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Abstract. Global and regional sources and sinks of carbon across the earth’s surface have been studied extensively using 

atmospheric carbon dioxide (CO2) observations and atmospheric chemistry-transport model (ACTM) simulations (top-

down/inversion method). However, the uncertainties in the regional flux distributions remain unconstrained due to the lack of 

high-quality measurements, uncertainties in model simulations, and representation of data and flux errors in the inversion 

systems. Here, we assess the representation of data and flux errors by using a suite of 16 inversion cases derived from a single 20 

transport model (MIROC4-ACTM) but different sets of a priori (bottom-up) terrestrial biosphere and oceanic fluxes, as well 

as prior flux and observational data uncertainties (50 sites) to estimate CO2 fluxes for 84 regions over the period 2000-2020. 

The inversion ensembles provide a mean flux field that is consistent with the global CO2 growth rate, land and ocean sink 

partitioning of -2.9±0.3 (±1σ uncertainty on the ensemble mean) and -1.6±0.2 PgC yr-1, respectively, for the period 2011-2020 

(without riverine export correction), offsetting about 22-33% and 16-18% of global fossil-fuel CO2 emissions. The rivers carry 25 

about 0.6 PgC yr-1 of land sink into the deep ocean, and thus the effective land and ocean partitioning is -2.3±0.3 and -2.2±0.3, 

respectively. Aggregated fluxes for 15 land regions compare reasonably well with the best estimations for the 2000s (~2000-

2009), given by the REgional Carbon Cycle Assessment and Processes (RECCAP), and all regions appeared as a carbon sink 

over 2011-2020. Interannual variability and seasonal cycle in CO2 fluxes are more consistently derived for two distinct prior 

fluxes when a greater degree of freedom (increased prior flux uncertainty) is given to the inversion system. We have further 30 

evaluated the inversion fluxes using meridional CO2 distributions from independent (not used in the inversions) aircraft and 
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surface measurements, suggesting that the ensemble mean flux (model-observation mean±1σ standard deviation = -0.3±3 ppm) 

is best suited for global and regional CO2 flux budgets than an individual inversion (model-observation 1σ standard deviation 

= -0.35±3.3 ppm). Using the ensemble mean fluxes and uncertainties for 15 land and 11 ocean regions at 5-year intervals, we 

show promises and capability to track flux changes toward supporting the ongoing and future CO2 emission mitigation policies. 35 

 

1. Introduction 

Carbon dioxide is the most important anthropogenic greenhouse gas in the Earth’s atmosphere. Due to human 

influences, e.g., fossil fuels consumption and cement production (FFC), the concentration of atmospheric CO2 has 

increased (by 38%) from 289.9±3.3 ppm in 1850-1900 to 398.8±7.3 ppm in 2010-2019, with the fastest growth in 40 

past five decades (Canadell et al., 2021). To limit global warming below 1.5oC by 2100, as per the Paris Agreement, 

a drastic and sustained reduction in CO2 emissions from anthropogenic activities is recommended in the IPCC’s 6th 

assessment report (AR6). The IPCC AR6 Working Group 1 estimated remaining carbon budgets (starting from 1 

January 2020) for limiting global warming to 1.5°C, 1.7°C, and 2.0°C as 140 PgC, 230 PgC, and 370 PgC, 

respectively, based on the 50th percentile of the transient climate response to cumulative carbon emissions (TCRE) 45 

(Canadell et al., 2021). With the present FFC emissions of about 10 PgC yr-1 (Jones et al., 2021), the remaining 

carbon budget will be consumed within decades.  

 

The sinks on the land and ocean constitute a major component of nature-based solutions to mitigate the rise in CO2 

concentration, as discussed in the IPCC AR6 (Canadell et al., 2021). During 2010–2019, the CO2 emissions from 50 

human activities (average rate = 10.9±0.9 PgC yr-1) were distributed between three Earth system components: 46% 

accumulated in the atmosphere (5.1±0.02 PgC yr-1), 23% was taken up by the ocean (2.5±0.6 PgC yr-1), and 31% 

was stored by vegetation in terrestrial ecosystems (3.4±0.9 PgC yr-1) (Table 5.1 in Canadell et al., 2021). Large 

uncertainties persist for the total global land and ocean sink partitioning in the IPCC assessment, up to about 25% 

of the global total land and ocean sinks. The uncertainty in land and ocean sink partitioning of about 1 PgC yr-1 in 55 

the IPCC AR6 is based on the Global Carbon Project (GCP)’s annual carbon budget (Friedlingstein et al., 2020). 

One of the impediments to making policy for CO2 emission reduction is poor knowledge of the regional sources 

and sinks of carbon in Earth’s disturbed and undisturbed ecosystems on land and in the ocean (Kondo et al., 2020). 

To estimate regional CO2 sources and sinks, the country scale socio-economic statistics, field studies and remote 

sensing of the earth’s environment are most commonly used (bottom-up or inventory estimation), which often 60 

suffers from reliable data or regular data updates (Ito, 2019; Jones et al., 2021). In the other method (top-down 
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estimations), observations and model simulations of atmospheric concentrations are used to estimate CO2 sources 

and sinks in the terrestrial biosphere and the oceans (Peylin et al., 2013).     

 

Top-down inverse models estimate residual natural or non-FFC CO2 fluxes from land and ocean regions because 65 

inversion calculations do not explicitly optimise the FFC emissions, i.e., the FFC emissions are not revised, but the 

a priori land and ocean sinks are revised. When different sources of FFC emissions are used in inversions, post-

inversion corrections are applied for comparison between inversions (Peylin et al., 2013; Thompson et al., 2016). 

More recently, the inverse model inter-comparison experiments use prescribed FFC emissions, e.g., the global 

carbon project (Friedlingstein et al., 2020) or the OCO-2 flux intercomparison (Crowell et al., 2019,) to avoid the 70 

post-inversion correction. However, the impacts of biases in FFC emissions on inversion estimated CO2 fluxes 

remained relatively unexplored (Saeki and Patra, 2017). The FFC emission biases affect the region of FFC emission 

and the regions linked closely by atmospheric transport. This is because 1) the prior flux uncertainties set for each 

of the inversion regions may not be sufficient to allow fully compensatory correction by inversion, 2) the model 

transport biases could move FFC emission signals slowly or quickly from the source region, and 3) emission signal 75 

goes undetected within the region when there are not enough measurement sites in the source region of biased FFC. 

Most FFC emission inventories are based on the data available from the International Energy Agency (IEA) and 

British Petroleum and mainly differ in spatial distribution within a given country (Crippa et al., 2020; Jones et al., 

2021; Oda et al., 2018). 

 80 

The GCP annual updates of inversions provide a metric for evaluating inversions using independent measurements, 

mainly from the aircraft campaigns (e.g., Friedlingstein et al., 2020). Evaluation of predicted fluxes from model-

data differences may not be straightforward due to the underlying assumptions of a flux inversion system, e.g., for 

flux correlation lengths or the radius of influence for the measurements, observational data uncertainty, prior flux 

uncertainty (Baker et al., 2010; Chevallier et al., 2007; van der Laan-Luijkx et al., 2017; Miyazaki et al., 2011; 85 

Niwa et al., 2017; Rodenbeck et al., 2003), while the data assimilation system will fit the model concentrations to 

the observed values. For example, a model-observation difference within ±1 ppm and/or vertical concentration 

gradient simulation within 1-s standard deviation of the observed gradient resulted in more than 1 PgC yr-1 flux 

differences between models at regional or sub-hemispheric scales (Gaubert et al., 2019; Stephens et al., 2007; 

Thompson et al., 2016). Another way of improving our knowledge about uncertainties in regional flux estimations 90 

is to employ multiple types of datasets from both bottom-up and top-down modelling systems  (Ciais et al., 2021; 
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Kondo et al., 2020), which we have adapted here for checking the regional inversion fluxes, in addition to the GCP 

like evaluation using independent aircraft data. 

 

The uncertainties in the regional fluxes mainly arise from prior flux distribution and seasonality, selection of 95 

observational network and data uncertainty, transport model resolution leading to site-representation error, and 

uncertainties arising from parameterisation of transport processes (Basu et al., 2018; Patra et al., 2005a; Philip et 

al., 2019; Qu et al., 2021; Wang et al., 2018). The uncertainties associated with the subcontinental scale CO2 fluxes 

are often much greater than the interannual and interdecadal flux changes in non-FFC sectors, which allows us a 

better assessment of the changes in regional CO2 fluxes compared to knowledge gained in regional flux magnitudes 100 

(Baker et al., 2006; Gurney et al., 2008; Patra et al., 2005b, 2005a; Peylin et al., 2013; Rayner et al., 2008a; 

Rödenbeck et al., 2003). Typically, a multi-model assessment of flux estimation uncertainties is performed by 

collecting inversions from different transport models, e.g., in TransCom (Baker et al., 2006; Gurney et al., 2008; 

Peylin et al., 2013), for inversions using GOSAT measurements (Houweling et al., 2015) or for inversions using 

OCO-2 (Crowell et al., 2019; Peiro et al., 2022). Such intercomparisons used single inversions from different 105 

modelling groups and provided the range in total CO2 flux uncertainty due to the choices of prior fluxes distribution, 

prior flux uncertainty, observational data uncertainty, and the model transport uncertainties.   

 

Here we show an ensemble-based inversion approach based on different choices of prior flux uncertainties and 

representation of measurement data uncertainties, using a single chemistry-transport model (JAMSTEC’s 110 

MIROC4-ACTM). The details of the MIROC4-ACTM, observed and model data processing, inversion setup are 

given in Section 2, followed by the Results and Discussion in Section 3. The fluxes and uncertainties are presented 

at regional and global scales, along with their validation using inversion-independent observations. Although the 

inversions are performed for the period 1998-2020, results are discussed mainly for the two most recent decades 

(2001-2010 and 2011-2020), with the only exception of comparing land-ocean flux partitioning with the IPCC 115 

AR6. Conclusions are given in section 4.  

 

2. Materials and method 

2.1. JAMSTEC’s MIROC version 4 Atmospheric Chemistry-Transport Model (MIROC4-ACTM) 

The Model for Interdisciplinary Research on Climate, version 4 (MIROC4; Watanabe et al., 2008) atmospheric 120 

general circulation model (AGCM)-based chemistry transport model (referred to as MIROC4-ACTM; Patra et al., 
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2018) is used for the forward simulations of CO2. The MIROC earth system model is developed at JAMSTEC in 

collaboration with the University of Tokyo and the National Institute of Environmental Studies (NIES) (Kawamiya 

et al., 2020). Simulations of long-lived gases (CO2, CH4, N2O, SF6) in the atmosphere are performed at a horizontal 

resolution of T42 spectral truncations (~2.8o ×2.8o latitude-longitude grid) with 67 vertical hybrid-pressure layers 125 

between the Earth’s surface and 0.0128 hPa (~80 km) (Bisht et al., 2021; Chandra et al., 2021; Patra et al., 2017, 

2018). The simulated horizontal winds (U, V) and temperature (T) are nudged with the Japan Meteorological 

Agency Reanalysis data product (JRA-55; Kobayashi et al., 2015) at the altitude range of ~980-0.018 hPa for better 

representation of the atmospheric transport at synoptic and seasonal timescales. An accurate representation of 

transport is essential for performing inverse model calculation by minimising biases in horizontal and vertical 130 

gradients in the simulated tracer fields. We tested the large-scale interhemispheric transport and Brewer-Dobson 

circulation in the MIROC4-ACTM using the SF6 simulations in the troposphere and the CO2-derived age of air in 

the troposphere and stratosphere (Bisht et al., 2021; Patra et al., 2018). A close match between observed and 

modelled SF6 and photochemically inert CO2 vertical gradient in the troposphere and lower stratosphere manifests 

the accurate transport in the MIROC4-ACTM. Reasonably good model transport in MIROC4-ACTM enables us 135 

to use any mismatch between observation and simulations to estimate the land and oceanic fluxes using the inverse 

modelling technique (details in Section 2.4).  

 

2.2 A priori CO2 simulations  

We simulated CO2 tracers corresponding to the FFC (CO2
ff), land biosphere fluxes (CO2

lnd), fire emissions (CO2
fire), 140 

and ocean exchanges (CO2
ocn) from different sets of prior (bottom-up) emissions (Table 1). CO2

ff is simulated using 

the gridded fossil fuel emission dataset (GridFED; Jones et al., 2021). CO2
lnd tracers are simulated using two sets 

of terrestrial biosphere fluxes from the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model 

(Randerson et al., 1997), and Vegetation Integrative Simulator for Trace Gases (VISIT) (Ito, 2019). The CASA 

fluxes are annually balanced, seasonally varying flux due to terrestrial photosynthesis and respiration, while the 145 

VISIT simulation accounts for CO2 fertilisation (increasing photosynthesis due to rising atmospheric CO2), LUC 

(perturbation on terrestrial carbon budget due to land-use change), and climate variability. VISIT simulates a large 

land sink on the net (Table 1). The CASA and VISIT monthly-mean fluxes are downscaled to 3-hourly time 

intervals by redistributing respiration and gross primary production (Olsen and Randerson, 2004) using JRA-55 
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meteorology, i.e., 2m air temperature and incoming solar radiation at the earth surface (Table 1). Monthly-mean 150 

fire emissions are used from GFEDv4.1s (van der Werf et al., 2017) for simulating the CO2
fire tracer. Sea-air CO2 

fluxes are taken from an upscaling model of shipboard measurements of pCO2 (referred to here as TT09: Takahashi 

et al., 2009), and an empirical model of the Japan Meteorological Agency (JMA; Iida et al., 2021) for simulating 

CO2
ocn tracers. The seasonal cycle for TT09 sea-air exchange flux is stationary, like that of the CASA, over the 

analysis period, while the JMA oceanic CO2 fluxes vary interannually, as in the case of VISIT. The model and prior 155 

fluxes’ details are given in Table 1.  

 

Table 1: Transport model set up and a priori CO2 emissions used for simulating the atmospheric CO2 concentrations. The 

range in prior fluxes (2001 – 2020) is also given in PgC yr-1 for the study period.  

Model properties 

Transport model MIROC4-ACTM  

Resolutions 2.8 o ´ 2.8o lat-lon grid, 67 vertical layers (surface – 0.0128 hPa)  

Meteorology Nudged with JRA-55  

Prior Emissions/sinks (2001-2020) 

Source/sinks types Abbreviated name Global total: (PgC yr-1) 

Fossil Fuel and cement production GridFED  7.10 – 9.54 

Terrestrial biosphere 

 (off-line diurnal cycle by Y. Niwa, 

using JRA-55 meteorology) 

CASA-3hr 0 (Net annual flux) 

VISIT-3hr  -5.9 – (-6.2) 

Fires GFEDv4.1s  1.7 – 2.2 

Ocean exchange TT09 -1.41 (Cyclostationary) 

JMA -1.55 – (-2.78) 

 160 

We prepare two cases of prior CO2 simulations by adding the CO2 flux tracers in different combinations as follows: 
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gc3t =  CO2
ff (GridFED) + CO2

lnd (CASA-3hr) +  CO2
ocn (TT09)                                (1a) 

gvjf =  CO2
ff (GridFED) + CO2

lnd (VISIT-3hr) +  CO2
ocn (JMA) + CO2

fire               (1b) 

 

The gvjf case includes all the known interannual variability in land fluxes due to climate as simulated by VISIT 165 

and ocean fluxes by JMA. In contrast, the gc3t case has no information on interannual variability in land and ocean 

fluxes and the annual land sink. These two a priori flux cases are designed to evaluate the strength of MIROC4-

ACTM inversions to derive fluxes consistently (or the lack of it) given the information on CO2 measurements from 

a network of sites and the statistics of prior flux uncertainty (PFU) and model data uncertainty (MDU).     

 170 

2.3 Atmospheric Data Selection and curve fitting 

We used CO2 observations from 50 measurement sites (marked in Fig. 1) for the inverse modelling (Supplementary 

Table S1). Observations are taken from GML/NOAA (38 sites), CSIRO (four sites), LSCE/IPSL (one site), SIO 

(two sites), SAWS (one site), ECCC (one site), and JMA (three sites). Data until 2019 are taken from 

obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01 (Schuldt et al., 2021), and JMA data are taken from 175 

WDCGG. Extension to obspack_co2_1_GLOBALVIEWplus_v6.1 for 2020 is compiled from GML/NOAA 

(https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/) and WDCGG (https://gaw.kishou.go.jp/) websites as 

appropriate. We further extended the 2020 values into 2021 based on the growth rate determined for Jan-Mar 

observed at Minamitorishima (MNM) as available on the WDCGG (the results of 2021 will not be used in any 

analysis and will be treated as the spin-down year of inversion). The model simulations are sampled at the 180 

observation time and the grid point nearest to the observation location at hourly intervals. We selected the sites 

where the temporal data gaps are minimum; no more than six-month data gaps at a stretch for the inversion period 

(1999–2020). These temporal data gaps (1-6 months) are filled using the curve fitting method based on the digital 

filtering technique (Nakazawa et al., 1997). We fit the measured and simulated time-series at daily-weekly time 

intervals with six harmonics (extracts the sinusoidal component, i.e., seasonal cycle) and Butterworth digital filter 185 

with a cut-off length of 24 months (determines the long-term trends).  

 

2.4. Inverse method 

Inverse analysis of atmospheric CO2 helps linking the atmospheric observations to carbon fluxes from land and 

ocean. We use a time-dependent Bayesian inversion system, initially developed by (Rayner et al., 1999). The 190 

inversion formalism specifies prior estimates of both the fluxes and their uncertainty (called prior flux uncertainty 
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(PFU)) and optimises fluxes over 54 land and 30 ocean regions (Fig. 1) by minimising the difference between the 

CO2 mixing ratios simulated by the MIROC4-ACTM and observed at 50 measurement sites for 1998-2021. We 

exclude the first two years and last year of inversion from our analysis period (2000-2020) to avoid the edge effect. 

 195 

In the Bayesian inversion, when the relation between model parameters and data parameters is linear (𝑑 = 𝐉𝑠), the 

misfit function (𝜒!) is constructed as (Rayner et al., 2008b; Tarantola, 2005)  

𝜒! =	 "
!
)(𝑠 − 𝑠#)$𝐂(𝑠#)%"(𝑠 − 𝑠#) +	/𝐉𝑠# − 𝑑&'(0

$
𝐂/𝑑0

%"
/𝐉𝑠# − 𝑑&'(01   (2) 

Assuming that the elements of 𝐂/𝑑0 are uncorrelated, the solutions for 𝑠 and 𝐂(𝑠) can then be written as  

< 𝑠 >	= 		 𝑠# +	4𝐉$𝐂/𝑑0
%"
𝐉 + 𝐂(𝑠#)%"5

%"
	𝐉𝑻	𝐂/𝑑0

%"
(𝑑&'( − 𝑑*+$,)        (3) 200 

and posterior error covariance 

𝐂(𝑠) 	= 4𝐉$𝐂/𝑑0
%"
𝐉 + 𝐂(𝑠#)%"5

%"
                                               (4) 

where 𝑠#  is the prior source for the 84 regions and 288 months in 1998-2021, 𝐂(𝑠#) is the prior source error 

covariance matrix, 𝑑&'( is the measurement data at 50 sites for 288 months, and 𝐂/𝑑0 is the data error covariance 

matrix. 𝑑*+$,(≈ 𝐉𝑠#) is forward model simulation time series using a priori fluxes, run continuously for the whole 205 

period of analysis, and sampled at the time and locations of the individual measurement before calculating monthly 

means. 𝐉 is the Jacobian matrix of sensitivities of observations with respect to 𝑠, calculated using simulations of 

unitary pulse sources for a month for the 84 basis regions, and sampled at the 50 measurement sites. The unitary 

pulses are simulated for 4 years and originated for each month of year 2011 for all regions (84 regions ´ 12 months 

= 1008 tracers per year; one set of 𝐉-matrix is reused for all years). We have shown in Fig. S1 and associated text 210 

that the use of annually repeating 𝐉 does not significantly affect the inversion results as the majority of the spatial 

and temporal flux variabilities are coming from the a priori, which are simulated using interannually varying 

meteorology. The elements in 𝑠 are the optimised CO2 fluxes (referred to as a posteriori or predicted flux) from 84 

regions at monthly time intervals. The off-diagonal elements of 𝐂(𝑠#) are kept zero, assuming the a priori fluxes 

are uncorrelated to one another region or time. The correction fluxes (𝑠 − 𝑠#  in Eq. 3) is primarily determined by 215 

the term (𝑑*+$, − 𝑑&'(), scaled by the data/flux uncertainty. 
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Figure 1.  Divisions of 54 land and 30 ocean regions for inverse modelling and 50 observation sites (a), the right panel (b) 

shows the analysis regions adopted in this study (15 land and 11 ocean), which are consistent with the boundaries of the 

RECCAP, phase 2 (RECCAP2) land regions (Ciais et al., 2022) and TransCom ocean regions (Gurney et al., 2002).  220 

 

The inversion settings based on the choice of a priori fluxes, MDU, and PFU are crucial for flux estimation. The 

MDU refers to the degree to which the predicted concentrations are required to be fitted by the inverse model. In 

addition to measurement precision, MDU incorporates the inability of coarse spatial-resolution global ACTMs to 

simulate the concentrations at the observation sites. PFU decides the degree of freedom or allowed flux adjustment 225 

for each of the 84 regions to match the atmospheric data. It determines to what extent the priors are relied upon to 

constrain the posterior flux estimates. To determine the robustness of our results, we have performed sensitivity 

analysis by varying PFU and MDU (Table 2). In the first approach, we assign uniformly 2 PgC yr-1 uncertainty to 

each of the 54 land regions and 0.75 PgC yr-1 to each of the 30 ocean regions (referred to as PFU = “ctl”). In the 

second approach, we assign the land uncertainty by scaling the regional total FLUXCOM gross primary 230 

productivity (GPP) (Jung et al., 2017), while the uncertainty for the ocean regions is kept at 0.5 PgC yr-1. In this 

case, regional total GPPs were multiplied by 2, and the upper limit is set at 2 PgC yr-1 (referred to as gpp_v2; PFUs 

varied from 0.2-2.0 PgC yr-1). We construct two additional PFU cases (gpp_v3 and gpp_v4) by multiplying the 

regional total GPPs by a factor of 3 and 4, respectively, and the allowed range is set at 0.3-3.0 and 0.4-4.0 PgC yr-

1. The land PFUs varied as 0.4-3.0 PgC yr-1 and 0.6-4.0 PgC yr-1 for the gpp_v3 and gpp_v4, respectively. The 235 

ocean PFUs were set at 0.75 PgC yr-1 for gpp_v3 and 1.0 PgC yr-1 for gpp_v4 (Table 2). Selection of a wide range 

of PFUs, in the range of 0.5 – 1.0 PgC yr-1 for the ocean regions and 0.2 – 4.0 PgC yr-1 for the land regions allows 

us to understand the stability of the inversion system by assessing the range of a posteriori fluxes for aggregated 

sub-continental/basin regions or the land and ocean totals.  
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 240 

Table 2. List of 16 inversions based on the combinations of four different prior flux uncertainty (PFU) and model data 

uncertainty (MDU) cases. Each PFU and MDU combination case is run for the two prior flux distributions, 1) gc3t (GridFED 

+ CASA-3hr + TT09) and 2) gvjf (GridFED + VISIT-3hr + JMA ocean + Fires - GFED). The abbreviation of inversion cases 

is arranged as PFU_MDU_Prior Flux. 

 245 

PFU 

(PgC/yr) 

MDU 

(ppm) 

Inversion cases 

gc3t gvjf 

ctl 

land = 2.0 ; ocean = 0.75 

ux2 = 

0.1 + 2 × √RSD 

or  

ux4 =  

0.1 + 4 × √RSD 

 

 

RSD: Residual 

standard deviation 

ctl_ux2_gc3t 

ctl_ux4_gc3t 

ctl_ux2_gvjf 

ctl_ux4_gvjf 

gpp_v2 

land=0.2-2.0 ; ocean=0.50 

gpp_v2_ux2_gc3t 

gpp_v2_ux4_gc3t 

gpp_v2_ux2_gvjf 

gpp_v2_ux4_gvjf 

gpp_v3 

land=0.4-3.0 ; ocean=0.75 

gpp_v3_ux2_gc3t 

gpp_v3_ux4_gc3t 

gpp_v3_ux2_gvjf 

gpp_v3_ux4_gvjf 

gpp_v4 

land=0.6-4.0 ; ocean=1.0 

gpp_v4_ux2_gc3t 

gpp_v4_ux4_gc3t 

gpp_v4_ux2_gvjf 

gpp_v4_ux4_gvjf 

 

The monthly-mean residual standard deviation (RSD), from the difference between measured and fitted data, plus 

a constant value to account for the measurement accuracy, are used for monthly varying MDU at each station for 

inverse modelling calculations. The absolute magnitude of MDU is chosen in such a way that the estimated flux is 

optimized to the data only to an appropriate level commensurate with the ability of ACTM to model them. We 250 

prepared two MDU cases by multiplying the RSDs by a factor of 2 (referred to as “ux2”) and 4 (referred to as 

“ux4”), and added these to an estimated measurement uncertainty of 0.1 ppm.  Based on different combinations of 

four PFU (ctl, gpp_v2, gpp_v3, gpp_v4), two MDU (ux2, ux4), and two prior flux cases (gc3t and gvjf), we run 16 

sets of inversion cases (Table 2). Based on the inversions with multiple priors, PFUs and MDUs, we will present 

estimated mean/median fluxes and spread as 1-𝜎 standard deviations from 16 ensemble members.  255 
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Figure 2 shows the examples of simulated and observed time series of CO2 (top row), and simulated-observed 

differences (bottom row) at two selected sites, Alert and Syowa. The results show faster (slower) CO2 increase 

rates for the a priori flux simulated case gc3t (gvjf), mainly because of no land sink in CASA flux and stronger 

land sink in VISIT flux (broken red and purple lines, respectively). Using the mean of these two a priori flux 260 

scenarios, the prior CO2 concentrations show a better match with the CO2 growth rates (refer to the grey lines in 

the lower row; Fig. 2). Even after inversion, mild overestimation (underestimation) of the CO2 growth rate for gc3t 

(gvjf) cases persisted, and by taking ensemble mean inversion flux the CO2 growth rates are perfectly matched with 

the observations (Fig. 2), which is sometimes set as an evaluation metric for atmospheric CO2 inversions 

(Friedlingstein et al., 2020).  265 

 

Figure 2. Time series of observed and model CO2 time series for two a priori (apr) simulation cases (gc3t and gvjf), and 

posterior (post) flux simulation cases using control MDU and PFU case ux4 (top row). Results for the mean of two a priori 

flux cases and ensemble mean inversion case are also shown. The model-observation differences are shown in the bottom row. 

Results are shown for two sites, Alert (82oN, 63oW; measurements by Environment Canada), and Syowa (69oS, 40oE; 270 

measurements by Tohoku University/National Institute of Polar Research).  
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2.5 Performance of inversion 

We use flux uncertainty reduction (FUR, in %) to identify which regions are well constrained by the data. FUR is 

a standard diagnostic of Bayesian estimation and defined by 275 

𝐹𝑈𝑅	 = 	;1	 −	
𝜎-./0123/0
𝜎-.1&.

=	× 	100 

where σprior and σpredicted represent the prior and predicted flux uncertainties. High values (FUR towards 100) indicate 

strong data constraints, while low values (close to 0) indicate that the data are not able to move the estimates away 

from the prior. To identify which parts of the land and ocean have been constrained significantly by the inversions, 

PFU, predicted flux uncertainty, and FUR is plotted in Fig. 3 for the four PFU cases of gc3t and ux4 setup. The 280 

PFU cases “gpp_v4” and “ctl” show observational constraint over most of the region (grey shaded areas on the 

right column). Reasonable constraints (larger FUR) are obtained for Northern America, Russia, Southern Ocean, 

Tropical Pacific, South Indian, and North Atlantic, highlighting the large long-running observational programs by 

USA, Japanese, and European research groups. The poor constraints (low FUR) are observed over South Asia, 

West Asia, Northern Africa, and the Tropical Indian Ocean due to the lack of observations. It is also noted that 285 

FUR is influenced by PFU settings. For example, a smaller a priori uncertainty, i.e., gpp_v2 achieved lower FUR. 

As discussed later in this article, the FUR is only indicative of the observational constraint on the regional fluxes, 

the spread of ensemble inversions provides a measure of uncertainty of the regional CO2 sources and sinks.    
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Figure 3: Prior and posterior flux uncertainties for four different PFU (4 rows: ‘ctl’, ‘gpp_v2’, ‘gpp_v3’, ‘gpp_v4’) cases are 290 

shown in the left and middle column, respectively, and the flux uncertainty reduction (FUR) in the right column. The FUR is 

an indicator of constraint provided by atmospheric observations. High values (towards 100) in uncertainty reduction indicate 

strong data constraints, while low values (close to 0) indicate that the data are not able to move the estimates away from the 

prior. All cases correspond to the MDU case ux4 and “gc3t” inversion case. The circles show the 50 observation sites used for 

inverse analysis. 295 

 

2.6 Flux processing and regional uncertainty estimations 

The predicted fluxes from 84 regions (54 land and 30 oceans) are regridded to the 1o´1o spatial resolutions based 

on the land and ocean basis functions. Once regridded, the fluxes were aggregated into 15 land and 11 ocean regions 

for further analysis (ref. Fig. 1b). First, the fluxes from each inversion are averaged for different analysis periods 300 

(monthly, annual, five-year, decadal). Then, we averaged the individual means (n=16) to estimate the ensemble 

mean and standard deviations. The ensemble means (here and, in the following, referred to as “ensm”) is the best 

estimate (i.e., a measure of central tendency) of land-air and sea-air exchange carbon flux. The best estimate 

criterion is based on the closest agreement of the global total (FFC emissions + land and ocean sinks) fluxes with 
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the global mean growth rate (section 3.2). There are different options to characterize “uncertainty” in CO2 flux 305 

estimates, for example, the standard deviation, standard error, 95% confidence intervals, and interquartile ranges. 

Here, we followed the standard deviation of the multi-inversion means as a metric of the “uncertainty” (i.e., 

variability) in the multi-inversion estimates. The regional and global land/ocean flux uncertainties estimated from 

the 16 ensemble members cover those that arise from priori flux distributions, PFU, MDU. The uncertainties due 

to data coverage and model transport errors are not assessed here.   310 

    

2.7. Observations used for predicted fluxes validation 

The predicted fluxes are validated by comparing the posterior 3-dimensional CO2 mixing ratios fields to 

independent (i.e., not used in the inversions) aircraft observations. The aircraft observations used for validation 

include data published in obspack_co2_1_GLOBALVIEWplus_v6.1 (Schuldt et al., 2021).  315 

 

 2.7.1 HIPPO and ATom observations 

We used the CO2 from two sets of aircraft campaigns: the HIAPER Pole‐to‐Pole Observations (HIPPO) during the 

period January 7, 2009, to September 15, 2011 (Wofsy, 2011) and the Atmospheric Tomography Missions (ATom) 

during the period July 29, 2016, to May 21, 2018 (Wofsy et al., 2018) to validate the latitude-altitude gradients 320 

covering different seasons over the Pacific and Atlantic Oceans. The four HIPPO campaigns (HIPPO-1 in January 

2009, HIPPO-2 in October/December 2009, HIPPO-3 in March/April 2010 and HIPPO-4 in May/July 2011), 

performed from 82°N to 67°S over the Pacific (but also partly cover the North American continent) and with 

continuous profiling between ~150 m and 8500 m altitudes at approximately 2.2o latitude intervals, are used for the 

validation. The ATom mission is built upon the HIPPO mission, but with a wider horizontal extent with global 325 

coverage over the Pacific, the Atlantic, and the Arctic oceans. The comparisons performed for all the four ATom 

circuits occurred in July–August 2016 (ATom-1), January–February 2017 (ATom-2), September– October 2017 

(ATom-3), and April–May 2018 (ATom-4). The mission consisted of 48 science flights and 548 vertical profiles 

over the Pacific and Atlantic basins.    

 330 

 2.7.2. NOAA measurements 

We used 16 NOAA regular aircraft‐based vertical profiles (Fig. S7, S8) also to validate the simulated vertical 

gradients in the troposphere (Sweeney et al., 2015). These aircraft sites are located mainly over the North American 
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continent (Table S4). The aircraft profiles include measurements over the Southern Great Plains (SGP: 2006-2019), 

operated by the U.S. Department of Energy (Biraud et al., 2013). Most of the aircraft profiles range between the 335 

surface and 350 hPa. For shorter periods, flights up to 150 hPa are available for the sites Charleston, South Carolina 

(SCA), SGP, and Cartersville, Georgia (VAA), also covering the UTLS (upper troposphere/lower stratosphere) 

region.  

 

2.7.3. CONTRAIL measurements 340 

The CONTRAIL (Comprehensive Observation Network for Trace gases by AIrLiners) program uses an Automatic 

air Sampling Equipment (ASE) for flask sampling and Continuous CO2 Measuring Equipment (CME) for in-situ 

CO2 measurements (Machida et al., 2008; Matsueda et al., 2008). These instruments have been installed on several 

Boeing aircraft operated by Japan Airlines (JAL) with regular flights from Japan to Australia, Europe, Asia (East, 

South, and Southeast), Hawaii, and North America, providing large spatial data coverage across the globe, 345 

particularly in the Northern Hemisphere. The ASE performed flask samplings in the upper troposphere and lower 

stratosphere (altitude range of ~7–12 km). The CME data are recorded at 10-sec intervals during ascent/descent 

(~100-meter intervals in altitude) and at 1-min intervals during cruise (~15 km intervals horizontally) as well as in-

flight aircraft positions. CME is not operated within ~600 m of the ground surface to avoid heavy pollution around 

airports. The CME has obtained thousands of CO2 vertical profiles over many airports since 2005. The ASE and 350 

CME, along with NOAA aircraft measurements of CO2, are used to estimate the latitudinal bias in predicted fluxes. 

 

2.8 Evaluation Metrics 

We calculate correlation coefficients (R), mean bias (MB), and root-mean-square errors (RMSE) to evaluate the 

predicted fluxes with aircraft observations. The mean bias and RMSE are defined as  355 
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where 𝑥+4!
&  is observation, 𝑥+4!

- is predicted CO2 mole fraction sampled at the ith aircraft location, and n is the 

number of aircraft observations. The MB infers the magnitude of underestimation/overestimation of CO2 mixing 360 

ratios by the model. The RMSE includes errors (both random and systematic) in the predicted CO2. The MB and 

RMSE could be due to uncertainties in predicted fluxes. Model transport is one of the sources leading to 

uncertainties in the predicted fluxes, but the simulations of SF6 and the age of air confirm the low transport error 

in MIROC4-ACTM (Bisht et al., 2021; Patra et al., 2018). Hence, the magnitude of biases and RMSE indicates 

predominantly the accuracy of the predicted fluxes (the errors due to model transport and measurement network 365 

are not explored in this study).  

 

 3. Results and Discussion 

3.1 Global flux distributions  

Figure 4 shows the spatial distributions of annual mean CO2 fluxes. While the spatial distributions of a priori 370 

oceanic flux are similar for the JMA and TT09, the terrestrial biosphere fluxes are vastly different. The annually 

neutral CASA fluxes show near-zero values for most grid cells. However, strong sinks are observed over most of 

the densely vegetated regions of the globe for the VISIT+GFED fluxes, mainly because VISIT simulation produces 

stronger sinks by the ecosystem (Fig. 4a, 4d). Anomalously strong sources are also seen in Fig. 4d due to the fire 

emissions estimated by GFED based on the satellite-derived burned area anomaly. The a posteriori results make 375 

reasonable corrections regardless of which a priori fluxes they start from, e.g., the gc3t case with net-zero annual 

flux or the ‘gvjf’ case with strong sink. Consistently predicted fluxes are seen for North America, Europe, Russia, 

or East Asia for the PFU=ctl case (middle row). Similarities are slightly less when the PFU is scaled to the GPP of 

84 regions of the inverse model (bottom row). This suggests that the greater PFU is more suitable for the inversion 

when the region has observational sites (Fig. 1). In the case of PFU=gpp_v2, the fluxes are not allowed to change 380 

much in the boreal regions except for the summer months. However, the gpp_v2 inversion may be preferred over 

the dry region of Northern Africa, where the control PFU case produces an East (weak source) - West (weak sink) 

dipole. Performance of the inversions to retrieve the flux distributions over tropical America and tropical Africa 

are unclear. They show large dependence on the prior flux distributions, possibly due to the lack of observations 

within the land regions in our inversion. The main focus of this study is to better understand the total regional 385 

emissions and their trends over the past 20 years. The inversion does not revise the fine structures within each of 

the 84 regions of the inversion by the design of the system, where the regional basis functions assume a fixed 
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pattern for constructing the source-receptor relationships (J-matrix). The degree of freedom of our inversions is a 

few times smaller than the gridded inversions when spatial flux correlations of 1000-2000 km are assumed (Peylin 

et al., 2013).  390 

 
Figure 4. Spatial distributions of CO2 prior flux for two different sets of land and ocean flux combinations (a, d). The middle 

(b, e) and bottom (c, f) panels show predicted CO2 fluxes by using two different prior flux uncertainty patterns (ctl, gpp_v2).   

  

3.2. Global total fluxes 395 

Figure 5 shows the trends and interannual variability in the global fossil fuel (FF) emissions (used as input for the 

inverse model), land-biosphere, ocean, and annual atmospheric CO2 growth rate for 16 inversion ensemble 

members based on two combinations of land-biosphere and ocean prior fluxes (VISIT and CASA for land-

atmosphere, and TT09 and JMA for sea-air) and eight combinations of prior flux/data uncertainties (PFU and 

MDU). The uncertainty in the ensemble means flux of 16 inversion cases is calculated using ±1σ spread in the 400 
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time-averaged fluxes for 10 or 5 yr periods in this study. The uncertainties in the predicted fluxes due to different 

priors are 0.35 PgC yr-1 for global land and 0.1 PgC yr-1 for the global ocean. The uncertainty due to PFU and MDU 

is less than 0.15 PgC yr-1 for land and ocean carbon uptake for gc3t or gvjf inversions. It indicates that prior flux 

patterns and trends alter the predicted global land and ocean fluxes. Ensemble mean land and ocean fluxes are in 

excellent agreement with the IPCC “mean” estimates, notably within the 1-σ uncertainty estimated from 16 405 

ensemble member inversions (Table 3). The ensemble spread is much lower (Table 3; MIROC4-ACTM columns) 

compared to the inversion predicted flux uncertainties, which are in the range of 1.4 and 0.7 PgC yr-1 for the global 

land and ocean, respectively (vary from low values of 0.8 and 0.5 PgC yr-1 for gpp_v2 cases to 1.6 and 0.9 PgC yr-

1 for the gpp_v4 inversions).   

 410 
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Figure 5. Global annual CO2 emissions from fossil-fuel (a) and estimated land (b) and ocean (c) carbon sink from two sets of 

prior and 16 sets of predicted fluxes based on different combinations of priors (gc3t and gvjf), prior flux uncertainties (PFU: 

ctl, gpp_v2, gpp_v3, gpp_v4) and measurement data uncertainties (MDU: ux2, ux4). Negative values are uptake by land/ocean, 415 

and positive values are sources to the atmosphere. The net flux is calculated by subtracting the total sink (land + ocean) from 

the fossil fuel and compared with the observed global growth rate of atmospheric CO2 concentration from the NOAA/ESRL 

(magenta line in panel “d”: Dlugokencky and Tans, 2020). The atmospheric CO2 growth rate is converted using a factor of 

2.13 PgC ppm-1. The numbers in the brackets in the legend are the mean budget imbalance between annual means of net flux 

and observed CO2 growth rate (units: PgC yr-1). The background shading (+ve/brown for El Niño and -ve/blue for La 420 

Niña) shows Multivariate El Niño Southern Oscillation (ENSO) Index or MEI (Wolter and Timlin, 2011).  

 

Table 3: Comparison of global total land and ocean CO2 exchanges estimated by the inversion model with those from the 

IPCC 2021 (Table 5.1; (Canadell et al., 2021). The inversion uncertainties due to PFU and MDU for each inversion family 

based on priors represent ±1σ decadal estimates from the individual inversions. The inversion means and 1-sigma standard 425 

deviations are shown for two prior flux cases (8 each for gc3t and gvjf) and all 16 ensemble members (ensm). The IPCC global 

land and ocean CO2 uptakes are corrected for the river export fluxes. This correction to the net ocean and land uptakes is 

required because the inverse model estimates fluxes across the land/ocean-atmosphere interface, while the part of the land 

carbon exchange is exported to the ocean via the rivers and streams.   

 CO2 budget 2000–2009 (PgC yr–1) 2010–2019 (PgC yr–1) 

IPCC (2021) MIROC4-ACTM IPCC (2021) MIROC4-ACTM 

FFC Emissions 7.7 ± 0.4 7.99 9.4 ± 0.5 9.67 

Atmospheric 

increase 

4.1 ± 0.02 4.33 ± 0.08 (gc3t) 

4.10 ± 0.06 (gvjf) 

4.22 ± 0.14 (ensm) 

5.1 ± 0.02 5.28 ± 0.08 (gc3t) 

5.02 ± 0.07 (gvjf) 

5.15 ± 0.15 (ensm) 

Ocean uptake 

River export 

Ocean exchange  

-2.1 ± 0.5 

+ 0.8 

= -1.3 ± 0.5 

-1.52 ± 0.03 (gc3t) 

-1.40 ± 0.11 (gvjf) 

-1.46 ± 0.10 (ensm) 

-2.5 ± 0.6 

+ 0.8 

= -1.7 ± 0.6 

-1.66 ± 0.05 (gc3t) 

-1.58 ± 0.23 (gvjf) 

-1.62 ± 0.17 (ensm) 
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Land uptake + 

Land-use change 

(= net flux)  

River export 

Land exchange 

-2.9 ± 0.8 + 

 1.4 ± 0.7  

(= -1.5 ± 1.06) 

- 0.8 

 -2.3 ± 1.06 

-2.14 ± 0.1 (gc3t) 

-2.49 ± 0.14 (gvjf) 

 -2.31 ± 0.21 (ensm) 

-3.4 ± 0.9 + 

 1.6 ± 0.7 

(= -1.8 ± 1.14) 

- 0.8 

-2.6 ± 1.14 

-2.73 ± 0.11 (gc3t) 

-3.07 ± 0.26 (gvjf) 

-2.90 ± 0.26 (ensm) 

 430 

The year-to-year variability in land and ocean carbon sink (Fig. 5b,c) shows considerable agreement across the 

inversion cases because of the strong constraint provided by atmospheric CO2 measurements at the global scale due 

to global tracer mass conservation. The year-to-year variability in atmospheric CO2 growth rate is linked to the 

variability in natural sources and sinks of carbon from land and ocean for given FFC emissions. The observed CO2 

growth rate from NOAA (Dlugokencky and Tans, 2020) is compared with the estimated CO2 growth rate (by 435 

inversion), defined as the difference between fossil fuel emissions and total sink over land and ocean on an annual 

basis (Fig. 5d). The NOAA growth rate (ppm yr-1) is converted to units PgC yr–1 using a conversion factor of 2.13 

PgC ppm-1 (Raupach et al., 2011). The resulting mean carbon budget imbalance (in PgC yr-1), calculated as the 

mean absolute difference between the inversion estimated (FFC emissions + a posteriori land and ocean sinks) and 

the observed CO2 growth rates, is given in the legends (Fig. 5). The year-to-year variability in the global annual 440 

total of net CO2 flux is robust across different inversion cases (r=0.97) and with the observed growth rates (r=0.9); 

however, the global totals over 2001-2020 show slight bias with that observed. Compared to the observed CO2 

growth rate, the inversion shows systematic positive (range 0.1-0.3) and negative (range 0.0 - (-0.2)) imbalances 

for gc3t and gvjf inversions, respectively. The ensemble mean of 16 inversions ("ensm") agrees well with the 

observed growth rate within the uncertainty of the predicted fluxes over the 20 years (Fig. 5d).  445 

Inversions suggest that both the terrestrial land and ocean sinks increased during our analysis period 2000 to 2020. 

The ensemble means of terrestrial land CO2 sink increased from -2.31±0.21 PgC yr–1 in the 2000s (2000-2009) to 

-2.9±0.26 PgC yr–1 in the 2010s (2010-2019), with significant interannual variations up to 2 PgC yr–1. The 

interannual variability in land CO2 flux is predominately associated with the response of the terrestrial biosphere 

to El Niño-Southern-Oscillation (ENSO) induced changes in the weather pattern. In 2015-2016, and to a lesser 450 

extent in 2010, El Niño conditions reduced carbon uptake by the land ecosystems in the tropics (e.g., Baker et al., 

2006; Bousquet et al., 2000; Patra et al., 2005b). The average ocean sink intensified from -1.46±0.10 PgC yr–1 in 

the 2000s to -1.62±0.17 PgC yr–1 in the 2010s, with interannual variations of the order of a few tenths of PgC yr–1 
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(Chatterjee et al., 2017; Feely et al., 1999; Patra et al., 2005a). The global ocean biogeochemistry model (GOBM) 

products, and those based on pCO2 measurements, also show similar decadal variability patterns (DeVries et al., 455 

2019; Hauck et al., 2020).  

 

This gradual increase in the ocean CO2 sink is caused by the increasing pCO2 difference between the marine air 

and sea-surface water. The strong increase in the net sink by the terrestrial biosphere during 2001-2009 is 

sometimes attributed to the bias in FFC emissions from China (Saeki and Patra, 2017), and the gradual sink increase 460 

can be attributed to CO2 fertilisation  or water-use efficiency as more carbon is available for assimilation by 

photosynthesis (Keeling et al., 2017; Kondo et al., 2018). In addition, the land CO2 uptake efficiency in the period 

of this analysis could partly be controlled by a decadal shift in the frequency of natural climate variability, such as 

ENSO. In the 2000s, no extreme El Niño conditions were observed, resulting in suppressed fire emissions and 

lowered drought occurrences, while the opposite conditions prevailed in the 2010s (intense El Niño in 2010, 2015-465 

2016, 2019-2020), which is likely to reduce net uptake by the land ecosystems (Patra et al., 2005b). Fire emissions 

with an estimated peak-to-trough change of about 0.5 PgC yr–1 (Table 1) alone cannot explain the large changes in 

land sinks of the order of 2-3 PgC yr–1.   

 

3.3 Sub-continental scale land and ocean fluxes 470 

Here, we present interannual variability in a priori and predicted carbon fluxes over 15 lands (Fig. 6) and 11 ocean 

regions (Fig. 7). The uncertainty in the predicted carbon fluxes is estimated as 1-s spread among the 16 inversion 

cases. Significant differences are seen in between a priori (VISIT) fluxes over Russia (-0.76 PgC yr-1), East Asia (-

0.55 PgC yr-1) and Europe (-0.54 PgC yr-1), and ranges of inversion estimations -0.33 to -0.37, -0.42 to -0.57 and 

0.08 to -0.09 PgC yr-1, respectively. In general, the inversions suggest substantial uptakes over Temperate North 475 

America (-0.59±0.14 PgC yr-1), followed by East Asia (-0.49±0.09 PgC yr-1), Boreal North America (-0.38±0.1 

PgC yr-1), and Russia (-0.35±0.05 PgC yr-1) for the study period.   
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Figure 6. Interannual variation of terrestrial land CO2 fluxes derived from 16 sets of inversion. The variations are shown for 

15 aggregated regions shown in the map. The negative values are counted as CO₂ removals from the atmosphere, while CO₂ 480 

emissions are counted positively.   
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The large spread in the predicted fluxes over Temperate North America, Temperate South America, and Europe 

indicate that the estimated flux is more sensitive to the selection of PFU and MDU when there are measurement 

sites within the region or in the neighbourhood. The carbon fluxes over tropical (Tropical America, Brazil, South 485 

Asia, and Southeast Asia) and extratropical (Temperate South America, Central Africa, Southern Africa, and 

Oceania) land regions are found relatively less certainly; the ensemble of inversions splits into weak source or sink 

groups based on the land priors. For example, inversions using the VISIT flux show a net source signal over all the 

three African regions, while those using the CASA flux exhibit a net sink. Similarly, all inversion cases based on 

the CASA prior show almost no carbon sink for South Asia, while VISIT-based inversion cases show a net sink of 490 

-0.18 ± 0.11 PgC yr–1. VISIT prior consists of strong sinks over all three South America regions. For all the regions, 

the inversions moderated the sinks, thus, producing fluxes closer to the inversions using CASA prior even though 

the regions have no measurement sites (Fig. 6; Table S2). These regions of Africa, South America, and South Asia 

are weakly constrained in the inversions due to the limited observations representing these regions. However, for 

most of these regions lacking in observations, the VISIT and CASA-based inversions are moving toward a common 495 

flux value, i.e., the range of the two prior fluxes is usually much greater than the 16-inversion ensemble spread.   

 

The predicted land carbon sink over East Asia tends to increase is tied to a rapid increase in FFC emissions for 

2001-2009. The rapid increase in CO2 emissions from FFC could impose an artificial trend in the terrestrial land 

flux estimate for the East Asia region (Saeki and Patra, 2017). Because the atmospheric data constrain the total net 500 

surface flux regionally when fluxes are constrained by observations, a biased high increase in fossil fuel emissions 

is required to be compensated by a biased high increase in the natural land uptake by inversion. If absolutely no 

constraints by observations, the compensation will occur in the regions where the prevailing winds transport the 

biased FFC signals. The South Asian uptake remains almost constant for the study period. For West Asia, both sets 

of inversion show the land CO2 flux fluctuates around zero with slight interannual variation, indicating a stable 505 

trend of land flux changes and a small contribution to uptake of all the tropical regions. The annual trend in 

Southeast Asian carbon fluxes is overwhelmed by large interannual variability, driven mainly by ENSO-induced 

fire emission variability (Patra et al., 2005b; van der Werf et al., 2017). Over the African continent, Central Africa 

shows the highest interannual variability, mainly due to biomass burning emissions under the influence of ENSO. 
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The CO2 flux anomalies in the case of gvjf inversions support the fire emission anomalies taken from GFEDv4.1s 510 

as included in the prior, and what is more impressive for us is the ability of the gc3t inversions to produce similar 

phase and magnitude of the flux variabilities starting from a prior flux that has no interannual variability (even for 

these relatively unconstrained regions).   

 

Figure 7 shows good agreement among the predicted fluxes for the 11 ocean regions and the decadal flux variability, 515 

which are derived from TT09 prior flux with no interannual variability and JMA flux, including interannual 

variability. The inversion results show substantial changes in the estimated interannual variability caused by the 

assumed PFU and MDU. The Northern Ocean shows a significant spread from the mean (-0.13 ± 0.14 PgC yr-1) 

for higher MDU, particularly for 2011-2015 (-0.01±0.06 PgC yr-1) in the gvjf inversions. In the opposite phase a 

similar spread is also found for the neighboring Boreal North America, Europe, and Russia land fluxes. Because 520 

the flux variabilities over land regions are larger than ocean regions (by about a factor of 2), the Northern Ocean 

fluxes can be perturbed by relatively unnoticeable anomalies in the neighbouring land fluxes. These features appear 

likely because of the incomplete measurement constraint in the inversions permits “dipoles” of flux errors to occur 

between the neighbouring regions (compensating errors of opposite sign due to the inability of the measurements 

to completely the source or sink in the right place). It is indicative that an analysis of fluxes for one region may be 525 

challenging to interpret when isolated from the rest of the world in an inversion of long-lived species because of 

the large-scale mixing by transport. 



 

25 
 

25 

 
Figure 7. Interannual variation of sea-air CO2 fluxes derived from 16 sets of inversion. The variations are shown for 11 

aggregated regions shown in the map. The negative values are counted as CO₂ removals from the atmosphere, while CO₂ 530 

emissions are counted positively.   

 

A significant difference in the priors over the South Atlantic is observed; the JMA fluxes suggest a two-fold higher 

CO2 uptake (0.33 PgC yr-1) than in the TT09 (Table S2). The inversion results largely follow their priors over this 

region, which is observationally unconstrained by sites within the region. Both the prior and predicted fluxes show 535 

that the East Pacific is a significant source of CO2 to the atmosphere, caused by the upwelling off deep ocean water 

(that brings CO2-rich water from ocean interior to surface) of the west coast of the South American continent. A 
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small net outgassing signal occurred over the Tropical Indian and Tropical Atlantic Oceans. Because of a tighter 

constrain due to the relatively extensive coverage of observation sites, all 16 predicted fluxes converged on 

consistent Southern Ocean decadal trends and interannual variability, even though we have not accounted for 540 

interannual variability or trends in the TT09 prior. The Southern Ocean CO2 sink intensity shows considerable 

variability from interannual to decadal timescales, and sink stabilisation  after 2010 may have been caused by a 

regional shift in sea level pressure and surface winds (Keppler and Landschützer, 2019).  

 

3.4 Interannual variations in regional CO2 fluxes  545 

To examine the regional pattern of anomalies in the land and ocean CO2 sink, following Patra et al. (2005b, 2005a), 

we calculated the monthly anomalies by subtracting a long-term mean seasonal cycle from the monthly emissions 

from 2001-2020 (Fig. 8). Thus, the time series contains the interannual variability (IAV) and long-term trends for 

the analysis period. The anomalies from both inversion cases are consistent over most regions; however, the 

magnitude differs. Despite the absence of IAV in the “gc3t” prior fluxes, the consistent interannual variability 550 

suggests that inversion is robust in constraining the IAV in carbon fluxes. The correlations between “gc3t” and 

“gvjf” inversions over land are greater than 0.7, which are statistically significant at p<0.0001. The correlations 

were less than 0.3 between “gc3t” inversion and “gvjf” prior, which can be inferred as only some of the interannual 

variabilities were present in the gvjf prior, and the interannual flux variability for gvjf inversions are significantly 

different from gvjf prior. These results imply that the VISIT land ecosystem fluxes and GFEDv4.1s fire emissions 555 

inadequately represent CO2 flux signals that are observed at the 50 measurement sites in our inversion. Large-scale 

cyclic patterns of climate anomalies such as ENSO account for a large part of climate variability on interannual to 

sub-decadal timescales CO2 flux variabilities. Climate anomalies are associated with changes in temperature 

distributions and large-scale circulations of the ocean water and the atmosphere.  
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 560 

Figure 8. Three-monthly running averages of CO2 flux anomalies as estimated by the inversions for land and ocean regions 

from atmospheric CO2 data, with varying prior flux uncertainty and different a priori emissions. Flux anomaly is calculated by 

subtracting an average seasonal cycle from 1999 to 2020 from the monthly-mean CO2 fluxes. The cases shown in the Figures 

are obtained by ‘gvjf’ prior (thick grey line), an average of all ‘gc3t’ inversion cases, and ‘gvjf’ inversion cases. The 

±1σ	around the mean of both inversion cases are shown as shading. The ENSO index is plotted in the background for the 565 

corresponding period. The correlations between fluxes (predicted and prior) and multivariate ENSO index are shown in Table 

S3. 
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The CO2 flux anomalies in the tropical regions are strongly correlated with the ENSO index, while temperate and 

boreal regions are weakly correlated, as expected from the areas of ENSO influences (Table S3). In the northern 570 

high latitude regions of Europe, America, and Asia, a negligible correlation was found between CO2 flux anomalies 

and the ENSO index. It is because, over these regions, the North Atlantic Oscillation (NAO)/Arctic Oscillation 

(AO) or Pacific Decadal Oscillation (PDO) are the dominant climate factors for the CO2 flux anomaly, likely 

through the temperature variation (Patra et al., 2005). The warmer weather in these regions may lead to a negative 

CO2 flux anomaly (Russia) since that condition stretches the growing season length (Dye and Tucker, 2003). The 575 

correlation coefficient between CO2 flux anomalies for different aggregated land and ocean regions is given in 

Table S3. 

 

In 2015, a strong El Niño induced severe drought and biomass burning in Equatorial Asia. It was one of the most 

significant El Niño events after the well-known major El Niño in 1997/1998 (L’Heureux et al., 2017; Santoso et 580 

al., 2017). Patra et al. (2005b) estimated that a massive amount of carbon (~5.5 PgC yr−1) was released into the 

atmosphere in 1997/1998, largely contributed from tropical regions in Asia, South America, and Africa. Figure 8 

shows that during the Extreme El Niño period in 2015-2016, large carbon was also released from Tropical America 

and Southeast Asia, followed by Central Africa and Brazil. However, the timing and strength of the peaks are 

different. The fire emission peak (for “gvjf” case) appeared in August 2015 over Southeast Asia (1.34 PgC yr−1), 585 

and in January 2016 over Tropical America (1.12 PgC yr−1). The “gc3t” inversion suggests a peak in October 2015 

for Southeast Asia (0.42 PgC yr-1) and in January 2016 for Tropical America (0.82 PgC yr-1). Niwa et al. (2021) 

showed that regular sampling of aircraft CO2 measurement under the CONTRAIL project has enormous potential 

for capturing the footprint of biomass burning. By advanced inverse analysis, they estimated equatorial Southeast 

Asia emission at 0.27 PgC yr-1 during September-October 2015 (note that northern Southeast Asia is not included). 590 

Over the Oceania regions, ‘gvjf’ inversion shows large interannual variability. The inversion suggests emission 

peaks in 2019-2020 over Oceania, consistent with the substantial CO2 released from the fire in the atmosphere 

during the 2019-2020 summer season over Australia (van der Velde et al., 2021). They concluded that the CO2 

emission from these fires was more than thrice the estimate derived from the long-term mean of CO2 uptake over 

this region and broadly consistent with estimates based on the GFED fire emissions. van der Velde et al. (2021) 595 

estimated a CO2 flux anomaly in the range of 0.14–0.24 PgC from November 2019 to January 2020, which are 

lower than our estimation of 0.7 PgC.  
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The gc3t CO2 flux variabilities over East Pacific, West Pacific, and South Pacific show negligible correlations with 

ENSO, while both JMA based prior and posterior show high correlation (Table S3). Over the North Pacific, both 600 

inversion ensembles show an insignificant correlation with ENSO. The oceanographic observations indicate that 

sea surface temperature and pCO2 in the equatorial warm pool areas (5°N–5°S, west of the dateline) are not 

sensitive to El Niño conditions (Takahashi et al., 2003), but a strong correlation is found for the West Pacific region 

in the case of JMA ocean prior that is driven by pCO2 measurements and sea-surface temperature. Due to the lack 

of observational coverage, the gc3t inversions did not produce an expected (negative) correlation for CO2 fluxes 605 

and ENSO index for the East and West Pacific regions. Patra et al. (2005a) showed that the global ocean flux 

variability is significantly underestimated or even produced the opposite phase for strong El Nino of 1997/1998, if 

the Pacific Ocean Cruise data are not used in inversions. CO2 flux anomalies are estimated to be positive for South 

Pacific and negative for East Pacific during the 2015-2016 El Niño event. On the contrary, observations show that 

sea-to-air CO2 flux is suppressed during the intense El Niño event by warm low-CO2 surface waters from the west. 610 

The atmospheric observations are limited over these regions. Thus, we consider the anomalies during the intense 

El Niño period 2015-2016 are likely to be an artifact because of the lack of observational constraints. The 

interannual variability over tropical Atlantic, tropical Indian, and south Indian is low. Though the IAV is low, we 

find a significant correlation for the tropical Atlantic for both predicted fluxes, in contrast to a negligible correlation 

between prior and ENSO. 615 

 

3.5 Mean seasonal cycles of regional CO2 fluxes 

The net CO2 uptake in the moist/warm growing season is partially compensated by net CO2 release in the dry/cold 

non-growing season. However, the magnitude of seasonal compensations differed significantly between regions. 

The compensation drives the net regional strength of CO2 uptake. For example, the maximum uptake in the growing 620 

season is shown by Russia (~10 PgC yr-1), followed by Boreal North America (~5 PgC yr-1), and temperate North 

America (4 PgC yr-1) (Fig. 9). However, the strength of net sink is almost twice over Temperate North America (-

0.59±0.14 PgC yr-1) than in Russia and Boreal North America because the release of CO2 in the non-growing season 

over Russia and Boreal North America is greater than Temperate North America. Thus, the seasonal cycles in 

global and regional emissions are essential for understanding the drivers of CO2 changes in the atmosphere.  625 

 

Seasonal cycle amplitude for CASA prior flux for land total is 33.6 PgC yr-1, and that for VISIT is weaker at 23.8 

PgC yr-1, and the peak of the growing season (when the net flux is most negative) occurred in July for CASA that 
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is one month after the VISIT (Fig. 9, top-left panel). The seasonal phase of “gc3t” predicted fluxes are in close 

agreement with the CASA prior, but inversions diverge for the net CO2 uptake in the growing season and release 630 

in the dormant season. Our inverse analysis indicates a more considerable CO2 uptake rate (-26.2±2.1 PgC yr-1; 

June - July) and net CO2 release rate (4.1±2.0 PgC yr-1; January to April) than CASA-based terrestrial land flux. 

Contrary to the CASA prior, inversions using VISIT prior increase sinks significantly, by up to about 10 PgC yr-1, 

in June-July compared to the a priori. Inversion fluxes using CASA and VISIT show high consistency for the total 

land CO2 flux seasonality. Overall, the averaged “gc3t” and “gvjf” show good agreement (r=0.98) after inversion 635 

as compared to prior (r= 0.8).  Inversions do not achieve similar consistency for the total global ocean fluxes for 

both TT09 and JMA a priori fluxes (3rd row from bottom, left column); the correlations reduced from 0.95 to 0.58 

after the inversion.  

 

 Figure 9. Seasonal variations in monthly-mean CO2 fluxes at regional scales over 15 lands (upper four rows) and 11 oceans 640 

(lower three rows) regions, along with global land and ocean totals. We prepare the average (2001 - 2020) separately for 

inversion ensemble cases based on “gc3t” (broken line) and “gvjf” (solid line) prior. The shade around means shows ±1σ 
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STDEVs for the respective inversion cases. The individual inversion cases are plotted in supplementary (Fig. S2). Note that 

all panels use different y-scale.  

 645 

Northern land fluxes drive the global land seasonality, with a close agreement regarding the magnitude and phasing 

of the growing season and dormant season fluxes. Seasonality for the tropical land (South Asia, Tropical America, 

Central Africa, Southeast Asia) is smaller than the northern land regions (Boreal North America, Temperate North 

America, Russia), with the inversion suggesting maximum uptake around June-July over northern land and July-

September over tropical land. The a priori and predicted fluxes are more consistent for the extratropical land regions 650 

than their tropical counterparts. This is because the temperate biosphere is better simulated by the ecosystem 

models, such as VISIT or CASA, by taking into account the temperature and light effects, while the tropical 

ecosystems are more often limited by water availability or suffer from extreme heat, e.g., the monsoon driven South 

Asia (Patra et al., 2013). Posterior fluxes for the tropical regions also do not converge well, mainly because of the 

general sparseness of CO2 data (Patra et al., 2013).   655 

 

Over Tropical America, CASA shows maximum carbon uptake (flux=-2.0 PgC yr-1) in August and an extended-

release period in the dormant season from January to April (flux=1.1 PgC yr-1), while VISIT shows a relatively 

small seasonal variation. However, the inversions derive a consistent seasonal phase and amplitude, although the 

region does not include any measurement site. Thus, the adjoining neighbourhoods’ observations are helping us to 660 

capture the signal from this region, which is probably enabled by a good transport simulation by MIROC4-ACTM. 

Similar improved consistency in predicted seasonal cycle phase and amplitude, relative to the a priori, are also 

obtained for many other regions (Fig. 9a,b,c,f,g,k,n). Nevertheless, the a priori models play significant roles in 

estimations of CO2 flux seasonality for South Asia (peak uptake flux -0.43 PgC yr-1 in August-September for VISIT, 

and -1 PgC yr-1 for CASA in October-November), and East Asia (CASA peak uptake in August, VISIT peak uptake 665 

in April).  

 

The global ocean prior fluxes show the weak uptake of CO2 during July-September (average uptake flux of -

0.53±0.09 PgC yr–1 for TT09 and -1.12±0.14 PgC yr–1 for JMA). After September onwards, a sharp increase in 

uptake occurs, with a maximum uptake of 2.43 PgC yr-1 for TT09 and 2.91 PgC yr-1 for JMA fluxes in December 670 

(Fig. 9, left-3rd row from bottom). Over the Northern Ocean, the "gvjf" inversion cases tend to show a large CO2 

release as the MDU increases during May-October. We believe the broader uptake seasons for Boreal North 

America, Europe, and Russia, leading to stronger early summer land uptake in the case of VISIT a priori, caused 
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positive CO2 flux seasonality for the Northern Ocean. Even for the gc3t inversion case, we find the peak in the 

seasonal cycle in the summer season, when the oceanic biosphere activity is at its peak and pCO2 in water is lower 675 

in summer than in the winter (Goto et al., 2017; Yasunaka et al., 2018). It is not easy to put forward a hypothesis 

for the weaker sink in summer than in winter of the Northern Ocean, while we can speculate that the atmospheric 

CO2 decrease in polar air due to the strongest flux seasonal cycle on boreal land (Fig. 9a,f,j), exceeds the decrease 

that occurs over the surface sea-water and reduced solubility of CO2 in warmer water. Indeed, Yasunaka et al. 

(2018) have shown that the Greenland-Norwegian seas and the Barents Sea are indeed acts as a milder sink of CO2 680 

(flux = -4 to -5 mmol m-2 day-1) during June-August compared to the October-March (flux = -10 to -15 mmol m-2 

day-1), and the Chukchi Sea and Arctic Ocean show the strongest uptake in October. Thus, as whole, the Northern 

Ocean of our study could act as the weakest sink in the summer months. Further studies are needed to identify the 

role of ice-covered areas (close to zero CO2 flux) on the seasonal cycle. Note here that the oceanic basis functions 

in the polar ocean regions use a climatological sea-ice cover map, and fluxes are not revised over the sea-ice-685 

covered areas. 

 

Overall, all the land regions, except South Asia, Southeast Asia, Central Africa, and Oceania, show excellent 

agreement between averaged “gc3t” and “gvjf” cases after inversion (r = 0.63 – 0.97), as compared to priors (r =  -

0.48 – 0.90). A good agreement over the Northern Ocean, West Pacific, and Tropical Atlantic Ocean seasonal cycle 690 

is observed after the inversion (Table S3). 

 

3.6. Regional CO2 fluxes and flux uncertainties 

Different regions across the globe emit different amounts of CO2 from FFC emissions, which is one of the main 

discussion points in the emission reduction policymaking, say under the Kyoto Protocol (1997) and Paris 695 

Agreement (2015) for limiting global warming below a certain level. The recent IPCC AR6 of Working Group I 

suggested that the global total CO2 emissions from FFC have to be removed gradually on a net annual basis by 

2050 to sustainably limit global warming below 1.5oC (Canadell et al., 2021). Because the elimination of FFC 

usage is challenging to envisage in the coming three decades, pathways for reducing FFC emissions are being 

explored. Carbon capture and storage and other technological managements are considered alongside nature-based 700 

solutions. The land and ocean have been helping to remove more than 50% of the FFC emissions in the past 

decades.  The ongoing natural sinks of CO2 and their maintenance/enhancement constitute the major theme of the 

nature-based solutions. Thus, it is imperative to understand global/regional carbon fluxes for developing national 

and international policy to reduce net CO2 emissions.  
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 705 

Figure 10 and Supplementary Figures S3 and S4 show regional CO2 fluxes and flux uncertainties from the 16-

member ensemble inversions for 15 land and 11 ocean regions and global land and ocean at 5-yr intervals for the 

past two decades. The global flux uncertainties are found smaller than the regional flux uncertainties because the 

former is constrained strongly by the atmospheric CO2 growth rate for given FFC emissions. Flux estimates for all 

the land regions remain quite uncertain, as seen from the 5 to 95 percentiles range of the 16-inversion ensemble 710 

(whiskers) at about 0.3 PgC yr-1 for the land regions and typically less than 0.2 PgC yr-1 for the ocean regions. The 

fluxes at the 25 to 75 percentiles range show slightly reduced uncertainties – a large reduction is not seen compared 

to the 5 to 95 percentiles range because the two a priori models often formed two different sets of CO2 flux values 

(ref. Fig. 6 and 7). However, it has to be noted that each of the 15 land analysis regions has predicted flux 

uncertainties in the range of 2.1 (Boreal North America) to 3.8 (West Asia) PgC yr-1 for the control gc3t case, as 715 

the reduction from prior flux uncertainties, were small by inversion for the most region (Fig. 3). Thus, by employing 

the 16-inversion ensemble approach, we could obtain flux uncertainties that are smaller and often less than the 

regional fluxes themselves. The mean/median fluxes are consistent for the ensemble inversions and represent the 

true state of CO2 flux estimation for the MIROC-ACTM and 50 sites used in the inversion.  



 

34 
 

34 

 720 
Figure 10. CO2 fluxes for land and ocean sink using 16 sets of inversion cases. Box plots represent inversions for different 

time periods. Based on different prior, PFU, and MDU, the different inversion cases are first averaged for the selected time 

period. The box shows 25 and 75 percentiles spread, and the vertical line shows 5 and 95 percentiles from the mean CO2 flux 

of 16 ensemble inversion cases. Horizontal lines inside box plots denote the median CO2 flux of 16 inversion ensembles. Mean 

and spread for the whole study period (2001-2020) are given in Table S2. 725 

 

Global land sink increased by ~63% from 2001-2005 to 2016-2020 with an uncertainty range of ~6-12%. The 

highest increase (about 73 %) in the land sink is observed from 2001-2005 to 2011-2015, while a decrease (~11%) 

is observed from 2011-2015 to 2016-2020. The northern extratropical land accounted for ~80% of the global land 

sink, followed by tropics (~13%) and southern extratropic (~7%) (Fig. S3). The ocean carbon sink shows a gradual 730 

increase (by ~30%) from 2001-2005 to 2016-2020. The southern extratropic represents about 85% of global ocean 

sink for 2001-2020, followed by the northern extratropic (~60%). The tropical ocean regions act as a net source of 
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carbon emissions, representing 45% of the global ocean carbon sink (Fig. S4). One of the most intriguing features 

is that the 5-year mean fluxes for the ocean have increased gradually, as expected from the increase in pCO2 partial 

pressure difference due to increased loading of FFC emissions, but the land flux increases only during 2001-2005 735 

and 2006-2010. This step increase in flux can be related to the biased FFC emissions from China, affecting the 

natural/managed land flux estimation by inversion (Saeki and Patra, 2017).   

 

Amazonia in Brazil, hosts the Earth’s largest tropical forest, and hence is an important region of carbon sink. Our 

study shows a slight decrease in carbon sink over this region from 2011 to 2020. A recent study based on aircraft 740 

measurements (Gatti et al., 2021) also suggests a decline in carbon sink from 2010 to 2018 over Amazonia due to 

factors such as deforestation and climate change. A very high correlation is also seen for the interannual and decadal 

variations in CO2 fluxes (Fig. 6d, Fig. 10) and the Brazilian Amazon deforestation rate, which showed a strong and 

systematic decline from the period 2002-2004 to 2012-2014, and a steady increase afterward (Silva Junior et al., 

2021). 745 

 

Our results show that Africa is a small sink of carbon on an annual scale, agreeing with the RECCAP -1 estimation 

for 2000-2009 (Table. 4). At the subregional level, northern Africa shows a small sink, while Central and Southern 

Africa show a minor source for the same period. Central Africa turned from a small source in 2000-2009 to sink in 

2010-2019, while the carbon flux behaviours remained persistent for the Northern and Southern Africa regions. 750 

Though Central Africa is the main carbon sink region over the African continent because of its evergreen tropical 

forest, the prolonged dry season due to weak El Niño during 2001-2005 could have turned it into a net source for 

the 2000s. The average annual mean fluxes over East Asia for the 2000s are remarkably consistent with the 

RECCAP estimates (Table 4), based on the average estimate from inventory, bottom-up, and inversion fluxes  (Piao 

et al., 2012). We have observed less sink for Russia than RECCAP best estimate (Dolman et al., 2012). Other 755 

regional flux also agrees well with RECCAP estimates, although the period and regional boundaries of the 

RECCAP assessment do not match precisely (Table 4).  

 

Table 4.  Mean ± 1-s standard deviation of annual net land-atmospheric exchange of CO2 (in PgC yr-1) from predicted fluxes 

for 15 land regions by decade. The predicted fluxes are shown for the best estimates, obtained from the ensemble mean of all 760 

16 inversion cases based on different priors (gc3t and gvjf) and uncertainties (MDU and PFU). The ±1-sigma in the decadal 

mean fluxes denotes the range of uncertainty. The estimations for the 2000s are compared with the REgional Carbon Cycle 

Assessment and Processes phase 1 (RECCAP-1). 
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Regions 2000s (2000-2009) Fluxes from RECCAP 
(2000-2009)  

2010s (2010-2019) 

Boreal N. America -0.36 ± 0.09  
 

-0.47 ± 0.28 
(King et al., 2015) 

-0.39± 0.11  

Temp. N. America -0.61 ± 0.13 -0.58 ± 0.14 

Tropical America -0.11 ± 0.11 -0.16 ± 0.11 

Brazil 0.04 ± 0.10 0.13 ± 0.29  
 

(Gloor et al., 2012) 

-0.01 ± 0.07 

Temp. S. America -0.07 ± 0.13 -0.12 ± 0.16 

Europe -0.08 ± 0.11 -0.20 ± 0.07  
(Luyssaert et al., 2012) 

0.07 ± 0.12 

Northern Africa -0.03 ± 0.08   

-0.61 ± 0.58  

(Valentini et al., 2014) 

-0.08± 0.06 

Central Africa 0.03 ± 0.18 -0.10 ± 0.13 

Southern Africa 0.02 ± 0.13 0.07 ± 0.12 

Russia -0.31 ± 0.04 -0.55 – -0.66 
(Dolman et al., 2012) 

-0.39 ± 0.06 

West Asia -0.04 ± 0.04  -0.08 ± 0.06 

South Asia -0.15 ± 0.09  -0.15 ± 0.23  
(Patra et al., 2013) 

-0.2 ± 0.12 

East Asia -0.40 ± 0.07 -0.41± 0.14  
(Piao et al., 2012) 

-0.58 ± 0.11 

Southeast Asia -0.10 ± 0.11 N. A. -0.15 ± 0.18 

Oceania -0.08 ± 0.06 0.04 ± 0.03  
(Haverd et al., 2013) 

-0.15 ± 0.09 

 

Our analysis suggests that the most prominent land carbon sink in the Northern Hemisphere is located in temperate 765 

North America (-0.59±0.14 PgC yr-1), followed by East Asia (-0.49±0.09 PgC yr-1), boreal North America (-

0.38±0.10 PgC yr-1), and Russia (-0.35±0.05 PgC yr-1) for 2001-2020, and they account for 70% of the total global 
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CO2 uptake by land biosphere. Overall, our results suggest about 40% of temperate North America’s (1.49 PgC yr-

1), 17-19% of East Asia’s (2.74 PgC yr-1), 200% of boreal North America’s (0.19 PgC yr-1), and 80% of Russia’s 

(0.44 PgC yr-1) CO2 emissions from FFC are offset by carbon accumulation in their terrestrial ecosystems for 2001-770 

2020. Overall, no area shows net carbon source from the land biosphere for recent decades (2010-2019). Further, 

the inversion suggests substantial oceanic CO2 uptake is in the north pacific, with a mean flux of -0.55±0.05 PgC 

yr-1. Considerable rate of CO2 uptake is also observed in the Southern Ocean region; the CO2 flux increased from 

-0.12±0.07 PgC yr-1 in 2001-2009 to -0.33±0.06 PgC yr-1 in 2010-2019. Southern Ocean CO2 flux for 2010-2019 

agrees well with a recent assessment of –0.53 ± 0.23 PgC yr-1 (net uptake) in the region south of 45°S during 2009–775 

2018 (Long et al., 2021).  

 

3.7. Validation of CO2 fluxes using aircraft data 

We evaluate the quality of inversion flux estimates by comparing CO2 simulations with independent observations 

(observations that are not used in the inversions due to a lack of long measurement time series record). The CO2 780 

simulations are derived from three sets of prescribed fluxes: “gc3t” (case: ctl_ux4_gc3t in Table 2), “gvjf” (case: 

ctl_ux4_gvjf), and “ensm” (average of all 16 inversions). The observations in the lower troposphere (from surface 

to ~2 km) are more sensitive to regional fluxes. Hence, we compare the simulated CO2 with those measured by 

HIPPO and ATom airborne campaigns in the lower troposphere. Figure 11 shows comparisons over the transects 

from high northern (~80oN) to high southern latitudes (~70oS) at the location and time of HIPPO and ATom 785 

airborne campaigns, spanning all four seasons. HIPPO shows the lower CO2 over 30-80oN than 0-30oN for May-

July due to large uptake in high northern latitudes; however, the values are slightly higher than Southern 

Hemisphere (Fig. 11, Fig. S5). ATom shows a lower concentration over 30-80oN than the rest of the latitudes during 

July-August (Fig. 11, Fig. S6). All the model cases capture the meridional gradient, slope, and other features well 

at RMSEs less than 1.5 ppm, mean bias in the range -0.5 – (-0.3) ppm, and correlation greater than 0.8.  790 
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Figure 11.  Observed and modelled meridional CO2 distribution during HIPPO and ATom campaigns.  We aggregate the 

observed and simulated mole fractions for the lower troposphere (between 0.5 and 2.0 km) at 2.5-degree latitudinal bins. The 

correlation coefficient, mean model-observation bias, and root-mean-square error (RMSE) are also shown in each plot.  

 795 

The “ensm” inversion shows the lowest mean bias and RMSE than the other two predicted simulations over most 

aircraft campaigns (Fig. 11, statistics on each panel for different fluxes identified by colour). The comparison also 

indicates latitudinal and seasonal dependent accuracy in the predicted fluxes. The NOAA aircraft observations 

show a high bias during boreal summer throughout the troposphere over the USA and Canada, implying possible 

seasonally dependent errors in posterior fluxes over these latitude regions (Fig. S7). When the aircraft data is over 800 

the high latitude continental regions, model-observation comparison suggests a stronger surface CO2 sink is 

estimated by inversion compared to what is suggested by vertical profile gradients. HIPPO for July also shows 

negative model-observation mismatches near the surface (Fig. S6). But the mismatches turn positive in the higher 

altitudes, above about 1 km, and thus the model and observations averaged over 0-2 km are in much closer 

agreement (Fig. 11c). Based on these comparisons, the simulations from the ensemble mean of 16 inversion cases 805 

(“ensm”) show the lowest mean bias in comparison with gc3t or gvjf inversions, and suggested to be the most 

suitable flux estimation for quantifying the global land and ocean carbon sink on the timescale of annual mean and 

its decadal trend. 
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Further, all available aircraft profiles, measured on a campaign basis or at regular intervals, are also used to evaluate 810 

the predicted fluxes (Table S4). Compared to NOAA vertical profiles of CO2, model simulations agree well in the 

free troposphere (defined here between 2 and 8 km), with an average bias (averaged over 2000–2020) close to zero 

(Fig. S7, top panel: bias as a function of altitude, averaged over all sites). The inversions underestimate (~1 ppm; 

Fig. S7, top panel) the observations within the boundary layer (between the surface and 2 km); however, the RMSE 

is higher (~1 ppm) compared to that of the free troposphere. It could be because many of the NOAA aircraft profiles 815 

are over the US (see the map inset in the middle row, left panel of Fig. S7), close to regional CO2 sources.  

 

Following the GCP budget evaluation method (Friedlingstein et al., 2020), Figure 12 shows the mean bias over 

four latitude bands for three periods. The mean bias is calculated separately from all available aircraft data in 

obspack_co2_1_GLOBALVIEWplus_v6.1 (Fig. 12a-c) and 50 observation sites (Fig. 12d-f) used in the inversion 820 

(shown in Fig. 1). The biases show the dependency on latitude and are different for each inverse model case and 

provide information on biases in the surface fluxes (Gaubert et al., 2019; Houweling et al., 2015). All the three 

predicted CO2 concentrations show the smallest bias (less than 0.1 ppmv) over the high southern latitudinal band 

for 2001-2010. However, for 2011-2020, predicted CO2 concentrations show large positive (0.47 ± 0.47 ppm) and 

negative (-0.23 ± 0.47 ppm) bias for gc3t and gvjf predicted fluxes. The positive and negative biases for gc3t and 825 

gvjf inversions, respectively, are also consistent with the surface sites, which are arising due to the biases in 

simulated CO2 growth rates (an overestimated growth rate for gc3t for the +ve budget imbalance, Fig. 5; opposite 

being the case for gvjf inversion with -ve budget imbalance). The mean biases turned from negative to large positive 

by moving from 0-45oN averages to 45-90oN averages. In contrast to aircraft observations, the surface sites show 

a large negative bias over 45-90oN, consistent with the discussions earlier based on Fig. S5-S8. Overall, the ensm 830 

case shows consistent results in all three different time periods of this analysis, reiterating the appropriateness of 

the ensemble mean CO2 fluxes for global (e.g., Fig. 5) and regional budget analysis (e.g., Table 4).    
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Figure 12.  Evaluation of the atmospheric inversion products (solid lines; legends in panel a). The mean of model-observation 

differences is shown for four latitude bands of 45o intervals in three time periods: (a,d) 2001–2010, (b,e) 2011–2020, (c,f) 835 

2001–2020. The simulations from three inversion cases are compared to independent CO2 measurements made onboard aircraft 

(a-c: top row) over various parts of the world between 2 and 8 km above sea level. Bottom row shows the model-observation 

differences for 50 surface sites that are used in the inversion (d-f), and mismatches between the a posteriori model (as obtained 

after optimising regional sources by inversion) and CO2 data (broken lines; legends in panel d). Land and ocean data are used 

without distinction. The number in each panel shows the total number of data points used for computing bias for each latitude 840 

bin. The observation data are taken from obspack_co2_1_GLOBALVIEWplus_v6.1 (Schuldt et al., 2021). 

 

4. Conclusions 

The terrestrial biosphere (2.58 PgC yr-1) and ocean (1.54 PgC yr-1) absorb about 46% of the emissions due to fossil 

fuel and cement production (8.9 PgC yr-1) in the period 2001-2020. The variability in these fluxes significantly 845 

affects the year-to-year variability of the carbon dioxide (CO2) accumulation rate in the atmosphere. We estimated 

global and regional sources and sinks of carbon across the earth’s surface, using observations and simulations of 

atmospheric CO2. We tested the relative role of prior flux uncertainty (PFU) and model data uncertainty (MDU) 
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on the land and ocean's global/regional carbon flux estimates. For this, we use a single transport model 

(JAMSTEC’s MIROC4-ACTM) to estimate the global/regional carbon flux and associated uncertainty based on 850 

different prior fluxes (two land biosphere fluxes (CASA and VISIT+Fire) at 3-hourly intervals with distinct global 

total CO2 sink strengths, and two sea-air exchange fluxes (Takahashi and JMA)), choices of prior flux uncertainties 

(PFU: four cases) and representation of measurement data uncertainties (MDU: two cases). Based on different 

combinations of priors, PFU, and MDU, we run 16 ensembles of inversion cases using CO2 measurements from a 

set of 50 sites spreading over the globe, and inversion results are analysed for 2001-2020. The 16 ensemble 855 

members are averaged, and the result (“ensm”) is treated as the best estimate (i.e., a measure of central tendency) 

flux. The spread between the ensemble members provides us a reasonable measure of the inversion estimated flux 

uncertainty but lacks the quantification of the roles of transport model uncertainty or the inherent errors in the 

measurements and the prior fluxes. 

 860 

Although each inversion used common observation sites, there is still considerable uncertainty in the estimated 

fluxes due to the prior fluxes and uncertainties (PFU and MDU). On a global scale, the uncertainty in the predicted 

fluxes due to prior flux is relatively larger than that of PFU and MDU. However, at a regional scale, uncertainties 

due to priors and PFU & MDU are primarily comparable and drove inter-inversion disparity. Lack of constraints 

makes the tropical (Tropical America, South Asia, and Southeast Asia) and extratropical southern (Southern Africa, 865 

Oceania) land regions highly uncertain. The ensemble of inversions splits into a “near-neutral” group and a “strong-

source/sink” group based on the priors for the tropical and extratropical southern land regions. Overall, the prior 

flux differences have a negligible effect on the estimation of the global land total and ocean total sink but are 

significant at the regional scale.  

 870 

The interannual variability in the land fluxes (driven mainly by ENSO) is much more considerable than in the ocean 

and tends to show greater consistency across the 16 inversion cases. The land flux seasonality is prominent in the 

Northern Hemisphere, with good agreement across the inversion ensemble cases. The ocean seasonality is slight 

and in less agreement relative to the magnitude of the seasonality of land fluxes. We comprehensively evaluated 

predicted fluxes by extensively comparing the simulated posterior CO2 to independent CO2 observations from 875 

several aircraft measurements by NOAA, CONTRAIL, HIPPO, ATom, and the NOAA MBL reference sites. The 

evaluation suggests that the ensemble mean of 16 inversion cases (“ensm”) is well-suited (mean bias is found 

minimum) for quantifying the global land and ocean carbon sink. Thus, we used the “ensm” case (best estimate) 

for estimating the carbon fluxes and associated uncertainties. 
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 880 

In summary, our best estimate suggests that 22-33% (16-18%) of global CO2 emissions from FFC have been offset 

by global land (ocean) carbon flux from 2001-2020. The land and ocean sink partitioning are estimated to be -

2.27±0.2 (±1σ uncertainty on mean) and -1.46±0.09 PgC yr-1, respectively, for the period 2001-2009, and -

2.85±0.25 and -1.63±0.17 PgC yr-1, respectively, for the period 2010-2019 (without riverine export correction), 

which are in excellent agreement with the IPCC AR6 values (Table 3).  The decadal mean values for the RECCAP 885 

are also in good agreement for North America, South America, East Asia, South Asia, and Oceania (Table 4). Note 

that the region boundaries and period of evaluations do not match perfectly between RECCAP-1 and our inversion 

for most regions. 

 

Our analysis suggests that the most prominent land carbon sink in the Northern Hemisphere is located in temperate 890 

North America (-0.59±0.14 PgC yr-1), followed by East Asia (0.49±0.09 PgC yr-1), boreal North America (-

0.38±0.10 PgC yr-1), and Russia (-0.35±0.05 PgC yr-1) for 2001-2020. Overall, our results suggest about 40% of 

temperate North America’s (1.49 PgC yr-1), 17-19% of East Asia’s (2.74 PgC yr-1), 200% of boreal North America’s 

(0.19 PgC yr-1), and 80% of Russia’s (0.44 PgC yr-1) CO2 emissions from FFC are offset by carbon accumulation 

in their terrestrial ecosystems for 2001-2020. Further, the inversion suggests substantial oceanic CO2 uptake in the 895 

North Pacific with a mean flux of -0.55±0.05 PgC yr-1, and also considerable CO2 uptake is estimated for the 

Southern Ocean, where CO2 uptake increased from -0.12±0.07 PgC yr-1 in 2001-2009 to -0.33±0.06 PgC yr-1 in 

2010-2019. Overall, no area shows net carbon source from the land biosphere for recent decades (2010-2019).  
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