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Abstract. Global and regional sources and sinks of carbon across the earth’s surface have been studied extensively using
atmospheric carbon dioxide (COz) observations and atmospheric chemistry-transport model (ACTM) simulations (top-
down/inversion method). However, the uncertainties in the regional flux distributions remain unconstrained due to the lack of
high-quality measurements, uncertainties in model simulations, and representation of data and flux errors in the inversion
systems. Here, we assess the representation of data and flux errors by using a suite of 16 inversion cases derived from a single
transport model (MIROC4-ACTM) but different sets of a priori (bottom-up) terrestrial biosphere and oceanic fluxes, as well
as prior flux and observational data uncertainties (50 sites) to estimate CO: fluxes for 84 regions over the period 2000-2020.
The inversion ensembles provide a mean flux field that is consistent with the global CO2 growth rate, land and ocean sink
partitioning of -2.9£0.3 (+1c uncertainty on the ensemble mean) and -1.6+0.2 PgC yr'!, respectively, for the period 2011-2020
(without riverine export correction), offsetting about 22-33% and 16-18% of global fossil-fuel CO2 emissions. The rivers carry
about 0.6 PgC yr! of land sink into the deep ocean, and thus the effective land and ocean partitioning is -2.3+0.3 and -2.2+0.3,
respectively. Aggregated fluxes for 15 land regions compare reasonably well with the best estimations for the 2000s (~2000-
2009), given by the REgional Carbon Cycle Assessment and Processes (RECCAP), and all regions appeared as a carbon sink
over 2011-2020. Interannual variability and seasonal cycle in COz fluxes are more consistently derived for two distinct prior
fluxes when a greater degree of freedom (increased prior flux uncertainty) is given to the inversion system. We have further

evaluated the inversion fluxes using meridional COz distributions from independent (not used in the inversions) aircraft and
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surface measurements, suggesting that the ensemble mean flux (model-observation mean+1c standard deviation = -0.3+3 ppm)
is best suited for global and regional CO: flux budgets than an individual inversion (model-observation 1o standard deviation
= -0.35+3.3 ppm). Using the ensemble mean fluxes and uncertainties for 15 land and 11 ocean regions at 5-year intervals, we

show promises and capability to track flux changes toward supporting the ongoing and future CO2 emission mitigation policies.

1. Introduction

Carbon dioxide is the most important anthropogenic greenhouse gas in the Earth’s atmosphere. Due to human
influences, e.g., fossil fuels consumption and cement production (FFC), the concentration of atmospheric CO> has
increased (by 38%) from 289.943.3 ppm in 1850-1900 to 398.84+7.3 ppm in 2010-2019, with the fastest growth in
past five decades (Canadell et al., 2021). To limit global warming below 1.5°C by 2100, as per the Paris Agreement,
a drastic and sustained reduction in CO, emissions from anthropogenic activities is recommended in the IPCC’s 6™
assessment report (AR6). The IPCC AR6 Working Group 1 estimated remaining carbon budgets (starting from 1
January 2020) for limiting global warming to 1.5°C, 1.7°C, and 2.0°C as 140 PgC, 230 PgC, and 370 PgC,
respectively, based on the 50" percentile of the transient climate response to cumulative carbon emissions (TCRE)
(Canadell et al., 2021). With the present FFC emissions of about 10 PgC yr' (Jones et al., 2021), the remaining

carbon budget will be consumed within decades.

The sinks on the land and ocean constitute a major component of nature-based solutions to mitigate the rise in CO»
concentration, as discussed in the IPCC AR6 (Canadell et al., 2021). During 2010-2019, the CO» emissions from
human activities (average rate = 10.9+0.9 PgC yr™') were distributed between three Earth system components: 46%
accumulated in the atmosphere (5.1£0.02 PgC yr'), 23% was taken up by the ocean (2.5+0.6 PgC yr™'), and 31%
was stored by vegetation in terrestrial ecosystems (3.4£0.9 PgC yr') (Table 5.1 in Canadell et al., 2021). Large
uncertainties persist for the total global land and ocean sink partitioning in the [PCC assessment, up to about 25%
of the global total land and ocean sinks. The uncertainty in land and ocean sink partitioning of about 1 PgC yr in
the IPCC ARG is based on the Global Carbon Project (GCP)’s annual carbon budget (Friedlingstein et al., 2020).
One of the impediments to making policy for CO, emission reduction is poor knowledge of the regional sources
and sinks of carbon in Earth’s disturbed and undisturbed ecosystems on land and in the ocean (Kondo et al., 2020).
To estimate regional CO, sources and sinks, the country scale socio-economic statistics, field studies and remote
sensing of the earth’s environment are most commonly used (bottom-up or inventory estimation), which often

suffers from reliable data or regular data updates (Ito, 2019; Jones et al., 2021). In the other method (top-down
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estimations), observations and model simulations of atmospheric concentrations are used to estimate CO; sources

and sinks in the terrestrial biosphere and the oceans (Peylin et al., 2013).

Top-down inverse models estimate residual natural or non-FFC CO, fluxes from land and ocean regions because
inversion calculations do not explicitly optimise the FFC emissions, i.e., the FFC emissions are not revised, but the
a priori land and ocean sinks are revised. When different sources of FFC emissions are used in inversions, post-
inversion corrections are applied for comparison between inversions (Peylin et al., 2013; Thompson et al., 2016).
More recently, the inverse model inter-comparison experiments use prescribed FFC emissions, e.g., the global
carbon project (Friedlingstein et al., 2020) or the OCO-2 flux intercomparison (Crowell et al., 2019,) to avoid the
post-inversion correction. However, the impacts of biases in FFC emissions on inversion estimated CO> fluxes
remained relatively unexplored (Saeki and Patra, 2017). The FFC emission biases affect the region of FFC emission
and the regions linked closely by atmospheric transport. This is because 1) the prior flux uncertainties set for each
of the inversion regions may not be sufficient to allow fully compensatory correction by inversion, 2) the model
transport biases could move FFC emission signals slowly or quickly from the source region, and 3) emission signal
goes undetected within the region when there are not enough measurement sites in the source region of biased FFC.
Most FFC emission inventories are based on the data available from the International Energy Agency (IEA) and
British Petroleum and mainly differ in spatial distribution within a given country (Crippa et al., 2020; Jones et al.,

2021; Oda et al., 2018).

The GCP annual updates of inversions provide a metric for evaluating inversions using independent measurements,
mainly from the aircraft campaigns (e.g., Friedlingstein et al., 2020). Evaluation of predicted fluxes from model-
data differences may not be straightforward due to the underlying assumptions of a flux inversion system, e.g., for
flux correlation lengths or the radius of influence for the measurements, observational data uncertainty, prior flux
uncertainty (Baker et al., 2010; Chevallier et al., 2007; van der Laan-Luijkx et al., 2017; Miyazaki et al., 2011;
Niwa et al., 2017; Rodenbeck et al., 2003), while the data assimilation system will fit the model concentrations to
the observed values. For example, a model-observation difference within =1 ppm and/or vertical concentration
gradient simulation within 1-c standard deviation of the observed gradient resulted in more than 1 PgC yr flux
differences between models at regional or sub-hemispheric scales (Gaubert et al., 2019; Stephens et al., 2007,
Thompson et al., 2016). Another way of improving our knowledge about uncertainties in regional flux estimations

is to employ multiple types of datasets from both bottom-up and top-down modelling systems (Ciais et al., 2021;
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Kondo et al., 2020), which we have adapted here for checking the regional inversion fluxes, in addition to the GCP

like evaluation using independent aircraft data.

The uncertainties in the regional fluxes mainly arise from prior flux distribution and seasonality, selection of
observational network and data uncertainty, transport model resolution leading to site-representation error, and
uncertainties arising from parameterisation of transport processes (Basu et al., 2018; Patra et al., 2005a; Philip et
al.,2019; Qu et al., 2021; Wang et al., 2018). The uncertainties associated with the subcontinental scale CO, fluxes
are often much greater than the interannual and interdecadal flux changes in non-FFC sectors, which allows us a
better assessment of the changes in regional CO» fluxes compared to knowledge gained in regional flux magnitudes
(Baker et al., 2006; Gurney et al., 2008; Patra et al., 2005b, 2005a; Peylin et al., 2013; Rayner et al., 2008a;
Rodenbeck et al., 2003). Typically, a multi-model assessment of flux estimation uncertainties is performed by
collecting inversions from different transport models, e.g., in TransCom (Baker et al., 2006; Gurney et al., 2008;
Peylin et al., 2013), for inversions using GOSAT measurements (Houweling et al., 2015) or for inversions using
OCO-2 (Crowell et al., 2019; Peiro et al., 2022). Such intercomparisons used single inversions from different
modelling groups and provided the range in total CO» flux uncertainty due to the choices of prior fluxes distribution,

prior flux uncertainty, observational data uncertainty, and the model transport uncertainties.

Here we show an ensemble-based inversion approach based on different choices of prior flux uncertainties and
representation of measurement data uncertainties, using a single chemistry-transport model (JAMSTEC’s
MIROC4-ACTM). The details of the MIROC4-ACTM, observed and model data processing, inversion setup are
given in Section 2, followed by the Results and Discussion in Section 3. The fluxes and uncertainties are presented
at regional and global scales, along with their validation using inversion-independent observations. Although the
inversions are performed for the period 1998-2020, results are discussed mainly for the two most recent decades
(2001-2010 and 2011-2020), with the only exception of comparing land-ocean flux partitioning with the IPCC

ARG6. Conclusions are given in section 4.

2. Materials and method
2.1. JAMSTEC’s MIROC version 4 Atmospheric Chemistry-Transport Model (MIROC4-ACTM)

The Model for Interdisciplinary Research on Climate, version 4 (MIROC4; Watanabe et al., 2008) atmospheric
general circulation model (AGCM)-based chemistry transport model (referred to as MIROC4-ACTM; Patra et al.,
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2018) is used for the forward simulations of CO,. The MIROC earth system model is developed at JAMSTEC in
collaboration with the University of Tokyo and the National Institute of Environmental Studies (NIES) (Kawamiya
et al., 2020). Simulations of long-lived gases (CO», CH4, N>O, SFs) in the atmosphere are performed at a horizontal
resolution of T42 spectral truncations (~2.8° X2.8° latitude-longitude grid) with 67 vertical hybrid-pressure layers
between the Earth’s surface and 0.0128 hPa (~80 km) (Bisht et al., 2021; Chandra et al., 2021; Patra et al., 2017,
2018). The simulated horizontal winds (U, V) and temperature (T) are nudged with the Japan Meteorological
Agency Reanalysis data product (JRA-55; Kobayashi et al., 2015) at the altitude range of ~980-0.018 hPa for better
representation of the atmospheric transport at synoptic and seasonal timescales. An accurate representation of
transport is essential for performing inverse model calculation by minimising biases in horizontal and vertical
gradients in the simulated tracer fields. We tested the large-scale interhemispheric transport and Brewer-Dobson
circulation in the MIROC4-ACTM using the SFs simulations in the troposphere and the CO»-derived age of air in
the troposphere and stratosphere (Bisht et al., 2021; Patra et al., 2018). A close match between observed and
modelled SF¢ and photochemically inert CO; vertical gradient in the troposphere and lower stratosphere manifests
the accurate transport in the MIROC4-ACTM. Reasonably good model transport in MIROC4-ACTM enables us
to use any mismatch between observation and simulations to estimate the land and oceanic fluxes using the inverse

modelling technique (details in Section 2.4).

2.2 A priori CO; simulations
We simulated CO; tracers corresponding to the FFC (CO,"), 1and biosphere fluxes (CO,™), fire emissions (CO7"),

ocn

and ocean exchanges (CO»”") from different sets of prior (bottom-up) emissions (Table 1). CO,’is simulated using
the gridded fossil fuel emission dataset (GridFED; Jones et al., 2021). CO," tracers are simulated using two sets
of terrestrial biosphere fluxes from the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model
(Randerson et al., 1997), and Vegetation Integrative Simulator for Trace Gases (VISIT) (Ito, 2019). The CASA
fluxes are annually balanced, seasonally varying flux due to terrestrial photosynthesis and respiration, while the
VISIT simulation accounts for CO, fertilisation (increasing photosynthesis due to rising atmospheric CO,), LUC
(perturbation on terrestrial carbon budget due to land-use change), and climate variability. VISIT simulates a large

land sink on the net (Table 1). The CASA and VISIT monthly-mean fluxes are downscaled to 3-hourly time

intervals by redistributing respiration and gross primary production (Olsen and Randerson, 2004) using JRA-55



150 meteorology, i.e., 2m air temperature and incoming solar radiation at the earth surface (Table 1). Monthly-mean
fire emissions are used from GFEDv4.1s (van der Werf et al., 2017) for simulating the CO,"* tracer. Sea-air CO»
fluxes are taken from an upscaling model of shipboard measurements of pCO: (referred to here as TT09: Takahashi
et al., 2009), and an empirical model of the Japan Meteorological Agency (JMA; lida et al., 2021) for simulating
CO,*" tracers. The seasonal cycle for TT09 sea-air exchange flux is stationary, like that of the CASA, over the

155 analysis period, while the JIMA oceanic CO; fluxes vary interannually, as in the case of VISIT. The model and prior

fluxes’ details are given in Table 1.

Table 1: Transport model set up and a priori CO2 emissions used for simulating the atmospheric CO2 concentrations. The

range in prior fluxes (2001 — 2020) is also given in PgC yr'! for the study period.

Model properties
Transport model MIROC4-ACTM
Resolutions 2.8° x 2.8° lat-lon grid, 67 vertical layers (surface — 0.0128 hPa)
Meteorology Nudged with JRA-55

Prior Emissions/sinks (2001-2020)

Source/sinks types Abbreviated name Global total: (PgC yr!)
Fossil Fuel and cement production GridFED 7.10-9.54
Terrestrial biosphere CASA-3hr 0 (Net annual flux)
(off-line diurnal cycle by Y. Niwa,
. ISIT-3hr -5.9-(-6.2
using JRA-55 meteorology) VISIT-3 3:9-(-6.2)
Fires GFEDv4.1s 1.7-2.2
Ocean exchange TTO09 -1.41 (Cyclostationary)
IMA -1.55-(-2.78)

160
We prepare two cases of prior CO; simulations by adding the CO; flux tracers in different combinations as follows:

6
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ge3t= COY (GridFED) + CO,"™ (CASA-3hr) + CO*" (TT09) (1a)
gvif= COY (GridFED) + CO," (VISIT-3hr) + CO,*" (IMA) + CO/" (1b)

The gvjf case includes all the known interannual variability in land fluxes due to climate as simulated by VISIT
and ocean fluxes by JMA. In contrast, the gc3t case has no information on interannual variability in land and ocean
fluxes and the annual land sink. These two a priori flux cases are designed to evaluate the strength of MIROC4-
ACTM inversions to derive fluxes consistently (or the lack of it) given the information on CO; measurements from

a network of sites and the statistics of prior flux uncertainty (PFU) and model data uncertainty (MDU).

2.3 Atmospheric Data Selection and curve fitting

We used CO; observations from 50 measurement sites (marked in Fig. 1) for the inverse modelling (Supplementary
Table S1). Observations are taken from GML/NOAA (38 sites), CSIRO (four sites), LSCE/IPSL (one site), SIO
(two sites), SAWS (one site), ECCC (one site), and JMA (three sites). Data until 2019 are taken from
obspack co2 1 GLOBALVIEWplus v6.1 2021-03-01 (Schuldt et al., 2021), and JMA data are taken from
WDCGG. Extension to obspack co2 1 GLOBALVIEWplus v6.1 for 2020 is compiled from GML/NOAA
(https://gml.noaa.gov/aftp/data/trace gases/co2/flask/) and WDCGG (https://gaw kishou.go.jp/) websites as
appropriate. We further extended the 2020 values into 2021 based on the growth rate determined for Jan-Mar
observed at Minamitorishima (MNM) as available on the WDCGG (the results of 2021 will not be used in any
analysis and will be treated as the spin-down year of inversion). The model simulations are sampled at the
observation time and the grid point nearest to the observation location at hourly intervals. We selected the sites
where the temporal data gaps are minimum; no more than six-month data gaps at a stretch for the inversion period
(1999-2020). These temporal data gaps (1-6 months) are filled using the curve fitting method based on the digital
filtering technique (Nakazawa et al., 1997). We fit the measured and simulated time-series at daily-weekly time
intervals with six harmonics (extracts the sinusoidal component, i.e., seasonal cycle) and Butterworth digital filter

with a cut-off length of 24 months (determines the long-term trends).

2.4. Inverse method
Inverse analysis of atmospheric CO; helps linking the atmospheric observations to carbon fluxes from land and
ocean. We use a time-dependent Bayesian inversion system, initially developed by (Rayner et al., 1999). The

inversion formalism specifies prior estimates of both the fluxes and their uncertainty (called prior flux uncertainty
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(PFU)) and optimises fluxes over 54 land and 30 ocean regions (Fig. 1) by minimising the difference between the
CO; mixing ratios simulated by the MIROC4-ACTM and observed at 50 measurement sites for 1998-2021. We

exclude the first two years and last year of inversion from our analysis period (2000-2020) to avoid the edge effect.

In the Bayesian inversion, when the relation between model parameters and data parameters is linear (d = J5), the

misfit function ()(2) is constructed as (Rayner et al., 2008b; Tarantola, 2005)
1,5 - 5> N1 o N N - T > "1, -
Xz = E[(s - SO)TC(SO) 1(5 - SO) + (]SO - dobs) C(d) (]SO - dobs)] (2)

Assuming that the elements of C(ci ) are uncorrelated, the solutions for § and C(§) can then be written as

>\ -1 >\ - -
<i>= 5+ (C(d) 1+CGE™) 1 C(d) (dons — dacrm) )

and posterior error covariance

5 —1 5 -1
€@ =(J"c(d) 1+CGE)™) )
where §, is the prior source for the 84 regions and 288 months in 1998-2021, C(5,) is the prior source error
covariance matrix, 070 ps 18 the measurement data at 50 sites for 288 months, and C(ci) is the data error covariance

matrix. d acrm (= J8p) is forward model simulation time series using a priori fluxes, run continuously for the whole
period of analysis, and sampled at the time and locations of the individual measurement before calculating monthly
means. J is the Jacobian matrix of sensitivities of observations with respect to S, calculated using simulations of
unitary pulse sources for a month for the 84 basis regions, and sampled at the 50 measurement sites. The unitary
pulses are simulated for 4 years (one month of emissions and 47 months of zero emissions) and originated for each
month of year 2011 for all regions (84 regions x 12 months = 1008 tracers per year). One set of J-matrix is reused
for all years. The elements of J for later months are kept constant at the value of 48" month. We have shown in Fig.
S1 and associated text that the use of annually repeating J does not significantly affect the inversion results as the
majority of the spatial and temporal flux variabilities are coming from the a priori, which are simulated using
interannually varying meteorology. The elements in § are the optimised CO, fluxes (referred to as a posteriori or
predicted flux) from 84 regions at monthly time intervals. The off-diagonal elements of C(S,) are kept zero,

assuming the a priori fluxes are uncorrelated to one another region or time. The correction fluxes (5 — S, in Eq. 3)

is primarily determined by the term (C?ACTM - ciob s), scaled by the data/flux uncertainty.

8
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Figure 1. Divisions of 54 land and 30 ocean regions for inverse modelling and 50 observation sites (a), the right panel (b)
shows the analysis regions adopted in this study (15 land and 11 ocean), which are consistent with the boundaries of the

RECCAP, phase 2 (RECCAP2) land regions (Ciais et al., 2022) and TransCom ocean regions (Gurney et al., 2002).

The inversion settings based on the choice of a priori fluxes, MDU, and PFU are crucial for flux estimation. The
MDU refers to the degree to which the predicted concentrations are required to be fitted by the inverse model. In
addition to measurement precision, MDU incorporates the inability of coarse spatial-resolution global ACTMs to
simulate the concentrations at the observation sites. PFU decides the degree of freedom or allowed flux adjustment
for each of the 84 regions to match the atmospheric data. It determines to what extent the priors are relied upon to
constrain the posterior flux estimates. To determine the robustness of our results, we have performed sensitivity
analysis by varying PFU and MDU (Table 2). In the first approach, we assign uniformly 2 PgC yr”' uncertainty to
each of the 54 land regions and 0.75 PgC yr”' to each of the 30 ocean regions (referred to as PFU = “ctl”). In the
second approach, we assign the land uncertainty by scaling the regional total FLUXCOM gross primary
productivity (GPP) (Jung et al., 2017), while the uncertainty for the ocean regions is kept at 0.5 PgC yr'. In this
case, regional total GPPs were multiplied by 2, and the upper limit is set at 2 PgC yr' (referred to as gpp_v2; PFUs
varied from 0.2-2.0 PgC yr'). We construct two additional PFU cases (gpp_v3 and gpp_v4) by multiplying the
regional total GPPs by a factor of 3 and 4, respectively, and the allowed range is set at 0.3-3.0 and 0.4-4.0 PgC yr’
!. The land PFUs varied as 0.4-3.0 PgC yr' and 0.6-4.0 PgC yr"' for the gpp v3 and gpp v4, respectively. The
ocean PFUs were set at 0.75 PgC yr' for gpp_v3 and 1.0 PgC yr' for gpp_v4 (Table 2). Selection of a wide range
of PFUs, in the range of 0.5 — 1.0 PgC yr"' for the ocean regions and 0.2 — 4.0 PgC yr"' for the land regions allows
us to understand the stability of the inversion system by assessing the range of a posteriori fluxes for aggregated

sub-continental/basin regions or the land and ocean totals.
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Table 2. List of 16 inversions based on the combinations of four different prior flux uncertainty (PFU) and model data
uncertainty (MDU) cases. Each PFU and MDU combination case is run for the two prior flux distributions, 1) ge3t (GridFED
+ CASA-3hr + TT09) and 2) gvjf (GridFED + VISIT-3hr + JMA ocean + Fires - GFED). The abbreviation of inversion cases
is arranged as PFU_MDU Prior Flux.

gpp_v3
land=0.4-3.0 ; ocean=0.75

gpp_v4
land=0.6-4.0 ; ocean=1.0

RSD: Residual

standard deviation

PFU MDU Inversion cases
(PgClyr) (ppm)
gc3t gvjf
ctl ux2 = ctl ux2 gc3t ctl ux2 gvjf
land =2.0 ; ocean = 0.75 0.1 +2 x VRSD ctl ux4 gc3t ctl ux4 gvjf
or

gpp_v2 x4 = gpp_v2 ux2 gc3t gpp_v2 ux2 gvijf
land=0.2-2.0 ; ocean=0.50 0.1 +4 x YRSD gpp_v2 ux4 gc3t gpp_v2 ux4 gvijf

gpp_v3 ux2 gc3t
gpp_v3 ux4 gc3t

gpp_v3 ux2 gvijf
gpp_v3 ux4 gvijf

gpp_v4 ux2 gc3t
gpp_v4 ux4 gc3t

gpp_v4 ux2 gvijf
gpp_v4 ux4 gvijf

The monthly-mean residual standard deviation (RSD), from the difference between measured and fitted data, plus
a constant value to account for the measurement accuracy, are used for monthly varying MDU at each station for
inverse modelling calculations. The absolute magnitude of MDU is chosen in such a way that the estimated flux is
optimized to the data only to an appropriate level commensurate with the ability of ACTM to model them. We
prepared two MDU cases by multiplying the RSDs by a factor of 2 (referred to as “ux2”) and 4 (referred to as
“ux4”), and added these to an estimated measurement uncertainty of 0.1 ppm. Based on different combinations of
four PFU (ctl, gpp_v2, gpp_v3, gpp_v4), two MDU (ux2, ux4), and two prior flux cases (gc3t and gvjf), we run 16
sets of inversion cases (Table 2). Based on the inversions with multiple priors, PFUs and MDUs, we will present

estimated mean/median fluxes and spread as 1-o standard deviations from 16 ensemble members.

10
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Figure 2 shows the examples of simulated and observed time series of CO, (top row), and simulated-observed
differences (bottom row) at two selected sites, Alert and Syowa. The results show faster (slower) CO> increase
260 rates for the a priori flux simulated case gc3t (gvjf), mainly because of no land sink in CASA flux and stronger
land sink in VISIT flux (broken red and purple lines, respectively). Using the mean of these two a priori flux
scenarios, the prior CO; concentrations show a better match with the CO, growth rates (refer to the grey lines in
the lower row; Fig. 2). Even after inversion, mild overestimation (underestimation) of the CO, growth rate for gc3t
(gvjf) cases persisted, and by taking ensemble mean inversion flux the CO, growth rates are perfectly matched with
265 the observations (Fig. 2), which is sometimes set as an evaluation metric for atmospheric CO; inversions

(Friedlingstein et al., 2020).

450 Alert [82N] 450 Syowa [69S]
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Figure 2. Time series of observed and model COz time series for two a priori (apr) simulation cases (gc3t and gvjf), and
posterior (post) flux simulation cases using control MDU and PFU case ux4 (top row). Results for the mean of two a priori
270 flux cases and ensemble mean inversion case are also shown. The model-observation differences are shown in the bottom row.
Results are shown for two sites, Alert (82°N, 63°W; measurements by Environment Canada), and Syowa (69°S, 40°E;

measurements by Tohoku University/National Institute of Polar Research).
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2.5 Performance of inversion using a posteriori uncertainty

The inverse model output monthly means flux corrections and a posteriori flux uncertainty for each of the 84
regions, and the full error covariance matrix of dimension 24192 x 24192 (=84 regions x 12 month x number of
inversion year). The monthly time and spatial covariances are accounted for flux uncertainty calculation when
annual mean values are calculated for aggregated regions or global budgets. In the aggregation scheme, the larger
regions have to follow the boundaries of 84 regions, contrary to the method proposed in section 2.6 by using

ensemble inversions where ensemble spreads can be calculated for any region of interest.

We use flux uncertainty reduction (FUR, in %), based on the mean values without time aggregation, to identify
which regions are well constrained by the data. FUR is a standard diagnostic of Bayesian estimation and defined
by
FUR = (1 - M) x 100
Oprior

where Gprior and oprediciea Tepresent the mean prior and predicted flux uncertainties, average over Jan 2001- Dec 2020.
High values (FUR towards 100) indicate strong data constraints, while low values (close to 0) indicate that the data
are not able to move the estimates away from the prior. To identify which parts of the land and ocean have been
constrained significantly by the inversions, PFU, predicted flux uncertainty, and FUR is plotted in Fig. 3 for the
four PFU cases of gc3t and ux4 setup. The PFU cases “gpp v4” and “ctl” show observational constraint over most
of the region (grey shaded areas on the right column). Reasonable constraints (larger FUR) are obtained for
Northern America, Russia, Southern Ocean, Tropical Pacific, South Indian, and North Atlantic, highlighting the
large long-running observational programs by USA, Japanese, and European research groups. The poor constraints
(low FUR) are observed over South Asia, West Asia, Northern Africa, and the Tropical Indian Ocean due to the
lack of observations. It is also noted that FUR is influenced by PFU settings. For example, a smaller a priori
uncertainty, i.e., gpp_v2 achieved lower FUR. As discussed later in this article, the FUR is only indicative of the
observational constraint on the regional fluxes, the spread of ensemble inversions provides a measure of uncertainty

of the regional CO; sources and sinks.
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Figure 3: Prior and posterior flux uncertainties for four different PFU (4 rows: ‘ctl’, ‘gpp_v2’, ‘gpp_v3’, ‘gpp_v4’) cases are
shown in the left and middle column, respectively, and the flux uncertainty reduction (FUR) in the right column. The FUR is
an indicator of constraint provided by atmospheric observations. High values (towards 100) in uncertainty reduction indicate
strong data constraints, while low values (close to 0) indicate that the data are not able to move the estimates away from the
prior. All cases correspond to the MDU case ux4 and “gc3t” inversion case. The circles show the 50 observation sites used for

inverse analysis.

2.6 Flux processing and regional uncertainty estimations

The predicted fluxes from 84 regions (54 land and 30 oceans) are regridded to the 1°x1° spatial resolutions based
on the land and ocean basis functions. Once regridded, the fluxes were aggregated into 15 land and 11 ocean regions
for further analysis (ref. Fig. 1b). First, the fluxes from each inversion are averaged for different analysis periods
(monthly, annual, five-year, decadal). Then, we averaged the individual means (n=16) to estimate the ensemble
mean and standard deviations. The ensemble means (here and, in the following, referred to as “ensm”) is the best
estimate (i.e., a measure of central tendency) of land-air and sea-air exchange carbon flux. The best estimate

criterion is based on the closest agreement of the global total (FFC emissions + land and ocean sinks) fluxes with
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the global mean growth rate (section 3.2). There are different options to characterize “uncertainty” in CO, flux
estimates, for example, the standard deviation, standard error, 95% confidence intervals, and interquartile ranges.
Here, we followed the standard deviation of the multi-inversion means as a metric of the “uncertainty” (i.e.,
variability) in the multi-inversion estimates. The regional and global land/ocean flux uncertainties estimated from
the 16 ensemble members cover those that arise from priori flux distributions, PFU, MDU. The uncertainties due

to data coverage and model transport errors are not assessed here.

2.7. Observations used for predicted fluxes validation
The predicted fluxes are validated by comparing the posterior 3-dimensional CO, mixing ratios fields to
independent (i.e., not used in the inversions) aircraft observations. The aircraft observations used for validation

include data published in obspack co2 1 GLOBALVIEWplus v6.1 (Schuldt et al., 2021).

2.7.1 HIPPO and ATom observations

We used the CO» from two sets of aircraft campaigns: the HIAPER Pole-to-Pole Observations (HIPPO) during the
period January 7, 2009, to September 15, 2011 (Wofsy, 2011) and the Atmospheric Tomography Missions (ATom)
during the period July 29, 2016, to May 21, 2018 (Wofsy et al., 2018) to validate the latitude-altitude gradients
covering different seasons over the Pacific and Atlantic Oceans. The four HIPPO campaigns (HIPPO-1 in January
2009, HIPPO-2 in October/December 2009, HIPPO-3 in March/April 2010 and HIPPO-4 in May/July 2011),
performed from 82°N to 67°S over the Pacific (but also partly cover the North American continent) and with
continuous profiling between ~150 m and 8500 m altitudes at approximately 2.2° latitude intervals, are used for the
validation. The ATom mission is built upon the HIPPO mission, but with a wider horizontal extent with global
coverage over the Pacific, the Atlantic, and the Arctic oceans. The comparisons performed for all the four ATom
circuits occurred in July—August 2016 (ATom-1), January—February 2017 (ATom-2), September— October 2017
(ATom-3), and April-May 2018 (ATom-4). The mission consisted of 48 science flights and 548 vertical profiles

over the Pacific and Atlantic basins.

2.7.2. NOAA measurements
We used 16 NOAA regular aircraft-based vertical profiles (Fig. S7, S8) also to validate the simulated vertical

gradients in the troposphere (Sweeney et al., 2015). These aircraft sites are located mainly over the North American
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continent (Table S4). The aircraft profiles include measurements over the Southern Great Plains (SGP: 2006-2019),
operated by the U.S. Department of Energy (Biraud et al., 2013). Most of the aircraft profiles range between the
surface and 350 hPa. For shorter periods, flights up to 150 hPa are available for the sites Charleston, South Carolina
(SCA), SGP, and Cartersville, Georgia (VAA), also covering the UTLS (upper troposphere/lower stratosphere)

region.

2.7.3. CONTRAIL measurements

The CONTRAIL (Comprehensive Observation Network for Trace gases by AlrLiners) program uses an Automatic
air Sampling Equipment (ASE) for flask sampling and Continuous CO, Measuring Equipment (CME) for in-situ
CO; measurements (Machida et al., 2008; Matsueda et al., 2008). These instruments have been installed on several
Boeing aircraft operated by Japan Airlines (JAL) with regular flights from Japan to Australia, Europe, Asia (East,
South, and Southeast), Hawaii, and North America, providing large spatial data coverage across the globe,
particularly in the Northern Hemisphere. The ASE performed flask samplings in the upper troposphere and lower
stratosphere (altitude range of ~7—12 km). The CME data are recorded at 10-sec intervals during ascent/descent
(~100-meter intervals in altitude) and at 1-min intervals during cruise (~15 km intervals horizontally) as well as in-
flight aircraft positions. CME is not operated within ~600 m of the ground surface to avoid heavy pollution around
airports. The CME has obtained thousands of CO; vertical profiles over many airports since 2005. The ASE and

CME, along with NOAA aircraft measurements of CO», are used to estimate the latitudinal bias in predicted fluxes.

2.8 Evaluation Metrics
We calculate correlation coefficients (R), mean bias (MB), and root-mean-square errors (RMSE) to evaluate the

predicted fluxes with aircraft observations. The mean bias and RMSE are defined as

n
1
— 14
MB = (7 E(xgoz - xCOz)i>
i=1
1 © 2
— - _ 4P
RMSE = (n 2("302 xcoz)i>
i=1
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p

co,1s predicted CO, mole fraction sampled at the i"™ aircraft location, and n is the

where x¢o, is observation, x

number of aircraft observations. The MB infers the magnitude of underestimation/overestimation of CO; mixing
ratios by the model. The RMSE includes errors (both random and systematic) in the predicted CO». The MB and
RMSE could be due to uncertainties in predicted fluxes.

he simulations of SFs and the age of air confirm the low transport error
in MIROC4-ACTM (Bisht et al., 2021; Patra et al., 2018). Hence, the magnitude of biases and RMSE indicates
predominantly the accuracy of the predicted fluxes (the errors due to model transport and measurement network

are not explored in this study).

3. Results and Discussion

3.1 Global flux distributions

Figure 4 shows the spatial distributions of annual mean CO; fluxes. While the spatial distributions of a priori
oceanic flux are similar for the JIMA and TTO09, the terrestrial biosphere fluxes are vastly different. The annually
neutral CASA fluxes show near-zero values for most grid cells. However, strong sinks are observed over most of
the densely vegetated regions of the globe for the VISIT+GFED fluxes, mainly because VISIT simulation produces
stronger sinks by the ecosystem (Fig. 4a, 4d). Anomalously strong sources are also seen in Fig. 4d due to the fire
emissions estimated by GFED based on the satellite-derived burned area anomaly. The a posteriori results make
reasonable corrections regardless of which a priori fluxes they start from, e.g., the gc3t case with net-zero annual
flux or the ‘gvjf’ case with strong sink. Consistently predicted fluxes are seen for North America, Europe, Russia,
or East Asia for the PFU=ctl case (middle row). Similarities are slightly less when the PFU is scaled to the GPP of
84 regions of the inverse model (bottom row). This suggests that the greater PFU is more suitable for the inversion
when the region has observational sites (Fig. 1). In the case of PFU=gpp v2, the fluxes are not allowed to change
much in the boreal regions except for the summer months. However, the gpp v2 inversion may be preferred over
the dry region of Northern Africa, where the control PFU case produces an East (weak source) - West (weak sink)
dipole. Performance of the inversions to retrieve the flux distributions over tropical America and tropical Africa
are unclear. They show large dependence on the prior flux distributions, possibly due to the lack of observations
within the land regions in our inversion. The main focus of this study is to better understand the total regional
emissions and their trends over the past 20 years. The inversion does not revise the fine structures within each of

the 84 regions of the inversion by the design of the system, where the regional basis functions assume a fixed
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pattern for constructing the source-receptor relationships (J-matrix). The degree of freedom of our inversions is a
few times smaller than the gridded inversions when spatial flux correlations of 1000-2000 km are assumed (Peylin

400 etal., 2013).

a. ACTM—prior: ge3t (2001—-2020) d. ACTM—prior: gvjf (2001-2020)
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Figure 4. Spatial distributions of CO: prior flux for two different sets of land and ocean flux combinations (a, d). The middle

(b, e) and bottom (c, f) panels show predicted CO: fluxes by using two different prior flux uncertainty patterns (ctl, gpp_v2).

405 3.2. Global total fluxes
Figure 5 shows the trends and interannual variability in the global fossil fuel (FF) emissions (used as input for the
inverse model), land-biosphere, ocean, and annual atmospheric CO, growth rate for 16 inversion ensemble
members based on two combinations of land-biosphere and ocean prior fluxes (VISIT and CASA for land-
atmosphere, and TT09 and JMA for sea-air) and eight combinations of prior flux/data uncertainties (PFU and

410 MDU). The uncertainty in the ensemble means flux of 16 inversion cases is calculated using +1c spread in the
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time-averaged fluxes for 10 or 5 yr periods in this study. The uncertainties in the predicted fluxes due to different
priors are 0.35 PgC yr' for global land and 0.1 PgC yr' for the global ocean. The uncertainty due to PFU and MDU
is less than 0.15 PgC yr' for land and ocean carbon uptake for gc3t or gvjf inversions. It indicates that prior flux
patterns and trends alter the predicted global land and ocean fluxes. Ensemble mean land and ocean fluxes are in
excellent agreement with the IPCC “mean” estimates, notably within the 1-c uncertainty estimated from 16
ensemble member inversions (Table 3). The ensemble spread is much lower (Table 3; MIROC4-ACTM columns)
compared to the inversion predicted flux uncertainties, which are in the range of 1.4 and 0.7 PgC yr™' for the global
land and ocean, respectively, even after accounting for the monthly time and spatial covariances (vary from low

values of 0.8 and 0.5 PgC yr' for gpp v2 cases to 1.6 and 0.9 PgC yr'' for the gpp_v4 inversions).
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Figure 5. Global annual CO: emissions from fossil-fuel (a) and estimated land (b) and ocean (c¢) carbon sink from two sets of
prior and 16 sets of predicted fluxes based on different combinations of priors (gc3t and gvjf), prior flux uncertainties (PFU:
ctl, gpp_v2, gpp_v3, gpp_v4) and measurement data uncertainties (MDU: ux2, ux4). Negative values are uptake by land/ocean,
and positive values are sources to the atmosphere. The net flux is calculated by subtracting the total sink (land + ocean) from
the fossil fuel and compared with the observed global growth rate of atmospheric COz concentration from the NOAA/ESRL
(magenta line in panel “d”: Dlugokencky and Tans, 2020). The atmospheric CO2 growth rate is converted using a factor of
2.13 PgC ppm'. The numbers in the brackets in the legend are the mean budget imbalance between annual means of net flux

and observed CO: growth rate (units: PgC yr'). The background shading (+ve/brown for El Nifio and -ve/blue for La

Nifia) shows Multivariate El Nifio Southern Oscillation (ENSO) Index or MEI (Wolter and Timlin, 2011).

Table 3: Comparison of global total land and ocean CO2 exchanges estimated by the inversion model with those from the
IPCC 2021 (Table 5.1; (Canadell et al., 2021). The inversion uncertainties due to PFU and MDU for each inversion family
based on priors represent +16 decadal estimates from the individual inversions. The inversion means and 1-sigma standard
deviations are shown for two prior flux cases (8 each for gc3t and gvjf) and all 16 ensemble members (ensm). The IPCC global
land and ocean CO:z uptakes are corrected for the river export fluxes. This correction to the net ocean and land uptakes is
required because the inverse model estimates fluxes across the land/ocean-atmosphere interface, while the part of the land

carbon exchange is exported to the ocean via the rivers and streams.

CO2 budget 2000-2009 (PgC yr!) 2010-2019 (PgC yrt)
IPCC (2021) MIROC4-ACTM IPCC (2021) MIROC4-ACTM
FFC Emissions 7.7+£0.4 7.99 9.4+0.5 9.67

Atmospheric 4.1+£0.02 4.33 +£0.08 (gc3t) 5.1+0.02 5.28 + 0.08 (gc3t)
increase 4.10 + 0.06 (gvjf) 5.02+0.07 (gvjf)
4.22 +0.14 (ensm) 5.15+0.15 (ensm)

Ocean uptake -2.1£0.5 -1.52 + 0.03 (gc3t) -2.5+£0.6 -1.66 + 0.05 (gc3t)
River export +0.8 -1.40 £ 0.11 (gvjf) +0.8 -1.58 £ 0.23 (gvjf)
Ocean exchange =-13+0.5 -1.46 £ 0.10 (ensm) =-1.7+0.6 -1.62 £ 0.17 (ensm)
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Land uptake + -29+0.8+ -2.14 £ 0.1 (gc3t) -34+£09+ -2.73 £ 0.11 (gc3t)
Land-use change 1.4+0.7 -2.49 £ 0.14 (gvjf) 1.6 £0.7 -3.07 £ 0.26 (gvjf)
(= net flux) (=-1.5+£1.006) -2.31£0.21 (ensm) (=-1.8+1.14) -2.90 + 0.26 (ensm)
River export -0.8 -0.8
Land exchange -23+1.06 -26=+1.14

The year-to-year variability in land and ocean carbon sink (Fig. 5b,c) shows considerable agreement across the
inversion cases because of the strong constraint provided by atmospheric CO, measurements at the global scale due
to global tracer mass conservation. The year-to-year variability in atmospheric CO, growth rate is linked to the
variability in natural sources and sinks of carbon from land and ocean for given FFC emissions. The observed CO»
growth rate from NOAA (Dlugokencky and Tans, 2020) is compared with the estimated CO, growth rate (by
inversion), defined as the difference between fossil fuel emissions and total sink over land and ocean on an annual
basis (Fig. 5d). The NOAA growth rate (ppm yr'") is converted to units PgC yr' using a conversion factor of 2.13
PgC ppm™ (Raupach et al., 2011). The resulting mean carbon budget imbalance (in PgC yr"), calculated as the
mean absolute difference between the inversion estimated (FFC emissions + a posteriori land and ocean sinks) and
the observed CO, growth rates, is given in the legends (Fig. 5). The year-to-year variability in the global annual
total of net CO» flux is robust across different inversion cases (r=0.97) and with the observed growth rates (r=0.9);
however, the global totals over 2001-2020 show slight bias with that observed. Compared to the observed CO»
growth rate, the inversion shows systematic positive (range 0.1-0.3) and negative (range 0.0 - (-0.2)) imbalances
for gc3t and gvjf inversions, respectively. The ensemble mean of 16 inversions ("ensm") agrees well with the
observed growth rate within the uncertainty of the predicted fluxes over the 20 years (Fig. 5d).

Inversions suggest that both the terrestrial land and ocean sinks increased during our analysis period 2000 to 2020.
The ensemble means of terrestrial land CO, sink increased from -2.31+0.21 PgC yr' in the 2000s (2000-2009) to
-2.940.26 PgC yr' in the 2010s (2010-2019), with significant interannual variations up to 2 PgC yr'. The
interannual variability in land CO; flux is predominately associated with the response of the terrestrial biosphere
to El Nifio-Southern-Oscillation (ENSO) induced changes in the weather pattern. In 2015-2016, and to a lesser
extent in 2010, El Nifio conditions reduced carbon uptake by the land ecosystems in the tropics (e.g., Baker et al.,
2006; Bousquet et al., 2000; Patra et al., 2005b). The average ocean sink intensified from -1.46+0.10 PgC yr‘1 n
the 2000s to -1.62+0.17 PgC yr ' in the 2010s, with interannual variations of the order of a few tenths of PgC yr'
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(Chatterjee et al., 2017; Feely et al., 1999; Patra et al., 2005a). The global ocean biogeochemistry model (GOBM)
products, and those based on pCO, measurements, also show similar decadal variability patterns (DeVries et al.,

2019; Hauck et al., 2020).

This gradual increase in the ocean CO; sink is caused by the increasing pCO; difference between the marine air
and sea-surface water. The strong increase in the net sink by the terrestrial biosphere during 2001-2009 is
sometimes attributed to the bias in FFC emissions from China (Saeki and Patra, 2017), and the gradual sink increase
can be attributed to CO, fertilisation or water-use efficiency as more carbon is available for assimilation by
photosynthesis (Keeling et al., 2017; Kondo et al., 2018). In addition, the land CO» uptake efficiency in the period
of this analysis could partly be controlled by a decadal shift in the frequency of natural climate variability, such as
ENSO. In the 2000s, no extreme El Nifio conditions were observed, resulting in suppressed fire emissions and
lowered drought occurrences, while the opposite conditions prevailed in the 2010s (intense El Nifio in 2010, 2015-
2016, 2019-2020), which is likely to reduce net uptake by the land ecosystems (Patra et al., 2005b). Fire emissions
with an estimated peak-to-trough change of about 0.5 PgC yr' (Table 1) alone cannot explain the large changes in

land sinks of the order of 2-3 PgC yr .

3.3 Sub-continental scale land and ocean fluxes

Here, we present interannual variability in a priori and predicted carbon fluxes over 15 lands (Fig. 6) and 11 ocean
regions (Fig. 7). The uncertainty in the predicted carbon fluxes is estimated as 1-c spread among the 16 inversion
cases. Significant differences are seen in between a priori (VISIT) fluxes over Russia (-0.76 PgC yr'"), East Asia (-
0.55 PgC yr") and Europe (-0.54 PgC yr'"), and ranges of inversion estimations -0.33 to -0.37, -0.42 to -0.57 and
0.08 to -0.09 PgC yr’', respectively. In general, the inversions suggest substantial uptakes over Temperate North
America (-0.59+0.14 PgC yr™"), followed by East Asia (-0.49+0.09 PgC yr"), Boreal North America (-0.38+0.1
PgC yr'"), and Russia (-0.35+0.05 PgC yr'") for the study period.
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Figure 6. Interannual variation of terrestrial land COz fluxes derived from 16 sets of inversion. The variations are shown for

15 aggregated regions shown in the map. The negative values are counted as CO: removals from the atmosphere, while CO-

emissions are counted positively.
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The large spread in the predicted fluxes over Temperate North America, Temperate South America, and Europe
indicate that the estimated flux is more sensitive to the selection of PFU and MDU when there are measurement
sites within the region or in the neighbourhood. The carbon fluxes over tropical (Tropical America, Brazil, South
Asia, and Southeast Asia) and extratropical (Temperate South America, Central Africa, Southern Africa, and
Oceania) land regions are found relatively less certainly; the ensemble of inversions splits into weak source or sink
groups based on the land priors. For example, inversions using the VISIT flux show a net source signal over all the
three African regions, while those using the CASA flux exhibit a net sink. Similarly, all inversion cases based on
the CASA prior show almost no carbon sink for South Asia, while VISIT-based inversion cases show a net sink of
-0.18 £0.11 PgC yr'. VISIT prior consists of strong sinks over all three South America regions. For all the regions,
the inversions moderated the sinks, thus, producing fluxes closer to the inversions using CASA prior even though
the regions have no measurement sites (Fig. 6; Table S2). These regions of Africa, South America, and South Asia
are weakly constrained in the inversions due to the limited observations representing these regions. However, for
most of these regions lacking in observations, the VISIT and CASA-based inversions are moving toward a common

flux value, i.e., the range of the two prior fluxes is usually much greater than the 16-inversion ensemble spread.

The predicted land carbon sink over East Asia tends to increase is tied to a rapid increase in FFC emissions for
2001-2009. The rapid increase in CO, emissions from FFC could impose an artificial trend in the terrestrial land
flux estimate for the East Asia region (Saeki and Patra, 2017). Because the atmospheric data constrain the total net
surface flux regionally when fluxes are constrained by observations, a biased high increase in fossil fuel emissions
is required to be compensated by a biased high increase in the natural land uptake by inversion. If absolutely no
constraints by observations, the compensation will occur in the regions where the prevailing winds transport the
biased FFC signals. The South Asian uptake remains almost constant for the study period. For West Asia, both sets
of inversion show the land CO; flux fluctuates around zero with slight interannual variation, indicating a stable
trend of land flux changes and a small contribution to uptake of all the tropical regions. The annual trend in
Southeast Asian carbon fluxes is overwhelmed by large interannual variability, driven mainly by ENSO-induced
fire emission variability (Patra et al., 2005b; van der Werf et al., 2017). Over the African continent, Central Africa

shows the highest interannual variability, mainly due to biomass burning emissions under the influence of ENSO.
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The CO; flux anomalies in the case of gvjf inversions support the fire emission anomalies taken from GFEDv4.1s
as included in the prior, and what is more impressive for us is the ability of the gc3t inversions to produce similar
phase and magnitude of the flux variabilities starting from a prior flux that has no interannual variability (even for

these relatively unconstrained regions).

Figure 7 shows good agreement among the predicted fluxes for the 11 ocean regions and the decadal flux variability,
which are derived from TTO09 prior flux with no interannual variability and JMA flux, including interannual
variability. The inversion results show substantial changes in the estimated interannual variability caused by the
assumed PFU and MDU. The Northern Ocean shows a significant spread from the mean (-0.13 + 0.14 PgC yr'")
for higher MDU, particularly for 2011-2015 (-0.01£0.06 PgC yr™) in the gvjf inversions. In the opposite phase a
similar spread is also found for the neighboring Boreal North America, Europe, and Russia land fluxes. Because
the flux variabilities over land regions are larger than ocean regions (by about a factor of 2), the Northern Ocean
fluxes can be perturbed by relatively unnoticeable anomalies in the neighbouring land fluxes. These features appear
likely because of the incomplete measurement constraint in the inversions permits “dipoles” of flux errors to occur
between the neighbouring regions (compensating errors of opposite sign due to the inability of the measurements
to completely the source or sink in the right place). It is indicative that an analysis of fluxes for one region may be
challenging to interpret when isolated from the rest of the world in an inversion of long-lived species because of

the large-scale mixing by transport.
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Figure 7. Interannual variation of sea-air

CO; fluxes derived from 16 sets of inversion. The variations are shown for 11

aggregated regions shown in the map. The negative values are counted as CO- removals from the atmosphere, while CO-

emissions are counted positively.

A significant difference in the priors over the South Atlantic is observed; the JMA fluxes suggest a two-fold higher

CO; uptake (0.33 PgC yr'') than in the

TTO09 (Table S2). The inversion results largely follow their priors over this

region, which is observationally unconstrained by sites within the region. Both the prior and predicted fluxes show

that the East Pacific is a significant source of CO, to the atmosphere, caused by the upwelling off deep ocean water

(that brings CO,-rich water from ocean interior to surface) of the west coast of the South American continent. A
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small net outgassing signal occurred over the Tropical Indian and Tropical Atlantic Oceans. Because of a tighter
constrain due to the relatively extensive coverage of observation sites, all 16 predicted fluxes converged on
consistent Southern Ocean decadal trends and interannual variability, even though we have not accounted for
interannual variability or trends in the TT09 prior. The Southern Ocean CO; sink intensity shows considerable
variability from interannual to decadal timescales, and sink stabilisation after 2010 may have been caused by a

regional shift in sea level pressure and surface winds (Keppler and Landschiitzer, 2019).

3.4 Interannual variations in regional CO; fluxes

To examine the regional pattern of anomalies in the land and ocean CO; sink, following Patra et al. (2005b, 2005a),
we calculated the monthly anomalies by subtracting a long-term mean seasonal cycle from the monthly emissions
from 2001-2020 (Fig. 8). Thus, the time series contains the interannual variability (IAV) and long-term trends for
the analysis period. The anomalies from both inversion cases are consistent over most regions; however, the
magnitude differs. Despite the absence of IAV in the “gc3t” prior fluxes, the consistent interannual variability
suggests that inversion is robust in constraining the IAV in carbon fluxes. The correlations between “gc3t” and
“gvjf” inversions over land are greater than 0.7, which are statistically significant at p<0.0001. The correlations
were less than 0.3 between “gc3t” inversion and “gvjf” prior, which can be inferred as only some of the interannual
variabilities were present in the gvjf prior, and the interannual flux variability for gvjf inversions are significantly
different from gvjf prior. These results imply that the VISIT land ecosystem fluxes and GFEDv4.1s fire emissions
inadequately represent CO> flux signals that are observed at the 50 measurement sites in our inversion. Large-scale
cyclic patterns of climate anomalies such as ENSO account for a large part of climate variability on interannual to
sub-decadal timescales CO, flux variabilities. Climate anomalies are associated with changes in temperature

distributions and large-scale circulations of the ocean water and the atmosphere.
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Figure 8. Three-monthly running averages of CO: flux anomalies as estimated by the inversions for land and ocean regions

from atmospheric COz data, with varying prior flux uncertainty and different a priori emissions. Flux anomaly is calculated by

subtracting an average seasonal cycle from 1999 to 2020 from the monthly-mean CO: fluxes. The cases shown in the Figures

are obtained by ‘gvjf’ prior (thick grey line), an average of all ‘gc3t’ inversion cases, and ‘gvjf’ inversion cases. The

+10 around the mean of both inversion cases are shown as shading. The ENSO index is plotted in the background for the

corresponding period. The correlations between fluxes (predicted and prior) and multivariate ENSO index are shown in Table

S3.
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The CO; flux anomalies in the tropical regions are strongly correlated with the ENSO index, while temperate and
boreal regions are weakly correlated, as expected from the areas of ENSO influences (Table S3). In the northern
high latitude regions of Europe, America, and Asia, a negligible correlation was found between CO; flux anomalies
and the ENSO index. It is because, over these regions, the North Atlantic Oscillation (NAQO)/Arctic Oscillation
(AO) or Pacific Decadal Oscillation (PDO) are the dominant climate factors for the CO, flux anomaly, likely
through the temperature variation (Patra et al., 2005). The warmer weather in these regions may lead to a negative
CO; flux anomaly (Russia) since that condition stretches the growing season length (Dye and Tucker, 2003). The
correlation coefficient between CO, flux anomalies for different aggregated land and ocean regions is given in

Table S3.

In 2015, a strong El Nifio induced severe drought and biomass burning in Equatorial Asia. It was one of the most
significant El Nifio events after the well-known major El Nifio in 1997/1998 (L’Heureux et al., 2017; Santoso et
al., 2017). Patra et al. (2005b) estimated that a massive amount of carbon (~5.5 PgC yr ') was released into the
atmosphere in 1997/1998, largely contributed from tropical regions in Asia, South America, and Africa. Figure 8
shows that during the Extreme El Nifio period in 2015-2016, large carbon was also released from Tropical America
and Southeast Asia, followed by Central Africa and Brazil. However, the timing and strength of the peaks are
different. The fire emission peak (for “gvjf” case) appeared in August 2015 over Southeast Asia (1.34 PgC yr'"),
and in January 2016 over Tropical America (1.12 PgC yr'). The “gc3t” inversion suggests a peak in October 2015
for Southeast Asia (0.42 PgC yr') and in January 2016 for Tropical America (0.82 PgC yr'). Niwa et al. (2021)
showed that regular sampling of aircraft CO, measurement under the CONTRAIL project has enormous potential
for capturing the footprint of biomass burning. By advanced inverse analysis, they estimated equatorial Southeast
Asia emission at 0.27 PgC yr' during September-October 2015 (note that northern Southeast Asia is not included).
Over the Oceania regions, ‘gvjf’ inversion shows large interannual variability. The inversion suggests emission
peaks in 2019-2020 over Oceania, consistent with the substantial CO; released from the fire in the atmosphere
during the 2019-2020 summer season over Australia (van der Velde et al., 2021). They concluded that the CO»
emission from these fires was more than thrice the estimate derived from the long-term mean of CO, uptake over
this region and broadly consistent with estimates based on the GFED fire emissions. van der Velde et al. (2021)
estimated a CO; flux anomaly in the range of 0.14-0.24 PgC from November 2019 to January 2020, which are

lower than our estimation of 0.7 PgC.
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The gc3t CO; flux variabilities over East Pacific, West Pacific, and South Pacific show negligible correlations with
ENSO, while both JMA based prior and posterior show high correlation (Table S3). Over the North Pacific, both
inversion ensembles show an insignificant correlation with ENSO. The oceanographic observations indicate that
sea surface temperature and pCO; in the equatorial warm pool areas (5°N-5°S, west of the dateline) are not
sensitive to El Nifio conditions (Takahashi et al., 2003), but a strong correlation is found for the West Pacific region
in the case of JMA ocean prior that is driven by pCO, measurements and sea-surface temperature. Due to the lack
of observational coverage, the gc3t inversions did not produce an expected (negative) correlation for CO, fluxes
and ENSO index for the East and West Pacific regions. Patra et al. (2005a) showed that the global ocean flux
variability is significantly underestimated or even produced the opposite phase for strong El Nino of 1997/1998, if
the Pacific Ocean Cruise data are not used in inversions. CO, flux anomalies are estimated to be positive for South
Pacific and negative for East Pacific during the 2015-2016 El Nifio event. On the contrary, observations show that
sea-to-air CO; flux is suppressed during the intense El Nifio event by warm low-CO, surface waters from the west.
The atmospheric observations are limited over these regions. Thus, we consider the anomalies during the intense
El Nifio period 2015-2016 are likely to be an artifact because of the lack of observational constraints. The
interannual variability over tropical Atlantic, tropical Indian, and south Indian is low. Though the IAV is low, we
find a significant correlation for the tropical Atlantic for both predicted fluxes, in contrast to a negligible correlation

between prior and ENSO.

3.5 Mean seasonal cycles of regional CO; fluxes

The net CO; uptake in the moist/warm growing season is partially compensated by net CO; release in the dry/cold
non-growing season. However, the magnitude of seasonal compensations differed significantly between regions.
The compensation drives the net regional strength of CO, uptake. For example, the maximum uptake in the growing
season is shown by Russia (~10 PgC yr™), followed by Boreal North America (~5 PgC yr™'), and temperate North
America (4 PgC yr'") (Fig. 9). However, the strength of net sink is almost twice over Temperate North America (-
0.59+0.14 PgC yr'') than in Russia and Boreal North America because the release of CO; in the non-growing season
over Russia and Boreal North America is greater than Temperate North America. Thus, the seasonal cycles in

global and regional emissions are essential for understanding the drivers of CO, changes in the atmosphere.

Seasonal cycle amplitude for CASA prior flux for land total is 33.6 PgC yr'', and that for VISIT is weaker at 23.8
PgC yr', and the peak of the growing season (when the net flux is most negative) occurred in July for CASA that
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is one month after the VISIT (Fig. 9, top-left panel). The seasonal phase of “gc3t” predicted fluxes are in close
agreement with the CASA prior, but inversions diverge for the net CO, uptake in the growing season and release
in the dormant season. Our inverse analysis indicates a more considerable CO, uptake rate (-26.2+2.1 PgC yr';
June - July) and net CO; release rate (4.1+2.0 PgC yr'; January to April) than CASA-based terrestrial land flux.
Contrary to the CASA prior, inversions using VISIT prior increase sinks significantly, by up to about 10 PgC yr’',
in June-July compared to the a priori. Inversion fluxes using CASA and VISIT show high consistency for the total
land CO, flux seasonality. Overall, the averaged “gc3t” and “gvjf” show good agreement (r=0.98) after inversion
as compared to prior (1= 0.8). Inversions do not achieve similar consistency for the total global ocean fluxes for
both TT09 and JMA a priori fluxes (3™ row from bottom, left column); the correlations reduced from 0.95 to 0.58

after the inversion.
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Figure 9. Seasonal variations in monthly-mean CO: fluxes at regional scales over 15 lands (upper four rows) and 11 oceans
(lower three rows) regions, along with global land and ocean totals. We prepare the average (2001 - 2020) separately for

inversion ensemble cases based on “ge3t” (broken line) and “gvjf” (solid line) prior. The shade around means shows +1c
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STDEVs for the respective inversion cases. The individual inversion cases are plotted in supplementary (Fig. S2). Note that

all panels use different y-scale.

Northern land fluxes drive the global land seasonality, with a close agreement regarding the magnitude and phasing
of the growing season and dormant season fluxes. Seasonality for the tropical land (South Asia, Tropical America,
Central Africa, Southeast Asia) is smaller than the northern land regions (Boreal North America, Temperate North
America, Russia), with the inversion suggesting maximum uptake around June-July over northern land and July-
September over tropical land. The a priori and predicted fluxes are more consistent for the extratropical land regions
than their tropical counterparts. This is because the temperate biosphere is better simulated by the ecosystem
models, such as VISIT or CASA, by taking into account the temperature and light effects, while the tropical
ecosystems are more often limited by water availability or suffer from extreme heat, e.g., the monsoon driven South
Asia (Patra et al., 2013). Posterior fluxes for the tropical regions also do not converge well, mainly because of the

general sparseness of CO; data (Patra et al., 2013).

Over Tropical America, CASA shows maximum carbon uptake (flux=-2.0 PgC yr'") in August and an extended-
release period in the dormant season from January to April (flux=1.1 PgC yr''), while VISIT shows a relatively
small seasonal variation. However, the inversions derive a consistent seasonal phase and amplitude, although the
region does not include any measurement site. Thus, the adjoining neighbourhoods’ observations are helping us to
capture the signal from this region, which is probably enabled by a good transport simulation by MIROC4-ACTM.
Similar improved consistency in predicted seasonal cycle phase and amplitude, relative to the a priori, are also
obtained for many other regions (Fig. 9a,b,c,f,g,k,n). Nevertheless, the a priori models play significant roles in
estimations of CO; flux seasonality for South Asia (peak uptake flux -0.43 PgC yr' in August-September for VISIT,
and -1 PgC yr"! for CASA in October-November), and East Asia (CASA peak uptake in August, VISIT peak uptake
in April).

The global ocean prior fluxes show the weak uptake of CO, during July-September (average uptake flux of -
0.53+0.09 PgC yr' for TT09 and -1.12+0.14 PgC yr' for IMA). After September onwards, a sharp increase in
uptake occurs, with a maximum uptake of 2.43 PgC yr' for TT09 and 2.91 PgC yr"' for JMA fluxes in December
(Fig. 9, left-3" row from bottom). Over the Northern Ocean, the "gvjf" inversion cases tend to show a large CO,
release as the MDU increases during May-October. We believe the broader uptake seasons for Boreal North

America, Europe, and Russia, leading to stronger early summer land uptake in the case of VISIT a priori, caused
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positive CO; flux seasonality for the Northern Ocean. Even for the gc3t inversion case, we find the peak in the
seasonal cycle in the summer season, when the oceanic biosphere activity is at its peak and pCO- in water is lower
in summer than in the winter (Goto et al., 2017; Yasunaka et al., 2018). It is not easy to put forward a hypothesis
for the weaker sink in summer than in winter of the Northern Ocean, while we can speculate that the atmospheric
CO; decrease in polar air due to the strongest flux seasonal cycle on boreal land (Fig. 9a,f.j), exceeds the decrease
that occurs over the surface sea-water and reduced solubility of CO, in warmer water. Indeed, Yasunaka et al.
(2018) have shown that the Greenland-Norwegian seas and the Barents Sea are indeed acts as a milder sink of CO,
(flux = -4 to -5 mmol m™? day™") during June-August compared to the October-March (flux = -10 to -15 mmol m™
day™), and the Chukchi Sea and Arctic Ocean show the strongest uptake in October. Thus, as whole, the Northern
Ocean of our study could act as the weakest sink in the summer months. Further studies are needed to identify the
role of ice-covered areas (close to zero CO; flux) on the seasonal cycle. Note here that the oceanic basis functions
in the polar ocean regions use a climatological sea-ice cover map, and fluxes are not revised over the sea-ice-

covered areas.

Overall, all the land regions, except South Asia, Southeast Asia, Central Africa, and Oceania, show excellent
agreement between averaged “gc3t” and “gvjf” cases after inversion (r = 0.63 — 0.97), as compared to priors (r = -
0.48 —0.90). A good agreement over the Northern Ocean, West Pacific, and Tropical Atlantic Ocean seasonal cycle

is observed after the inversion (Table S3).

3.6. Regional CO: fluxes and flux uncertainties

Different regions across the globe emit different amounts of CO, from FFC emissions, which is one of the main
discussion points in the emission reduction policymaking, say under the Kyoto Protocol (1997) and Paris
Agreement (2015) for limiting global warming below a certain level. The recent [IPCC AR6 of Working Group I
suggested that the global total CO; emissions from FFC have to be removed gradually on a net annual basis by
2050 to sustainably limit global warming below 1.5°C (Canadell et al., 2021). Because the elimination of FFC
usage is challenging to envisage in the coming three decades, pathways for reducing FFC emissions are being
explored. Carbon capture and storage and other technological managements are considered alongside nature-based
solutions. The land and ocean have been helping to remove more than 50% of the FFC emissions in the past
decades. The ongoing natural sinks of CO; and their maintenance/enhancement constitute the major theme of the
nature-based solutions. Thus, it is imperative to understand global/regional carbon fluxes for developing national

and international policy to reduce net CO; emissions.
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Figure 10 and Supplementary Figures S3 and S4 show regional CO; fluxes and flux uncertainties from the 16-
member ensemble inversions for 15 land and 11 ocean regions and global land and ocean at 5-yr intervals for the
past two decades. The global flux uncertainties are found smaller than the regional flux uncertainties because the
former is constrained strongly by the atmospheric CO, growth rate for given FFC emissions. Flux estimates for all
the land regions remain quite uncertain, as seen from the 5 to 95 percentiles range of the 16-inversion ensemble
(whiskers) at about 0.3 PgC yr™' for the land regions and typically less than 0.2 PgC yr' for the ocean regions. The
fluxes at the 25 to 75 percentiles range show slightly reduced uncertainties — a large reduction is not seen compared
to the 5 to 95 percentiles range because the two a priori models often formed two different sets of CO; flux values
(ref. Fig. 6 and 7). However, it has to be noted that each of the 15 land analysis regions has predicted flux
uncertainties in the range of 2.1 (Boreal North America) to 3.8 (West Asia) PgC yr' for the control gc3t case, as
the reduction from prior flux uncertainties, were small by inversion for the most region (Fig. 3). Thus, by employing
the 16-inversion ensemble approach, we could obtain flux uncertainties that are smaller and often less than the
regional fluxes themselves. The mean/median fluxes are consistent for the ensemble inversions and represent the

true state of CO; flux estimation for the MIROC-ACTM and 50 sites used in the inversion.
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Figure 10. CO: fluxes for land and ocean sink using 16 sets of inversion cases. Box plots represent inversions for different
time periods. Based on different prior, PFU, and MDU, the different inversion cases are first averaged for the selected time
period. The box shows 25 and 75 percentiles spread, and the vertical line shows 5 and 95 percentiles from the mean CO; flux
of 16 ensemble inversion cases. Horizontal lines inside box plots denote the median CO> flux of 16 inversion ensembles. Mean

and spread for the whole study period (2001-2020) are given in Table S2.

Global land sink increased by ~63% from 2001-2005 to 2016-2020 with an uncertainty range of ~6-12%. The
highest increase (about 73 %) in the land sink is observed from 2001-2005 to 2011-2015, while a decrease (~11%)
is observed from 2011-2015 to 2016-2020. The northern extratropical land accounted for ~80% of the global land
sink, followed by tropics (~13%) and southern extratropic (~7%) (Fig. S3). The ocean carbon sink shows a gradual
increase (by ~30%) from 2001-2005 to 2016-2020. The southern extratropic represents about 85% of global ocean

sink for 2001-2020, followed by the northern extratropic (~60%). The tropical ocean regions act as a net source of

34



745

750

755

760

765

770

35

carbon emissions, representing 45% of the global ocean carbon sink (Fig. S4). One of the most intriguing features
is that the 5-year mean fluxes for the ocean have increased gradually, as expected from the increase in pCO; partial
pressure difference due to increased loading of FFC emissions, but the land flux increases only during 2001-2005
and 2006-2010. This step increase in flux can be related to the biased FFC emissions from China, affecting the

natural/managed land flux estimation by inversion (Saeki and Patra, 2017).

Amazonia in Brazil, hosts the Earth’s largest tropical forest, and hence is an important region of carbon sink. Our
study shows a slight decrease in carbon sink over this region from 2011 to 2020. A recent study based on aircraft
measurements (Gatti et al., 2021) also suggests a decline in carbon sink from 2010 to 2018 over Amazonia due to
factors such as deforestation and climate change. A very high correlation is also seen for the interannual and decadal
variations in CO; fluxes (Fig. 6d, Fig. 10) and the Brazilian Amazon deforestation rate, which showed a strong and
systematic decline from the period 2002-2004 to 2012-2014, and a steady increase afterward (Silva Junior et al.,
2021).

Our results show that Africa is a small sink of carbon on an annual scale, agreeing with the RECCAP -1 estimation
for 2000-2009 (Table. 4). At the subregional level, northern Africa shows a small sink, while Central and Southern
Africa show a minor source for the same period. Central Africa turned from a small source in 2000-2009 to sink in
2010-2019, while the carbon flux behaviours remained persistent for the Northern and Southern Africa regions.
Though Central Africa is the main carbon sink region over the African continent because of its evergreen tropical
forest, the prolonged dry season due to weak El Nifio during 2001-2005 could have turned it into a net source for
the 2000s. The average annual mean fluxes over East Asia for the 2000s are remarkably consistent with the
RECCAP estimates (Table 4), based on the average estimate from inventory, bottom-up, and inversion fluxes (Piao
et al., 2012). We have observed less sink for Russia than RECCAP best estimate (Dolman et al., 2012). Other
regional flux also agrees well with RECCAP estimates, although the period and regional boundaries of the

RECCAP assessment do not match precisely (Table 4).

Table 4. Mean + 1-c standard deviation of annual net land-atmospheric exchange of CO:z (in PgC yr!) from predicted fluxes
for 15 land regions by decade. The predicted fluxes are shown for the best estimates, obtained from the ensemble mean of all
16 inversion cases based on different priors (gc3t and gvjf) and uncertainties (MDU and PFU). The +1-sigma in the decadal
mean fluxes denotes the range of uncertainty. The estimations for the 2000s are compared with the REgional Carbon Cycle

Assessment and Processes phase 1 (RECCAP-1).
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Regions 2000s (2000-2009) Fluxes from RECCAP 2010s (2010-2019)
(2000-2009)
Boreal N. America -0.36 +0.09 -0.39+0.11
i -0.47+£0.28
Temp. N. America -0.61 £0.13 (King et al., 2015) -0.58 £0.14
Tropical America -0.11+0.11 -0.16 £ 0.11
Brazil 0.04+0.10 0.13+0.29 -0.01 £0.07
(Gloor et al., 2012)
Temp. S. America -0.07+0.13 -0.12+£0.16
Europe -0.08 £0.11 -0.20 £ 0.07 0.07+0.12
(Luyssaert et al., 2012)
Northern Africa -0.03 £ 0.08 -0.08+ 0.06
-0.61 £0.58
Central Africa 0.03+0.18 -0.10+0.13
(Valentini et al., 2014)
Southern Africa 0.02+0.13 0.07+0.12
Russia -0.31 £0.04 -0.55 --0.66 -0.39 £ 0.06
(Dolman et al., 2012)
West Asia -0.04 £ 0.04 -0.08 £ 0.06
South Asia -0.15+£0.09 -0.15+0.23 -0.2+0.12
(Patra et al., 2013)
East Asia -0.40 £ 0.07 -0.41+0.14 -0.58 £0.11
(Piao et al., 2012)
Southeast Asia -0.10+0.11 N. A. -0.15+0.18
Oceania -0.08 £ 0.06 0.04+0.03 -0.15+£0.09
(Haverd et al., 2013)

775  Our analysis suggests that the most prominent land carbon sink in the Northern Hemisphere is located in temperate
North America (-0.59+0.14 PgC yr), followed by East Asia (-0.49+0.09 PgC yr'), boreal North America (-
0.38+0.10 PgC yr'"), and Russia (-0.35+0.05 PgC yr™') for 2001-2020, and they account for 70% of the total global
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CO; uptake by land biosphere. Overall, our results suggest about 40% of temperate North America’s (1.49 PgC yr’
1, 17-19% of East Asia’s (2.74 PgC yr''), 200% of boreal North America’s (0.19 PgC yr), and 80% of Russia’s
(0.44 PgC yr'") CO; emissions from FFC are offset by carbon accumulation in their terrestrial ecosystems for 2001-
2020. Overall, no area shows net carbon source from the land biosphere for recent decades (2010-2019). Further,
the inversion suggests substantial oceanic CO, uptake is in the north pacific, with a mean flux of -0.55+0.05 PgC
yr''. Considerable rate of CO; uptake is also observed in the Southern Ocean region; the CO» flux increased from
-0.12£0.07 PgC yr! in 2001-2009 to -0.33+0.06 PgC yr"' in 2010-2019. Southern Ocean CO; flux for 2010-2019
agrees well with a recent assessment of —0.53 + 0.23 PgC yr' (net uptake) in the region south of 45°S during 2009—
2018 (Long et al., 2021).

3.7. Validation of CO, fluxes using aircraft data

We evaluate the quality of inversion flux estimates by comparing CO, simulations with independent observations
(observations that are not used in the inversions due to a lack of long measurement time series record). The CO,
simulations are derived from three sets of prescribed fluxes: “gc3t” (case: ctl ux4 gc3t in Table 2), “gvjf” (case:
ctl ux4 gvjf), and “ensm” (average of all 16 inversions). The observations in the lower troposphere (from surface
to ~2 km) are more sensitive to regional fluxes. Hence, we compare the simulated CO; with those measured by
HIPPO and ATom airborne campaigns in the lower troposphere. Figure 11 shows comparisons over the transects
from high northern (~80°N) to high southern latitudes (~70°S) at the location and time of HIPPO and ATom
airborne campaigns, spanning all four seasons. HIPPO shows the lower CO; over 30-80°N than 0-30°N for May-
July due to large uptake in high northern latitudes; however, the values are slightly higher than Southern
Hemisphere (Fig. 11, Fig. S5). ATom shows a lower concentration over 30-80°N than the rest of the latitudes during
July-August (Fig. 11, Fig. S6). All the model cases capture the meridional gradient, slope, and other features well
at RMSE:s less than 1.5 ppm, mean bias in the range -0.5 — (-0.3) ppm, and correlation greater than 0.8.
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Figure 11. Observed and modelled meridional COz distribution during HIPPO and ATom campaigns. We aggregate the
observed and simulated mole fractions for the lower troposphere (between 0.5 and 2.0 km) at 2.5-degree latitudinal bins. The

correlation coefficient, mean model-observation bias, and root-mean-square error (RMSE) are also shown in each plot.

The “ensm” inversion shows the lowest mean bias and RMSE than the other two predicted simulations over most
aircraft campaigns (Fig. 11, statistics on each panel for different fluxes identified by colour). The comparison also
indicates latitudinal and seasonal dependent accuracy in the predicted fluxes. The NOAA aircraft observations
show a high bias during boreal summer throughout the troposphere over the USA and Canada, implying possible
seasonally dependent errors in posterior fluxes over these latitude regions (Fig. S7). When the aircraft data is over
the high latitude continental regions, model-observation comparison suggests a stronger surface CO; sink is
estimated by inversion compared to what is suggested by vertical profile gradients. HIPPO for July also shows
negative model-observation mismatches near the surface (Fig. S6). But the mismatches turn positive in the higher
altitudes, above about 1 km, and thus the model and observations averaged over 0-2 km are in much closer
agreement (Fig. 11c). Based on these comparisons, the simulations from the ensemble mean of 16 inversion cases
(“ensm”) show the lowest mean bias in comparison with gc3t or gvjf inversions, and suggested to be the most
suitable flux estimation for quantifying the global land and ocean carbon sink on the timescale of annual mean and

its decadal trend.
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Further, all available aircraft profiles, measured on a campaign basis or at regular intervals, are also used to evaluate
the predicted fluxes (Table S4). Compared to NOAA vertical profiles of CO,, model simulations agree well in the
free troposphere (defined here between 2 and 8 km), with an average bias (averaged over 2000-2020) close to zero
(Fig. S7, top panel: bias as a function of altitude, averaged over all sites). The inversions underestimate (~1 ppm;
Fig. S7, top panel) the observations within the boundary layer (between the surface and 2 km); however, the RMSE
is higher (~1 ppm) compared to that of the free troposphere. It could be because many of the NOAA aircraft profiles

are over the US (see the map inset in the middle row, left panel of Fig. S7), close to regional CO, sources.

Following the GCP budget evaluation method (Friedlingstein et al., 2020), Figure 12 shows the mean bias over
four latitude bands for three periods. The mean bias is calculated separately from all available aircraft data in
obspack co2 1 GLOBALVIEWplus v6.1 (Fig. 12a-c) and 50 observation sites (Fig. 12d-f) used in the inversion
(shown in Fig. 1). The biases show the dependency on latitude and are different for each inverse model case and
provide information on biases in the surface fluxes (Gaubert et al., 2019; Houweling et al., 2015). All the three
predicted CO; concentrations show the smallest bias (less than 0.1 ppmv) over the high southern latitudinal band
for 2001-2010. However, for 2011-2020, predicted CO, concentrations show large positive (0.47 = 0.47 ppm) and
negative (-0.23 + 0.47 ppm) bias for gc3t and gvjf predicted fluxes. The positive and negative biases for gc3t and
gvjf inversions, respectively, are also consistent with the surface sites, which are arising due to the biases in
simulated CO, growth rates (an overestimated growth rate for gc3t for the +ve budget imbalance, Fig. 5; opposite
being the case for gvjfinversion with -ve budget imbalance). The mean biases turned from negative to large positive
by moving from 0-45°N averages to 45-90°N averages. In contrast to aircraft observations, the surface sites show
a large negative bias over 45-90°N, consistent with the discussions earlier based on Fig. S5-S8. Overall, the ensm
case shows consistent results in all three different time periods of this analysis, reiterating the appropriateness of

the ensemble mean CO; fluxes for global (e.g., Fig. 5) and regional budget analysis (e.g., Table 4).
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Figure 12. Evaluation of the atmospheric inversion products (solid lines; legends in panel a). The mean of model-observation
differences is shown for four latitude bands of 45° intervals in three time periods: (a,d) 2001-2010, (b,e) 2011-2020, (c,f)
2001-2020. The simulations from three inversion cases are compared to independent CO2 measurements made onboard aircraft
(a-c: top row) over various parts of the world between 2 and 8 km above sea level. Bottom row shows the model-observation
differences for 50 surface sites that are used in the inversion (d-f), and mismatches between the a posteriori model (as obtained
after optimising regional sources by inversion) and COz data (broken lines; legends in panel d). Land and ocean data are used
without distinction. The number in each panel shows the total number of data points used for computing bias for each latitude

bin. The observation data are taken from obspack co2 1 GLOBALVIEWplus v6.1 (Schuldt et al., 2021).

4. Conclusions

The terrestrial biosphere (2.58 PgC yr™') and ocean (1.54 PgC yr") absorb about 46% of the emissions due to fossil
fuel and cement production (8.9 PgC yr™') in the period 2001-2020. The variability in these fluxes significantly
affects the year-to-year variability of the carbon dioxide (CO,) accumulation rate in the atmosphere. We estimated
global and regional sources and sinks of carbon across the earth’s surface, using observations and simulations of

atmospheric CO,. We tested the relative role of prior flux uncertainty (PFU) and model data uncertainty (MDU)
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on the land and ocean's global/regional carbon flux estimates. For this, we use a single transport model
(JAMSTEC’s MIROC4-ACTM) to estimate the global/regional carbon flux and associated uncertainty based on
different prior fluxes (two land biosphere fluxes (CASA and VISIT+Fire) at 3-hourly intervals with distinct global
total CO; sink strengths, and two sea-air exchange fluxes (Takahashi and JMA)), choices of prior flux uncertainties
(PFU: four cases) and representation of measurement data uncertainties (MDU: two cases). Based on different
combinations of priors, PFU, and MDU, we run 16 ensembles of inversion cases using CO, measurements from a
set of 50 sites spreading over the globe, and inversion results are analysed for 2001-2020. The 16 ensemble
members are averaged, and the result (“ensm”) is treated as the best estimate (i.e., a measure of central tendency)
flux. The spread between the ensemble members provides us a reasonable measure of the inversion estimated flux
uncertainty but lacks the quantification of the roles of transport model uncertainty or the inherent errors in the

measurements and the prior fluxes.

Although each inversion used common observation sites, there is still considerable uncertainty in the estimated
fluxes due to the prior fluxes and uncertainties (PFU and MDU). On a global scale, the uncertainty in the predicted
fluxes due to prior flux is relatively larger than that of PFU and MDU. However, at a regional scale, uncertainties
due to priors and PFU & MDU are primarily comparable and drove inter-inversion disparity. Lack of constraints
makes the tropical (Tropical America, South Asia, and Southeast Asia) and extratropical southern (Southern Africa,
Oceania) land regions highly uncertain. The ensemble of inversions splits into a “near-neutral” group and a “strong-
source/sink” group based on the priors for the tropical and extratropical southern land regions. Overall, the prior
flux differences have a negligible effect on the estimation of the global land total and ocean total sink but are

significant at the regional scale.

The interannual variability in the land fluxes (driven mainly by ENSO) is much more considerable than in the ocean
and tends to show greater consistency across the 16 inversion cases. The land flux seasonality is prominent in the
Northern Hemisphere, with good agreement across the inversion ensemble cases. The ocean seasonality is slight
and in less agreement relative to the magnitude of the seasonality of land fluxes. We comprehensively evaluated
predicted fluxes by extensively comparing the simulated posterior CO, to independent CO, observations from
several aircraft measurements by NOAA, CONTRAIL, HIPPO, ATom, and the NOAA MBL reference sites. The
evaluation suggests that the ensemble mean of 16 inversion cases (“ensm”) is well-suited (mean bias is found
minimum) for quantifying the global land and ocean carbon sink. Thus, we used the “ensm” case (best estimate)

for estimating the carbon fluxes and associated uncertainties.

41



890

895

900

905

910

915

920

42

In summary, our best estimate suggests that 22-33% (16-18%) of global CO, emissions from FFC have been offset
by global land (ocean) carbon flux from 2001-2020. The land and ocean sink partitioning are estimated to be -
2.27+0.2 (xlo uncertainty on mean) and -1.46+0.09 PgC yr', respectively, for the period 2001-2009, and -
2.85+0.25 and -1.63+0.17 PgC yr™', respectively, for the period 2010-2019 (without riverine export correction),
which are in excellent agreement with the [PCC ARG6 values (Table 3). The decadal mean values for the RECCAP
are also in good agreement for North America, South America, East Asia, South Asia, and Oceania (Table 4). Note
that the region boundaries and period of evaluations do not match perfectly between RECCAP-1 and our inversion

for most regions.

Our analysis suggests that the most prominent land carbon sink in the Northern Hemisphere is located in temperate
North America (-0.59+0.14 PgC yr'), followed by East Asia (0.49+0.09 PgC yr'), boreal North America (-
0.38+0.10 PgC yr'"), and Russia (-0.35+0.05 PgC yr™") for 2001-2020. Overall, our results suggest about 40% of
temperate North America’s (1.49 PgC yr™"), 17-19% of East Asia’s (2.74 PgC yr'), 200% of boreal North America’s
(0.19 PgC yr'), and 80% of Russia’s (0.44 PgC yr') CO, emissions from FFC are offset by carbon accumulation
in their terrestrial ecosystems for 2001-2020. Further, the inversion suggests substantial oceanic CO, uptake in the
North Pacific with a mean flux of -0.55+0.05 PgC yr”', and also considerable CO, uptake is estimated for the
Southern Ocean, where CO» uptake increased from -0.12+0.07 PgC yr'' in 2001-2009 to -0.33+0.06 PgC yr'' in

2010-2019. Overall, no area shows net carbon source from the land biosphere for recent decades (2010-2019).

Code availability: The CO: inversion code is based on that was provided by TransCom (Last access: 01/2001), and the revised
inversion code is available from https://github.com/prabirp/co212r84.

Data availability: All flux results are available by requesting the lead/corresponding authors (due to the lack of online storage
space). The subset of data (2 inversion cases) is available from the Zenodo (DOI: 10.5281/zenodo.5776197 and DOI:
10.5281/zenodo.5776212). All CO2 observation data used in inversion are available from ObsPack-CO2
(https://gml.noaa.gov/ccgg/obspack/) or the WMO World Data Centre for Greenhouse Gases (WDCGGQG)

(https://gaw kishou.go.ip/).
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