (PFU and MDU). The uncertainty in 

the ensemble means flux of 16 inversion cases is calculated using ±1σ spread in the time-averaged fluxes for 10 or 

5 yr periods in this study. The uncertainties in the predicted fluxes due to different priors are found to be 0.35 PgC 

yr-1 for global land and 0.1 PgC yr-1 for the global ocean. The uncertainty due to PFU and MDU is less than 0.15 

PgC yr-1 for land and ocean carbon uptake for gc3t or gvjf inversions. It indicates that prior flux patterns and trends 345 

alter the predicted global land and ocean fluxes. Ensemble means land and ocean fluxes are in excellent agreement 

with the IPCC “mean” estimates, notably within the 1-σ uncertainty estimated from 16 ensemble member 

inversions (Table 3). The ensemble spread is much lower (Table 3; MIROC4-ACTM columns), compared to the 

inversion predicted flux uncertainties, which are in the range of 1.4 and 0.7 PgC yr-1 for the global land and ocean, 

respectively (vary from low values of 0.8 and 0.5 PgC yr-1 for gpp_v2 cases to 1.6 and 0.9 PgC yr-1 for the gpp_v4 350 

inversions).   
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The year-to-year variability in land and ocean carbon sink (Fig. 5b,c) shows considerable agreement across the 

inversion cases because of the strong constraint provided by atmospheric CO2 measurements at the global scale due 

to global tracer mass conservation. The year-to-year variability in atmospheric CO2 growth rate is linked to the 355 

variability in natural sources and sinks of carbon from land and ocean for given FFC emissions. The observed CO2 

growth rate from NOAA (Dlugokencky and Tans, 2020) is compared with the estimated CO2 growth rate (by 

inversion), defined as the difference between fossil fuel emissions and total sink over land and ocean on an annual 

basis (Fig. 5d). The NOAA growth rate (ppm yr-1) is converted to units PgC yr–1 using a conversion factor of 2.13 

PgC ppm-1 (Raupach et al., 2011). The resulting mean carbon budget imbalance, calculated as the difference 360 

between the inversion estimated and the observed CO2 growth rates, is given in the legends (Fig. 5). The year-to-

year variability in the global annual total of net CO2 flux is robust across different inversion cases (r=0.97) and 

with the observed growth rates (r=0.9); however, the global totals over 2001-2020 show slight bias with that 

observed. Compared to the observed CO2 growth rate, the inversion shows systematic positive (range 0.1-0.3) and 

negative (range 0.0 - (-0.2)) imbalances for gc3t and gvjf inversions, respectively. The ensemble mean of 16 365 

inversions ("ensm") agrees well with the observed growth rate within the uncertainty of the predicted fluxes over 

the 20 years (Fig. 5d).  

Inversions suggest that both the terrestrial land and ocean sinks increased during our analysis period 2000 to 2020. 

The ensemble means of terrestrial land CO2 sink increased from -2.31±0.21 PgC yr–1 in the 2000s (2000-2009) to 

-2.9±0.26 PgC yr–1 in 2010s (2010-2019) with significant interannual variations up to 2 PgC yr–1. The interannual 370 

variability in land CO2 flux is predominately associated with the response of the terrestrial biosphere to El Niño 

and its cold counterpart La Niña (collectively known as El Niño-Southern-Oscillation or ENSO: colour shading in 

Fig. 5; +ve for El Niño and -ve for La Niña) )-induced changes in the weather pattern. In 2015-2016, and to a lesser 

extent in 2010, El Niño conditions reduced carbon uptake by the land ecosystems in the tropics (e.g., Baker et al., 

2006; Bousquet et al., 2000; Patra et al., 2005b). The average ocean sink intensified from -1.46±0.10 PgC yr–1 in 375 

the 2000s to -1.62±0.17 PgC yr–1 in the 2010s, with interannual variations of the order of a few tenths of PgC yr–1 

; generally showing an increased ocean sink during strong El Niño events (e.g., during 2015-2016) (Chatterjee et 

al., 2017; Feely et al., 1999; Patra et al., 2005a). The global ocean biogeochemistry model (GOBM) products, and 

those based on pCO2 measurements, also show similar decadal variability patterns (DeVries et al., 2019; Hauck et 

al., 2020).  380 
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This gradual increase in the ocean CO2 sink is caused by increasing pCO2 between the marine air and sea-surface 

water. The strong increase in the net sink by the terrestrial biosphere until about 2012 is sometimes attributed to 

the bias in FFC emissions from China (Saeki and Patra, 2017), and the gradual sink increase can be attributed to 

CO2 fertilisation or water-use efficiency as more carbon is available for assimilation by photosynthesis (Keeling et 385 

al., 2017; Kondo et al., 2018). In addition, the land CO2 uptake efficiency in the period of this analysis could partly 

be controlled by a decadal shift in frequency of natural climate variability, such as ENSO. In the 2000s, no extreme 

El Niño conditions were observed, resulting in suppressed fire emissions and lowered drought occurrences, while 

the opposite conditions prevailed in the 2010s (intense El Niño in 2010, 2015-2016, 2019-2020), which is likely to 

reduce net uptake by the land ecosystems (Patra et al., 2005b). Fire emissions with an estimated peak-to-trough 390 

change of about 0.5 PgC yr–1 (Table 1) alone cannot explain the large changes in land sinks of the order of 2-3 PgC 

yr–1.   

 

4. Sub-continental scale land and ocean fluxes 

4.1 Interannual variability and uncertainties 395 

Here, we present interannual variability in a priori and predicted carbon fluxes over 15 lands (Fig. 6) and 11 ocean 

regions (Fig. 7). The uncertainty in the predicted carbon fluxes is estimated as 1-s spread among the 16 inversion 

cases. Significant differences are seen in between a priori (VISIT) and predicted land fluxes in the high carbon sink 

regions, e.g., over Russia (-0.76 PgC yr-1), followed by East Asia (-0.55 PgC yr-1), and Europe (-0.54 PgC yr-1), 

while the inversion suggests the more substantial uptakes over Temperate North America (-0.59±0.14 PgC yr-1), 400 

followed by East Asia (-0.49±0.09 PgC yr-1), Boreal North America (-0.38±0.1 PgC yr-1), and Russia (-0.35±0.05 

PgC yr-1) for the study period.   

 

Large spread in the predicted fluxes over Temperate North America, Temperate South America, and Europe 

indicate that the estimated flux is more sensitive to the selection of PFU and MDU when there are measurement 405 

sites within the region or in the neighborhoods. The carbon fluxes over tropical (Tropical America, Brazil, South 

Asia, and Southeast Asia) and extratropical (Temperate South America, Central Africa, Southern Africa, and 

Oceania) land regions are found relatively less certain; the ensemble of inversions splits into weak source or sink 

group based on the land priors. For example, inversions using the VISIT flux show a net source signal over all the 

three African regions, while those using the CASA flux exhibit a net sink. Similarly, for South Asia, all inversion 410 
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cases based on the CASA prior show a mild carbon sink, while VISIT-based inversion cases show a net sink of -

0.18 ± 0.11 PgC yr–1. VISIT prior consists of very strong sinks over all 3 South America regions (Fig. 6; Table S2). 

These regions of Africa, South America, and South Asia are weakly constrained in the inversions due to the limited 

observations representing these regions. However, for most of these regions lacking in observations, the VISIT and 

CASA-based inversions are moving toward a common flux value, i.e., the range of the two prior fluxes are usually 415 

much greater than the 16-inversion ensemble spread.   

 

The predicted land carbon sink over East Asia tends to increase, consistent with a rapid increase in FFC emissions 

for 2001-2009. The rapid increase in CO2 emissions from FFC could impose an artificial trend in the terrestrial 

land flux estimate for the East Asia region (Saeki and Patra, 2017). Because the atmospheric data constrain the 420 

total net surface flux, the rapid increase in fossil fuel emissions is required to be compensated by increasing the 

natural land uptake of similar magnitude through inversion. The South Asian uptake remains almost constant for 

the study period. For West Asia, both sets of inversion show the land CO2 flux fluctuates around zero with slight 

interannual variation, indicating a stable trend of land flux changes and a small contribution to uptake of all the 

tropical regions. The annual trend in Southeast Asian carbon fluxes is overwhelmed by large interannual variability, 425 

driven mainly by ENSO-induced fire emission variability (Patra et al., 2005b; van der Werf et al., 2017). Over the 

African continent, Central Africa shows the highest interannual variability, mainly due to biomass burning 

emissions under the influence of ENSO. The CO2 flux anomalies in the case of gvjf inversions supports the fire 

emission anomalies taken from GFEDv4s as included in the prior, and what is more impressive for us is the ability 

of the gc3t inversions to produce similar phase and magnitude of the flux variabilities while the prior flux consisted 430 

no interannual variability (even for these relatively unconstrained regions).   

 

Figure 7 shows good agreement among the predicted fluxes for the 11 ocean regions and the decadal flux variability, 

which are derived from TT09 prior flux with no interannual variability and JMA flux including interannual 

variability. The inversion results show substantial changes in the estimated interannual variability due to PFU and 435 

MDU. The Northern Ocean shows a significant spread from the mean (-0.13 ± 0.14 PgC yr-1) for higher MDU, 

particularly for 2011-2015 (-0.01±0.06 PgC yr-1) gvjf inversions. In opposite phase a similar spread is also found 

for the neighboring Boreal North America, Europe, and Russia land fluxes. Because the flux variabilities over land 

regions are larger than ocean regions (by about a factor of 2), the Northern Ocean fluxes can be perturbed by 
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relatively unnoticeable anomalies in the neighbouring land fluxes. It is indicative that an analysis of fluxes for one 440 

region may be challenging to interpret when isolated from the rest of the world in an inversion of long-lived species 

because of the large-scale mixing by transport. 

A significant difference in the priors over the South Atlantic is observed; the JMA fluxes suggest two-fold CO2 

uptake (0.33 PgC yr-1) than in the TT09 (Table S2). Inversion largely follows their priors over this region, which 

is observationally unconstrained by sites within the region. Both the prior and predicted fluxes show that the East 445 

Pacific as a significant source of CO2 to the atmosphere, caused by the upwelling of deep ocean water (that brings 

CO2-rich water from ocean interior to surface) of the west coast of the South American continent. A small net 

outgassing signal is also known to have over the Tropical Indian and Tropical Atlantic Oceans. Because of tighter 

constrain by relatively extensive coverage of observation sites, all 16 predicted fluxes converged on consistent 

Southern Ocean decadal trends and interannual variability; while, we have not accounted for interannual variability 450 

or trends in the TT09 prior. The Southern Ocean CO2 sink intensity shows considerable variability from interannual 

to decadal timescales, and sink stabilisation after 2010 may have been caused by a regional shift in sea level 

pressure and surface winds (Keppler and Landschützer, 2019).  

 

4.2 Interannual variations in regional CO2 fluxes  455 

To examine the regional pattern of anomalies in the land and ocean CO2 sink, following Patra et al. (2005b, 2005a), 

we calculated the monthly anomalies by subtracting a long-term mean seasonal cycle from the monthly emissions 

from 2001-2020 (Fig. 8). Thus, the time series contains the interannual variability (IAV) and long-term trends for 

the analysis period. We find that the anomalies from both inversion cases are consistent over most regions; however 

the magnitude differs. Despite the absence of IAV in the “gc3t” prior fluxes, the consistent interannual variability 460 

suggests that inversion is robust in constraining the IAV in carbon fluxes.  The correlations between “gc3t” and 

“gvjf” inversion over land are greater than 0.7, which are statistically significant at p<0.0001.  The low correlation 

(less than 0.3) between “gc3t” inversion and “gvjf” prior can be inferred as only some of the interannual variabilities 

derived by inversions were present in the gvjf prior, and the interannual flux variability for gvjf inversions are 

significantly different from those present in a priori. Large-scale cyclic patterns of climate anomalies such as ENSO 465 

account for a large part of climate variability on interannual to sub-decadal timescales CO2 flux variabilities. 
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Climate anomalies are associated with changes in temperature distributions and large-scale circulations of the ocean 

water and the atmosphere.  

 

The CO2 flux anomalies in the tropical regions are strongly correlated with the ENSO index, while temperate and 470 

boreal regions are weakly correlated, as expected from the areas of ENSO influences (Table S3). In the northern 

high latitude regions of Europe, America, and Asia, a negligible correlation was found between CO2 flux anomalies 

and the ENSO index. It is because, over these regions, the North Atlantic Oscillation (NAO)/Arctic Oscillation 

(AO) or Pacific Decadal Oscillation (PDO) are the dominant climate factors for the CO2 flux anomaly, likely 

through the temperature variation (Patra et al., 2005). The warmer weather in these regions may lead to a negative 475 

CO2 flux anomaly (Russia) since that condition stretches the growing season length (Dye and Tucker, 2003). The 

correlation coefficient between CO2 flux anomalies for different aggregated land and ocean regions is given in 

Table S3. 

 

In 2015, a strong El Niño induced severe drought and biomass burning in Equatorial Asia. It was one of the most 480 

significant El Niño events after the well-known major El Niño in 1997/1998 (L’Heureux et al., 2017; Santoso et 

al., 2017). Patra et al. (2005b) estimated that a massive amount of carbon (~5.5 PgC yr−1) released into the 

atmosphere in 1997/1998, largely contributed from tropical regions in Asia, South America, and Africa. Figure 7 

shows that during the Extreme El Niño period in 2015-2016, large carbon was also released from Tropical America 

and Southeast Asia, followed by Central Africa and Brazil. However, the timing and strength of the peaks are 485 

different. The fire emission peak (for “gvjf” case) appeared in August 2015 over Southeast Asia (1.34 PgC yr−1), 

and in January 2016 over Tropical America (1.12 PgC yr−1). The “gc3t” inversion suggests a peak in October 2015 

for Southeast Asia (0.42 PgC yr-1) and in January 2016 for Tropical America (0.82 PgC yr-1). Niwa et al. (2021) 

showed that regular sampling of aircraft CO2 measurement under CONTRAIL project has enormous potential for 

capturing the footprint of biomass burning. By advanced inverse analysis, they estimated equatorial Southeast Asia 490 

emission at 0.27 PgC yr-1 during September-October 2015 (note that northern Southeast Asia is not included). 

Over the Oceania regions, ‘gvjf’ inversion shows large interannual variability. The inversion suggests emission 

peaks in 2019-2020 over Oceania, consistent with the substantial CO2 released from the fire in the atmosphere 

during the 2019-2020 summer season over Australia (van der Velde et al., 2021). They concluded that the CO2 

emission from these fires was more than thrice the estimate derived from the long-term mean of CO2 uptake over 495 

this region and broadly consistent with estimates based on the GFED fire emissions. van der Velde et al. (2021) 
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estimated CO2 flux anomaly in the range 0.14–0.24 PgC from November 2019 to January 2020, which are lower 

than our estimation of 0.7 PgC.  

 

CO2 flux variabilities over East Pacific, West Pacific, and South Pacific show negligible correlations with ENSO, 500 

while both JMA based prior and posterior show high correlation (Table S3). Over the North Pacific, both inversion 

ensembles show an insignificant correlation with ENSO. The oceanographic observations indicate that sea surface 

temperature and pCO2 in the equatorial warm pool areas (5°N–5°S, west of the dateline) are not sensitive to El 

Niño conditions (Takahashi et al., 2003). CO2 flux anomalies are estimated positive for South Pacific and negative 

for East Pacific during the 2015-2016 El Niño event. On the contrary, observations show that sea-to-air CO2 flux 505 

is suppressed during the intense El Niño event by warm low-CO2 surface waters from the west. The atmospheric 

observations are limited over these regions. Thus, we consider the anomalies during the intense El Niño period 

2015-2016 are likely to be an artifact because of the lack of observational constraints. The interannual variability 

over tropical Atlantic, tropical Indian, south Indian is low. Though the IAV is low, we find a significant correlation 

for the tropical Atlantic for both predicted fluxes, in contrast to a negligible correlation between prior and ENSO. 510 

 

4.2 Mean seasonal cycle 

The net CO2 uptake in the moist/warm growing season is partially compensated by net CO2 release in the dry/cold 

non-growing season. However, the magnitude of seasonal compensations differed significantly between regions. 

The compensation drives the net regional strength of CO2 uptake. For example, the maximum uptake in the growing 515 

season is shown by Russia (~10 PgC yr-1) followed by Boreal North America (~5 PgC yr-1), and temperate North 

America (4 PgC yr-1) (Fig. 9). However, the strength of net sink is almost twice over Temperate North America (-

0.59±0.14 PgC yr-1) than in Russia and Boreal North America, because of the release of CO2 in the non-growing 

season over Russia and Boreal North America are greater than Temperate North America. Thus, the seasonal cycles 

in global and regional emissions are essential for understanding the drivers of CO2 changes in the atmosphere.  520 

 

Seasonal cycle amplitude for CASA prior flux for land total is 33.6 PgC yr-1, and VISIT is 23.8 PgC yr-1, and the 

peak of the growing season (when the net flux is most negative) occurred in July, that is one month after the VISIT 

(Fig. 9, top-left panel). The seasonal phase of “gc3t” inversion ensemble cases are in close agreement with the 

CASA prior, but inversions diverge for the net CO2 uptake and release in the growing and dormant seasons, 525 

respectively. Our inverse analysis indicates more considerable CO2 uptake (-26.2±2.1 PgC; June - July) and net 
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CO2 release (4.1±2.0 PgC; January to April) than CASA-based terrestrial land flux (Fig. 9a). Contrary to the CASA 

prior, inversions using VISIT prior increase the sinks to June-July compared to a priori. Inversion fluxes using 

CASA and VISIT show very high consistency for the total land CO2 flux seasonality. Overall, the averaged “gc3t” 

and “gvjf” show good agreement (r=0.98) after inversion as compared to prior (r= 0.8).  Inversions do not achieve 530 

similar consistency for the total global ocean fluxes for both TT09 and JMA a priori fluxes.  The correlations 

reduced from 0.95 to 0.58 after the inversion.  

 

Northern land drives the global land seasonality, with a close agreement regarding the magnitude and phasing of 

the growing season and dormant season fluxes. Seasonality for the tropical land (South Asia, Tropical America, 535 

Central Africa, Southeast Asia) is smaller than the northern land regions (Boreal North America, Temperate North 

America, Russia), with the inversion suggesting maximum uptake around June-July over northern land and July-

September over tropical land. The a priori and predicted fluxes are more consistent for the extratropical land regions 

than their tropical counterparts. This is because the temperate biosphere are better simulated by the ecosystem 

models, such as VISIT or CASA, by taking in to account the temperature and light effects, while the tropical 540 

ecosystems are more often limited by water availability or suffers from extreme heat, e.g., the monsoon driven 

South Asia (Patra et al., 2013).  

 

Over Tropical America, CASA shows maximum carbon uptake (flux=-2.0 PgC yr-1) in August and an extended-

release period in dormant season from January to April (flux=1.1 PgC yr-1), while VISIT shows a relatively small 545 

seasonal variation. However, the inversions derive a consistent seasonal phase and amplitude, although the region 

does not include any measurement site. Thus, the neighbourhoods’ observations are helping us to capture the signal 

from this region, which is probably enabled by a good transport simulation by MIROC4-ACTM. Similar improved 

consistency in predicted seasonal cycle phase and amplitude, relative to the a priori, are also obtained for many 

other regions (Fig. 9a,b,c,f,g,k,n). Nevertheless, the a priori models play significant roles in estimations of CO2 550 

flux seasonality for South Asia (peak uptake flux -0.43 PgC yr-1 in August-September for VISIT, and -1 PgC yr-1 

for CASA in October-November), East Asia (CASA peak uptake in August, VISIT peak uptake in April).  

 

 

The global ocean prior fluxes show the weak uptake of CO2 during July-September (average uptake flux of -555 

0.53±0.09 PgC yr–1 for TT09 and -1.12±0.14 PgC yr–1 for JMA). After September onwards, a sharp increase in 

uptake occurs, with a maximum uptake of 2.43 PgC yr-1 for TT09 and 2.91 PgC yr-1 for JMA fluxes in December 
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(Fig. 9, left-3rd row from bottom). Over the Northern Ocean, the "gvjf" inversion cases tend to show the large CO2 

release during May-October as the MDU increases. We believe the broader uptake seasons for Boreal North 

America, Europe, Russia, leading to stronger early summer land uptake in the case of VISIT a priori caused positive 560 

CO2 flux seasonality for the Northern Ocean. Even for the gc3t inversion case we find the peak in seasonal cycle 

in the summer season, when the oceanic biosphere activity is at its peak (Goto et al., 2017; Yasunaka et al., 2018). 

It is not easy for us to explain the mechanism for the Northern Ocean to be a weaker sink in summer than in winter. 

Further studies are needed to identify the role of ice-covered areas (close to zero CO2 flux) on the seasonal cycle. 

Note here that the oceanic basis functions in the polar ocean regions use a climatological sea-ice cover map, and 565 

fluxes are not revised over the sea-ice-covered areas. 

 

Overall all the land regions, except South Asia, Southeast Asia, Central Africa, and Oceania, show very good 

agreement between averaged “gc3t” and “gvjf” cases after inversion (r = 0.63 – 0.97), as compared to priors (r =  -

0.48 – 0.90). A good agreement over the Northern Ocean, West Pacific, and Tropical Atlantic Ocean seasonal cycle 570 

is observed after the inversion (Table S3). 

 

5. Regional fluxes and uncertainty estimate 

Different regions across the globe emit different amounts of CO2 from FFC emissions, which is one of the main 

discussion points in the emission reduction policymaking, say under the Kyoto Protocol (1997) and Paris 575 

Agreement (2015) for limiting global warming below a certain level. The recent IPCC AR6 of Working Group I 

suggested that the global total CO2 emissions from FFC have to be removed gradually on the net annual basis by 

2050 to sustainably limit global warming below 1.5oC (Canadell et al., 2021). Because the elimination of FFC 

usage is challenging to envisage in the coming three decades, pathways for reducing FFC emissions are being 

explored. Carbon capture and storage and other technological managements are considered alongside the nature-580 

based solutions. The land and ocean have been helping to remove more than 50% of the FFC emissions in the past 

decades.  The ongoing natural sinks of CO2 and their maintenance/enhancement constitute the major theme of the 

nature-based solutions. Thus, it is imperative to understand global/regional carbon fluxes for developing national 

and international policy to reduce net CO2 emissions.  

 585 

Figure 10 and Supplementary Figures S3 and S4 show regional CO2 fluxes and flux uncertainties from the 16-

member ensemble inversions for 15 land and 11 ocean regions and global land and ocean at 5-yr intervals for the 

past two decades. The global flux uncertainties are found smaller than the regional flux uncertainties because the 

https://doi.org/10.5194/acp-2021-1039
Preprint. Discussion started: 22 December 2021
c© Author(s) 2021. CC BY 4.0 License.



 

21 
 

21 

former is constrained strongly by the atmospheric CO2 growth rate for given FFC emissions. Flux estimates for all 

the land regions remain quite uncertain, as seen from the 75 percentile of the 16-inversion ensemble (error bars) at 590 

about 0.3 PgC yr-1 for the land regions and typically less than 0.2 PgC yr-1 for the ocean regions. The fluxes at 25 

percentile show slightly reduced uncertainties – a large reduction is not seen compared to the 75 percentiles fluxes 

because the two a priori models often formed two different sets of CO2 flux values (ref. Fig. 6 and 7). However, it 

has to be noted that each of the 15 land analysis regions containing at least three inversion regions will have more 

than 4 PgC yr-1 predicted flux uncertainty, as the reduction from prior flux uncertainties was meagre by inversion 595 

(Fig. 3). Thus, by employing the 16-inversion ensemble approach, we could obtain flux uncertainties that are an 

order of magnitude smaller and often less than the regional fluxes themselves. The mean/median fluxes are 

consistent for the ensemble inversions and represent the true state of CO2 flux estimation for the MIROC-ACTM 

and 50 sites used in the inversion.  

 600 

Global land sink increased by ~63% from 2001-2005 to 2016-2020 with an uncertainty range of ~6-12%. The 

highest increase (about 73 %) in the land sink is observed from 2001-2005 to 2011-2015, while a decrease (~11%) 

is observed from 2011-2015 to 2016-2020. The northern extratropical land accounted for ~80% of the global land 

sink, followed by tropics (~13%) and southern extratropic (~7%) (Fig. S3). The ocean carbon sink shows a gradual 

increase (by ~30%) from 2001-2005 to 2016-2020. The southern extratropic represents about 85% of global ocean 605 

sink for 2001-2020, followed by the northern extratropic (~60%). The tropical ocean regions act as a net source of 

carbon emissions, representing 45% of global ocean carbon sink (Fig. S4). One of the most intriguing features is 

that the 5-year mean fluxes for the ocean have increased gradually, as expected from the increase in pCO2 partial 

pressure difference due to increased loading of FFC emissions, but the land flux increases only during 2001-2005 

and 2006-2010. This step increase in flux can be related to the biased FFC emissions from China, affecting the 610 

natural/managed land flux estimation by inversion (Saeki and Patra, 2017).   

 

Amazonia in Brazil, host the Earth’s largest tropical forest, hence an important region of carbon sink. Our study 

shows a slight decrease in carbon sink over this region from 2011 to 2020. A recent study based on aircraft 

measurements (Gatti et al., 2021) also suggests a decline in carbon sink from 2010 to 2018 over Amazonia due to 615 

factors such as deforestation and climate change. A very high correlation is also seen for the interannual and decadal 

variations in CO2 fluxes (Fig. 6d, Fig. 10) and the Brazilian Amazon deforestation rate, which showed a strong and 

systematic decline from the period 2002-2004 to 2012-2014, and a steady increase afterward (Silva Junior et al., 

2021). 
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 620 

Our results show that Africa is a small sink of carbon on an annual scale, agreeing with the RECCAP -1 estimation 

for 2000-2009 (Table. 4). At the subregional level, northern Africa shows a small sink, while Central and Southern 

Africa show a minor source for the same period. Central Africa turned from a small source in 2000-2009 to sink in 

2010-2019, while the carbon flux behaviours remain the same for Northern Africa and Africa at a higher magnitude. 

Though Central Africa is the main carbon sink region over the African continent because of its evergreen tropical 625 

forest, prolonged dry season due to El Nino during 2001-2005 could turn it into a net source region for the 2000s. 

The average annual mean fluxes over East Asia for the 2000s are remarkably consistent with the RECCAP 

estimates, based on the average estimate from inventory, bottom-up, and inversion fluxes  (Piao et al., 2012). We 

have observed less sink for Russia than RECCAP best estimate ((Dolman et al., 2012). Other regional flux also 

agrees well with RECCAP estimates, although the period and regional boundaries of the RECCAP assessment do 630 

not match precisely (Table 4).  

 

Our analysis suggests that the most prominent land carbon sink in the Northern Hemisphere is unanimously located 

in temperate North America (-0.59±0.14 PgC yr-1), followed by East Asia (-0.49±0.09 PgC yr-1), boreal North 

America (-0.38±0.10 PgC yr-1), and Russia (-0.35±0.05 PgC yr-1) for 2001-2020, and they account for 70% of the 635 

total global CO2 uptake by land biosphere. Overall, our results suggest about 40% of temperate North America’s 

(1.49 PgC yr-1), 17-19% of East Asia’s (2.74 PgC yr-1), 200% of boreal North America’s (0.19 PgC yr-1), and 80% 

of Russia’s (0.44 PgC yr-1) CO2 emissions from FFC are offset by carbon accumulation in their terrestrial 

ecosystems for 2001-2020. Overall, no area shows net carbon source from the land biosphere for recent decades 

(2010-2019). Further, the inversion suggests the most substantial oceanic CO2 uptake in the north pacific with a 640 

mean flux of -0.55±0.05 PgC yr-1. However, the most considerable CO2 uptake rate is observed in the Southern 

Ocean region; the CO2 flux increased from -0.12±0.07 PgC yr-1 in 2001-2009 to -0.33±0.06 PgC yr-1 in 2010-2019. 

Southern Ocean CO2 flux for 2010-2019 agrees well with a recent assessment of –0.53 ± 0.23 PgC yr-1 (net uptake) 

in the region south of 45°S during 2009–2018 (Long et al., 2021).  

 645 

4. Validation of CO2 fluxes using aircraft data 

We evaluate the quality of inversion flux estimates by comparing CO2 simulations with independent observations 

(observations that are not used in the inversions due to lack of long measurement time series record). The CO2 

simulations are derived from three sets of prescribed fluxes: “gc3t”, “gvjf”, and “ensm”. The observations in the 

lower troposphere (from surface to ~2 km) are more sensitive to regional fluxes. Hence, we compare the simulated 650 
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CO2 with those measured by HIPPO and Atom airborne campaigns in the lower troposphere. Figure 11 shows 

comparisons over the transects from high northern (~80oN) to high southern latitudes (~70oS) at the location and 

time of HIPPO and Atom airborne campaigns, spanning all four seasons. HIPPO shows the lower CO2 over 30-

80oN than 0-30oN for May-July due to large uptake in high northern latitudes; however, the values are slightly 

higher than Southern Hemisphere (Fig. 11, Fig. S5). ATom shows a lower concentration over 30-80oN than the rest 655 

of latitudes during July-August (Fig. 11, Fig. S6). All the model cases capture the meridional gradient, slope, and 

other features well at RMSEs less than 1.5 ppm, mean bias in range -0.5 – (-0.3) ppm, and correlation greater than 

0.8.  

 

The “ensm” inversion shows the lowest mean bias and RMSE than the other two predicted simulations over most 660 

aircraft campaigns (Fig. 11, statistics on each panel). The comparison also indicates latitudinal and seasonal 

dependent accuracy in the predicted fluxes. The observations (ATom and HIPPO) show a high bias during boreal 

summer throughout the troposphere over the northern high latitude regions (>50oN), implying possible seasonally 

dependent errors in posterior fluxes over these latitude regions. Most of the aircraft data over these latitude bands 

are available over the continental regions, and this comparison suggests a higher sink than the estimated sink by 665 

inversion. Based on this comparison, the simulations from the ensemble mean of 16 inversion cases (“ensm”) is 

well-suited (mean bias is found to be minimum) for quantifying the global land and ocean carbon sink on the 

timescale of annual mean and its decadal trend. 

 

Further, all available aircraft profiles, measured on a campaign basis or regular intervals, are also used to evaluate 670 

the predicted fluxes (Table S4). Compared to NOAA vertical profiles of CO2, model simulations agree well in the 

free troposphere (defined here between 2 and 8 km), with an average bias (averaged over 2000–2020) close to zero 

(Figure S7, top panel: bias as a function of altitude, averaged over all sites). Inversion underestimates (~1 ppm; 

Figure S7, top panel) the observations within the boundary layer (between the surface and 2 km); however, the 

RMSE is higher (~1 ppm) compared to that of the free troposphere.  It could be because many of the NOAA aircraft 675 

profiles are over the U.S. (see the map inset in the middle row, left panel of Fig. S7), close to regional CO2 sources.  

 

Following the GCP budget evaluation method (Friedlingstein et al., 2020), Figure 12 shows the mean bias over 

four latitudinal bands for three periods. The mean bias is calculated separately from all available aircraft data in 

obspack_co2_1_GLOBALVIEWplus_v6.1 (Fig 12a-c) and 50 observation sites (Fig. 12d-f) used in the inversion 680 

(shown in Fig. 1). The biases show the dependency on latitude and are different for each inverse model case and 
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provide information on biases in the surface fluxes (Gaubert et al., 2019; Houweling et al., 2015). All the three 

predicted CO2 concentrations show the smallest bias (less than 0.1 ppmv) over the high southern latitudinal band 

for 2001-2010. However, for 2011-2020, predicted CO2 concentrations show large positive (0.47	 ± 0.47	𝑝𝑝𝑚) 

and negative (−0.23	 ± 0.47	𝑝𝑝𝑚	) bias for gc3t and gvjf predicted fluxes. The positive and negative biases for 685 

gc3t and gvjf inversions, respectively, are also consistent with the surface sites, which are arising due to the biases 

in simulated CO2 growth rates (an overestimated growth rate for gc3t for the +ve budget imbalance, Fig. 5; opposite 

being the case for gvjf inversion). The mean biases turned from negative to large positive by moving from 0-45oN 

averages to 45-90oN averages. In contrast to aircraft observations, the surface sites show a large negative bias over 

45-90oN.  690 

 

The large model-observation bias for the simulations of predicted fluxes, compared to the predicted data (Fig. 

12d,e, f; solid and broken lines, respectively; using the 50 sites used in inversion),  are likely to be caused by the 

propagation of biases in regional fluxes due to the sparse observational coverage in the tropical region. In the case 

of predicted data, the inversion fits the observation well due to minimisation of prior model-observation differences, 695 

but when the simulations are run using predicted fluxes, the (small) systematic biases produce a (large) cumulative 

effect over the model integration period. It is also interesting to note that the meridional gradients in biases for 

independent aircraft observations (Fig. 12a,b,c) and sites used in inversion (Fig. 12d,e,f) show opposite phases, i.e., 

most negative and most positive at 25oN, respectively. We speculate that MIROC4-ACTM produces stronger sinks 

in the high northern latitudes (negative model-observation bias at surface sites over 75oN or HIPPO/ATOM 700 

latitude-altitude plots in Fig. S5, S6), which can arise from the model's inability to simulate the sites over the land 

because of the coarse horizontal resolution. Thus, resulting in a weaker sink or a stronger source in the northern 

tropics and subtropical (25oN) regions, respectively. The tropical source is then transported to the mid-high 

latitudes, which is captured by the aircraft observations, as a positively biased concentration. This experience 

suggests a need for new forward model simulations using inversion fluxes, not the optimised atmospheric CO2 705 

fields during data assimilation, should be used for evaluating inversion fluxes with the help of independent 

observations.      

 

Further, the fluxes should be evaluated by independent metric, i.e., not by using the assimilated CO2 field for the 

independent CO2 measurement, which is a “perfect” transport model condition (ref. schematic diagram Fig. S10).  710 

This has been dealt with in great detail in the TransCom-CH4 experiment. For example, when a model produced a 

stronger northern-to-southern hemisphere (NH-SH) gradient for a tracer of inter-hemispheric (IH) transport, 
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sulphur hexafluoride (SF6), the model also produced a stronger NH-SH gradient for methane (CH4). This implied 

that models with a stronger NH-SH SF6 gradient would require a smaller source of CH4 in the NH compared to the 

model producing a weaker NH-SH SF6 gradient. For CO2 inversions, however, the effect of NH-SH transport bias 715 

may not produce systematic flux biases because CO2 sources and sinks are much greater compared to the net fluxes 

at any given time intervals. Complex interactions between vertical and horizontal transport may have mixed impact 

on flux inversions (Denning et al., 1996; Krol et al., 2019). An objective analysis of inverted CO2 flux requires to 

be independent from the transport model, and that can only be developed in a multi-model experimental framework, 

e.g., TransCom.   720 

 

5. Conclusions 

The terrestrial biosphere and ocean absorb about 53% of the total anthropogenic carbon fluxes every year. The 

variability in these fluxes significantly affects the year-to-year variability of the carbon dioxide (CO2) accumulation 

rate in the atmosphere. We estimated global and regional sources and sinks of carbon across the earth’s surface, 725 

using observations and simulations of atmospheric CO2. We tested the relative role of prior flux uncertainty (PFU) 

and measurement data uncertainty (MDU) on the land and ocean's global/regional carbon flux estimates. For this, 

we use a single transport model (JAMSTEC’s MIROC4-ACTM) to estimate the global/regional carbon flux and 

associated uncertainty based on different prior fluxes (two land biosphere fluxes (CASA and VISIT+Fire) at 3-

hourly intervals with distinct global total CO2 sink strengths and two sea-air exchange fluxes (Takahashi and 730 

JMA)), choices of prior flux uncertainties (PFU: four cases) and representation of measurement data uncertainties 

(MDU: two cases). Based on different combinations of priors, PFU, MDU, we run 16 ensembles of inversion cases 

using CO2 measurements from a set of 50 sites spreading over the globe, and inversion results are analysed for 

2001-2020. The 16 ensemble members are averaged, and the resultant (“ensm”) is treated as the best estimate (i.e., 

a measure of central tendency) flux. The spread between the ensemble members provides us a reasonable measure 735 

of the inversion estimated flux uncertainty but lacks the quantification of transport model uncertainty. 

 

Although each inversion used common observation sites, there is still considerable uncertainty in the estimated 

fluxes due to the prior fluxes and uncertainties (PFU and MDU). At a global scale, the uncertainty in the predicted 

fluxes due to prior flux is relatively larger than that of PFU and MDU. However, at a regional scale, uncertainties 740 

due to priors and PFU & MDU are primarily comparable and drove inter-inversion disparity. Lack of constraints 

makes the tropical (Tropical America, South Asia, and Southeast Asia) and extratropical (Southern Africa, 

Oceania) land regions highly uncertain. The ensemble of inversions splits into a “near-neutral” group and a “strong-
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source” group based on the priors. Overall, the prior uncertainties have a negligible effect on the global mean land 

and ocean sink but are significant at the regional scale.  745 

 

The interannual variability in the land fluxes (driven mainly by ENSO) is much more considerable than the ocean 

and tends to show greater consistency across the 16 inversion cases. The land flux seasonality is prominent in the 

Northern Hemisphere, with good agreement across the inversion ensemble cases. The ocean seasonality is slight 

and, in less agreement, relative to the magnitude of the seasonality of land fluxes. We comprehensively evaluated 750 

predicted fluxes by extensively comparing the simulated posterior CO2 to independent CO2 observations from 

several aircraft measurements by NOAA, CONTRAIL, HIPPO, ATOM, and the NOAA MBL reference sites. The 

evaluation suggests that the ensemble mean of 16 inversion cases (“ensm”) is well-suited (mean bias is found 

minimum) for quantifying the global land and ocean carbon sink. Thus, we used the “ensm” case (best estimate) 

for estimating the carbon fluxes, and associated uncertainties. 755 

 

In summary, our best estimate suggests that 22-33% (16-18%) of global CO2 emissions from FFC have been offset 

by global land (ocean) carbon flux over the period from 2001-2020. The land and ocean sink partitioning are 

estimated to be -2.27±0.2 (±1σ uncertainty on mean) and -1.46±0.09 PgC yr-1, respectively, for the period 2001-

2009, and -2.85±0.25 and -1.63±0.17 PgC yr-1, respectively, for the period 2010-2019 (without riverine export 760 

correction), which are in excellent agreement with the IPCC AR6 values (Table 3).  The decadal mean values for 

the RECCAP are also in good agreement for North America, South America, East Asia, South Asia, Oceania (Table 

4). Please note that the region boundaries and period of evaluations do not match perfectly between RECCAP-1 

and our inversion for most regions. 

 765 

Our analysis suggests that the most prominent land carbon sink in the Northern Hemisphere is unanimously located 

in temperate North America (-0.59±0.14 PgC yr-1), followed by East Asia (0.49±0.09 PgC yr-1), boreal North 

America (-0.38±0.10 PgC yr-1), and Russia (-0.35±0.05 PgC yr-1) for 2001-2020. Overall, our results suggest about 

40% of temperate North America’s (1.49 PgC yr-1), 17-19% of East Asia’s (2.74 PgC yr-1), 200% of boreal North 

America’s (0.19 PgC yr-1), and 80% of Russia’s (0.44 PgC yr-1) CO2 emissions from FFC are offset by carbon 770 

accumulation in their terrestrial ecosystems for 2001-2020. Further, the inversion suggests the most substantial 

oceanic CO2 uptake in the north pacific with a mean flux of -0.55±0.05 PgC yr-1. However, the most considerable 

CO2 uptake rate is observed in the Southern Ocean region; the CO2 uptake increased from -0.12±0.07 PgC yr-1 in 

2001-2009 to -0.33±0.06 PgC yr-1 in 2010-2019. Overall, no area shows net carbon source from the land biosphere 
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for recent decades (2010-2019). The detailed study of underlying mechanisms of carbon sink over the studied 775 

regions gives scope for future work in continuing this study. 

 

There is no doubt that this set of results is unique because they close the year-to-year budget of decadal CO2 changes 

in the atmosphere. The bottom-up inventory or other modelling system still has limitations in closing year-to-year 

budgets. Thus, our tools are robust enough to test our current knowledge of exchange between all carbon pools due 780 

to combined processes. This dataset can be used to evaluate biogeochemical models and support the monitoring of 

regional contributions to changes in atmospheric CO2. 
 

 

Code availability: The CO2 inversion code is based on that was provided by TransCom (Last access: 01/2001), and the revised 785 

inversion code is available from https://github.com/prabirp/co2l2r84.    
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 1080 

Tables and Figures 

 
Table 1: Transport model set up and a priori CO2 emissions used for simulating the atmospheric CO2 concentrations. The 

range in prior fluxes (2001 – 2020) are also given in PgC yr-1 for the study period.  

Model properties 

Transport model MIROC4-ACTM  

Resolutions 2.8 x 2.8o lat-lon grid, 67 vertical layers (surface – 0.0128 hPa)  

Meteorology Nudged with JRA-55  

Prior Emissions/sinks (2001-2020) 

Source/sinks types Abbreviated name Global total: (PgC yr-1) 

Fossil Fuel and cement production GridFED  7.10 – 9.54 

Terrestrial biosphere 

 (off-line diurnal cycle by Y. Niwa, 

using JRA-55 meteorology) 

CASA-3hr 0 (Net annual flux) 

VISIT-3hr  -5.9 – (-6.2) 

Fires GFEDv4s  1.7 – 2.2 

Ocean exchange TT09 -1.41 (Cyclostationary) 

JMA -1.55 – (-2.78) 
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Table 2. List of 16 inversions based on the combinations of four different prior flux uncertainty (PFU) and measurement data 

uncertainty (MDU) cases. Every PFU and MDU cases are run for the two prior flux distributions, 1) gc3t (GridFED + CASA-

3hr + TT09) and 2) gvjf (GridFED + VISIT-3hr + JMA ocean + Fires - GFED). The abbreviation of inversion cases is arranged 1095 

as PFU_MDU_Prior Flux. 

 

PFU 

(PgC/yr) 

MDU 

(ppm) 

Inversion cases 

gc3t gvjf 

ctl 

land = 2 ; ocean = 1 

ux2 = 

0.1 + 2 × √RSD 

or  

ux4 =  

0.1 + 4 × √RSD 

 

 

RSD: Residual 

standard deviation 

ctl_ux2_gc3t 

ctl_ux4_gc3t 

ctl_ux2_gvjf 

ctl_ux4_gvjf 

gpp_v2 

land=0.2-2.0 ; ocean=0.50 

gpp_v2_ux2_gc3t 

gpp_v2_ux4_gc3t 

gpp_v2_ux2_gvjf 

gpp_v2_ux4_gvjf 

gpp_v3 

land=0.4-3.0 ; ocean=0.75 

gpp_v3_ux2_gc3t 

gpp_v3_ux4_gc3t 

gpp_v3_ux2_gvjf 

gpp_v3_ux4_gvjf 

gpp_v4 

land=0.6-4.0 ; ocean=1.0 

gpp_v4_ux2_gc3t 

gpp_v4_ux4_gc3t 

gpp_v4_ux2_gvjf 

gpp_v4_ux4_gvjf 

 

 

Table 3: Comparison of global total land and ocean CO2 exchanges estimated by inversion model with those from the IPCC 1100 

2021 (Table 5.1; (Canadell et al., 2021). The inversion uncertainties due to PFU and MDU for each inversion family based on 

priors represent ±1σ decadal estimates from the individual inversions. The inversion means and 1-sigma standard deviations 

are shown for two prior flux cases (8 each for gc3t and gvjf) and all 16 ensemble members (ensm). The IPCC global land and 

ocean CO2 uptakes are corrected for the river export fluxes. This correction to the net ocean and land uptakes is required 

because the inverse model estimates fluxes across the land/ocean-atmosphere interface, while the part of the land carbon 1105 

exchange is exported to the ocean via the rivers and streams.   

 CO2 budget 2000–2009 (PgC yr–1) 2010–2019 (PgC yr–1) 
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IPCC (2021) MIROC4-ACTM IPCC (2021) MIROC4-ACTM 

FFC Emissions 7.7 ± 0.4 7.99 9.4 ± 0.5 9.67 

Atmospheric 

increase 

4.1 ± 0.02 4.33 ± 0.08 (gc3t) 

4.10 ± 0.06 (gvjf) 

4.22 ± 0.14 (ensm) 

5.1 ± 0.02 5.28 ± 0.08 (gc3t) 

5.02 ± 0.07 (gvjf) 

5.15 ± 0.15 (ensm) 

Ocean uptake 

River export 

Ocean exchange  

-2.1 ± 0.5 

+ 0.8 

= -1.3 ± 0.5 

-1.52 ± 0.03 (gc3t) 

-1.40 ± 0.11 (gvjf) 

-1.46 ± 0.10 (ensm) 

-2.5 ± 0.6 

+ 0.8 

= -1.7 ± 0.6 

-1.66 ± 0.05 (gc3t) 

-1.58 ± 0.23 (gvjf) 

-1.62 ± 0.17 (ensm) 

Land uptake + 

Land-use change 

(= net flux)  

River export 

Land exchange 

-2.9 ± 0.8 + 

 1.4 ± 0.7  

(= -1.5 ± 1.06) 

- 0.8 

 -2.3 ± 1.06 

-2.14 ± 0.1 (gc3t) 

-2.49 ± 0.14 (gvjf) 

 -2.31 ± 0.21 (ensm) 

-3.4 ± 0.9 + 

 1.6 ± 0.7 

(= -1.8 ± 1.14) 

- 0.8 

-2.6 ± 1.14 

-2.73 ± 0.11 (gc3t) 

-3.07 ± 0.26 (gvjf) 

-2.90 ± 0.26 (ensm) 

 

 

Table 4.  Mean ± 1-s standard deviation of annual net land-atmospheric exchange of CO2 (in PgC yr-1) from predicted fluxes 

for 15 land regions by decade. The predicted fluxes are shown for the best estimates, obtained from the ensemble mean of all 1110 

16 inversion cases based on different priors (gc3t and gvjf) and uncertainties (MDU and PFU). The ±1-sigma in the decadal 

mean fluxes denotes the range of uncertainty. The estimations for 2000s are compared with the REgional Carbon Cycle 

Assessment and Processes phase 1 (RECCAP-1). 

Regions 2000s (2000-2009) Fluxes from RECCAP 
(2000-2009)  

2010s (2010-2019) 

Boreal N. America -0.36 ± 0.09  
 

-0.47 ± 0.28 
(King et al., 2015) 

-0.39± 0.11  

Temp. N. America -0.61 ± 0.13 -0.58 ± 0.14 

Tropical America -0.11 ± 0.11 -0.16 ± 0.11 

Brazil 0.04 ± 0.10 0.13 ± 0.29  -0.01 ± 0.07 
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Temp. S. America -0.07 ± 0.13  
(Gloor et al., 2012) 

-0.12 ± 0.16 

Europe -0.08 ± 0.11 -0.20 ± 0.07  
(Luyssaert et al., 2012) 

0.07 ± 0.12 

Northern Africa -0.03 ± 0.08   

-0.61 ± 0.58  

(Valentini et al., 2014) 

-0.08± 0.06 

Central Africa 0.03 ± 0.18 -0.10 ± 0.13 

Southern Africa 0.02 ± 0.13 0.07 ± 0.12 

Russia -0.31 ± 0.04 -0.55 – -0.66 
(Dolman et al., 2012) 

-0.39 ± 0.06 

West Asia -0.04 ± 0.04  -0.08 ± 0.06 

South Asia -0.15 ± 0.09  -0.15 ± 0.23  
(Patra et al., 2013) 

-0.2 ± 0.12 

East Asia -0.40 ± 0.07 -0.41± 0.14  
(Piao et al., 2012) 

-0.58 ± 0.11 

Southeast Asia -0.10 ± 0.11 N. A. -0.15 ± 0.18 

Oceania -0.08 ± 0.06 0.04 ± 0.03  
(Haverd et al., 2013) 

-0.15 ± 0.09 
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Figure 1.  Divisions of 54 land and 30 ocean regions for inverse modelling and 50 observation sites (a), the lower panel (b) 1120 

shows the analysis regions adapted in this study (15 land and 11 ocean), which are consistent with the boundaries of the 

RECCAP, phase 2 (RECCAP2) land regions (Ciais et al., 2020) and TransCom ocean regions (Gurney et al., 2002).  

 

 
Figure 2. Time series of observed and model CO2 time series for two a priori simulation cases (gc3t and gvjf), and inversions 1125 

using control MDU and PFU case ux4 (top row). Results for the mean of two a priori flux cases and ensemble mean inversion 

case are also shown. The model-observation differences are shown in the bottom row. Results are shown for two sites, Alert 
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(82oN, 63oW; measurements by Environment Canada), and Syowa (69oS, 40oE; measurements by Tohoku University/National 

Institute of Polar Research).  

 1130 

 
Figure 3: Prior and predicted flux uncertainties for four different PFU (4 rows: ‘ctl’, ‘gpp_v2’, ‘gpp_v3’, ‘gpp_v4’) cases are 

shown in the left and middle column, respectively, and the flux uncertainty reduction (FUR) in the right column. The FUR is 

an indicator of constraint provided by atmospheric observations. High values (towards 100) in uncertainty reduction indicate 

strong data constraints, while low values (close to 0) indicate that the data are not able to move the estimates away from the 1135 

prior. All cases are corresponding to the MDU case ux4 and “gc3t” inversion case. The circles show the 50 observation sites 

used for inverse analysis. 
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Figure 4. Spatial distributions of CO2 prior flux for two different sets of land and ocean flux combinations (a, d). The middle 1140 

(b, e) and bottom (c, f) panels show predicted CO2 fluxes by using two different prior flux uncertainty patterns (ctl, gpp_v2).   
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Figure 5. Global annual CO2 emissions from fossil-fuel (a) and estimated land (b) and ocean (c) carbon sink from two sets of 

prior and 16 sets of predicted fluxes based on different combinations of priors (gc3t and gvjf), prior flux uncertainties (PFU: 1145 

ctl, gpp_v2, gpp_v3, gpp_v4) and measurement data uncertainties (MDU: ux2, ux4). Negative values are uptake by land/ocean, 

and positive values are sources to the atmosphere. The net flux is calculated by subtracting the total sink (land + ocean) from 

the fossil fuel and compared with the observed global growth rate of atmospheric CO2 concentration from the NOAA/ESRL 

(magenta line in panel “d”: Dlugokencky and Tans, 2020). The atmospheric CO2 growth rate is converted using a factor 2.13 
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PgC ppm-1. Numbers in the bracket in the legend are budget imbalance between inversions and observed CO2 growth rate. The 1150 

background shading shows Multivariate El Niño Southern Oscillation (ENSO) Index (Wolter and Timlin, 2011).  
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Figure 6. Interannual variation of terrestrial land CO2 fluxes derived from 16 sets of inversion. The variations are shown for 

15 aggregated regions shown in the map. The negative values are counted as CO₂ removals from the atmosphere, while CO₂ 1155 

emissions are counted positively.   

 

 
Figure 7. Interannual variation of sea-air CO2 fluxes derived from 16 sets of inversion. The variations are shown for 11 

aggregated regions shown in the map. The negative values are counted as CO₂ removals from the atmosphere, while CO₂ 1160 

emissions are counted positively.   
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Figure 8. Three-monthly running averages of CO2 flux anomalies as estimated by TDI calculation for land and ocean regions 

from atmospheric CO2 data, with varying prior flux uncertainty and different a priori emissions. Flux anomaly is calculated by 1165 

subtracting an average seasonal cycle from 1999 to 2020 from the monthly-mean CO2 fluxes. The cases shown in the Figures 

are obtained by ‘gvjf’ prior (thick grey line), an average of all ‘gc3t’ inversion cases, and ‘gvjf’ inversion cases. The 
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±1σ	around the mean of both inversion cases are shown as shading. The ENSO index is plotted in the background for the 

corresponding period. The correlations between fluxes (predicted and prior) and ENSO index are shown in Table S3. 

 1170 
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 Figure 9. Seasonal variations in monthly-mean CO2 fluxes at regional scales over 15 lands (upper 4 rows) and 11 oceans 

(lower 3 rows) regions, along with global land and ocean totals. We prepare the average (2001 - 2020) separately for inversion 

ensemble cases based on “gc3t” (broken line) and “gvjf” (solid line) prior. The shade around means shows ±1σ STDEVs for 

the respective inversion cases. The individual inversion cases are plotted in supplementary (Fig. S2). Note that all panels use 1175 

different y-scale.  

 

 
Figure 10. CO2 fluxes for land and ocean sink using 16 set of inversion cases. Box plots represent inversions for different time 

periods. Each inversion cases, based on different prior, PFU, and MDU, are first averaged for selected time period. The box 1180 

shows 25 and 75 percentiles spread, and the vertical line shows 5 and 95 percentiles from the mean CO2 flux of 16 ensemble 

inversion cases. Horizontal lines inside box plots denote the median CO2 flux of 16 inversion ensembles. Mean and spread for 

the whole study period (2001-2020) are given in Table S2. 
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 1185 
Figure 11.  Observed and modelled meriodnal CO2 distribution during HIPPO and ATom campaigns.  We aggregate the 

observed and simulated mole fractions for the lower troposphere (between 0.5 and 2.0 Km) at 2.5-degree latitudinal bins. The 

correlation coefficient, mean bias, and root-mean-square error (RMSE) are also shown in each plot.  
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 1190 
Figure 12.  Evaluation of the atmospheric inversion products. The mean of the model minus observations is shown for four 

latitude bands in three periods: (a,d) 2001–2010, (b,e) 2011–2020, (c,f) 2001–2020. The simulations from three inversion 

cases are compared to independent CO2 measurements made onboard aircraft (a-c) over various parts of the world between 2 

and 8 km above sea level and 50 surface sites (b-e). Aircraft measurements archived in the Cooperative Global Atmospheric 

Data Integration Project (CGADIP, 2020) from sites, campaigns, or programs covering at least nine months between 2001 and 1195 

2020, have been used to compute the biases of the differences in four 45∘ latitude bins. Land and ocean data are used without 

distinction. The number in each panel shows the total number of data points used for computing bias for each latitude bin. 
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