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Abstract 12 

Satellite and surface carbon monoxide (CO) observations have been widely used to investigate 13 

the sources and variabilities of atmospheric CO. However, comparative analyses to explore the 14 

effects of satellite and surface measurements on atmospheric CO assimilations are still lacking. 15 

Here we investigate the assimilated atmospheric CO over E. Asia in 2015-2020, via 16 

assimilating CO measurements from the Measurement of Pollution in the Troposphere 17 

(MOPITT) and China Ministry of Ecology and Environment (MEE) monitoring network. We 18 

find noticeable inconsistencies in the assimilations: the adjusted CO columns (Xco) are about 19 

162, 173 and 172 ppb by assimilating surface CO measurements, in contrast to 138-144, 149-20 

155 and 144-151 ppb by assimilating MOPITT CO observations over E. China, North China 21 

Plain (NCP) and Yangtze River Delta (YRD), respectively. These inconsistencies could be 22 

associated with possible representation errors due to differences between urban and regional 23 

CO backgrounds. Furthermore, the adjusted surface CO concentrations are about 631, 806 and 24 

657 ppb by assimilating surface CO measurements, in contrast to 418-427, 627-639 and 500-25 

509 ppb by assimilating MOPITT CO observations over E. China, NCP and YRD, respectively; 26 

assimilations of normalized surface CO measurements (to mitigate the influences of 27 

representation errors) indicate declines of CO columns (Xco) by about 2.2, 2.1, and 1.8 ppb/y, 28 

in contrast to 0.63-0.86, 0.97-1.29, and 1.0-1.27 ppb/y by assimilating MOPITT CO 29 

measurements over E. China, South Korea and Japan, respectively. These discrepancies reflect 30 
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the different vertical sensitivities of satellite and surface observations in the lower and free 31 

troposphere. This work demonstrates the importance to integrate information from satellite and 32 

surface measurements to provide a more accurate evaluation of atmospheric CO changes. 33 

 34 

1. Introduction 35 

Atmospheric CO is one of the most important pollutants and plays a key role in 36 

tropospheric chemistry. Sources of atmospheric CO include fossil fuel combustion, biomass 37 

burning, and oxidation of hydrocarbons. The importance of atmospheric CO has made it an 38 

essential target of global emission controls. Satellite measurements have been used to 39 

investigate atmospheric CO changes (Han et al., 2018; Hedelius et al., 2021; Gaubert et al., 40 

2020). Inverse analyses based on satellite measurements further improved our understanding 41 

of CO sources. For example, Jiang et al. (2017) constrained global CO emissions in 2001-2015 42 

by assimilating MOPITT CO observations. Zheng et al. (2018a) constrained E. Asian CO 43 

emissions in 2005-2016 using MOPITT CO observations. Müller et al. (2018) assimilated 44 

Infrared Atmospheric Sounding Interferometer (IASI) CO observations to assess the impacts 45 

of hydroxyl radical (OH) on derived CO emissions. 46 

A major advantage of satellite measurements is the global covered observations. In 47 

addition, the pixel-based observations allow convenient comparison with grid-based model 48 

simulations. However, the limited vertical resolution implies that the retrieved lower 49 

tropospheric CO is affected by free tropospheric CO (Jiang et al., 2013; Buchholz et al., 2017; 50 

Hedelius et al., 2021), despite the joint retrieval of near-infrared (NIR) and thermal infrared 51 

(TIR) spectral data can enhance the sensitivity to lower tropospheric CO (Worden et al., 2010; 52 

Deeter et al., 2017). In contrast to lower tropospheric CO, free tropospheric CO is more 53 

susceptible to influences from factors such as long-range transport. Consequently, 54 

interpretation of satellite CO measurements requires disentangling the influences from local 55 
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and non-local sources.  56 

Besides satellite observations, surface in-situ CO measurements have been used to 57 

analyze atmospheric CO variabilities (Bouarar et al., 2019; Kong et al., 2020; Squires et al., 58 

2020). There are also recent advances to assess CO sources via assimilating surface CO 59 

measurements provided by air quality stations, particularly in China. For example, Peng et al. 60 

(2018) assimilated surface CO observations to optimize CO emissions in October 2014. Ma et 61 

al. (2019) assimilated surface CO observations to optimize CO emissions in September 2016. 62 

Feng et al. (2020) constrained CO emissions in December 2013 and 2017. In contrast to satellite 63 

measurements, surface CO observations have rapid responses to local CO emissions. 64 

Consequently, the interpretation of surface CO observations is less affected by non-local 65 

sources and sinks. However, the sparse distributions of surface stations dimmed the importance 66 

of surface CO observations. In addition, it is challenging to match in-situ surface measurements 67 

with grid-based model simulations because of noticeable representation errors (Schutgens et 68 

al., 2017) and possible uncertainties in the planetary boundary layer (PBL) mixing (Castellanos 69 

et al., 2011).  70 

To sufficiently understand CO variabilities, people may take advantage of information 71 

from both satellite and surface measurements. For example, Chen et al. (2020) found 72 

decreasing trends of atmospheric CO concentrations from both MOPITT and surface CO 73 

measurements over YRD. However, comparative analyses to investigate the effects of satellite 74 

and surface CO measurements in data assimilation systems are still lacking, which poses a 75 

significant barrier to integrating the information provided by satellite and surface 76 

measurements in data assimilation applications. In this work, we investigate the assimilated 77 

atmospheric CO over E. Asia in 2015-2020, via assimilating CO measurements from the 78 

MOPITT and MEE surface observations, to explore the methodology of assimilating two types 79 

of measurements, as well as the impacts of CO emission declines in China on atmospheric CO 80 
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over E. Asia. This paper is organized as follows: In Section 2, we describe the CO observations, 81 

GEOS-Chem model, and Kalman Filter approach used in this work. In Section 3, we investigate 82 

the performances of satellite and surface measurements in Kalman Filter. Our conclusions 83 

follow in Section 4. 84 

 85 

2. Data and Methodology 86 

2.1 MOPITT CO measurements 87 

The MOPITT instrument was launched on December 18, 1999 on the NASA/Terra 88 

spacecraft. The satellite is in a sun-synchronous polar orbit of 705 km and crosses the equator 89 

at 10:30 local time. The instrument makes measurements in a 612 km cross-track scan with a 90 

footprint of 22 km x 22 km and provides global coverage every three days. The MOPITT data 91 

used here were obtained from the joint retrieval (V8J) of CO from thermal infrared (TIR, 4.7m) 92 

and near-infrared (NIR, 2.3m) radiances using an optimal estimation approach (Worden et 93 

al., 2010; Deeter et al., 2017). The retrieved volume mixing ratios (VMR) are reported as layer 94 

averages of 10 pressure levels (surface, 900, 800, 700, 600, 500, 400, 300, 200, and 100 hPa). 95 

Following Jiang et al. (2017), we reject MOPITT data with CO column amounts less than 96 

5x1017 molec/cm2 and with low cloud observations. Since the NIR channel measures reflected 97 

solar radiation, only daytime data are considered. As shown in Fig. 1a, CO columns provided 98 

by MOPITT indicate decreasing trends over E. Asia in 2015-2020, consistent with reported 99 

CO variability (Zheng et al., 2018a; Chen et al., 2020; Hedelius et al., 2021). In addition, the 100 

vertical columns are converted to column-averaged dry-air mole fractions (Xco) in this work. 101 

 102 

2.2 MEE surface CO measurements 103 

We use MEE surface in-situ hourly CO concentration data (https://quotsoft.net/air/) for 104 

the period of 2015-2020. These real-time monitoring stations have the ability to report hourly 105 
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concentrations of critical pollutants from over 1670 sites in 2020, which have been widely used 106 

to investigate the sources and changes of atmospheric CO in China (Peng et al., 2018; Ma et 107 

al., 2019; Feng et al., 2020). Concentrations were reported by the MEE in units of mg/m3 with 108 

a precision of 0.001mg/m3, under standard temperature (273 K) until 31 August 2018. This 109 

reference state was changed on 1 September 2018 to 298 K. We converted CO concentrations 110 

to ppb and rescaled post-August 2018 concentrations to standard temperature (273 K) to keep 111 

the consistency in the trend analysis. To ensure the reliability of the data before assimilation, 112 

we screened the data on the numerical range and time range. In the first step, we removed data 113 

with CO concentrations larger than 6000 ppb (~7.5 mg/m3), and the selection of this empirical 114 

value is relatively close to the 7 mg/m3 selected by Feng et al. (2020). In the second step, to 115 

ensure the rationality of the daily variation of the assimilation results, we eliminated 327 sites 116 

with missing data for more than 14 consecutive days, accounting for 19.5% of the total number 117 

of sites. Fig. 1b shows the trends of surface CO concentrations provided by MEE. There are 118 

high-density surface stations in E. China with significant decreasing trends of CO 119 

concentrations from 2015 to 2020. 120 

 121 

2.3 GEOS-Chem model simulations 122 

The GEOS-Chem chemical transport model (http://www.geos-chem.org, version 12-8-1) 123 

is driven by assimilated meteorological data of MERRA-2. Our analysis is conducted at a 124 

horizontal resolution of nested 0.5°x0.625° and employs the CO-only simulation in GEOS-125 

Chem, which uses archived monthly OH fields from the full chemistry simulation (Fisher et 126 

al., 2017). The CO boundary conditions are updated every 3-hour from a global simulation 127 

with 4° × 5° resolution. Emissions in GEOS-Chem are computed by the Harvard-NASA 128 

Emission Component (HEMCO). Global default anthropogenic emissions are from the CEDS 129 

(Community Emissions Data System) (Hoesly et al., 2018). Regional emissions are replaced 130 

by MEIC (Multiresolution Emission Inventory for China) in China and MIX in other regions 131 

of Asia (Li et al., 2017). The total anthropogenic CO emissions in MEIC inventory are further 132 

scaled with linear projections based on Zheng et al. (2018b). Open fire emissions are from the 133 
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Quick Fire Emissions Dataset (QFED) (Darmenov and da Silva, 2015). The biogenic emissions 134 

of VOCs are calculated according to the Model of Emissions of Gases and Aerosols from 135 

Nature (MEGAN v2.1) (Guenther et al., 2006). 136 

 137 

2.4 Kalman Filter approach 138 

We employ the sub-optimal Kalman Filter (Todling and Cohn, 1994) to assimilate 139 

MOPITT and surface CO observations. As a brief description of the assimilation algorithm, 140 

the forward model (M) predicts CO concentration (𝑥𝑎𝑡) at time t:  141 

𝑥𝑎𝑡 = 𝑀𝑡𝑥𝑡−1    (Eq. 1) 142 

The optimized CO concentrations can be expressed as: 143 

𝑥𝑡 = 𝑥𝑎𝑡 + 𝐺𝑡(𝑦𝑡 − 𝐾𝑡𝑥𝑎𝑡)   (Eq. 2) 144 

where 𝑦𝑡 is observation, 𝐾𝑡 represents operation operator which projects CO concentrations 145 

from the model space to observation space. 𝐺𝑡 is the Kalman Filter Gain matrix, which can 146 

be described as: 147 

𝐺𝑡 = 𝑆𝑎𝑡𝐾𝑡
𝑇(𝐾𝑡𝑆𝑎𝑡𝐾𝑡

𝑇 + 𝑆𝜖)−1   (Eq. 3) 148 

where 𝑆𝑎𝑡  and 𝑆𝜖  are model and observation covariance, respectively. The sub-optimal 149 

Kalman Filter has been applied in previous studies to provide quick optimization for initial and 150 

boundary atmospheric CO concentrations (Jiang et al., 2015; Jiang et al., 2017). Han et al. 151 

(2022) further provided a comparative analysis between sub-optimal Kalman Filter and a 152 

hybrid deep learning model to predict surface CO concentrations in China in 2015-2020, and 153 

found the good performance of Kalman Filter in respect to independent observations. We note 154 

that the optimization effect of sub-optimal Kalman Filter is expected to be weaker than more 155 

complicated methods such as Ensemble Kalman Filter, particularly because the latter can 156 

optimize CO emissions and concentrations simultaneously (Miyazaki et al., 2017; Feng et al., 157 

2020), for example, Ma et al. (2019) indicated that updated anthropogenic emissions led to 158 

improved CO forecast by about 10% during the first 36 hour of forecasts. 159 
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The assimilations were started on July 1 2014 by assimilating MOPITT or MEE CO 160 

observations to produce optimized initial conditions on Jan 1 2015. The modeled CO 161 

concentrations are compared with observations and updated hourly, based on Eq. 2, and then 162 

forwarded to Eq. 1 for the model simulations in the next time step, i.e., the assimilation window 163 

is one hour. We assume fixed model errors (50%). The observation errors of satellite data are 164 

calculated based on the MOPITT error covariance matrix. The observation errors of surface 165 

observations include measurement errors and representative errors. The measurement errors 166 

are calculated following Feng et al. (2020): 𝜀0  =  𝑒𝑟𝑚𝑎𝑥 +  0.005 ∗ 𝛱0, where 𝑒𝑟𝑚𝑎𝑥 is 167 

the base error (6 ppb) and 𝛱0 represents the observed CO concentrations. The representation 168 

errors are calculated following Elbern et al. (2007) and Tang et al. (2013): 𝜀𝑟  =  𝛾𝜀0 √∆𝑙/𝐿, 169 

where 𝛾 is a scaling factor (0.5), ∆𝑙 is the model resolution ( ~56 km in this study), and 𝐿 170 

represents the range that observation can reflect, which depends on the station type (2 km for 171 

urban, 4 km for suburban). Given the measurement error 𝜀0 and the representative error 𝜀𝑟, 172 

the total observation error is defined as 𝜀𝑡  =  √𝜀0
2 + 𝜀𝑟

2. Furthermore, the "super-observation" 173 

method was applied in this work to further reduce the influence of representative error 174 

(Miyazaki et al., 2017; Feng et al., 2020): 175 

𝜔𝑗 = 1/𝜀𝑗
2       (Eq. 4) 176 

𝑦𝑠 = ∑ 𝜔𝑗𝑦𝑗/ ∑ 𝜔𝑗
𝑘
𝑗=1

𝑘
𝑗=1       (Eq. 5) 177 

1/𝜀𝑠
2 = ∑ 1/𝑘

𝑗=1 𝜀𝑗
2      (Eq. 6) 178 

where 𝑦𝑗 is CO observation of the jth station, 𝜔𝑗 represents the weighting factor of the jth 179 

station, 𝑦𝑠  and 𝜀𝑠  are the grid-based CO observations and errors (super-observation), 180 

respectively. 181 

 182 

3. Results and Discussions 183 
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3.1 Kalman Filter assimilating MOPITT CO 184 

We firstly assimilate MOPITT CO data with global simulations (4° × 5° resolution) to 185 

optimize E. Asian CO boundary conditions. Same to Jiang et al. (2017), the MOPITT profile 186 

and column data are assimilated individually to produce two types of CO boundary conditions. 187 

High resolution (0.5°x0.625°) Kalman Filter are performed within E. Asia domain via 188 

assimilating MOPITT profile and column data individually, and reading the corresponding CO 189 

boundary conditions. As shown in Fig. 2a, we find marked seasonality in surface CO 190 

concentrations: about 1200 ppb in winter and 600 ppb in summer over NCP in 2019. The 191 

assimilation of MOPITT CO has a small influence on CO concentrations at the surface level: 192 

the mean surface CO concentrations over E. China increased from 268 ppb to 289-296 ppb in 193 

2015-2020 (Table 1). It could be associated with the limited sensitivity of MOPITT to lower 194 

tropospheric CO, as well as the revisit time of satellite measurements, i.e., MOPITT visits an 195 

individual model grid every 3 days. Thus, the adjustment of surface CO by Kalman Filter can 196 

be affected by biased CO emissions in the forward simulations with a 60-minute time step.  197 

In contrast to CO at the surface level, the Kalman Filter led to marked enhancement of 198 

CO columns (Fig. 2b). As shown in Table 1, the modeled CO columns (Xco) over E. China in 199 

2015-2020 were adjusted from about 101 to 121-127 ppb. The difference in the Kalman Filter 200 

by assimilating MOPITT column and profile data is small. Similarly, Fig. 3 exhibits the CO 201 

vertical profiles from model a priori simulations and Kalman Filter. Assimilations of different 202 

MOPITT CO data (blue lines) led to similar enhancement of CO abundances, except at high 203 

altitudes around 100 hPa. Furthermore, Fig. 4 demonstrates the relative differences between 204 

modeled and MOPITT CO columns in 2019. There are pronounced negative biases in the a 205 

priori simulations by about 40% (Fig. 4a). By contrast, the differences are dramatically 206 

mitigated by assimilating MOPITT CO column data (Fig. 4b). As shown in Table 2, the 207 

modeled CO columns (smoothed with MOPITT averaging kernels and sampled at MEE 208 
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locations) increased from 97 to 124-128 ppb over E. China in 2015-2020. The good agreement 209 

between assimilations and MOPITT CO observations (129 ppb, Table 2) confirms the 210 

efficiency of Kalman Filter assimilation in this work. 211 

3.2 Kalman Filter assimilating surface CO 212 

Fig. 2c (black line) shows MEE surface CO observations over NCP in 2019. The blue 213 

line shows the model a priori surface CO concentrations, which are lower than observed CO 214 

concentrations. The underestimated surface CO concentrations were reported in recent studies, 215 

for example, Peng et al. (2018) found that modeled surface CO concentrations by WRF-Chem 216 

(752 µg/m3) are about 40% lower than MEE surface CO (1318 µg/m3) in NCP in October 2014. 217 

Bouarar et al. (2019) indicated an underestimation of surface CO concentrations in WRF-Chem 218 

(about 1000 ppb) than surface observations (about 2000 ppb) in Beijing in January 2010. Feng 219 

et al. (2020) demonstrated high MEE surface CO in December 2013, i.e., 2.18 mg/m3 and 1.66 220 

mg/m3 in contrast to 0.86 mg/m3 and 0.73 mg/m3 in WRF/CMAQ simulations over NCP and 221 

E. China, respectively.  222 

We then assimilate MEE surface CO measurements to investigate the impacts of 223 

assimilations on atmospheric CO. In contrast to Kalman Filter by assimilating MOPITT data, 224 

the CO boundary conditions here are from a priori simulations. Fig. 2d (orange line) shows the 225 

optimized surface CO concentrations in NCP in 2019. The assimilation of surface CO 226 

measurements significantly improved the agreement between observations and model 227 

simulations. As shown in Table 1, the modeled surface CO concentrations in 2015-2020 228 

increased from 268 to 430 ppb over E. China, 445 to 630 ppb over NCP and 418 to 598 ppb 229 

over YRD. The correlations between modeled and observed surface CO are enhanced from 230 

0.707 to 0.934 over NCP in 2019. The enhancement of surface CO concentrations due to 231 

assimilating surface CO measurements have been reported in recent studies. For example, Peng 232 

et al. (2018) demonstrated enhancement of surface CO from 752 µg/m3 to 1418 µg/m3 in NCP 233 
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in October 2014. Feng et al. (2020) exhibited enhancement of surface CO from 0.73 mg/m3 to 234 

1.62 mg/m3 in December 2013 over E. China. Furthermore, as shown in Table 2, the 235 

assimilation led to an increase in surface CO concentrations from 397 ppb to 631 ppb over E. 236 

China in 2015-2020, exhibiting better agreement with MEE observations (781 ppb). 237 

3.3 Discrepancy in assimilated CO by assimilating satellite and surface data 238 

As shown in Fig. 3, the modeled CO profile by assimilating MEE surface CO (red solid 239 

line) is higher than MOPITT-based CO concentrations (blue lines) in the lower troposphere. It 240 

indicates a possible discrepancy in the adjusted CO concentrations by assimilating satellite and 241 

surface observations. As shown in Table 2, the adjusted surface CO concentrations by 242 

assimilating MEE CO measurements are higher than those by assimilating MOPITT data in 243 

2015-2020: 631 and 417-427 ppb over E. China; 806 and 627-639 ppb over NCP; 657 and 500-244 

509 ppb over YRD. Similarly, the adjusted CO columns (Xco) by assimilating MEE CO 245 

measurements are higher than those by assimilating MOPITT data in 2015-2020 (Table 2): 162 246 

and 138-144 ppb over E. China; 173 and 149-155 ppb over NCP; 172 and 144-151 ppb over 247 

YRD. On the other hand, the adjusted CO columns by assimilating MEE CO measurements 248 

are comparable with those by assimilating MOPITT data after the application of MOPITT 249 

averaging kernels (Table 2), which could be associated with the weaker sensitivity of MOPITT 250 

to lower free tropospheric CO. 251 

MOPITT CO retrievals have been sufficiently evaluated. For example, Deeter et al. 252 

(2017) indicated that the bias in MOPITT CO column data was about 3% in respect to NOAA 253 

flask measurements. The higher CO columns by assimilating MEE CO measurements thus 254 

indicate possible overestimated enhancements on free tropospheric CO. Similarly, Feng et al. 255 

(2020) suggested a 186% enhancement of CO emissions over E. China via assimilating surface 256 

CO measurements. By contrast, the MOPITT-based CO emission estimates are comparable 257 

with a priori emissions in China (Elguindi et al., 2020). In addition, as shown in Fig. 4a, the 258 
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modeled CO columns from the boundary conditions are biased low by about 40%, which was 259 

not removed when assimilating MEE surface CO. While the influence from boundary 260 

conditions on surface CO concentrations over E. China could be limited, it is expected to have 261 

a noticeable influence on free tropospheric CO over E. China. It further confirms the 262 

overestimated enhancements on free tropospheric CO by assimilating MEE CO measurements, 263 

because potential negative biases due to the usage of a priori boundary conditions have been 264 

completely covered. 265 

Fig. 1c-d exhibit the model a priori simulation and observed surface CO, as well as the 266 

ratios between observed and model a priori surface CO in 2019. The ratios are about 1.5 over 267 

high polluted areas such as NCP and 2-6 over low polluted areas (Fig. 1d). Because most MEE 268 

stations are urban air quality sites, the regional discrepancy in the ratios reveals possible 269 

influences from representation error, i.e., the regional CO backgrounds are lower than 270 

observations from urban stations, and the influences are stronger over low polluted areas. 271 

Despite representation errors have been considered in the covariance matrix in the Kalman 272 

Filter (Section 2.4), it seems that the mitigation of representation errors is limited. It is not 273 

surprising because the covariance matrix is supposed to contain random errors with Gaussian 274 

distribution, whereas representation errors due to differences between urban and regional 275 

backgrounds are systematic biases. In addition, insufficient parameterized processes such as 276 

PBL mixing can further contribute to the underestimation of modeled surface CO 277 

concentrations (Castellanos et al., 2011).  278 

3.4 Kalman Filter assimilating normalized surface CO 279 

The possible systematic biases imply it may not be a good idea to assimilate surface CO 280 

measurements to optimize free tropospheric CO directly. Alternatively, considering the good 281 

capability of models to capture the observed CO variabilities, we can scale surface CO 282 

measurements using the ratios between observations and models. The MEE surface CO 283 
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measurements will be scaled using the ratios shown in Fig. 1d in the following discussions. 284 

The actual effect of this adjustment is normalizing modeled and observed surface CO 285 

concentrations in 2019, and hence, Kalman Filter, by assimilating the normalized surface CO 286 

measurements can reflect the variabilities (i.e., trends) instead of magnitudes of CO 287 

concentrations. It should be noted that the ratios are expected to be affected by interannual 288 

variabilities of meteorological conditions as well as possible land usage changes. The land 289 

usage changes are supposed to be insignificant due to the limited studied period (i.e., 2015-290 

2020). More efforts are needed in the future to evaluate the possible influence of meteorological 291 

condition changes on the inconsistency between observations and simulations. 292 

Fig. 2e (orange line) shows surface CO concentrations in NCP in 2019 by assimilating 293 

normalized surface CO measurements. The magnitudes of model a priori (blue line) and 294 

Kalman Filter (orange line) are consistent in Fig. 2e due to the normalization of surface CO 295 

measurements. As shown in Table 2, the adjusted surface and column CO concentrations by 296 

assimilating normalized MEE CO measurements are closer to the a priori simulations in 2015-297 

2020. The correlation between modeled and observed surface CO is 0.865 over NCP in 2019, 298 

which is lower than the correlation by assimilating raw surface CO measurements. 299 

Furthermore, we performed sensitivity assimilation to evaluate the effects of MOPITT pass 300 

time by only assimilating MEE CO measurements in the morning. As shown in Table 2, the 301 

assimilation of morning data led to lower surface and column CO concentrations, and thus, the 302 

discrepancy in the CO columns (Section 3.3) is not driven by different temporal resolutions 303 

between satellite and surface CO observations.  304 

3.5 Assimilated atmospheric CO over E. Asia in 2015-2020 305 

Here we expand our analysis to investigate the assimilated atmospheric CO over E. Asia 306 

in 2015-2020. As shown in Fig. 5a, Kalman Filter, by assimilating raw surface CO 307 

measurements reveal wide declines in surface CO concentrations over E. China. The declines 308 
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of surface CO resulted in decreases of CO columns (Fig. 5b, via assimilating normalized 309 

surface CO measurements) by about 2.2, 2.1 and 1.8 ppb/y in 2015-2020 over E. China, South 310 

Korea and Japan, respectively. By contrast, the decreasing trends in the MOPITT-based 311 

assimilations (Fig. 5c-d) are weaker: 0.63-0.86, 0.97-1.29 and 1.00-1.27 ppb/y in 2015-2020 312 

over E. China, South Korea and Japan, respectively. It should be noted that the decreasing 313 

trends in the MOPITT-based assimilations are more affected by the a priori simulations and 314 

are thus, weaker than those of MOPITT observations, as exhibited by the neutral changes over 315 

central China in Fig. 5c-d. In addition, Fig. 5e demonstrates the trends of CO columns by 316 

assimilating both MOPITT CO column and normalized surface CO measurements 317 

simultaneously: the decreasing trends are about 2.3, 2.2 and 1.9 ppb/y over E. China, South 318 

Korea and Japan, respectively. 319 

As shown in Fig. 6, the a priori simulations with fixed anthropogenic CO emissions in 320 

2010 (black lines) predict stable surface CO concentrations in 2015-2020. By contrast, Kalman 321 

Filter by assimilating raw surface CO measurements (red solid lines) demonstrates declines in 322 

surface CO concentrations by about 43.9, 19.2 and 18.3 ppb/y over NCP, YRD and E. China, 323 

respectively. The difference between the a priori simulations (black lines) and assimilations 324 

(red solid lines) indicates the impacts of successful CO emission controls in China. In addition, 325 

Kalman Filter by assimilating normalized surface CO measurements (red dashed lines) 326 

indicates declines of surface CO concentrations by about 32.1, 14.4 and 10.3 ppb/y over NCP, 327 

YRD and E. China, respectively. 328 

Finally, we analyze the interannual variabilities of CO columns by assimilating MOPITT 329 

and surface CO measurements. As shown in Fig. 7, Kalman Filter by assimilating normalized 330 

surface CO measurements (red dashed lines) demonstrates declines of CO columns by about 331 

4.4, 2.8 and 2.2 ppb/y in 2015-2020 over NCP, YRD and E. China, respectively. Kalman Filter 332 

by assimilating raw surface CO measurements (red solid lines) led to overestimated CO 333 
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columns. Kalman Filter by assimilating MOPITT observations (blue lines) exhibits smaller 334 

changes in CO columns: 1.2-1.5, 0.76-0.9 and 0.63-0.86 ppb/y in 2015-2020 over NCP, YRD 335 

and E. China, respectively. Kalman Filter by assimilating both MOPITT CO column and 336 

normalized surface CO measurements simultaneously (purple lines) exhibits decreasing trends 337 

of CO columns by about 4.5, 2.8 and 2.3 ppb/y in 2015-2020 over NCP, YRD and E. China, 338 

respectively. 339 

4. Conclusion 340 

A comparative analysis is provided in this work to explore the effects of satellite and 341 

surface measurements on atmospheric CO assimilations over E. Asia in 2015-2020. We find 342 

possible inconsistencies by assimilating satellite and surface CO measurements: the adjusted 343 

CO columns (Xco) are about 161, 173 and 172 ppb by assimilating surface CO measurements, 344 

in contrast to 138-144, 149-155 and 144-151 ppb by assimilating MOPITT CO observations in 345 

2015-2020 over E. China, NCP and YRD, respectively. This difference is larger than the 346 

reported uncertainties in MOPITT CO columns (Deeter et al., 2017) and similar to the reported 347 

discrepancy in the derived CO emissions based on MOPITT and surface CO measurements 348 

(Elguindi et al., 2020; Feng et al., 2020). In addition, we find large regional discrepancies in 349 

the ratios between observed and model a priori surface CO: about 1.5 over high polluted areas 350 

such as NCP and 2-6 over low polluted areas (Fig. 1d). These inconsistencies could be 351 

associated with possible representation errors due to differences between urban and regional 352 

CO backgrounds, which cannot be effectively contained via adjusting the covariance matrix in 353 

the assimilations. 354 

Assimilations of raw surface CO measurements indicate declines in surface CO 355 

concentrations by about 43.9, 19.2 and 18.3 ppb/y over NCP, YRD and E. China in 2015-2020. 356 

Assimilations of normalized surface CO measurements further indicate declines of CO 357 

columns (Xco) by about 2.2, 2.1 and 1.8 ppb/y over E. China, South Korea and Japan in 2015-358 
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2020, respectively. It demonstrates the important impacts of CO emission controls in China on 359 

E. Asian atmospheric CO changes. By contrast, assimilations of MOPITT CO measurements 360 

suggest small trends in CO columns: 0.63-0.86, 0.97-1.29 and 1.00-1.27 ppb/y over E. China, 361 

South Korea and Japan in 2015-2020, respectively. These discrepancies reflect the different 362 

vertical sensitivities of satellite and surface observations to CO concentrations in the lower and 363 

free troposphere. While the normalized CO measurements in this work are supposed to provide 364 

a better representation of atmospheric CO in the free troposphere, Kalman Filter by 365 

assimilating raw CO measurements is closer to real urban CO concentrations at the surface 366 

level. More efforts to analyze the effects of meteorological variabilities on observed and 367 

modeled surface CO concentrations are helpful for better assimilation of surface CO 368 

observations, and more accurate evaluation of atmospheric CO changes. 369 

 370 

Data availability: The MEE CO data can be downloaded from https://quotsoft.net/air/. The 371 

MOPITT CO data can be downloaded from https://asdc.larc.nasa.gov/data/MOPITT/. The 372 
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Figure Legends 385 

Table 1. Averages and trends of surface (T 1.1) and column (T 1.2) CO concentrations in 2015-386 

2020. The domain definitions are shown in Fig. 1a. The E. Asian CO boundary conditions are 387 

provided by global a priori simulations, except Kalman Filters by assimilating MOPITT CO 388 

while the boundary conditions are provided by global assimilations of MOPITT CO. The 389 

“MEE normalized and MOPITT column” is performed by assimilating both MOPITT CO and 390 

normalized surface CO measurements simultaneously. 391 

 392 

Table 2. Averages, correlations and trends of surface (T 2.1) and column (T 2.2 and T 2.3) CO 393 

concentrations in 2015-2020, sampled at the locations of MEE stations. The domain definitions 394 

are shown in Fig. 1a. The correlations between simulations and MOPITT observations in T 2.3 395 

are not shown because MOPITT averaging kernels are not applied. 396 

 397 

Figure 1. (A) Trends of MOPITT CO columns (Xco) in 2015-2020 with unit ppb/y; (B) Trends 398 

of MEE surface CO concentrations in 2015-2020 with unit ppb/y; (C) Modeled (contour, a 399 

priori simulation) and observed (dotted) surface CO concentrations in 2019 with unit ppb; (D) 400 

Ratios between observed and modeled (a priori simulation) surface CO concentrations in 2019. 401 

The black boxes in panel A define the domains (land only) of E. China, NCP, YRD, South 402 

Korea and Japan. The areas outside of China are excluded in the E. China domain. 403 

 404 

Figure 2. (A) surface CO concentrations over NCP in 2019 from a priori simulation and 405 

Kalman Filter by assimilating MOPITT CO; (B) same as panel a, but for CO columns; (C) 406 

surface CO concentrations from a priori simulation and MEE observations; (D) surface CO 407 

concentrations from a priori simulation, MEE observations and Kalman Filter by assimilating 408 

MEE CO; (E) surface CO concentrations from a priori simulation, MEE observations and 409 

Kalman Filter by assimilating normalized MEE CO. 410 

 411 

Figure 3. CO profiles over NCP in 2019 from a priori simulations (black line), Kalman Filter 412 

by assimilating MOPITT CO (column: blue solid line; profile: blue dashed line) and MEE CO 413 

(raw data: red solid line; normalized data: red dashed line). 414 

 415 
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Figure 4. (A) relative difference between a priori simulation and MOPITT in 2019, calculated 416 

by (Model - MOPITT)/MOPITT; (B) same as panel A, but with Kalman Filter by assimilating 417 

MOPITT CO column data; (C) same as panel A, but with Kalman Filter by assimilating 418 

MOPITT CO profile data. 419 

 420 

Figure 5. Trends of surface CO concentrations in 2015-2020 by assimilating (A) raw MEE CO  421 

and trends of CO columns in 2015-2020 by assimilating (B) normalized MEE CO, (C) 422 

MOPITT CO column data, (D) MOPITT CO profile data and (E) normalized MEE CO + 423 

MOPITT CO column data. 424 

 425 

Figure 6. Surface CO concentrations in 2015-2020 from a priori simulations (black line), 426 

Kalman Filter by assimilating raw (red solid line) and normalized (red dashed line) MEE CO. 427 

 428 

Figure 7. CO columns (Xco) in 2015-2020 from a priori simulations (black line), Kalman Filter 429 

by assimilating MOPITT CO columns (blue line), MEE CO (raw data: red solid line; 430 

normalized data: red dashed line) and MOPITT CO column + normalized MEE CO (purple 431 

line). 432 

 433 
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Table. 1. Averages and trends of surface (T 1.1) and column (T 1.2) CO concentrations in 

2015-2020. The domain definitions are shown in Fig. 1a. The E. Asian CO boundary conditions 

are provided by global a priori simulations, except Kalman Filters by assimilating MOPITT 

CO while the boundary conditions are provided by global assimilations of MOPITT CO. The 

“MEE normalized and MOPITT column” is performed by assimilating both MOPITT CO and 

normalized surface CO measurements simultaneously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table. 2. Averages, correlations and trends of surface (T 2.1) and column (T 2.2 and T 2.3) CO 

concentrations in 2015-2020, sampled at the locations of MEE stations. The domain definitions 

are shown in Fig. 1a. The correlations between simulations and MOPITT observations in T 2.3 

are not shown because MOPITT averaging kernels are not applied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 1. (A) Trends of MOPITT CO columns (Xco) in 2015-2020 with unit ppb/y; (B) Trends 

of MEE surface CO concentrations in 2015-2020 with unit ppb/y; (C) Modeled (contour, a 

priori simulation) and observed (dotted) surface CO concentrations in 2019 with unit ppb; (D) 

Ratios between observed and modeled (a priori simulation) surface CO concentrations in 2019. 

The black boxes in panel A define the domains (land only) of E. China, NCP, YRD, South 

Korea and Japan. The areas outside of China are excluded in the E. China domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Fig. 2. (A) surface CO concentrations over NCP in 2019 from a priori simulation and Kalman 

Filter by assimilating MOPITT CO; (B) same as panel a, but for CO columns; (C) surface CO 

concentrations from a priori simulation and MEE observations; (D) surface CO concentrations 

from a priori simulation, MEE observations and Kalman Filter by assimilating MEE CO; (E) 

surface CO concentrations from a priori simulation, MEE observations and Kalman Filter by 

assimilating normalized MEE CO. 

 

 

 

 

Fig. 3. CO profiles over NCP in 2019 from a priori simulations (black line), Kalman Filter by 

assimilating MOPITT CO (column: blue solid line; profile: blue dashed line) and MEE CO 

(raw data: red solid line; normalized data: red dashed line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 4. (A) relative difference between a priori simulation and MOPITT in 2019, calculated by 

(Model - MOPITT)/MOPITT; (B) same as panel A, but with Kalman Filter by assimilating 

MOPITT CO column data; (C) same as panel A, but with Kalman Filter by assimilating 

MOPITT CO profile data. 

 

 

 

 

 

 

 

 



Fig. 5. Trends of surface CO concentrations in 2015-2020 by assimilating (A) raw MEE CO 

and trends of CO columns in 2015-2020 by assimilating (B) normalized MEE CO, (C) 

MOPITT CO column data, (D) MOPITT CO profile data and (E) normalized MEE CO + 

MOPITT CO column data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 6. Surface CO concentrations in 2015-2020 from a priori simulations (black line), Kalman 

Filter by assimilating raw (red solid line) and normalized (red dashed line) MEE CO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 7. CO columns (Xco) in 2015-2020 from a priori simulations (black line), Kalman Filter 

by assimilating MOPITT CO columns (blue line), MEE CO (raw data: red solid line; 

normalized data: red dashed line) and MOPITT CO column + normalized MEE CO (purple 

line). 
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